TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60057 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (399ms).
 | – Problem 2 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (4ms), PolynomialLinearRange4iUR (0ms), DependencyGraph (1ms), PolynomialOrderingProcessor (0ms), DependencyGraph (1ms), PolynomialLinearRange4 (254ms), DependencyGraph (1ms), PolynomialLinearRange4 (131ms), DependencyGraph (9ms), PolynomialLinearRange4 (108ms), DependencyGraph (2ms), PolynomialLinearRange4 (115ms), DependencyGraph (1ms), ReductionPairSAT (374ms), DependencyGraph (1ms), SizeChangePrinciple (timeout)].
 | – Problem 3 was processed with processor PolynomialLinearRange4 (102ms).
 |    | – Problem 5 was processed with processor PolynomialLinearRange4 (64ms).
 |    |    | – Problem 6 was processed with processor DependencyGraph (1ms).
 |    |    |    | – Problem 7 was processed with processor PolynomialLinearRange4 (54ms).
 |    |    |    |    | – Problem 8 was processed with processor DependencyGraph (0ms).
 | – Problem 4 remains open; application of the following processors failed [SubtermCriterion (0ms), DependencyGraph (2ms), PolynomialLinearRange4iUR (0ms), DependencyGraph (2ms), PolynomialOrderingProcessor (0ms), DependencyGraph (1ms), PolynomialLinearRange4 (234ms), DependencyGraph (23ms), PolynomialLinearRange4 (119ms), DependencyGraph (1ms), PolynomialLinearRange4 (142ms), DependencyGraph (1ms), PolynomialLinearRange4 (136ms), DependencyGraph (1ms), ReductionPairSAT (636ms), DependencyGraph (1ms)].

The following open problems remain:



Open Dependency Pair Problem 2

Dependency Pairs

x#(N, s(M))U71#(isNat(M), M, N)U71#(tt, M, N)U72#(isNat(N), M, N)
U72#(tt, M, N)x#(N, M)

Rewrite Rules

U11(tt, V2)U12(isNat(V2))U12(tt)tt
U21(tt)ttU31(tt, V2)U32(isNat(V2))
U32(tt)ttU41(tt, N)N
U51(tt, M, N)U52(isNat(N), M, N)U52(tt, M, N)s(plus(N, M))
U61(tt)0U71(tt, M, N)U72(isNat(N), M, N)
U72(tt, M, N)plus(x(N, M), N)isNat(0)tt
isNat(plus(V1, V2))U11(isNat(V1), V2)isNat(s(V1))U21(isNat(V1))
isNat(x(V1, V2))U31(isNat(V1), V2)plus(N, 0)U41(isNat(N), N)
plus(N, s(M))U51(isNat(M), M, N)x(N, 0)U61(isNat(N))
x(N, s(M))U71(isNat(M), M, N)

Original Signature

Termination of terms over the following signature is verified: plus, U71, isNat, U72, U61, 0, U51, s, tt, U41, U52, U11, U12, U31, U32, U21, x




Open Dependency Pair Problem 4

Dependency Pairs

plus#(N, s(M))U51#(isNat(M), M, N)U52#(tt, M, N)plus#(N, M)
U51#(tt, M, N)U52#(isNat(N), M, N)

Rewrite Rules

U11(tt, V2)U12(isNat(V2))U12(tt)tt
U21(tt)ttU31(tt, V2)U32(isNat(V2))
U32(tt)ttU41(tt, N)N
U51(tt, M, N)U52(isNat(N), M, N)U52(tt, M, N)s(plus(N, M))
U61(tt)0U71(tt, M, N)U72(isNat(N), M, N)
U72(tt, M, N)plus(x(N, M), N)isNat(0)tt
isNat(plus(V1, V2))U11(isNat(V1), V2)isNat(s(V1))U21(isNat(V1))
isNat(x(V1, V2))U31(isNat(V1), V2)plus(N, 0)U41(isNat(N), N)
plus(N, s(M))U51(isNat(M), M, N)x(N, 0)U61(isNat(N))
x(N, s(M))U71(isNat(M), M, N)

Original Signature

Termination of terms over the following signature is verified: plus, U71, isNat, U72, U61, 0, U51, s, tt, U41, U52, U11, U12, U31, U32, U21, x


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

isNat#(x(V1, V2))U31#(isNat(V1), V2)plus#(N, s(M))U51#(isNat(M), M, N)
plus#(N, 0)isNat#(N)isNat#(s(V1))isNat#(V1)
isNat#(plus(V1, V2))U11#(isNat(V1), V2)U51#(tt, M, N)isNat#(N)
U72#(tt, M, N)plus#(x(N, M), N)U72#(tt, M, N)x#(N, M)
U51#(tt, M, N)U52#(isNat(N), M, N)plus#(N, s(M))isNat#(M)
U11#(tt, V2)isNat#(V2)x#(N, s(M))U71#(isNat(M), M, N)
x#(N, 0)U61#(isNat(N))U71#(tt, M, N)U72#(isNat(N), M, N)
isNat#(x(V1, V2))isNat#(V1)x#(N, 0)isNat#(N)
isNat#(s(V1))U21#(isNat(V1))U31#(tt, V2)isNat#(V2)
isNat#(plus(V1, V2))isNat#(V1)plus#(N, 0)U41#(isNat(N), N)
U71#(tt, M, N)isNat#(N)U72#(tt, M, N)T(M)
U52#(tt, M, N)T(N)U11#(tt, V2)U12#(isNat(V2))
U52#(tt, M, N)T(M)U31#(tt, V2)U32#(isNat(V2))
x#(N, s(M))isNat#(M)U72#(tt, M, N)T(N)
U41#(tt, N)T(N)U52#(tt, M, N)plus#(N, M)

Rewrite Rules

U11(tt, V2)U12(isNat(V2))U12(tt)tt
U21(tt)ttU31(tt, V2)U32(isNat(V2))
U32(tt)ttU41(tt, N)N
U51(tt, M, N)U52(isNat(N), M, N)U52(tt, M, N)s(plus(N, M))
U61(tt)0U71(tt, M, N)U72(isNat(N), M, N)
U72(tt, M, N)plus(x(N, M), N)isNat(0)tt
isNat(plus(V1, V2))U11(isNat(V1), V2)isNat(s(V1))U21(isNat(V1))
isNat(x(V1, V2))U31(isNat(V1), V2)plus(N, 0)U41(isNat(N), N)
plus(N, s(M))U51(isNat(M), M, N)x(N, 0)U61(isNat(N))
x(N, s(M))U71(isNat(M), M, N)

Original Signature

Termination of terms over the following signature is verified: plus, U71, isNat, U72, U61, 0, U51, s, tt, U41, U52, U11, U12, U31, U32, U21, x

Strategy

Context-sensitive strategy:
μ(isNat) = μ(T) = μ(0) = μ(tt) = μ(isNat#) = ∅
μ(U11#) = μ(U31#) = μ(U21#) = μ(U52#) = μ(U41#) = μ(U61) = μ(U41) = μ(U72#) = μ(U21) = μ(U12#) = μ(U61#) = μ(U51#) = μ(U71) = μ(U72) = μ(U71#) = μ(U51) = μ(s) = μ(U52) = μ(U32#) = μ(U11) = μ(U12) = μ(U31) = μ(U32) = {1}
μ(x#) = μ(plus) = μ(plus#) = μ(x) = {1, 2}


The following SCCs where found

plus#(N, s(M)) → U51#(isNat(M), M, N)U52#(tt, M, N) → plus#(N, M)
U51#(tt, M, N) → U52#(isNat(N), M, N)

isNat#(x(V1, V2)) → U31#(isNat(V1), V2)isNat#(s(V1)) → isNat#(V1)
isNat#(plus(V1, V2)) → U11#(isNat(V1), V2)U31#(tt, V2) → isNat#(V2)
isNat#(plus(V1, V2)) → isNat#(V1)isNat#(x(V1, V2)) → isNat#(V1)
U11#(tt, V2) → isNat#(V2)

x#(N, s(M)) → U71#(isNat(M), M, N)U71#(tt, M, N) → U72#(isNat(N), M, N)
U72#(tt, M, N) → x#(N, M)

Problem 3: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

isNat#(x(V1, V2))U31#(isNat(V1), V2)isNat#(s(V1))isNat#(V1)
isNat#(plus(V1, V2))U11#(isNat(V1), V2)U31#(tt, V2)isNat#(V2)
isNat#(plus(V1, V2))isNat#(V1)isNat#(x(V1, V2))isNat#(V1)
U11#(tt, V2)isNat#(V2)

Rewrite Rules

U11(tt, V2)U12(isNat(V2))U12(tt)tt
U21(tt)ttU31(tt, V2)U32(isNat(V2))
U32(tt)ttU41(tt, N)N
U51(tt, M, N)U52(isNat(N), M, N)U52(tt, M, N)s(plus(N, M))
U61(tt)0U71(tt, M, N)U72(isNat(N), M, N)
U72(tt, M, N)plus(x(N, M), N)isNat(0)tt
isNat(plus(V1, V2))U11(isNat(V1), V2)isNat(s(V1))U21(isNat(V1))
isNat(x(V1, V2))U31(isNat(V1), V2)plus(N, 0)U41(isNat(N), N)
plus(N, s(M))U51(isNat(M), M, N)x(N, 0)U61(isNat(N))
x(N, s(M))U71(isNat(M), M, N)

Original Signature

Termination of terms over the following signature is verified: plus, U71, isNat, U72, U61, 0, U51, s, tt, U41, U52, U11, U12, U31, U32, U21, x

Strategy

Context-sensitive strategy:
μ(isNat) = μ(T) = μ(0) = μ(tt) = μ(isNat#) = ∅
μ(U11#) = μ(U31#) = μ(U21#) = μ(U52#) = μ(U41#) = μ(U61) = μ(U41) = μ(U72#) = μ(U21) = μ(U12#) = μ(U61#) = μ(U51#) = μ(U71) = μ(U72) = μ(U71#) = μ(U51) = μ(s) = μ(U52) = μ(U32#) = μ(U11) = μ(U12) = μ(U31) = μ(U32) = {1}
μ(x#) = μ(plus) = μ(plus#) = μ(x) = {1, 2}


Polynomial Interpretation

Standard Usable rules

U11(tt, V2)U12(isNat(V2))isNat(0)tt
U21(tt)ttU32(tt)tt
U12(tt)ttU31(tt, V2)U32(isNat(V2))
isNat(x(V1, V2))U31(isNat(V1), V2)isNat(plus(V1, V2))U11(isNat(V1), V2)
isNat(s(V1))U21(isNat(V1))

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

isNat#(s(V1))isNat#(V1)

Problem 5: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

isNat#(x(V1, V2))U31#(isNat(V1), V2)isNat#(plus(V1, V2))U11#(isNat(V1), V2)
U31#(tt, V2)isNat#(V2)isNat#(plus(V1, V2))isNat#(V1)
isNat#(x(V1, V2))isNat#(V1)U11#(tt, V2)isNat#(V2)

Rewrite Rules

U11(tt, V2)U12(isNat(V2))U12(tt)tt
U21(tt)ttU31(tt, V2)U32(isNat(V2))
U32(tt)ttU41(tt, N)N
U51(tt, M, N)U52(isNat(N), M, N)U52(tt, M, N)s(plus(N, M))
U61(tt)0U71(tt, M, N)U72(isNat(N), M, N)
U72(tt, M, N)plus(x(N, M), N)isNat(0)tt
isNat(plus(V1, V2))U11(isNat(V1), V2)isNat(s(V1))U21(isNat(V1))
isNat(x(V1, V2))U31(isNat(V1), V2)plus(N, 0)U41(isNat(N), N)
plus(N, s(M))U51(isNat(M), M, N)x(N, 0)U61(isNat(N))
x(N, s(M))U71(isNat(M), M, N)

Original Signature

Termination of terms over the following signature is verified: plus, U71, isNat, U72, U61, 0, U51, s, tt, U41, U52, U11, U12, U31, U32, U21, x

Strategy

Context-sensitive strategy:
μ(isNat) = μ(T) = μ(0) = μ(tt) = μ(isNat#) = ∅
μ(U11#) = μ(U31#) = μ(U21#) = μ(U52#) = μ(U41#) = μ(U61) = μ(U41) = μ(U72#) = μ(U21) = μ(U12#) = μ(U61#) = μ(U51#) = μ(U71) = μ(U72) = μ(U71#) = μ(U51) = μ(s) = μ(U52) = μ(U32#) = μ(U11) = μ(U12) = μ(U31) = μ(U32) = {1}
μ(x#) = μ(plus) = μ(plus#) = μ(x) = {1, 2}


Polynomial Interpretation

Standard Usable rules

U11(tt, V2)U12(isNat(V2))isNat(0)tt
U21(tt)ttU32(tt)tt
U12(tt)ttU31(tt, V2)U32(isNat(V2))
isNat(x(V1, V2))U31(isNat(V1), V2)isNat(plus(V1, V2))U11(isNat(V1), V2)
isNat(s(V1))U21(isNat(V1))

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

isNat#(x(V1, V2))U31#(isNat(V1), V2)isNat#(x(V1, V2))isNat#(V1)

Problem 6: DependencyGraph



Dependency Pair Problem

Dependency Pairs

isNat#(plus(V1, V2))U11#(isNat(V1), V2)U31#(tt, V2)isNat#(V2)
isNat#(plus(V1, V2))isNat#(V1)U11#(tt, V2)isNat#(V2)

Rewrite Rules

U11(tt, V2)U12(isNat(V2))U12(tt)tt
U21(tt)ttU31(tt, V2)U32(isNat(V2))
U32(tt)ttU41(tt, N)N
U51(tt, M, N)U52(isNat(N), M, N)U52(tt, M, N)s(plus(N, M))
U61(tt)0U71(tt, M, N)U72(isNat(N), M, N)
U72(tt, M, N)plus(x(N, M), N)isNat(0)tt
isNat(plus(V1, V2))U11(isNat(V1), V2)isNat(s(V1))U21(isNat(V1))
isNat(x(V1, V2))U31(isNat(V1), V2)plus(N, 0)U41(isNat(N), N)
plus(N, s(M))U51(isNat(M), M, N)x(N, 0)U61(isNat(N))
x(N, s(M))U71(isNat(M), M, N)

Original Signature

Termination of terms over the following signature is verified: plus, U71, isNat, U72, U61, 0, U51, s, tt, U41, U52, U11, U12, U31, U32, U21, x

Strategy

Context-sensitive strategy:
μ(isNat) = μ(T) = μ(0) = μ(tt) = μ(isNat#) = ∅
μ(U11#) = μ(U31#) = μ(U21#) = μ(U52#) = μ(U41#) = μ(U61) = μ(U41) = μ(U72#) = μ(U21) = μ(U12#) = μ(U61#) = μ(U51#) = μ(U71) = μ(U72) = μ(U71#) = μ(U51) = μ(s) = μ(U52) = μ(U32#) = μ(U11) = μ(U12) = μ(U31) = μ(U32) = {1}
μ(x#) = μ(plus) = μ(plus#) = μ(x) = {1, 2}


The following SCCs where found

isNat#(plus(V1, V2)) → U11#(isNat(V1), V2)isNat#(plus(V1, V2)) → isNat#(V1)
U11#(tt, V2) → isNat#(V2)

Problem 7: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

isNat#(plus(V1, V2))U11#(isNat(V1), V2)isNat#(plus(V1, V2))isNat#(V1)
U11#(tt, V2)isNat#(V2)

Rewrite Rules

U11(tt, V2)U12(isNat(V2))U12(tt)tt
U21(tt)ttU31(tt, V2)U32(isNat(V2))
U32(tt)ttU41(tt, N)N
U51(tt, M, N)U52(isNat(N), M, N)U52(tt, M, N)s(plus(N, M))
U61(tt)0U71(tt, M, N)U72(isNat(N), M, N)
U72(tt, M, N)plus(x(N, M), N)isNat(0)tt
isNat(plus(V1, V2))U11(isNat(V1), V2)isNat(s(V1))U21(isNat(V1))
isNat(x(V1, V2))U31(isNat(V1), V2)plus(N, 0)U41(isNat(N), N)
plus(N, s(M))U51(isNat(M), M, N)x(N, 0)U61(isNat(N))
x(N, s(M))U71(isNat(M), M, N)

Original Signature

Termination of terms over the following signature is verified: plus, U71, isNat, U72, U61, 0, U51, s, tt, U41, U52, U11, U12, U31, U32, U21, x

Strategy

Context-sensitive strategy:
μ(isNat) = μ(T) = μ(0) = μ(tt) = μ(isNat#) = ∅
μ(U11#) = μ(U31#) = μ(U21#) = μ(U52#) = μ(U41#) = μ(U61) = μ(U41) = μ(U72#) = μ(U21) = μ(U12#) = μ(U61#) = μ(U51#) = μ(U71) = μ(U72) = μ(U71#) = μ(U51) = μ(s) = μ(U52) = μ(U32#) = μ(U11) = μ(U12) = μ(U31) = μ(U32) = {1}
μ(x#) = μ(plus) = μ(plus#) = μ(x) = {1, 2}


Polynomial Interpretation

Standard Usable rules

U11(tt, V2)U12(isNat(V2))isNat(0)tt
U21(tt)ttU32(tt)tt
U12(tt)ttU31(tt, V2)U32(isNat(V2))
isNat(x(V1, V2))U31(isNat(V1), V2)isNat(plus(V1, V2))U11(isNat(V1), V2)
isNat(s(V1))U21(isNat(V1))

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

isNat#(plus(V1, V2))isNat#(V1)U11#(tt, V2)isNat#(V2)

Problem 8: DependencyGraph



Dependency Pair Problem

Dependency Pairs

isNat#(plus(V1, V2))U11#(isNat(V1), V2)

Rewrite Rules

U11(tt, V2)U12(isNat(V2))U12(tt)tt
U21(tt)ttU31(tt, V2)U32(isNat(V2))
U32(tt)ttU41(tt, N)N
U51(tt, M, N)U52(isNat(N), M, N)U52(tt, M, N)s(plus(N, M))
U61(tt)0U71(tt, M, N)U72(isNat(N), M, N)
U72(tt, M, N)plus(x(N, M), N)isNat(0)tt
isNat(plus(V1, V2))U11(isNat(V1), V2)isNat(s(V1))U21(isNat(V1))
isNat(x(V1, V2))U31(isNat(V1), V2)plus(N, 0)U41(isNat(N), N)
plus(N, s(M))U51(isNat(M), M, N)x(N, 0)U61(isNat(N))
x(N, s(M))U71(isNat(M), M, N)

Original Signature

Termination of terms over the following signature is verified: plus, U71, isNat, U72, U61, 0, U51, s, tt, U41, U52, U11, U12, U31, U32, U21, x

Strategy

Context-sensitive strategy:
μ(isNat) = μ(T) = μ(0) = μ(tt) = μ(isNat#) = ∅
μ(U11#) = μ(U31#) = μ(U21#) = μ(U52#) = μ(U41#) = μ(U61) = μ(U41) = μ(U72#) = μ(U21) = μ(U12#) = μ(U61#) = μ(U51#) = μ(U71) = μ(U72) = μ(U71#) = μ(U51) = μ(s) = μ(U52) = μ(U32#) = μ(U11) = μ(U12) = μ(U31) = μ(U32) = {1}
μ(x#) = μ(plus) = μ(plus#) = μ(x) = {1, 2}


There are no SCCs!