MAYBE

The TRS could not be proven terminating. The proof attempt took 2404 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (51ms).
 | – Problem 2 was processed with processor BackwardInstantiation (1ms).
 |    | – Problem 4 was processed with processor Propagation (1ms).
 |    |    | – Problem 8 was processed with processor BackwardInstantiation (0ms).
 |    |    |    | – Problem 13 was processed with processor Propagation (0ms).
 |    |    |    |    | – Problem 16 was processed with processor ForwardInstantiation (1ms).
 |    |    |    |    |    | – Problem 20 remains open; application of the following processors failed [Propagation (0ms)].
 |    | – Problem 5 was processed with processor Propagation (1ms).
 |    |    | – Problem 9 was processed with processor BackwardInstantiation (20ms).
 |    |    |    | – Problem 12 was processed with processor Propagation (0ms).
 |    |    |    |    | – Problem 17 was processed with processor ForwardInstantiation (1ms).
 |    |    |    |    |    | – Problem 21 remains open; application of the following processors failed [Propagation (1ms)].
 | – Problem 3 was processed with processor BackwardInstantiation (2ms).
 |    | – Problem 6 was processed with processor Propagation (1ms).
 |    |    | – Problem 11 was processed with processor BackwardInstantiation (0ms).
 |    |    |    | – Problem 14 was processed with processor Propagation (1ms).
 |    |    |    |    | – Problem 18 was processed with processor ForwardInstantiation (0ms).
 |    |    |    |    |    | – Problem 22 remains open; application of the following processors failed [Propagation (0ms)].
 |    | – Problem 7 was processed with processor Propagation (1ms).
 |    |    | – Problem 10 was processed with processor BackwardInstantiation (0ms).
 |    |    |    | – Problem 15 was processed with processor Propagation (1ms).
 |    |    |    |    | – Problem 19 was processed with processor ForwardInstantiation (21ms).
 |    |    |    |    |    | – Problem 23 remains open; application of the following processors failed [Propagation (0ms)].

The following open problems remain:



Open Dependency Pair Problem 20

Dependency Pairs

x#(N, s(s(_M)))x#(N, s(_M))

Rewrite Rules

U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))
U21(tt, M, N)U22(tt, M, N)U22(tt, M, N)plus(x(N, M), N)
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)
x(N, 0)0x(N, s(M))U21(tt, M, N)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12, U21, U22, x




Open Dependency Pair Problem 22

Dependency Pairs

plus#(N, s(s(_M)))plus#(N, s(_M))

Rewrite Rules

U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))
U21(tt, M, N)U22(tt, M, N)U22(tt, M, N)plus(x(N, M), N)
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)
x(N, 0)0x(N, s(M))U21(tt, M, N)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12, U21, U22, x


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

U21#(tt, M, N)U22#(tt, M, N)U22#(tt, M, N)plus#(x(N, M), N)
plus#(N, s(M))U11#(tt, M, N)U22#(tt, M, N)T(M)
U22#(tt, M, N)T(N)x#(N, s(M))U21#(tt, M, N)
U12#(tt, M, N)T(M)U22#(tt, M, N)x#(N, M)
U12#(tt, M, N)plus#(N, M)U11#(tt, M, N)U12#(tt, M, N)
U12#(tt, M, N)T(N)

Rewrite Rules

U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))
U21(tt, M, N)U22(tt, M, N)U22(tt, M, N)plus(x(N, M), N)
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)
x(N, 0)0x(N, s(M))U21(tt, M, N)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12, U21, U22, x

Strategy

Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(U22#) = μ(U21#) = μ(s) = μ(U11) = μ(U12) = μ(U21) = μ(U22) = {1}
μ(plus) = μ(plus#) = μ(x#) = μ(x) = {1, 2}


The following SCCs where found

U21#(tt, M, N) → U22#(tt, M, N)x#(N, s(M)) → U21#(tt, M, N)
U22#(tt, M, N) → x#(N, M)

plus#(N, s(M)) → U11#(tt, M, N)U12#(tt, M, N) → plus#(N, M)
U11#(tt, M, N) → U12#(tt, M, N)

Problem 2: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

U21#(tt, M, N)U22#(tt, M, N)x#(N, s(M))U21#(tt, M, N)
U22#(tt, M, N)x#(N, M)

Rewrite Rules

U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))
U21(tt, M, N)U22(tt, M, N)U22(tt, M, N)plus(x(N, M), N)
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)
x(N, 0)0x(N, s(M))U21(tt, M, N)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12, U21, U22, x

Strategy

Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(U22#) = μ(U21#) = μ(s) = μ(U11) = μ(U12) = μ(U21) = μ(U22) = {1}
μ(plus) = μ(plus#) = μ(x#) = μ(x) = {1, 2}


Instantiation

For all potential predecessors l → r of the rule U21#(tt, M, N) → U22#(tt, M, N) on dependency pair chains it holds that: Thus, U21#(tt, M, N) → U22#(tt, M, N) is replaced by instances determined through the above matching. These instances are:
U21#(tt, _M, _N) → U22#(tt, _M, _N)

Instantiation

For all potential predecessors l → r of the rule U22#(tt, M, N) → x#(N, M) on dependency pair chains it holds that: Thus, U22#(tt, M, N) → x#(N, M) is replaced by instances determined through the above matching. These instances are:
U22#(tt, _M, _N) → x#(_N, _M)

Problem 4: Propagation



Dependency Pair Problem

Dependency Pairs

x#(N, s(M))U21#(tt, M, N)U22#(tt, _M, _N)x#(_N, _M)
U21#(tt, _M, _N)U22#(tt, _M, _N)

Rewrite Rules

U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))
U21(tt, M, N)U22(tt, M, N)U22(tt, M, N)plus(x(N, M), N)
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)
x(N, 0)0x(N, s(M))U21(tt, M, N)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12, U21, x, U22

Strategy

Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(U22#) = μ(U21#) = μ(s) = μ(U11) = μ(U12) = μ(U21) = μ(U22) = {1}
μ(plus) = μ(plus#) = μ(x#) = μ(x) = {1, 2}


The dependency pairs U21#(tt, _M, _N) → U22#(tt, _M, _N) and U22#(tt, _M, _N) → x#(_N, _M) are consolidated into the rule U21#(tt, _M, _N) → x#(_N, _M) .

This is possible as

The dependency pairs U21#(tt, _M, _N) → U22#(tt, _M, _N) and U22#(tt, _M, _N) → x#(_N, _M) are consolidated into the rule U21#(tt, _M, _N) → x#(_N, _M) .

This is possible as

The dependency pairs U21#(tt, _M, _N) → U22#(tt, _M, _N) and U22#(tt, _M, _N) → x#(_N, _M) are consolidated into the rule U21#(tt, _M, _N) → x#(_N, _M) .

This is possible as


Summary

Removed Dependency PairsAdded Dependency Pairs
U22#(tt, _M, _N) → x#(_N, _M)U21#(tt, _M, _N) → x#(_N, _M)
U21#(tt, _M, _N) → U22#(tt, _M, _N) 

Problem 8: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

U21#(tt, _M, _N)x#(_N, _M)x#(N, s(M))U21#(tt, M, N)

Rewrite Rules

U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))
U21(tt, M, N)U22(tt, M, N)U22(tt, M, N)plus(x(N, M), N)
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)
x(N, 0)0x(N, s(M))U21(tt, M, N)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12, U21, U22, x

Strategy

Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(U22#) = μ(U21#) = μ(s) = μ(U11) = μ(U12) = μ(U21) = μ(U22) = {1}
μ(plus) = μ(plus#) = μ(x#) = μ(x) = {1, 2}


Instantiation

For all potential predecessors l → r of the rule U21#(tt, _M, _N) → x#(_N, _M) on dependency pair chains it holds that: Thus, U21#(tt, _M, _N) → x#(_N, _M) is replaced by instances determined through the above matching. These instances are:
U21#(tt, M, N) → x#(N, M)

Problem 13: Propagation



Dependency Pair Problem

Dependency Pairs

x#(N, s(M))U21#(tt, M, N)U21#(tt, M, N)x#(N, M)

Rewrite Rules

U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))
U21(tt, M, N)U22(tt, M, N)U22(tt, M, N)plus(x(N, M), N)
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)
x(N, 0)0x(N, s(M))U21(tt, M, N)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12, U21, x, U22

Strategy

Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(U22#) = μ(U21#) = μ(s) = μ(U11) = μ(U12) = μ(U21) = μ(U22) = {1}
μ(plus) = μ(plus#) = μ(x#) = μ(x) = {1, 2}


The dependency pairs x#(N, s(M)) → U21#(tt, M, N) and U21#(tt, M, N) → x#(N, M) are consolidated into the rule x#(N, s(M)) → x#(N, M) .

This is possible as

The dependency pairs x#(N, s(M)) → U21#(tt, M, N) and U21#(tt, M, N) → x#(N, M) are consolidated into the rule x#(N, s(M)) → x#(N, M) .

This is possible as


Summary

Removed Dependency PairsAdded Dependency Pairs
x#(N, s(M)) → U21#(tt, M, N)x#(N, s(M)) → x#(N, M)
U21#(tt, M, N) → x#(N, M) 

Problem 16: ForwardInstantiation



Dependency Pair Problem

Dependency Pairs

x#(N, s(M))x#(N, M)

Rewrite Rules

U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))
U21(tt, M, N)U22(tt, M, N)U22(tt, M, N)plus(x(N, M), N)
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)
x(N, 0)0x(N, s(M))U21(tt, M, N)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12, U21, U22, x

Strategy

Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(U22#) = μ(U21#) = μ(s) = μ(U11) = μ(U12) = μ(U21) = μ(U22) = {1}
μ(plus) = μ(plus#) = μ(x#) = μ(x) = {1, 2}


Instantiation

For all potential successors l → r of the rule x#(N, s(M)) → x#(N, M) on dependency pair chains it holds that: Thus, x#(N, s(M)) → x#(N, M) is replaced by instances determined through the above matching. These instances are:
x#(N, s(s(_M))) → x#(N, s(_M))

Problem 5: Propagation



Dependency Pair Problem

Dependency Pairs

x#(N, s(M))U21#(tt, M, N)U22#(tt, _M, _N)x#(_N, _M)
U21#(tt, _M, _N)U22#(tt, _M, _N)

Rewrite Rules

U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))
U21(tt, M, N)U22(tt, M, N)U22(tt, M, N)plus(x(N, M), N)
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)
x(N, 0)0x(N, s(M))U21(tt, M, N)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12, U21, x, U22

Strategy

Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(U22#) = μ(U21#) = μ(s) = μ(U11) = μ(U12) = μ(U21) = μ(U22) = {1}
μ(plus) = μ(plus#) = μ(x#) = μ(x) = {1, 2}


The dependency pairs U21#(tt, _M, _N) → U22#(tt, _M, _N) and U22#(tt, _M, _N) → x#(_N, _M) are consolidated into the rule U21#(tt, _M, _N) → x#(_N, _M) .

This is possible as

The dependency pairs U21#(tt, _M, _N) → U22#(tt, _M, _N) and U22#(tt, _M, _N) → x#(_N, _M) are consolidated into the rule U21#(tt, _M, _N) → x#(_N, _M) .

This is possible as

The dependency pairs U21#(tt, _M, _N) → U22#(tt, _M, _N) and U22#(tt, _M, _N) → x#(_N, _M) are consolidated into the rule U21#(tt, _M, _N) → x#(_N, _M) .

This is possible as


Summary

Removed Dependency PairsAdded Dependency Pairs
U22#(tt, _M, _N) → x#(_N, _M)U21#(tt, _M, _N) → x#(_N, _M)
U21#(tt, _M, _N) → U22#(tt, _M, _N) 

Problem 9: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

U21#(tt, _M, _N)x#(_N, _M)x#(N, s(M))U21#(tt, M, N)

Rewrite Rules

U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))
U21(tt, M, N)U22(tt, M, N)U22(tt, M, N)plus(x(N, M), N)
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)
x(N, 0)0x(N, s(M))U21(tt, M, N)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12, U21, U22, x

Strategy

Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(U22#) = μ(U21#) = μ(s) = μ(U11) = μ(U12) = μ(U21) = μ(U22) = {1}
μ(plus) = μ(plus#) = μ(x#) = μ(x) = {1, 2}


Instantiation

For all potential predecessors l → r of the rule U21#(tt, _M, _N) → x#(_N, _M) on dependency pair chains it holds that: Thus, U21#(tt, _M, _N) → x#(_N, _M) is replaced by instances determined through the above matching. These instances are:
U21#(tt, M, N) → x#(N, M)

Problem 12: Propagation



Dependency Pair Problem

Dependency Pairs

x#(N, s(M))U21#(tt, M, N)U21#(tt, M, N)x#(N, M)

Rewrite Rules

U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))
U21(tt, M, N)U22(tt, M, N)U22(tt, M, N)plus(x(N, M), N)
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)
x(N, 0)0x(N, s(M))U21(tt, M, N)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12, U21, x, U22

Strategy

Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(U22#) = μ(U21#) = μ(s) = μ(U11) = μ(U12) = μ(U21) = μ(U22) = {1}
μ(plus) = μ(plus#) = μ(x#) = μ(x) = {1, 2}


The dependency pairs x#(N, s(M)) → U21#(tt, M, N) and U21#(tt, M, N) → x#(N, M) are consolidated into the rule x#(N, s(M)) → x#(N, M) .

This is possible as

The dependency pairs x#(N, s(M)) → U21#(tt, M, N) and U21#(tt, M, N) → x#(N, M) are consolidated into the rule x#(N, s(M)) → x#(N, M) .

This is possible as


Summary

Removed Dependency PairsAdded Dependency Pairs
x#(N, s(M)) → U21#(tt, M, N)x#(N, s(M)) → x#(N, M)
U21#(tt, M, N) → x#(N, M) 

Problem 17: ForwardInstantiation



Dependency Pair Problem

Dependency Pairs

x#(N, s(M))x#(N, M)

Rewrite Rules

U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))
U21(tt, M, N)U22(tt, M, N)U22(tt, M, N)plus(x(N, M), N)
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)
x(N, 0)0x(N, s(M))U21(tt, M, N)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12, U21, U22, x

Strategy

Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(U22#) = μ(U21#) = μ(s) = μ(U11) = μ(U12) = μ(U21) = μ(U22) = {1}
μ(plus) = μ(plus#) = μ(x#) = μ(x) = {1, 2}


Instantiation

For all potential successors l → r of the rule x#(N, s(M)) → x#(N, M) on dependency pair chains it holds that: Thus, x#(N, s(M)) → x#(N, M) is replaced by instances determined through the above matching. These instances are:
x#(N, s(s(_M))) → x#(N, s(_M))

Problem 3: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

plus#(N, s(M))U11#(tt, M, N)U12#(tt, M, N)plus#(N, M)
U11#(tt, M, N)U12#(tt, M, N)

Rewrite Rules

U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))
U21(tt, M, N)U22(tt, M, N)U22(tt, M, N)plus(x(N, M), N)
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)
x(N, 0)0x(N, s(M))U21(tt, M, N)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12, U21, U22, x

Strategy

Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(U22#) = μ(U21#) = μ(s) = μ(U11) = μ(U12) = μ(U21) = μ(U22) = {1}
μ(plus) = μ(plus#) = μ(x#) = μ(x) = {1, 2}


Instantiation

For all potential predecessors l → r of the rule U12#(tt, M, N) → plus#(N, M) on dependency pair chains it holds that: Thus, U12#(tt, M, N) → plus#(N, M) is replaced by instances determined through the above matching. These instances are:
U12#(tt, _M, _N) → plus#(_N, _M)

Instantiation

For all potential predecessors l → r of the rule U11#(tt, M, N) → U12#(tt, M, N) on dependency pair chains it holds that: Thus, U11#(tt, M, N) → U12#(tt, M, N) is replaced by instances determined through the above matching. These instances are:
U11#(tt, _M, _N) → U12#(tt, _M, _N)

Problem 6: Propagation



Dependency Pair Problem

Dependency Pairs

plus#(N, s(M))U11#(tt, M, N)U11#(tt, _M, _N)U12#(tt, _M, _N)
U12#(tt, _M, _N)plus#(_N, _M)

Rewrite Rules

U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))
U21(tt, M, N)U22(tt, M, N)U22(tt, M, N)plus(x(N, M), N)
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)
x(N, 0)0x(N, s(M))U21(tt, M, N)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12, U21, x, U22

Strategy

Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(U22#) = μ(U21#) = μ(s) = μ(U11) = μ(U12) = μ(U21) = μ(U22) = {1}
μ(plus) = μ(plus#) = μ(x#) = μ(x) = {1, 2}


The dependency pairs U11#(tt, _M, _N) → U12#(tt, _M, _N) and U12#(tt, _M, _N) → plus#(_N, _M) are consolidated into the rule U11#(tt, _M, _N) → plus#(_N, _M) .

This is possible as

The dependency pairs U11#(tt, _M, _N) → U12#(tt, _M, _N) and U12#(tt, _M, _N) → plus#(_N, _M) are consolidated into the rule U11#(tt, _M, _N) → plus#(_N, _M) .

This is possible as

The dependency pairs U11#(tt, _M, _N) → U12#(tt, _M, _N) and U12#(tt, _M, _N) → plus#(_N, _M) are consolidated into the rule U11#(tt, _M, _N) → plus#(_N, _M) .

This is possible as


Summary

Removed Dependency PairsAdded Dependency Pairs
U11#(tt, _M, _N) → U12#(tt, _M, _N)U11#(tt, _M, _N) → plus#(_N, _M)
U12#(tt, _M, _N) → plus#(_N, _M) 

Problem 11: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

plus#(N, s(M))U11#(tt, M, N)U11#(tt, _M, _N)plus#(_N, _M)

Rewrite Rules

U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))
U21(tt, M, N)U22(tt, M, N)U22(tt, M, N)plus(x(N, M), N)
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)
x(N, 0)0x(N, s(M))U21(tt, M, N)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12, U21, U22, x

Strategy

Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(U22#) = μ(U21#) = μ(s) = μ(U11) = μ(U12) = μ(U21) = μ(U22) = {1}
μ(plus) = μ(plus#) = μ(x#) = μ(x) = {1, 2}


Instantiation

For all potential predecessors l → r of the rule U11#(tt, _M, _N) → plus#(_N, _M) on dependency pair chains it holds that: Thus, U11#(tt, _M, _N) → plus#(_N, _M) is replaced by instances determined through the above matching. These instances are:
U11#(tt, M, N) → plus#(N, M)

Problem 14: Propagation



Dependency Pair Problem

Dependency Pairs

plus#(N, s(M))U11#(tt, M, N)U11#(tt, M, N)plus#(N, M)

Rewrite Rules

U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))
U21(tt, M, N)U22(tt, M, N)U22(tt, M, N)plus(x(N, M), N)
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)
x(N, 0)0x(N, s(M))U21(tt, M, N)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12, U21, x, U22

Strategy

Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(U22#) = μ(U21#) = μ(s) = μ(U11) = μ(U12) = μ(U21) = μ(U22) = {1}
μ(plus) = μ(plus#) = μ(x#) = μ(x) = {1, 2}


The dependency pairs plus#(N, s(M)) → U11#(tt, M, N) and U11#(tt, M, N) → plus#(N, M) are consolidated into the rule plus#(N, s(M)) → plus#(N, M) .

This is possible as

The dependency pairs plus#(N, s(M)) → U11#(tt, M, N) and U11#(tt, M, N) → plus#(N, M) are consolidated into the rule plus#(N, s(M)) → plus#(N, M) .

This is possible as


Summary

Removed Dependency PairsAdded Dependency Pairs
plus#(N, s(M)) → U11#(tt, M, N)plus#(N, s(M)) → plus#(N, M)
U11#(tt, M, N) → plus#(N, M) 

Problem 18: ForwardInstantiation



Dependency Pair Problem

Dependency Pairs

plus#(N, s(M))plus#(N, M)

Rewrite Rules

U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))
U21(tt, M, N)U22(tt, M, N)U22(tt, M, N)plus(x(N, M), N)
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)
x(N, 0)0x(N, s(M))U21(tt, M, N)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12, U21, U22, x

Strategy

Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(U22#) = μ(U21#) = μ(s) = μ(U11) = μ(U12) = μ(U21) = μ(U22) = {1}
μ(plus) = μ(plus#) = μ(x#) = μ(x) = {1, 2}


Instantiation

For all potential successors l → r of the rule plus#(N, s(M)) → plus#(N, M) on dependency pair chains it holds that: Thus, plus#(N, s(M)) → plus#(N, M) is replaced by instances determined through the above matching. These instances are:
plus#(N, s(s(_M))) → plus#(N, s(_M))

Problem 7: Propagation



Dependency Pair Problem

Dependency Pairs

plus#(N, s(M))U11#(tt, M, N)U11#(tt, _M, _N)U12#(tt, _M, _N)
U12#(tt, _M, _N)plus#(_N, _M)

Rewrite Rules

U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))
U21(tt, M, N)U22(tt, M, N)U22(tt, M, N)plus(x(N, M), N)
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)
x(N, 0)0x(N, s(M))U21(tt, M, N)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12, U21, x, U22

Strategy

Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(U22#) = μ(U21#) = μ(s) = μ(U11) = μ(U12) = μ(U21) = μ(U22) = {1}
μ(plus) = μ(plus#) = μ(x#) = μ(x) = {1, 2}


The dependency pairs U11#(tt, _M, _N) → U12#(tt, _M, _N) and U12#(tt, _M, _N) → plus#(_N, _M) are consolidated into the rule U11#(tt, _M, _N) → plus#(_N, _M) .

This is possible as

The dependency pairs U11#(tt, _M, _N) → U12#(tt, _M, _N) and U12#(tt, _M, _N) → plus#(_N, _M) are consolidated into the rule U11#(tt, _M, _N) → plus#(_N, _M) .

This is possible as

The dependency pairs U11#(tt, _M, _N) → U12#(tt, _M, _N) and U12#(tt, _M, _N) → plus#(_N, _M) are consolidated into the rule U11#(tt, _M, _N) → plus#(_N, _M) .

This is possible as


Summary

Removed Dependency PairsAdded Dependency Pairs
U11#(tt, _M, _N) → U12#(tt, _M, _N)U11#(tt, _M, _N) → plus#(_N, _M)
U12#(tt, _M, _N) → plus#(_N, _M) 

Problem 10: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

plus#(N, s(M))U11#(tt, M, N)U11#(tt, _M, _N)plus#(_N, _M)

Rewrite Rules

U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))
U21(tt, M, N)U22(tt, M, N)U22(tt, M, N)plus(x(N, M), N)
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)
x(N, 0)0x(N, s(M))U21(tt, M, N)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12, U21, U22, x

Strategy

Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(U22#) = μ(U21#) = μ(s) = μ(U11) = μ(U12) = μ(U21) = μ(U22) = {1}
μ(plus) = μ(plus#) = μ(x#) = μ(x) = {1, 2}


Instantiation

For all potential predecessors l → r of the rule U11#(tt, _M, _N) → plus#(_N, _M) on dependency pair chains it holds that: Thus, U11#(tt, _M, _N) → plus#(_N, _M) is replaced by instances determined through the above matching. These instances are:
U11#(tt, M, N) → plus#(N, M)

Problem 15: Propagation



Dependency Pair Problem

Dependency Pairs

plus#(N, s(M))U11#(tt, M, N)U11#(tt, M, N)plus#(N, M)

Rewrite Rules

U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))
U21(tt, M, N)U22(tt, M, N)U22(tt, M, N)plus(x(N, M), N)
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)
x(N, 0)0x(N, s(M))U21(tt, M, N)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12, U21, x, U22

Strategy

Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(U22#) = μ(U21#) = μ(s) = μ(U11) = μ(U12) = μ(U21) = μ(U22) = {1}
μ(plus) = μ(plus#) = μ(x#) = μ(x) = {1, 2}


The dependency pairs plus#(N, s(M)) → U11#(tt, M, N) and U11#(tt, M, N) → plus#(N, M) are consolidated into the rule plus#(N, s(M)) → plus#(N, M) .

This is possible as

The dependency pairs plus#(N, s(M)) → U11#(tt, M, N) and U11#(tt, M, N) → plus#(N, M) are consolidated into the rule plus#(N, s(M)) → plus#(N, M) .

This is possible as


Summary

Removed Dependency PairsAdded Dependency Pairs
plus#(N, s(M)) → U11#(tt, M, N)plus#(N, s(M)) → plus#(N, M)
U11#(tt, M, N) → plus#(N, M) 

Problem 19: ForwardInstantiation



Dependency Pair Problem

Dependency Pairs

plus#(N, s(M))plus#(N, M)

Rewrite Rules

U11(tt, M, N)U12(tt, M, N)U12(tt, M, N)s(plus(N, M))
U21(tt, M, N)U22(tt, M, N)U22(tt, M, N)plus(x(N, M), N)
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)
x(N, 0)0x(N, s(M))U21(tt, M, N)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, U12, U21, U22, x

Strategy

Context-sensitive strategy:
μ(T) = μ(0) = μ(tt) = ∅
μ(U11#) = μ(U12#) = μ(U22#) = μ(U21#) = μ(s) = μ(U11) = μ(U12) = μ(U21) = μ(U22) = {1}
μ(plus) = μ(plus#) = μ(x#) = μ(x) = {1, 2}


Instantiation

For all potential successors l → r of the rule plus#(N, s(M)) → plus#(N, M) on dependency pair chains it holds that: Thus, plus#(N, s(M)) → plus#(N, M) is replaced by instances determined through the above matching. These instances are:
plus#(N, s(s(_M))) → plus#(N, s(_M))