YES

The TRS could be proven terminating. The proof took 174 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (9ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4 (125ms).
 |    | – Problem 3 was processed with processor DependencyGraph (0ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

plus#(N, s(M))U11#(tt, M, N)U12#(tt, M, N)T(M)
U12#(tt, M, N)plus#(N, M)U11#(tt, M, N)U12#(tt, M, N)
U12#(tt, M, N)T(N)

Rewrite Rules

U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12

Strategy

Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(s) = μ(U11) = μ(U12) = {1}
μ(plus) = μ(plus#) = {1, 2}


The following SCCs where found

plus#(N, s(M)) → U11#(tt, M, N)U12#(tt, M, N) → plus#(N, M)
U11#(tt, M, N) → U12#(tt, M, N)

Problem 2: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

plus#(N, s(M))U11#(tt, M, N)U12#(tt, M, N)plus#(N, M)
U11#(tt, M, N)U12#(tt, M, N)

Rewrite Rules

U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12

Strategy

Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(s) = μ(U11) = μ(U12) = {1}
μ(plus) = μ(plus#) = {1, 2}


Polynomial Interpretation

Standard Usable rules

plus(N, s(M))U11(tt, M, N)plus(N, 0)N
U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

plus#(N, s(M))U11#(tt, M, N)

Problem 3: DependencyGraph



Dependency Pair Problem

Dependency Pairs

U12#(tt, M, N)plus#(N, M)U11#(tt, M, N)U12#(tt, M, N)

Rewrite Rules

U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12

Strategy

Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(s) = μ(U11) = μ(U12) = {1}
μ(plus) = μ(plus#) = {1, 2}


There are no SCCs!