YES
The TRS could be proven terminating. The proof took 174 ms.
Problem 1 was processed with processor DependencyGraph (9ms). | Problem 2 was processed with processor PolynomialLinearRange4 (125ms). | | Problem 3 was processed with processor DependencyGraph (0ms).
plus#(N, s(M)) | → | U11#(tt, M, N) | U12#(tt, M, N) | → | T(M) | |
U12#(tt, M, N) | → | plus#(N, M) | U11#(tt, M, N) | → | U12#(tt, M, N) | |
U12#(tt, M, N) | → | T(N) |
U11(tt, M, N) | → | U12(tt, M, N) | U12(tt, M, N) | → | s(plus(N, M)) | |
plus(N, 0) | → | N | plus(N, s(M)) | → | U11(tt, M, N) |
Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12
Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(s) = μ(U11) = μ(U12) = {1}
μ(plus) = μ(plus#) = {1, 2}
plus#(N, s(M)) → U11#(tt, M, N) | U12#(tt, M, N) → plus#(N, M) |
U11#(tt, M, N) → U12#(tt, M, N) |
plus#(N, s(M)) | → | U11#(tt, M, N) | U12#(tt, M, N) | → | plus#(N, M) | |
U11#(tt, M, N) | → | U12#(tt, M, N) |
U11(tt, M, N) | → | U12(tt, M, N) | U12(tt, M, N) | → | s(plus(N, M)) | |
plus(N, 0) | → | N | plus(N, s(M)) | → | U11(tt, M, N) |
Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12
Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(s) = μ(U11) = μ(U12) = {1}
μ(plus) = μ(plus#) = {1, 2}
plus(N, s(M)) | → | U11(tt, M, N) | plus(N, 0) | → | N | |
U11(tt, M, N) | → | U12(tt, M, N) | U12(tt, M, N) | → | s(plus(N, M)) |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
plus#(N, s(M)) | → | U11#(tt, M, N) |
U12#(tt, M, N) | → | plus#(N, M) | U11#(tt, M, N) | → | U12#(tt, M, N) |
U11(tt, M, N) | → | U12(tt, M, N) | U12(tt, M, N) | → | s(plus(N, M)) | |
plus(N, 0) | → | N | plus(N, s(M)) | → | U11(tt, M, N) |
Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12
Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(s) = μ(U11) = μ(U12) = {1}
μ(plus) = μ(plus#) = {1, 2}