YES
The TRS could be proven terminating. The proof took 548 ms.
Problem 1 was processed with processor DependencyGraph (31ms). | Problem 2 was processed with processor PolynomialLinearRange4 (150ms). | | Problem 3 was processed with processor DependencyGraph (1ms). | | | Problem 4 was processed with processor PolynomialLinearRange4 (19ms).
f_1#(x, x) | → | f_1#(i_0(x), g_1(g_1(x))) | g_1#(x) | → | T(x) | |
T(g_1(x_1)) | → | T(x_1) | T(g_1(x)) | → | g_1#(x) | |
T(g_1(g_1(x))) | → | g_1#(g_1(x)) | f_1#(x, i_0(x)) | → | f_1#(x, x) | |
f_1#(x, y) | → | T(x) | T(i_0(x_1)) | → | T(x_1) |
f_1(x, x) | → | f_1(i_0(x), g_1(g_1(x))) | f_1(x, y) | → | x | |
g_1(x) | → | i_0(x) | f_1(x, i_0(x)) | → | f_1(x, x) | |
f_1(i_0(x), i_0(g_1(x))) | → | a_0 |
Termination of terms over the following signature is verified: i_0, a_0, g_1, f_1
Context-sensitive strategy:
μ(T) = μ(f_1#) = μ(a_0) = μ(g_1) = μ(g_1#) = μ(f_1) = ∅
μ(i_0) = {1}
g_1#(x) → T(x) | T(g_1(x_1)) → T(x_1) |
T(g_1(x)) → g_1#(x) | T(g_1(g_1(x))) → g_1#(g_1(x)) |
T(i_0(x_1)) → T(x_1) |
g_1#(x) | → | T(x) | T(g_1(x_1)) | → | T(x_1) | |
T(g_1(x)) | → | g_1#(x) | T(g_1(g_1(x))) | → | g_1#(g_1(x)) | |
T(i_0(x_1)) | → | T(x_1) |
f_1(x, x) | → | f_1(i_0(x), g_1(g_1(x))) | f_1(x, y) | → | x | |
g_1(x) | → | i_0(x) | f_1(x, i_0(x)) | → | f_1(x, x) | |
f_1(i_0(x), i_0(g_1(x))) | → | a_0 |
Termination of terms over the following signature is verified: i_0, a_0, g_1, f_1
Context-sensitive strategy:
μ(T) = μ(a_0) = μ(f_1#) = μ(g_1) = μ(g_1#) = μ(f_1) = ∅
μ(i_0) = {1}
f_1(i_0(x), i_0(g_1(x))) | → | a_0 | g_1(x) | → | i_0(x) | |
f_1(x, i_0(x)) | → | f_1(x, x) | f_1(x, y) | → | x | |
f_1(x, x) | → | f_1(i_0(x), g_1(g_1(x))) |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
T(g_1(x_1)) | → | T(x_1) | g_1#(x) | → | T(x) |
T(g_1(g_1(x))) | → | g_1#(g_1(x)) | T(g_1(x)) | → | g_1#(x) | |
T(i_0(x_1)) | → | T(x_1) |
f_1(x, x) | → | f_1(i_0(x), g_1(g_1(x))) | f_1(x, y) | → | x | |
g_1(x) | → | i_0(x) | f_1(x, i_0(x)) | → | f_1(x, x) | |
f_1(i_0(x), i_0(g_1(x))) | → | a_0 |
Termination of terms over the following signature is verified: i_0, a_0, g_1, f_1
Context-sensitive strategy:
μ(T) = μ(f_1#) = μ(a_0) = μ(g_1) = μ(g_1#) = μ(f_1) = ∅
μ(i_0) = {1}
T(i_0(x_1)) → T(x_1) |
T(i_0(x_1)) | → | T(x_1) |
f_1(x, x) | → | f_1(i_0(x), g_1(g_1(x))) | f_1(x, y) | → | x | |
g_1(x) | → | i_0(x) | f_1(x, i_0(x)) | → | f_1(x, x) | |
f_1(i_0(x), i_0(g_1(x))) | → | a_0 |
Termination of terms over the following signature is verified: i_0, a_0, g_1, f_1
Context-sensitive strategy:
μ(T) = μ(a_0) = μ(f_1#) = μ(g_1) = μ(g_1#) = μ(f_1) = ∅
μ(i_0) = {1}
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
T(i_0(x_1)) | → | T(x_1) |