TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60116 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (753ms).
 | – Problem 2 remains open; application of the following processors failed [SubtermCriterion (0ms), DependencyGraph (3ms), PolynomialLinearRange4iUR (0ms), DependencyGraph (1ms), PolynomialOrderingProcessor (1ms), DependencyGraph (0ms), PolynomialLinearRange4 (584ms), DependencyGraph (1ms), ReductionPairSAT (994ms), DependencyGraph (1ms), SizeChangePrinciple (timeout)].
 | – Problem 3 remains open; application of the following processors failed [SubtermCriterion (0ms), DependencyGraph (34ms), PolynomialLinearRange4iUR (0ms), DependencyGraph (1ms), PolynomialOrderingProcessor (0ms), DependencyGraph (1ms), PolynomialLinearRange4 (284ms), DependencyGraph (1ms), ReductionPairSAT (1054ms), DependencyGraph (0ms)].
 | – Problem 4 remains open; application of the following processors failed [SubtermCriterion (0ms), DependencyGraph (78ms), PolynomialLinearRange4iUR (0ms), DependencyGraph (80ms), PolynomialOrderingProcessor (0ms), DependencyGraph (67ms), PolynomialLinearRange4 (774ms), DependencyGraph (71ms), ReductionPairSAT (830ms), DependencyGraph (52ms)].

The following open problems remain:



Open Dependency Pair Problem 2

Dependency Pairs

U51#(tt, M, N)plus#(N, M)plus#(N, s(M))U51#(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)

Rewrite Rules

U11(tt, V1, V2)U12(isNat(V1), V2)U12(tt, V2)U13(isNat(V2))
U13(tt)ttU21(tt, V1)U22(isNat(V1))
U22(tt)ttU31(tt, V1, V2)U32(isNat(V1), V2)
U32(tt, V2)U33(isNat(V2))U33(tt)tt
U41(tt, N)NU51(tt, M, N)s(plus(N, M))
U61(tt)0U71(tt, M, N)plus(x(N, M), N)
and(tt, X)XisNat(0)tt
isNat(plus(V1, V2))U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)isNat(s(V1))U21(isNatKind(V1), V1)
isNat(x(V1, V2))U31(and(isNatKind(V1), isNatKind(V2)), V1, V2)isNatKind(0)tt
isNatKind(plus(V1, V2))and(isNatKind(V1), isNatKind(V2))isNatKind(s(V1))isNatKind(V1)
isNatKind(x(V1, V2))and(isNatKind(V1), isNatKind(V2))plus(N, 0)U41(and(isNat(N), isNatKind(N)), N)
plus(N, s(M))U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)x(N, 0)U61(and(isNat(N), isNatKind(N)))
x(N, s(M))U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)

Original Signature

Termination of terms over the following signature is verified: plus, isNatKind, and, U71, isNat, U61, 0, U51, s, tt, U41, U11, U12, U13, U31, U32, U33, U21, x, U22




Open Dependency Pair Problem 3

Dependency Pairs

U71#(tt, M, N)x#(N, M)x#(N, s(M))U71#(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)

Rewrite Rules

U11(tt, V1, V2)U12(isNat(V1), V2)U12(tt, V2)U13(isNat(V2))
U13(tt)ttU21(tt, V1)U22(isNat(V1))
U22(tt)ttU31(tt, V1, V2)U32(isNat(V1), V2)
U32(tt, V2)U33(isNat(V2))U33(tt)tt
U41(tt, N)NU51(tt, M, N)s(plus(N, M))
U61(tt)0U71(tt, M, N)plus(x(N, M), N)
and(tt, X)XisNat(0)tt
isNat(plus(V1, V2))U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)isNat(s(V1))U21(isNatKind(V1), V1)
isNat(x(V1, V2))U31(and(isNatKind(V1), isNatKind(V2)), V1, V2)isNatKind(0)tt
isNatKind(plus(V1, V2))and(isNatKind(V1), isNatKind(V2))isNatKind(s(V1))isNatKind(V1)
isNatKind(x(V1, V2))and(isNatKind(V1), isNatKind(V2))plus(N, 0)U41(and(isNat(N), isNatKind(N)), N)
plus(N, s(M))U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)x(N, 0)U61(and(isNat(N), isNatKind(N)))
x(N, s(M))U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)

Original Signature

Termination of terms over the following signature is verified: plus, isNatKind, and, U71, isNat, U61, 0, U51, s, tt, U41, U11, U12, U13, U31, U32, U33, U21, x, U22




Open Dependency Pair Problem 4

Dependency Pairs

U11#(tt, V1, V2)U12#(isNat(V1), V2)isNat#(plus(V1, V2))U11#(and(isNatKind(V1), isNatKind(V2)), V1, V2)
U12#(tt, V2)isNat#(V2)isNat#(s(V1))isNatKind#(V1)
isNat#(s(V1))U21#(isNatKind(V1), V1)U31#(tt, V1, V2)U32#(isNat(V1), V2)
T(isNat(x_1))T(x_1)T(and(x_1, x_2))T(x_1)
isNatKind#(x(V1, V2))and#(isNatKind(V1), isNatKind(V2))isNatKind#(s(V1))isNatKind#(V1)
isNat#(x(V1, V2))and#(isNatKind(V1), isNatKind(V2))isNatKind#(plus(V1, V2))and#(isNatKind(V1), isNatKind(V2))
isNat#(x(V1, V2))isNatKind#(V1)isNatKind#(x(V1, V2))isNatKind#(V1)
U31#(tt, V1, V2)isNat#(V1)T(isNatKind(V2))isNatKind#(V2)
isNat#(plus(V1, V2))and#(isNatKind(V1), isNatKind(V2))U21#(tt, V1)isNat#(V1)
isNat#(x(V1, V2))U31#(and(isNatKind(V1), isNatKind(V2)), V1, V2)isNatKind#(plus(V1, V2))isNatKind#(V1)
T(isNatKind(M))isNatKind#(M)and#(tt, X)T(X)
T(and(isNat(N), isNatKind(N)))and#(isNat(N), isNatKind(N))T(isNatKind(N))isNatKind#(N)
U32#(tt, V2)isNat#(V2)U11#(tt, V1, V2)isNat#(V1)
isNat#(plus(V1, V2))isNatKind#(V1)T(isNat(N))isNat#(N)
T(isNatKind(x_1))T(x_1)T(and(x_1, x_2))T(x_2)

Rewrite Rules

U11(tt, V1, V2)U12(isNat(V1), V2)U12(tt, V2)U13(isNat(V2))
U13(tt)ttU21(tt, V1)U22(isNat(V1))
U22(tt)ttU31(tt, V1, V2)U32(isNat(V1), V2)
U32(tt, V2)U33(isNat(V2))U33(tt)tt
U41(tt, N)NU51(tt, M, N)s(plus(N, M))
U61(tt)0U71(tt, M, N)plus(x(N, M), N)
and(tt, X)XisNat(0)tt
isNat(plus(V1, V2))U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)isNat(s(V1))U21(isNatKind(V1), V1)
isNat(x(V1, V2))U31(and(isNatKind(V1), isNatKind(V2)), V1, V2)isNatKind(0)tt
isNatKind(plus(V1, V2))and(isNatKind(V1), isNatKind(V2))isNatKind(s(V1))isNatKind(V1)
isNatKind(x(V1, V2))and(isNatKind(V1), isNatKind(V2))plus(N, 0)U41(and(isNat(N), isNatKind(N)), N)
plus(N, s(M))U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)x(N, 0)U61(and(isNat(N), isNatKind(N)))
x(N, s(M))U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)

Original Signature

Termination of terms over the following signature is verified: plus, isNatKind, and, U71, isNat, U61, 0, U51, s, tt, U41, U11, U12, U13, U31, U32, U33, U21, x, U22


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

U32#(tt, V2)U33#(isNat(V2))U12#(tt, V2)isNat#(V2)
isNat#(s(V1))isNatKind#(V1)isNat#(s(V1))U21#(isNatKind(V1), V1)
T(and(x_1, x_2))T(x_1)U12#(tt, V2)U13#(isNat(V2))
isNatKind#(s(V1))isNatKind#(V1)isNatKind#(plus(V1, V2))and#(isNatKind(V1), isNatKind(V2))
isNat#(x(V1, V2))isNatKind#(V1)U71#(tt, M, N)T(M)
U21#(tt, V1)isNat#(V1)T(isNatKind(M))isNatKind#(M)
and#(tt, X)T(X)T(and(isNat(N), isNatKind(N)))and#(isNat(N), isNatKind(N))
x#(N, s(M))and#(isNat(M), isNatKind(M))plus#(N, 0)and#(isNat(N), isNatKind(N))
plus#(N, s(M))and#(isNat(M), isNatKind(M))U32#(tt, V2)isNat#(V2)
U71#(tt, M, N)x#(N, M)U71#(tt, M, N)T(N)
U51#(tt, M, N)T(M)T(isNatKind(x_1))T(x_1)
x#(N, 0)and#(isNat(N), isNatKind(N))T(and(x_1, x_2))T(x_2)
U41#(tt, N)T(N)x#(N, s(M))and#(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
U11#(tt, V1, V2)U12#(isNat(V1), V2)isNat#(plus(V1, V2))U11#(and(isNatKind(V1), isNatKind(V2)), V1, V2)
x#(N, 0)U61#(and(isNat(N), isNatKind(N)))plus#(N, 0)isNat#(N)
U51#(tt, M, N)plus#(N, M)U31#(tt, V1, V2)U32#(isNat(V1), V2)
plus#(N, s(M))U51#(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)plus#(N, s(M))and#(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
T(isNat(x_1))T(x_1)isNatKind#(x(V1, V2))and#(isNatKind(V1), isNatKind(V2))
plus#(N, s(M))isNat#(M)x#(N, s(M))U71#(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
isNat#(x(V1, V2))and#(isNatKind(V1), isNatKind(V2))U31#(tt, V1, V2)isNat#(V1)
isNatKind#(x(V1, V2))isNatKind#(V1)T(isNatKind(V2))isNatKind#(V2)
isNat#(plus(V1, V2))and#(isNatKind(V1), isNatKind(V2))x#(N, 0)isNat#(N)
isNat#(x(V1, V2))U31#(and(isNatKind(V1), isNatKind(V2)), V1, V2)isNatKind#(plus(V1, V2))isNatKind#(V1)
U21#(tt, V1)U22#(isNat(V1))T(isNatKind(N))isNatKind#(N)
U11#(tt, V1, V2)isNat#(V1)plus#(N, 0)U41#(and(isNat(N), isNatKind(N)), N)
isNat#(plus(V1, V2))isNatKind#(V1)U51#(tt, M, N)T(N)
x#(N, s(M))isNat#(M)T(isNat(N))isNat#(N)
U71#(tt, M, N)plus#(x(N, M), N)

Rewrite Rules

U11(tt, V1, V2)U12(isNat(V1), V2)U12(tt, V2)U13(isNat(V2))
U13(tt)ttU21(tt, V1)U22(isNat(V1))
U22(tt)ttU31(tt, V1, V2)U32(isNat(V1), V2)
U32(tt, V2)U33(isNat(V2))U33(tt)tt
U41(tt, N)NU51(tt, M, N)s(plus(N, M))
U61(tt)0U71(tt, M, N)plus(x(N, M), N)
and(tt, X)XisNat(0)tt
isNat(plus(V1, V2))U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)isNat(s(V1))U21(isNatKind(V1), V1)
isNat(x(V1, V2))U31(and(isNatKind(V1), isNatKind(V2)), V1, V2)isNatKind(0)tt
isNatKind(plus(V1, V2))and(isNatKind(V1), isNatKind(V2))isNatKind(s(V1))isNatKind(V1)
isNatKind(x(V1, V2))and(isNatKind(V1), isNatKind(V2))plus(N, 0)U41(and(isNat(N), isNatKind(N)), N)
plus(N, s(M))U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)x(N, 0)U61(and(isNat(N), isNatKind(N)))
x(N, s(M))U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)

Original Signature

Termination of terms over the following signature is verified: plus, isNatKind, and, U71, isNat, U61, 0, U51, s, tt, U41, U11, U12, U31, U13, U32, U33, U21, U22, x

Strategy

Context-sensitive strategy:
μ(isNat) = μ(T) = μ(isNatKind) = μ(0) = μ(isNatKind#) = μ(tt) = μ(isNat#) = ∅
μ(U11#) = μ(U31#) = μ(U13#) = μ(U21#) = μ(and#) = μ(U41#) = μ(U61) = μ(U41) = μ(U21) = μ(U33#) = μ(U22) = μ(U12#) = μ(U22#) = μ(U61#) = μ(U51#) = μ(U71) = μ(and) = μ(U71#) = μ(U51) = μ(s) = μ(U32#) = μ(U11) = μ(U12) = μ(U13) = μ(U31) = μ(U32) = μ(U33) = {1}
μ(x#) = μ(plus) = μ(plus#) = μ(x) = {1, 2}


The following SCCs where found

U71#(tt, M, N) → x#(N, M)x#(N, s(M)) → U71#(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)

U11#(tt, V1, V2) → U12#(isNat(V1), V2)isNat#(plus(V1, V2)) → U11#(and(isNatKind(V1), isNatKind(V2)), V1, V2)
U12#(tt, V2) → isNat#(V2)isNat#(s(V1)) → isNatKind#(V1)
isNat#(s(V1)) → U21#(isNatKind(V1), V1)U31#(tt, V1, V2) → U32#(isNat(V1), V2)
T(and(x_1, x_2)) → T(x_1)T(isNat(x_1)) → T(x_1)
isNatKind#(x(V1, V2)) → and#(isNatKind(V1), isNatKind(V2))isNat#(x(V1, V2)) → and#(isNatKind(V1), isNatKind(V2))
isNatKind#(s(V1)) → isNatKind#(V1)isNatKind#(plus(V1, V2)) → and#(isNatKind(V1), isNatKind(V2))
isNat#(x(V1, V2)) → isNatKind#(V1)U31#(tt, V1, V2) → isNat#(V1)
isNatKind#(x(V1, V2)) → isNatKind#(V1)T(isNatKind(V2)) → isNatKind#(V2)
isNat#(plus(V1, V2)) → and#(isNatKind(V1), isNatKind(V2))U21#(tt, V1) → isNat#(V1)
isNat#(x(V1, V2)) → U31#(and(isNatKind(V1), isNatKind(V2)), V1, V2)and#(tt, X) → T(X)
T(isNatKind(M)) → isNatKind#(M)isNatKind#(plus(V1, V2)) → isNatKind#(V1)
T(and(isNat(N), isNatKind(N))) → and#(isNat(N), isNatKind(N))T(isNatKind(N)) → isNatKind#(N)
U32#(tt, V2) → isNat#(V2)U11#(tt, V1, V2) → isNat#(V1)
isNat#(plus(V1, V2)) → isNatKind#(V1)T(isNat(N)) → isNat#(N)
T(isNatKind(x_1)) → T(x_1)T(and(x_1, x_2)) → T(x_2)

U51#(tt, M, N) → plus#(N, M)plus#(N, s(M)) → U51#(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)