YES
The TRS could be proven terminating. The proof took 506 ms.
Problem 1 was processed with processor DependencyGraph (26ms). | Problem 2 was processed with processor PolynomialLinearRange4 (49ms). | | Problem 4 was processed with processor PolynomialLinearRange4 (46ms). | Problem 3 was processed with processor PolynomialLinearRange4 (111ms).
T(g_1(x_1)) | → | T(x_1) | T(g_1(x)) | → | g_1#(x) | |
*top*_0#(g_1(x)) | → | *top*_0#(f_0(g_1(x))) | T(g_1(x)) | → | g_1#(x) | |
g_1#(x) | → | f_1#(g_1(x)) | *top*_0#(g_1(x)) | → | g_1#(x) | |
f_0#(g_1(x)) | → | f_1#(f_0(g_1(x))) | T(f_0(g_1(x))) | → | f_0#(g_1(x)) | |
T(f_0(x_1)) | → | T(x_1) | *top*_0#(g_1(x)) | → | f_0#(g_1(x)) |
f_1(g_1(a_0)) | → | a_0 | f_1(f_0(x)) | → | b_0 | |
f_1(f_1(x)) | → | b_0 | g_1(x) | → | f_1(g_1(x)) | |
*top*_0(g_1(x)) | → | *top*_0(f_0(g_1(x))) | f_0(g_1(x)) | → | f_1(f_0(g_1(x))) |
Termination of terms over the following signature is verified: f_0, a_0, *top*_0, g_1, b_0, f_1
Context-sensitive strategy:
μ(T) = μ(f_1#) = μ(a_0) = μ(g_1) = μ(g_1#) = μ(b_0) = μ(f_1) = ∅
μ(f_0) = μ(*top*_0) = μ(f_0#) = μ(*top*_0#) = {1}
*top*_0#(g_1(x)) → *top*_0#(f_0(g_1(x))) |
T(g_1(x_1)) → T(x_1) | T(f_0(x_1)) → T(x_1) |
T(g_1(x_1)) | → | T(x_1) | T(f_0(x_1)) | → | T(x_1) |
f_1(g_1(a_0)) | → | a_0 | f_1(f_0(x)) | → | b_0 | |
f_1(f_1(x)) | → | b_0 | g_1(x) | → | f_1(g_1(x)) | |
*top*_0(g_1(x)) | → | *top*_0(f_0(g_1(x))) | f_0(g_1(x)) | → | f_1(f_0(g_1(x))) |
Termination of terms over the following signature is verified: f_0, a_0, *top*_0, g_1, b_0, f_1
Context-sensitive strategy:
μ(T) = μ(a_0) = μ(f_1#) = μ(g_1) = μ(b_0) = μ(g_1#) = μ(f_1) = ∅
μ(f_0) = μ(*top*_0) = μ(*top*_0#) = μ(f_0#) = {1}
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
T(g_1(x_1)) | → | T(x_1) |
T(f_0(x_1)) | → | T(x_1) |
f_1(g_1(a_0)) | → | a_0 | f_1(f_0(x)) | → | b_0 | |
f_1(f_1(x)) | → | b_0 | g_1(x) | → | f_1(g_1(x)) | |
*top*_0(g_1(x)) | → | *top*_0(f_0(g_1(x))) | f_0(g_1(x)) | → | f_1(f_0(g_1(x))) |
Termination of terms over the following signature is verified: f_0, a_0, *top*_0, g_1, b_0, f_1
Context-sensitive strategy:
μ(T) = μ(f_1#) = μ(a_0) = μ(g_1) = μ(g_1#) = μ(b_0) = μ(f_1) = ∅
μ(f_0) = μ(*top*_0) = μ(f_0#) = μ(*top*_0#) = {1}
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
T(f_0(x_1)) | → | T(x_1) |
*top*_0#(g_1(x)) | → | *top*_0#(f_0(g_1(x))) |
f_1(g_1(a_0)) | → | a_0 | f_1(f_0(x)) | → | b_0 | |
f_1(f_1(x)) | → | b_0 | g_1(x) | → | f_1(g_1(x)) | |
*top*_0(g_1(x)) | → | *top*_0(f_0(g_1(x))) | f_0(g_1(x)) | → | f_1(f_0(g_1(x))) |
Termination of terms over the following signature is verified: f_0, a_0, *top*_0, g_1, b_0, f_1
Context-sensitive strategy:
μ(T) = μ(a_0) = μ(f_1#) = μ(g_1) = μ(b_0) = μ(g_1#) = μ(f_1) = ∅
μ(f_0) = μ(*top*_0) = μ(*top*_0#) = μ(f_0#) = {1}
f_1(g_1(a_0)) | → | a_0 | g_1(x) | → | f_1(g_1(x)) | |
f_1(f_0(x)) | → | b_0 | f_1(f_1(x)) | → | b_0 | |
f_0(g_1(x)) | → | f_1(f_0(g_1(x))) |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
*top*_0#(g_1(x)) | → | *top*_0#(f_0(g_1(x))) |