YES

The TRS could be proven terminating. The proof took 2334 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (103ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4 (167ms).
 | – Problem 3 was processed with processor BackwardsNarrowing (9ms).
 |    | – Problem 4 was processed with processor BackwardsNarrowing (1ms).
 |    |    | – Problem 5 was processed with processor BackwardsNarrowing (0ms).
 |    |    |    | – Problem 6 was processed with processor BackwardsNarrowing (1ms).
 |    |    |    |    | – Problem 7 was processed with processor BackwardsNarrowing (1ms).
 |    |    |    |    |    | – Problem 8 was processed with processor BackwardsNarrowing (1ms).
 |    |    |    |    |    |    | – Problem 9 was processed with processor BackwardsNarrowing (0ms).
 |    |    |    |    |    |    |    | – Problem 10 was processed with processor BackwardsNarrowing (0ms).
 |    |    |    |    |    |    |    |    | – Problem 11 was processed with processor BackwardsNarrowing (6ms).
 |    |    |    |    |    |    |    |    |    | – Problem 12 was processed with processor BackwardsNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    | – Problem 13 was processed with processor BackwardsNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    | – Problem 14 was processed with processor BackwardInstantiation (0ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

T(cons_0(x_1, x_2))T(x_1)*top*_0#(inf_1(x))T(x)
T(inf_1(x_1))T(x_1)s_0#(inf_1(x))cons_0#(x, inf_1(s_0(x)))
cons_0#(x0, inf_1(x))cons_1#(x0, cons_0(x, inf_1(s_0(x))))s_0#(inf_1(x))T(x)
T(s_0(x_1))T(x_1)cons_0#(inf_1(x), x0)cons_0#(x, inf_1(s_0(x)))
*top*_0#(inf_1(x))cons_0#(x, inf_1(s_0(x)))s_0#(inf_1(x))s_0#(cons_0(x, inf_1(s_0(x))))
*top*_0#(inf_1(x))*top*_0#(cons_0(x, inf_1(s_0(x))))T(cons_0(x_1, x_2))T(x_2)
cons_0#(inf_1(x), x0)cons_0#(cons_0(x, inf_1(s_0(x))), x0)T(s_0(x))s_0#(x)
T(cons_0(x, inf_1(s_0(x))))cons_0#(x, inf_1(s_0(x)))cons_0#(inf_1(x), x0)T(x)

Rewrite Rules

cons_1(x, cons_1(y, z))big_0cons_1(x, cons_0(y, z))big_0
*top*_0(inf_1(x))*top*_0(cons_0(x, inf_1(s_0(x))))s_0(inf_1(x))s_0(cons_0(x, inf_1(s_0(x))))
cons_0(inf_1(x), x0)cons_0(cons_0(x, inf_1(s_0(x))), x0)cons_0(x0, inf_1(x))cons_1(x0, cons_0(x, inf_1(s_0(x))))

Original Signature

Termination of terms over the following signature is verified: inf_1, cons_1, big_0, cons_0, *top*_0, s_0

Strategy

Context-sensitive strategy:
μ(T) = μ(cons_1#) = μ(inf_1) = μ(cons_1) = μ(big_0) = ∅
μ(s_0#) = μ(*top*_0) = μ(*top*_0#) = μ(s_0) = {1}
μ(cons_0#) = μ(cons_0) = {1, 2}


The following SCCs where found

*top*_0#(inf_1(x)) → *top*_0#(cons_0(x, inf_1(s_0(x))))

T(cons_0(x_1, x_2)) → T(x_1)T(cons_0(x_1, x_2)) → T(x_2)
T(inf_1(x_1)) → T(x_1)cons_0#(inf_1(x), x0) → cons_0#(cons_0(x, inf_1(s_0(x))), x0)
s_0#(inf_1(x)) → cons_0#(x, inf_1(s_0(x)))s_0#(inf_1(x)) → T(x)
T(s_0(x_1)) → T(x_1)cons_0#(inf_1(x), x0) → cons_0#(x, inf_1(s_0(x)))
T(s_0(x)) → s_0#(x)T(cons_0(x, inf_1(s_0(x)))) → cons_0#(x, inf_1(s_0(x)))
s_0#(inf_1(x)) → s_0#(cons_0(x, inf_1(s_0(x))))cons_0#(inf_1(x), x0) → T(x)

Problem 2: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

*top*_0#(inf_1(x))*top*_0#(cons_0(x, inf_1(s_0(x))))

Rewrite Rules

cons_1(x, cons_1(y, z))big_0cons_1(x, cons_0(y, z))big_0
*top*_0(inf_1(x))*top*_0(cons_0(x, inf_1(s_0(x))))s_0(inf_1(x))s_0(cons_0(x, inf_1(s_0(x))))
cons_0(inf_1(x), x0)cons_0(cons_0(x, inf_1(s_0(x))), x0)cons_0(x0, inf_1(x))cons_1(x0, cons_0(x, inf_1(s_0(x))))

Original Signature

Termination of terms over the following signature is verified: inf_1, cons_1, big_0, cons_0, *top*_0, s_0

Strategy

Context-sensitive strategy:
μ(T) = μ(cons_1#) = μ(inf_1) = μ(cons_1) = μ(big_0) = ∅
μ(s_0#) = μ(*top*_0) = μ(s_0) = μ(*top*_0#) = {1}
μ(cons_0#) = μ(cons_0) = {1, 2}


Polynomial Interpretation

Standard Usable rules

cons_0(x0, inf_1(x))cons_1(x0, cons_0(x, inf_1(s_0(x))))s_0(inf_1(x))s_0(cons_0(x, inf_1(s_0(x))))
cons_1(x, cons_1(y, z))big_0cons_0(inf_1(x), x0)cons_0(cons_0(x, inf_1(s_0(x))), x0)
*top*_0(inf_1(x))*top*_0(cons_0(x, inf_1(s_0(x))))cons_1(x, cons_0(y, z))big_0

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

*top*_0#(inf_1(x))*top*_0#(cons_0(x, inf_1(s_0(x))))

Problem 3: BackwardsNarrowing



Dependency Pair Problem

Dependency Pairs

T(cons_0(x_1, x_2))T(x_1)T(cons_0(x_1, x_2))T(x_2)
T(inf_1(x_1))T(x_1)cons_0#(inf_1(x), x0)cons_0#(cons_0(x, inf_1(s_0(x))), x0)
s_0#(inf_1(x))cons_0#(x, inf_1(s_0(x)))s_0#(inf_1(x))T(x)
T(s_0(x_1))T(x_1)cons_0#(inf_1(x), x0)cons_0#(x, inf_1(s_0(x)))
T(s_0(x))s_0#(x)T(cons_0(x, inf_1(s_0(x))))cons_0#(x, inf_1(s_0(x)))
s_0#(inf_1(x))s_0#(cons_0(x, inf_1(s_0(x))))cons_0#(inf_1(x), x0)T(x)

Rewrite Rules

cons_1(x, cons_1(y, z))big_0cons_1(x, cons_0(y, z))big_0
*top*_0(inf_1(x))*top*_0(cons_0(x, inf_1(s_0(x))))s_0(inf_1(x))s_0(cons_0(x, inf_1(s_0(x))))
cons_0(inf_1(x), x0)cons_0(cons_0(x, inf_1(s_0(x))), x0)cons_0(x0, inf_1(x))cons_1(x0, cons_0(x, inf_1(s_0(x))))

Original Signature

Termination of terms over the following signature is verified: inf_1, cons_1, big_0, cons_0, *top*_0, s_0

Strategy

Context-sensitive strategy:
μ(T) = μ(cons_1#) = μ(inf_1) = μ(cons_1) = μ(big_0) = ∅
μ(s_0#) = μ(*top*_0) = μ(s_0) = μ(*top*_0#) = {1}
μ(cons_0#) = μ(cons_0) = {1, 2}


The left-hand side of the rule s_0#(inf_1(x)) → cons_0#(x, inf_1(s_0(x))) is backward narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule s_0#(inf_1(x)) → cons_0#(x, inf_1(s_0(x))) is deleted.

Problem 4: BackwardsNarrowing



Dependency Pair Problem

Dependency Pairs

T(cons_0(x_1, x_2))T(x_1)T(cons_0(x_1, x_2))T(x_2)
T(inf_1(x_1))T(x_1)cons_0#(inf_1(x), x0)cons_0#(cons_0(x, inf_1(s_0(x))), x0)
s_0#(inf_1(x))T(x)T(s_0(x_1))T(x_1)
cons_0#(inf_1(x), x0)cons_0#(x, inf_1(s_0(x)))T(s_0(x))s_0#(x)
s_0#(inf_1(x))s_0#(cons_0(x, inf_1(s_0(x))))T(cons_0(x, inf_1(s_0(x))))cons_0#(x, inf_1(s_0(x)))
cons_0#(inf_1(x), x0)T(x)

Rewrite Rules

cons_1(x, cons_1(y, z))big_0cons_1(x, cons_0(y, z))big_0
*top*_0(inf_1(x))*top*_0(cons_0(x, inf_1(s_0(x))))s_0(inf_1(x))s_0(cons_0(x, inf_1(s_0(x))))
cons_0(inf_1(x), x0)cons_0(cons_0(x, inf_1(s_0(x))), x0)cons_0(x0, inf_1(x))cons_1(x0, cons_0(x, inf_1(s_0(x))))

Original Signature

Termination of terms over the following signature is verified: inf_1, cons_1, cons_0, big_0, *top*_0, s_0

Strategy

Context-sensitive strategy:
μ(T) = μ(cons_1#) = μ(inf_1) = μ(cons_1) = μ(big_0) = ∅
μ(s_0#) = μ(*top*_0) = μ(*top*_0#) = μ(s_0) = {1}
μ(cons_0#) = μ(cons_0) = {1, 2}


The left-hand side of the rule cons_0#(inf_1(x), x0) → cons_0#(cons_0(x, inf_1(s_0(x))), x0) is backward narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule cons_0#(inf_1(x), x0) → cons_0#(cons_0(x, inf_1(s_0(x))), x0) is deleted.

Problem 5: BackwardsNarrowing



Dependency Pair Problem

Dependency Pairs

T(cons_0(x_1, x_2))T(x_1)T(cons_0(x_1, x_2))T(x_2)
T(inf_1(x_1))T(x_1)s_0#(inf_1(x))T(x)
T(s_0(x_1))T(x_1)cons_0#(inf_1(x), x0)cons_0#(x, inf_1(s_0(x)))
T(s_0(x))s_0#(x)T(cons_0(x, inf_1(s_0(x))))cons_0#(x, inf_1(s_0(x)))
s_0#(inf_1(x))s_0#(cons_0(x, inf_1(s_0(x))))cons_0#(inf_1(x), x0)T(x)

Rewrite Rules

cons_1(x, cons_1(y, z))big_0cons_1(x, cons_0(y, z))big_0
*top*_0(inf_1(x))*top*_0(cons_0(x, inf_1(s_0(x))))s_0(inf_1(x))s_0(cons_0(x, inf_1(s_0(x))))
cons_0(inf_1(x), x0)cons_0(cons_0(x, inf_1(s_0(x))), x0)cons_0(x0, inf_1(x))cons_1(x0, cons_0(x, inf_1(s_0(x))))

Original Signature

Termination of terms over the following signature is verified: inf_1, cons_1, big_0, cons_0, *top*_0, s_0

Strategy

Context-sensitive strategy:
μ(T) = μ(cons_1#) = μ(inf_1) = μ(cons_1) = μ(big_0) = ∅
μ(s_0#) = μ(*top*_0) = μ(s_0) = μ(*top*_0#) = {1}
μ(cons_0#) = μ(cons_0) = {1, 2}


The left-hand side of the rule s_0#(inf_1(x)) → T(x) is backward narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule s_0#(inf_1(x)) → T(x) is deleted.

Problem 6: BackwardsNarrowing



Dependency Pair Problem

Dependency Pairs

T(cons_0(x_1, x_2))T(x_1)T(cons_0(x_1, x_2))T(x_2)
T(inf_1(x_1))T(x_1)T(s_0(x_1))T(x_1)
cons_0#(inf_1(x), x0)cons_0#(x, inf_1(s_0(x)))T(s_0(x))s_0#(x)
s_0#(inf_1(x))s_0#(cons_0(x, inf_1(s_0(x))))T(cons_0(x, inf_1(s_0(x))))cons_0#(x, inf_1(s_0(x)))
cons_0#(inf_1(x), x0)T(x)

Rewrite Rules

cons_1(x, cons_1(y, z))big_0cons_1(x, cons_0(y, z))big_0
*top*_0(inf_1(x))*top*_0(cons_0(x, inf_1(s_0(x))))s_0(inf_1(x))s_0(cons_0(x, inf_1(s_0(x))))
cons_0(inf_1(x), x0)cons_0(cons_0(x, inf_1(s_0(x))), x0)cons_0(x0, inf_1(x))cons_1(x0, cons_0(x, inf_1(s_0(x))))

Original Signature

Termination of terms over the following signature is verified: inf_1, cons_1, cons_0, big_0, *top*_0, s_0

Strategy

Context-sensitive strategy:
μ(T) = μ(cons_1#) = μ(inf_1) = μ(cons_1) = μ(big_0) = ∅
μ(s_0#) = μ(*top*_0) = μ(*top*_0#) = μ(s_0) = {1}
μ(cons_0#) = μ(cons_0) = {1, 2}


The left-hand side of the rule cons_0#(inf_1(x), x0) → cons_0#(x, inf_1(s_0(x))) is backward narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule cons_0#(inf_1(x), x0) → cons_0#(x, inf_1(s_0(x))) is deleted.

Problem 7: BackwardsNarrowing



Dependency Pair Problem

Dependency Pairs

T(cons_0(x_1, x_2))T(x_1)T(cons_0(x_1, x_2))T(x_2)
T(inf_1(x_1))T(x_1)T(s_0(x_1))T(x_1)
T(s_0(x))s_0#(x)T(cons_0(x, inf_1(s_0(x))))cons_0#(x, inf_1(s_0(x)))
s_0#(inf_1(x))s_0#(cons_0(x, inf_1(s_0(x))))cons_0#(inf_1(x), x0)T(x)

Rewrite Rules

cons_1(x, cons_1(y, z))big_0cons_1(x, cons_0(y, z))big_0
*top*_0(inf_1(x))*top*_0(cons_0(x, inf_1(s_0(x))))s_0(inf_1(x))s_0(cons_0(x, inf_1(s_0(x))))
cons_0(inf_1(x), x0)cons_0(cons_0(x, inf_1(s_0(x))), x0)cons_0(x0, inf_1(x))cons_1(x0, cons_0(x, inf_1(s_0(x))))

Original Signature

Termination of terms over the following signature is verified: inf_1, cons_1, big_0, cons_0, *top*_0, s_0

Strategy

Context-sensitive strategy:
μ(T) = μ(cons_1#) = μ(inf_1) = μ(cons_1) = μ(big_0) = ∅
μ(s_0#) = μ(*top*_0) = μ(s_0) = μ(*top*_0#) = {1}
μ(cons_0#) = μ(cons_0) = {1, 2}


The left-hand side of the rule s_0#(inf_1(x)) → s_0#(cons_0(x, inf_1(s_0(x)))) is backward narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule s_0#(inf_1(x)) → s_0#(cons_0(x, inf_1(s_0(x)))) is deleted.

Problem 8: BackwardsNarrowing



Dependency Pair Problem

Dependency Pairs

T(cons_0(x_1, x_2))T(x_1)T(cons_0(x_1, x_2))T(x_2)
T(inf_1(x_1))T(x_1)T(s_0(x_1))T(x_1)
T(s_0(x))s_0#(x)T(cons_0(x, inf_1(s_0(x))))cons_0#(x, inf_1(s_0(x)))
cons_0#(inf_1(x), x0)T(x)

Rewrite Rules

cons_1(x, cons_1(y, z))big_0cons_1(x, cons_0(y, z))big_0
*top*_0(inf_1(x))*top*_0(cons_0(x, inf_1(s_0(x))))s_0(inf_1(x))s_0(cons_0(x, inf_1(s_0(x))))
cons_0(inf_1(x), x0)cons_0(cons_0(x, inf_1(s_0(x))), x0)cons_0(x0, inf_1(x))cons_1(x0, cons_0(x, inf_1(s_0(x))))

Original Signature

Termination of terms over the following signature is verified: inf_1, cons_1, cons_0, big_0, *top*_0, s_0

Strategy

Context-sensitive strategy:
μ(T) = μ(cons_1#) = μ(inf_1) = μ(cons_1) = μ(big_0) = ∅
μ(s_0#) = μ(*top*_0) = μ(*top*_0#) = μ(s_0) = {1}
μ(cons_0#) = μ(cons_0) = {1, 2}


The left-hand side of the rule cons_0#(inf_1(x), x0) → T(x) is backward narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule cons_0#(inf_1(x), x0) → T(x) is deleted.

Problem 9: BackwardsNarrowing



Dependency Pair Problem

Dependency Pairs

T(cons_0(x_1, x_2))T(x_1)T(cons_0(x_1, x_2))T(x_2)
T(inf_1(x_1))T(x_1)T(s_0(x_1))T(x_1)
T(s_0(x))s_0#(x)T(cons_0(x, inf_1(s_0(x))))cons_0#(x, inf_1(s_0(x)))

Rewrite Rules

cons_1(x, cons_1(y, z))big_0cons_1(x, cons_0(y, z))big_0
*top*_0(inf_1(x))*top*_0(cons_0(x, inf_1(s_0(x))))s_0(inf_1(x))s_0(cons_0(x, inf_1(s_0(x))))
cons_0(inf_1(x), x0)cons_0(cons_0(x, inf_1(s_0(x))), x0)cons_0(x0, inf_1(x))cons_1(x0, cons_0(x, inf_1(s_0(x))))

Original Signature

Termination of terms over the following signature is verified: inf_1, cons_1, big_0, cons_0, *top*_0, s_0

Strategy

Context-sensitive strategy:
μ(T) = μ(cons_1#) = μ(inf_1) = μ(cons_1) = μ(big_0) = ∅
μ(s_0#) = μ(*top*_0) = μ(s_0) = μ(*top*_0#) = {1}
μ(cons_0#) = μ(cons_0) = {1, 2}


The left-hand side of the rule T(cons_0(x_1, x_2)) → T(x_1) is backward narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule T(cons_0(x_1, x_2)) → T(x_1) is deleted.

Problem 10: BackwardsNarrowing



Dependency Pair Problem

Dependency Pairs

T(cons_0(x_1, x_2))T(x_2)T(inf_1(x_1))T(x_1)
T(s_0(x_1))T(x_1)T(s_0(x))s_0#(x)
T(cons_0(x, inf_1(s_0(x))))cons_0#(x, inf_1(s_0(x)))

Rewrite Rules

cons_1(x, cons_1(y, z))big_0cons_1(x, cons_0(y, z))big_0
*top*_0(inf_1(x))*top*_0(cons_0(x, inf_1(s_0(x))))s_0(inf_1(x))s_0(cons_0(x, inf_1(s_0(x))))
cons_0(inf_1(x), x0)cons_0(cons_0(x, inf_1(s_0(x))), x0)cons_0(x0, inf_1(x))cons_1(x0, cons_0(x, inf_1(s_0(x))))

Original Signature

Termination of terms over the following signature is verified: inf_1, cons_1, cons_0, big_0, *top*_0, s_0

Strategy

Context-sensitive strategy:
μ(T) = μ(cons_1#) = μ(inf_1) = μ(cons_1) = μ(big_0) = ∅
μ(s_0#) = μ(*top*_0) = μ(*top*_0#) = μ(s_0) = {1}
μ(cons_0#) = μ(cons_0) = {1, 2}


The left-hand side of the rule T(cons_0(x_1, x_2)) → T(x_2) is backward narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule T(cons_0(x_1, x_2)) → T(x_2) is deleted.

Problem 11: BackwardsNarrowing



Dependency Pair Problem

Dependency Pairs

T(inf_1(x_1))T(x_1)T(s_0(x_1))T(x_1)
T(s_0(x))s_0#(x)T(cons_0(x, inf_1(s_0(x))))cons_0#(x, inf_1(s_0(x)))

Rewrite Rules

cons_1(x, cons_1(y, z))big_0cons_1(x, cons_0(y, z))big_0
*top*_0(inf_1(x))*top*_0(cons_0(x, inf_1(s_0(x))))s_0(inf_1(x))s_0(cons_0(x, inf_1(s_0(x))))
cons_0(inf_1(x), x0)cons_0(cons_0(x, inf_1(s_0(x))), x0)cons_0(x0, inf_1(x))cons_1(x0, cons_0(x, inf_1(s_0(x))))

Original Signature

Termination of terms over the following signature is verified: inf_1, cons_1, big_0, cons_0, *top*_0, s_0

Strategy

Context-sensitive strategy:
μ(T) = μ(cons_1#) = μ(inf_1) = μ(cons_1) = μ(big_0) = ∅
μ(s_0#) = μ(*top*_0) = μ(s_0) = μ(*top*_0#) = {1}
μ(cons_0#) = μ(cons_0) = {1, 2}


The left-hand side of the rule T(inf_1(x_1)) → T(x_1) is backward narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule T(inf_1(x_1)) → T(x_1) is deleted.

Problem 12: BackwardsNarrowing



Dependency Pair Problem

Dependency Pairs

T(s_0(x_1))T(x_1)T(s_0(x))s_0#(x)
T(cons_0(x, inf_1(s_0(x))))cons_0#(x, inf_1(s_0(x)))

Rewrite Rules

cons_1(x, cons_1(y, z))big_0cons_1(x, cons_0(y, z))big_0
*top*_0(inf_1(x))*top*_0(cons_0(x, inf_1(s_0(x))))s_0(inf_1(x))s_0(cons_0(x, inf_1(s_0(x))))
cons_0(inf_1(x), x0)cons_0(cons_0(x, inf_1(s_0(x))), x0)cons_0(x0, inf_1(x))cons_1(x0, cons_0(x, inf_1(s_0(x))))

Original Signature

Termination of terms over the following signature is verified: inf_1, cons_1, cons_0, big_0, *top*_0, s_0

Strategy

Context-sensitive strategy:
μ(T) = μ(cons_1#) = μ(inf_1) = μ(cons_1) = μ(big_0) = ∅
μ(s_0#) = μ(*top*_0) = μ(*top*_0#) = μ(s_0) = {1}
μ(cons_0#) = μ(cons_0) = {1, 2}


The left-hand side of the rule T(s_0(x_1)) → T(x_1) is backward narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule T(s_0(x_1)) → T(x_1) is deleted.

Problem 13: BackwardsNarrowing



Dependency Pair Problem

Dependency Pairs

T(s_0(x))s_0#(x)T(cons_0(x, inf_1(s_0(x))))cons_0#(x, inf_1(s_0(x)))

Rewrite Rules

cons_1(x, cons_1(y, z))big_0cons_1(x, cons_0(y, z))big_0
*top*_0(inf_1(x))*top*_0(cons_0(x, inf_1(s_0(x))))s_0(inf_1(x))s_0(cons_0(x, inf_1(s_0(x))))
cons_0(inf_1(x), x0)cons_0(cons_0(x, inf_1(s_0(x))), x0)cons_0(x0, inf_1(x))cons_1(x0, cons_0(x, inf_1(s_0(x))))

Original Signature

Termination of terms over the following signature is verified: inf_1, cons_1, big_0, cons_0, *top*_0, s_0

Strategy

Context-sensitive strategy:
μ(T) = μ(cons_1#) = μ(inf_1) = μ(cons_1) = μ(big_0) = ∅
μ(s_0#) = μ(*top*_0) = μ(s_0) = μ(*top*_0#) = {1}
μ(cons_0#) = μ(cons_0) = {1, 2}


The left-hand side of the rule T(s_0(x)) → s_0#(x) is backward narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule T(s_0(x)) → s_0#(x) is deleted.

Problem 14: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

T(cons_0(x, inf_1(s_0(x))))cons_0#(x, inf_1(s_0(x)))

Rewrite Rules

cons_1(x, cons_1(y, z))big_0cons_1(x, cons_0(y, z))big_0
*top*_0(inf_1(x))*top*_0(cons_0(x, inf_1(s_0(x))))s_0(inf_1(x))s_0(cons_0(x, inf_1(s_0(x))))
cons_0(inf_1(x), x0)cons_0(cons_0(x, inf_1(s_0(x))), x0)cons_0(x0, inf_1(x))cons_1(x0, cons_0(x, inf_1(s_0(x))))

Original Signature

Termination of terms over the following signature is verified: inf_1, cons_1, cons_0, big_0, *top*_0, s_0

Strategy

Context-sensitive strategy:
μ(T) = μ(cons_1#) = μ(inf_1) = μ(cons_1) = μ(big_0) = ∅
μ(s_0#) = μ(*top*_0) = μ(*top*_0#) = μ(s_0) = {1}
μ(cons_0#) = μ(cons_0) = {1, 2}


Instantiation

For all potential predecessors l → r of the rule T(cons_0(x, inf_1(s_0(x)))) → cons_0#(x, inf_1(s_0(x))) on dependency pair chains it holds that: Thus, T(cons_0(x, inf_1(s_0(x)))) → cons_0#(x, inf_1(s_0(x))) is replaced by instances determined through the above matching. These instances are: