TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60591 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (1135ms).
 | – Problem 2 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (4ms), PolynomialLinearRange4iUR (0ms), DependencyGraph (3ms), PolynomialOrderingProcessor (0ms), DependencyGraph (4ms), PolynomialLinearRange4 (538ms), DependencyGraph (4ms), PolynomialLinearRange4 (441ms), DependencyGraph (4ms), PolynomialLinearRange4 (374ms), DependencyGraph (2ms), PolynomialLinearRange4 (412ms), DependencyGraph (3ms), ReductionPairSAT (1117ms), DependencyGraph (2ms), SizeChangePrinciple (timeout)].
 | – Problem 3 was processed with processor PolynomialLinearRange4 (276ms).
 |    | – Problem 6 was processed with processor DependencyGraph (36ms).
 |    |    | – Problem 8 was processed with processor PolynomialLinearRange4 (193ms).
 |    |    |    | – Problem 10 was processed with processor DependencyGraph (9ms).
 |    |    |    |    | – Problem 11 was processed with processor PolynomialLinearRange4 (89ms).
 |    |    |    |    |    | – Problem 12 was processed with processor DependencyGraph (3ms).
 | – Problem 4 remains open; application of the following processors failed [SubtermCriterion (0ms), DependencyGraph (16ms), PolynomialLinearRange4iUR (0ms), DependencyGraph (3ms), PolynomialOrderingProcessor (0ms), DependencyGraph (3ms), PolynomialLinearRange4 (400ms), DependencyGraph (4ms), PolynomialLinearRange4 (378ms), DependencyGraph (4ms), PolynomialLinearRange4 (296ms), DependencyGraph (2ms), PolynomialLinearRange4 (287ms), DependencyGraph (2ms), ReductionPairSAT (1032ms), DependencyGraph (2ms)].
 | – Problem 5 was processed with processor PolynomialLinearRange4 (54ms).
 |    | – Problem 7 was processed with processor DependencyGraph (5ms).
 |    |    | – Problem 9 was processed with processor PolynomialLinearRange4 (48ms).

The following open problems remain:



Open Dependency Pair Problem 2

Dependency Pairs

U82#(tt, M, N)U83#(isNat(N), M, N)U83#(tt, M, N)U84#(isNatKind(N), M, N)
plus#(N, s(M))U81#(isNat(M), M, N)U84#(tt, M, N)plus#(N, M)
U81#(tt, M, N)U82#(isNatKind(M), M, N)

Rewrite Rules

U101(tt, M, N)U102(isNatKind(M), M, N)U102(tt, M, N)U103(isNat(N), M, N)
U103(tt, M, N)U104(isNatKind(N), M, N)U104(tt, M, N)plus(x(N, M), N)
U11(tt, V1, V2)U12(isNatKind(V1), V1, V2)U12(tt, V1, V2)U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2)U14(isNatKind(V2), V1, V2)U14(tt, V1, V2)U15(isNat(V1), V2)
U15(tt, V2)U16(isNat(V2))U16(tt)tt
U21(tt, V1)U22(isNatKind(V1), V1)U22(tt, V1)U23(isNat(V1))
U23(tt)ttU31(tt, V1, V2)U32(isNatKind(V1), V1, V2)
U32(tt, V1, V2)U33(isNatKind(V2), V1, V2)U33(tt, V1, V2)U34(isNatKind(V2), V1, V2)
U34(tt, V1, V2)U35(isNat(V1), V2)U35(tt, V2)U36(isNat(V2))
U36(tt)ttU41(tt, V2)U42(isNatKind(V2))
U42(tt)ttU51(tt)tt
U61(tt, V2)U62(isNatKind(V2))U62(tt)tt
U71(tt, N)U72(isNatKind(N), N)U72(tt, N)N
U81(tt, M, N)U82(isNatKind(M), M, N)U82(tt, M, N)U83(isNat(N), M, N)
U83(tt, M, N)U84(isNatKind(N), M, N)U84(tt, M, N)s(plus(N, M))
U91(tt, N)U92(isNatKind(N))U92(tt)0
isNat(0)ttisNat(plus(V1, V2))U11(isNatKind(V1), V1, V2)
isNat(s(V1))U21(isNatKind(V1), V1)isNat(x(V1, V2))U31(isNatKind(V1), V1, V2)
isNatKind(0)ttisNatKind(plus(V1, V2))U41(isNatKind(V1), V2)
isNatKind(s(V1))U51(isNatKind(V1))isNatKind(x(V1, V2))U61(isNatKind(V1), V2)
plus(N, 0)U71(isNat(N), N)plus(N, s(M))U81(isNat(M), M, N)
x(N, 0)U91(isNat(N), N)x(N, s(M))U101(isNat(M), M, N)

Original Signature

Termination of terms over the following signature is verified: U104, isNat, U62, U61, U42, U92, U41, U91, U23, U21, U22, plus, isNatKind, U83, U84, U71, U36, U72, 0, s, U51, U14, tt, U15, U82, U16, U81, U11, U12, U13, U31, U102, U32, U103, U33, U34, x, U101, U35




Open Dependency Pair Problem 4

Dependency Pairs

x#(N, s(M))U101#(isNat(M), M, N)U102#(tt, M, N)U103#(isNat(N), M, N)
U104#(tt, M, N)x#(N, M)U103#(tt, M, N)U104#(isNatKind(N), M, N)
U101#(tt, M, N)U102#(isNatKind(M), M, N)

Rewrite Rules

U101(tt, M, N)U102(isNatKind(M), M, N)U102(tt, M, N)U103(isNat(N), M, N)
U103(tt, M, N)U104(isNatKind(N), M, N)U104(tt, M, N)plus(x(N, M), N)
U11(tt, V1, V2)U12(isNatKind(V1), V1, V2)U12(tt, V1, V2)U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2)U14(isNatKind(V2), V1, V2)U14(tt, V1, V2)U15(isNat(V1), V2)
U15(tt, V2)U16(isNat(V2))U16(tt)tt
U21(tt, V1)U22(isNatKind(V1), V1)U22(tt, V1)U23(isNat(V1))
U23(tt)ttU31(tt, V1, V2)U32(isNatKind(V1), V1, V2)
U32(tt, V1, V2)U33(isNatKind(V2), V1, V2)U33(tt, V1, V2)U34(isNatKind(V2), V1, V2)
U34(tt, V1, V2)U35(isNat(V1), V2)U35(tt, V2)U36(isNat(V2))
U36(tt)ttU41(tt, V2)U42(isNatKind(V2))
U42(tt)ttU51(tt)tt
U61(tt, V2)U62(isNatKind(V2))U62(tt)tt
U71(tt, N)U72(isNatKind(N), N)U72(tt, N)N
U81(tt, M, N)U82(isNatKind(M), M, N)U82(tt, M, N)U83(isNat(N), M, N)
U83(tt, M, N)U84(isNatKind(N), M, N)U84(tt, M, N)s(plus(N, M))
U91(tt, N)U92(isNatKind(N))U92(tt)0
isNat(0)ttisNat(plus(V1, V2))U11(isNatKind(V1), V1, V2)
isNat(s(V1))U21(isNatKind(V1), V1)isNat(x(V1, V2))U31(isNatKind(V1), V1, V2)
isNatKind(0)ttisNatKind(plus(V1, V2))U41(isNatKind(V1), V2)
isNatKind(s(V1))U51(isNatKind(V1))isNatKind(x(V1, V2))U61(isNatKind(V1), V2)
plus(N, 0)U71(isNat(N), N)plus(N, s(M))U81(isNat(M), M, N)
x(N, 0)U91(isNat(N), N)x(N, s(M))U101(isNat(M), M, N)

Original Signature

Termination of terms over the following signature is verified: U104, isNat, U62, U61, U42, U92, U41, U91, U23, U21, U22, plus, isNatKind, U83, U84, U71, U36, U72, 0, s, U51, U14, tt, U15, U82, U16, U81, U11, U12, U13, U31, U102, U32, U103, U33, U34, x, U101, U35


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

U15#(tt, V2)U16#(isNat(V2))U83#(tt, M, N)isNatKind#(N)
x#(N, s(M))U101#(isNat(M), M, N)plus#(N, 0)U71#(isNat(N), N)
isNatKind#(plus(V1, V2))U41#(isNatKind(V1), V2)isNat#(s(V1))isNatKind#(V1)
U13#(tt, V1, V2)isNatKind#(V2)isNat#(s(V1))U21#(isNatKind(V1), V1)
U12#(tt, V1, V2)isNatKind#(V2)U104#(tt, M, N)x#(N, M)
U41#(tt, V2)U42#(isNatKind(V2))U13#(tt, V1, V2)U14#(isNatKind(V2), V1, V2)
U35#(tt, V2)isNat#(V2)U103#(tt, M, N)isNatKind#(N)
U34#(tt, V1, V2)isNat#(V1)isNat#(x(V1, V2))U31#(isNatKind(V1), V1, V2)
isNatKind#(s(V1))isNatKind#(V1)isNat#(x(V1, V2))isNatKind#(V1)
U61#(tt, V2)isNatKind#(V2)U102#(tt, M, N)isNat#(N)
U15#(tt, V2)isNat#(V2)isNat#(plus(V1, V2))U11#(isNatKind(V1), V1, V2)
U11#(tt, V1, V2)U12#(isNatKind(V1), V1, V2)U103#(tt, M, N)U104#(isNatKind(N), M, N)
U31#(tt, V1, V2)isNatKind#(V1)U14#(tt, V1, V2)isNat#(V1)
U11#(tt, V1, V2)isNatKind#(V1)U22#(tt, V1)U23#(isNat(V1))
U81#(tt, M, N)isNatKind#(M)U84#(tt, M, N)T(M)
U102#(tt, M, N)U103#(isNat(N), M, N)U101#(tt, M, N)isNatKind#(M)
U82#(tt, M, N)U83#(isNat(N), M, N)U32#(tt, V1, V2)isNatKind#(V2)
x#(N, 0)U91#(isNat(N), N)U21#(tt, V1)isNatKind#(V1)
U33#(tt, V1, V2)isNatKind#(V2)U91#(tt, N)isNatKind#(N)
isNatKind#(x(V1, V2))U61#(isNatKind(V1), V2)U35#(tt, V2)U36#(isNat(V2))
U61#(tt, V2)U62#(isNatKind(V2))U72#(tt, N)T(N)
plus#(N, 0)isNat#(N)U71#(tt, N)isNatKind#(N)
U12#(tt, V1, V2)U13#(isNatKind(V2), V1, V2)U22#(tt, V1)isNat#(V1)
U71#(tt, N)U72#(isNatKind(N), N)U83#(tt, M, N)U84#(isNatKind(N), M, N)
U21#(tt, V1)U22#(isNatKind(V1), V1)plus#(N, s(M))U81#(isNat(M), M, N)
U84#(tt, M, N)plus#(N, M)plus#(N, s(M))isNat#(M)
U81#(tt, M, N)U82#(isNatKind(M), M, N)U14#(tt, V1, V2)U15#(isNat(V1), V2)
U32#(tt, V1, V2)U33#(isNatKind(V2), V1, V2)isNatKind#(s(V1))U51#(isNatKind(V1))
isNatKind#(x(V1, V2))isNatKind#(V1)U33#(tt, V1, V2)U34#(isNatKind(V2), V1, V2)
x#(N, 0)isNat#(N)isNatKind#(plus(V1, V2))isNatKind#(V1)
U82#(tt, M, N)isNat#(N)U104#(tt, M, N)T(M)
U91#(tt, N)U92#(isNatKind(N))U41#(tt, V2)isNatKind#(V2)
U31#(tt, V1, V2)U32#(isNatKind(V1), V1, V2)isNat#(plus(V1, V2))isNatKind#(V1)
x#(N, s(M))isNat#(M)U104#(tt, M, N)T(N)
U34#(tt, V1, V2)U35#(isNat(V1), V2)U84#(tt, M, N)T(N)
U104#(tt, M, N)plus#(x(N, M), N)U101#(tt, M, N)U102#(isNatKind(M), M, N)

Rewrite Rules

U101(tt, M, N)U102(isNatKind(M), M, N)U102(tt, M, N)U103(isNat(N), M, N)
U103(tt, M, N)U104(isNatKind(N), M, N)U104(tt, M, N)plus(x(N, M), N)
U11(tt, V1, V2)U12(isNatKind(V1), V1, V2)U12(tt, V1, V2)U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2)U14(isNatKind(V2), V1, V2)U14(tt, V1, V2)U15(isNat(V1), V2)
U15(tt, V2)U16(isNat(V2))U16(tt)tt
U21(tt, V1)U22(isNatKind(V1), V1)U22(tt, V1)U23(isNat(V1))
U23(tt)ttU31(tt, V1, V2)U32(isNatKind(V1), V1, V2)
U32(tt, V1, V2)U33(isNatKind(V2), V1, V2)U33(tt, V1, V2)U34(isNatKind(V2), V1, V2)
U34(tt, V1, V2)U35(isNat(V1), V2)U35(tt, V2)U36(isNat(V2))
U36(tt)ttU41(tt, V2)U42(isNatKind(V2))
U42(tt)ttU51(tt)tt
U61(tt, V2)U62(isNatKind(V2))U62(tt)tt
U71(tt, N)U72(isNatKind(N), N)U72(tt, N)N
U81(tt, M, N)U82(isNatKind(M), M, N)U82(tt, M, N)U83(isNat(N), M, N)
U83(tt, M, N)U84(isNatKind(N), M, N)U84(tt, M, N)s(plus(N, M))
U91(tt, N)U92(isNatKind(N))U92(tt)0
isNat(0)ttisNat(plus(V1, V2))U11(isNatKind(V1), V1, V2)
isNat(s(V1))U21(isNatKind(V1), V1)isNat(x(V1, V2))U31(isNatKind(V1), V1, V2)
isNatKind(0)ttisNatKind(plus(V1, V2))U41(isNatKind(V1), V2)
isNatKind(s(V1))U51(isNatKind(V1))isNatKind(x(V1, V2))U61(isNatKind(V1), V2)
plus(N, 0)U71(isNat(N), N)plus(N, s(M))U81(isNat(M), M, N)
x(N, 0)U91(isNat(N), N)x(N, s(M))U101(isNat(M), M, N)

Original Signature

Termination of terms over the following signature is verified: U104, isNat, U62, U61, U42, U41, U92, U91, U23, U21, U22, plus, isNatKind, U83, U84, U71, U36, U72, 0, s, U51, U14, tt, U15, U16, U82, U81, U11, U12, U31, U13, U32, U102, U33, U103, U34, U35, U101, x

Strategy

Context-sensitive strategy:
μ(isNatKind) = μ(0) = μ(isNatKind#) = μ(isNat) = μ(T) = μ(tt) = μ(isNat#) = ∅
μ(U11#) = μ(U31#) = μ(U21#) = μ(U62#) = μ(U104) = μ(U104#) = μ(U35#) = μ(U41#) = μ(U62) = μ(U61) = μ(U72#) = μ(U16#) = μ(U23) = μ(U21) = μ(U22) = μ(U12#) = μ(U22#) = μ(U61#) = μ(U103#) = μ(U51#) = μ(U71) = μ(U36) = μ(U42#) = μ(U72) = μ(U71#) = μ(U36#) = μ(U32#) = μ(U15#) = μ(U31) = μ(U32) = μ(U33) = μ(U34) = μ(U35) = μ(U13#) = μ(U91#) = μ(U102#) = μ(U81#) = μ(U23#) = μ(U42) = μ(U92) = μ(U41) = μ(U91) = μ(U84#) = μ(U33#) = μ(U14#) = μ(U101#) = μ(U92#) = μ(U83) = μ(U84) = μ(U82#) = μ(U51) = μ(U14) = μ(s) = μ(U15) = μ(U16) = μ(U82) = μ(U81) = μ(U11) = μ(U12) = μ(U13) = μ(U83#) = μ(U102) = μ(U103) = μ(U34#) = μ(U101) = {1}
μ(plus) = μ(x#) = μ(plus#) = μ(x) = {1, 2}


The following SCCs where found

U82#(tt, M, N) → U83#(isNat(N), M, N)U83#(tt, M, N) → U84#(isNatKind(N), M, N)
plus#(N, s(M)) → U81#(isNat(M), M, N)U84#(tt, M, N) → plus#(N, M)
U81#(tt, M, N) → U82#(isNatKind(M), M, N)

isNatKind#(s(V1)) → isNatKind#(V1)isNatKind#(x(V1, V2)) → U61#(isNatKind(V1), V2)
isNatKind#(plus(V1, V2)) → isNatKind#(V1)isNatKind#(plus(V1, V2)) → U41#(isNatKind(V1), V2)
U61#(tt, V2) → isNatKind#(V2)isNatKind#(x(V1, V2)) → isNatKind#(V1)
U41#(tt, V2) → isNatKind#(V2)

U12#(tt, V1, V2) → U13#(isNatKind(V2), V1, V2)isNat#(s(V1)) → U21#(isNatKind(V1), V1)
U22#(tt, V1) → isNat#(V1)U21#(tt, V1) → U22#(isNatKind(V1), V1)
U13#(tt, V1, V2) → U14#(isNatKind(V2), V1, V2)U35#(tt, V2) → isNat#(V2)
U34#(tt, V1, V2) → isNat#(V1)U31#(tt, V1, V2) → U32#(isNatKind(V1), V1, V2)
isNat#(x(V1, V2)) → U31#(isNatKind(V1), V1, V2)U14#(tt, V1, V2) → U15#(isNat(V1), V2)
U32#(tt, V1, V2) → U33#(isNatKind(V2), V1, V2)U15#(tt, V2) → isNat#(V2)
isNat#(plus(V1, V2)) → U11#(isNatKind(V1), V1, V2)U11#(tt, V1, V2) → U12#(isNatKind(V1), V1, V2)
U34#(tt, V1, V2) → U35#(isNat(V1), V2)U14#(tt, V1, V2) → isNat#(V1)
U33#(tt, V1, V2) → U34#(isNatKind(V2), V1, V2)

x#(N, s(M)) → U101#(isNat(M), M, N)U102#(tt, M, N) → U103#(isNat(N), M, N)
U104#(tt, M, N) → x#(N, M)U103#(tt, M, N) → U104#(isNatKind(N), M, N)
U101#(tt, M, N) → U102#(isNatKind(M), M, N)

Problem 3: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

U12#(tt, V1, V2)U13#(isNatKind(V2), V1, V2)isNat#(s(V1))U21#(isNatKind(V1), V1)
U22#(tt, V1)isNat#(V1)U35#(tt, V2)isNat#(V2)
U13#(tt, V1, V2)U14#(isNatKind(V2), V1, V2)U21#(tt, V1)U22#(isNatKind(V1), V1)
U34#(tt, V1, V2)isNat#(V1)isNat#(x(V1, V2))U31#(isNatKind(V1), V1, V2)
U31#(tt, V1, V2)U32#(isNatKind(V1), V1, V2)U14#(tt, V1, V2)U15#(isNat(V1), V2)
U32#(tt, V1, V2)U33#(isNatKind(V2), V1, V2)isNat#(plus(V1, V2))U11#(isNatKind(V1), V1, V2)
U15#(tt, V2)isNat#(V2)U11#(tt, V1, V2)U12#(isNatKind(V1), V1, V2)
U34#(tt, V1, V2)U35#(isNat(V1), V2)U14#(tt, V1, V2)isNat#(V1)
U33#(tt, V1, V2)U34#(isNatKind(V2), V1, V2)

Rewrite Rules

U101(tt, M, N)U102(isNatKind(M), M, N)U102(tt, M, N)U103(isNat(N), M, N)
U103(tt, M, N)U104(isNatKind(N), M, N)U104(tt, M, N)plus(x(N, M), N)
U11(tt, V1, V2)U12(isNatKind(V1), V1, V2)U12(tt, V1, V2)U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2)U14(isNatKind(V2), V1, V2)U14(tt, V1, V2)U15(isNat(V1), V2)
U15(tt, V2)U16(isNat(V2))U16(tt)tt
U21(tt, V1)U22(isNatKind(V1), V1)U22(tt, V1)U23(isNat(V1))
U23(tt)ttU31(tt, V1, V2)U32(isNatKind(V1), V1, V2)
U32(tt, V1, V2)U33(isNatKind(V2), V1, V2)U33(tt, V1, V2)U34(isNatKind(V2), V1, V2)
U34(tt, V1, V2)U35(isNat(V1), V2)U35(tt, V2)U36(isNat(V2))
U36(tt)ttU41(tt, V2)U42(isNatKind(V2))
U42(tt)ttU51(tt)tt
U61(tt, V2)U62(isNatKind(V2))U62(tt)tt
U71(tt, N)U72(isNatKind(N), N)U72(tt, N)N
U81(tt, M, N)U82(isNatKind(M), M, N)U82(tt, M, N)U83(isNat(N), M, N)
U83(tt, M, N)U84(isNatKind(N), M, N)U84(tt, M, N)s(plus(N, M))
U91(tt, N)U92(isNatKind(N))U92(tt)0
isNat(0)ttisNat(plus(V1, V2))U11(isNatKind(V1), V1, V2)
isNat(s(V1))U21(isNatKind(V1), V1)isNat(x(V1, V2))U31(isNatKind(V1), V1, V2)
isNatKind(0)ttisNatKind(plus(V1, V2))U41(isNatKind(V1), V2)
isNatKind(s(V1))U51(isNatKind(V1))isNatKind(x(V1, V2))U61(isNatKind(V1), V2)
plus(N, 0)U71(isNat(N), N)plus(N, s(M))U81(isNat(M), M, N)
x(N, 0)U91(isNat(N), N)x(N, s(M))U101(isNat(M), M, N)

Original Signature

Termination of terms over the following signature is verified: U104, isNat, U62, U61, U42, U41, U92, U91, U23, U21, U22, plus, isNatKind, U83, U84, U71, U36, U72, 0, s, U51, U14, tt, U15, U16, U82, U81, U11, U12, U31, U13, U32, U102, U33, U103, U34, U35, U101, x

Strategy

Context-sensitive strategy:
μ(isNatKind) = μ(0) = μ(isNatKind#) = μ(isNat) = μ(T) = μ(tt) = μ(isNat#) = ∅
μ(U11#) = μ(U31#) = μ(U21#) = μ(U62#) = μ(U104) = μ(U104#) = μ(U35#) = μ(U41#) = μ(U62) = μ(U61) = μ(U72#) = μ(U16#) = μ(U23) = μ(U21) = μ(U22) = μ(U12#) = μ(U22#) = μ(U61#) = μ(U103#) = μ(U51#) = μ(U71) = μ(U36) = μ(U42#) = μ(U72) = μ(U71#) = μ(U36#) = μ(U32#) = μ(U15#) = μ(U31) = μ(U32) = μ(U33) = μ(U34) = μ(U35) = μ(U13#) = μ(U91#) = μ(U102#) = μ(U81#) = μ(U23#) = μ(U42) = μ(U92) = μ(U41) = μ(U91) = μ(U33#) = μ(U84#) = μ(U14#) = μ(U101#) = μ(U92#) = μ(U83) = μ(U84) = μ(U82#) = μ(s) = μ(U14) = μ(U51) = μ(U15) = μ(U82) = μ(U16) = μ(U81) = μ(U11) = μ(U12) = μ(U13) = μ(U102) = μ(U83#) = μ(U103) = μ(U34#) = μ(U101) = {1}
μ(plus) = μ(x#) = μ(plus#) = μ(x) = {1, 2}


Polynomial Interpretation

Standard Usable rules

U33(tt, V1, V2)U34(isNatKind(V2), V1, V2)isNat(x(V1, V2))U31(isNatKind(V1), V1, V2)
isNatKind(s(V1))U51(isNatKind(V1))isNatKind(plus(V1, V2))U41(isNatKind(V1), V2)
U15(tt, V2)U16(isNat(V2))isNat(s(V1))U21(isNatKind(V1), V1)
U12(tt, V1, V2)U13(isNatKind(V2), V1, V2)U32(tt, V1, V2)U33(isNatKind(V2), V1, V2)
U11(tt, V1, V2)U12(isNatKind(V1), V1, V2)U31(tt, V1, V2)U32(isNatKind(V1), V1, V2)
U62(tt)ttisNatKind(0)tt
U36(tt)ttisNatKind(x(V1, V2))U61(isNatKind(V1), V2)
isNat(0)ttU13(tt, V1, V2)U14(isNatKind(V2), V1, V2)
U23(tt)ttU34(tt, V1, V2)U35(isNat(V1), V2)
U14(tt, V1, V2)U15(isNat(V1), V2)U35(tt, V2)U36(isNat(V2))
U41(tt, V2)U42(isNatKind(V2))U42(tt)tt
U51(tt)ttU16(tt)tt
U61(tt, V2)U62(isNatKind(V2))isNat(plus(V1, V2))U11(isNatKind(V1), V1, V2)
U22(tt, V1)U23(isNat(V1))U21(tt, V1)U22(isNatKind(V1), V1)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

U13#(tt, V1, V2)U14#(isNatKind(V2), V1, V2)

Problem 6: DependencyGraph



Dependency Pair Problem

Dependency Pairs

U12#(tt, V1, V2)U13#(isNatKind(V2), V1, V2)isNat#(s(V1))U21#(isNatKind(V1), V1)
U22#(tt, V1)isNat#(V1)U35#(tt, V2)isNat#(V2)
U21#(tt, V1)U22#(isNatKind(V1), V1)U34#(tt, V1, V2)isNat#(V1)
isNat#(x(V1, V2))U31#(isNatKind(V1), V1, V2)U31#(tt, V1, V2)U32#(isNatKind(V1), V1, V2)
U14#(tt, V1, V2)U15#(isNat(V1), V2)U32#(tt, V1, V2)U33#(isNatKind(V2), V1, V2)
isNat#(plus(V1, V2))U11#(isNatKind(V1), V1, V2)U15#(tt, V2)isNat#(V2)
U11#(tt, V1, V2)U12#(isNatKind(V1), V1, V2)U34#(tt, V1, V2)U35#(isNat(V1), V2)
U14#(tt, V1, V2)isNat#(V1)U33#(tt, V1, V2)U34#(isNatKind(V2), V1, V2)

Rewrite Rules

U101(tt, M, N)U102(isNatKind(M), M, N)U102(tt, M, N)U103(isNat(N), M, N)
U103(tt, M, N)U104(isNatKind(N), M, N)U104(tt, M, N)plus(x(N, M), N)
U11(tt, V1, V2)U12(isNatKind(V1), V1, V2)U12(tt, V1, V2)U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2)U14(isNatKind(V2), V1, V2)U14(tt, V1, V2)U15(isNat(V1), V2)
U15(tt, V2)U16(isNat(V2))U16(tt)tt
U21(tt, V1)U22(isNatKind(V1), V1)U22(tt, V1)U23(isNat(V1))
U23(tt)ttU31(tt, V1, V2)U32(isNatKind(V1), V1, V2)
U32(tt, V1, V2)U33(isNatKind(V2), V1, V2)U33(tt, V1, V2)U34(isNatKind(V2), V1, V2)
U34(tt, V1, V2)U35(isNat(V1), V2)U35(tt, V2)U36(isNat(V2))
U36(tt)ttU41(tt, V2)U42(isNatKind(V2))
U42(tt)ttU51(tt)tt
U61(tt, V2)U62(isNatKind(V2))U62(tt)tt
U71(tt, N)U72(isNatKind(N), N)U72(tt, N)N
U81(tt, M, N)U82(isNatKind(M), M, N)U82(tt, M, N)U83(isNat(N), M, N)
U83(tt, M, N)U84(isNatKind(N), M, N)U84(tt, M, N)s(plus(N, M))
U91(tt, N)U92(isNatKind(N))U92(tt)0
isNat(0)ttisNat(plus(V1, V2))U11(isNatKind(V1), V1, V2)
isNat(s(V1))U21(isNatKind(V1), V1)isNat(x(V1, V2))U31(isNatKind(V1), V1, V2)
isNatKind(0)ttisNatKind(plus(V1, V2))U41(isNatKind(V1), V2)
isNatKind(s(V1))U51(isNatKind(V1))isNatKind(x(V1, V2))U61(isNatKind(V1), V2)
plus(N, 0)U71(isNat(N), N)plus(N, s(M))U81(isNat(M), M, N)
x(N, 0)U91(isNat(N), N)x(N, s(M))U101(isNat(M), M, N)

Original Signature

Termination of terms over the following signature is verified: U104, isNat, U62, U61, U42, U92, U41, U91, U23, U21, U22, plus, isNatKind, U83, U84, U71, U36, U72, 0, s, U51, U14, tt, U15, U82, U16, U81, U11, U12, U13, U31, U102, U32, U103, U33, U34, x, U101, U35

Strategy

Context-sensitive strategy:
μ(isNatKind) = μ(0) = μ(isNatKind#) = μ(isNat) = μ(T) = μ(tt) = μ(isNat#) = ∅
μ(U11#) = μ(U31#) = μ(U21#) = μ(U62#) = μ(U104) = μ(U104#) = μ(U35#) = μ(U41#) = μ(U62) = μ(U61) = μ(U72#) = μ(U16#) = μ(U23) = μ(U21) = μ(U22) = μ(U12#) = μ(U22#) = μ(U61#) = μ(U103#) = μ(U51#) = μ(U71) = μ(U36) = μ(U42#) = μ(U72) = μ(U71#) = μ(U36#) = μ(U32#) = μ(U15#) = μ(U31) = μ(U32) = μ(U33) = μ(U34) = μ(U35) = μ(U13#) = μ(U91#) = μ(U102#) = μ(U81#) = μ(U23#) = μ(U42) = μ(U92) = μ(U41) = μ(U91) = μ(U84#) = μ(U33#) = μ(U14#) = μ(U101#) = μ(U92#) = μ(U83) = μ(U84) = μ(U82#) = μ(U51) = μ(U14) = μ(s) = μ(U15) = μ(U16) = μ(U82) = μ(U81) = μ(U11) = μ(U12) = μ(U13) = μ(U83#) = μ(U102) = μ(U103) = μ(U34#) = μ(U101) = {1}
μ(plus) = μ(x#) = μ(plus#) = μ(x) = {1, 2}


The following SCCs where found

U32#(tt, V1, V2) → U33#(isNatKind(V2), V1, V2)isNat#(s(V1)) → U21#(isNatKind(V1), V1)
U22#(tt, V1) → isNat#(V1)U34#(tt, V1, V2) → U35#(isNat(V1), V2)
U21#(tt, V1) → U22#(isNatKind(V1), V1)U35#(tt, V2) → isNat#(V2)
U34#(tt, V1, V2) → isNat#(V1)isNat#(x(V1, V2)) → U31#(isNatKind(V1), V1, V2)
U31#(tt, V1, V2) → U32#(isNatKind(V1), V1, V2)U33#(tt, V1, V2) → U34#(isNatKind(V2), V1, V2)

Problem 8: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

U32#(tt, V1, V2)U33#(isNatKind(V2), V1, V2)isNat#(s(V1))U21#(isNatKind(V1), V1)
U22#(tt, V1)isNat#(V1)U34#(tt, V1, V2)U35#(isNat(V1), V2)
U21#(tt, V1)U22#(isNatKind(V1), V1)U35#(tt, V2)isNat#(V2)
U34#(tt, V1, V2)isNat#(V1)isNat#(x(V1, V2))U31#(isNatKind(V1), V1, V2)
U31#(tt, V1, V2)U32#(isNatKind(V1), V1, V2)U33#(tt, V1, V2)U34#(isNatKind(V2), V1, V2)

Rewrite Rules

U101(tt, M, N)U102(isNatKind(M), M, N)U102(tt, M, N)U103(isNat(N), M, N)
U103(tt, M, N)U104(isNatKind(N), M, N)U104(tt, M, N)plus(x(N, M), N)
U11(tt, V1, V2)U12(isNatKind(V1), V1, V2)U12(tt, V1, V2)U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2)U14(isNatKind(V2), V1, V2)U14(tt, V1, V2)U15(isNat(V1), V2)
U15(tt, V2)U16(isNat(V2))U16(tt)tt
U21(tt, V1)U22(isNatKind(V1), V1)U22(tt, V1)U23(isNat(V1))
U23(tt)ttU31(tt, V1, V2)U32(isNatKind(V1), V1, V2)
U32(tt, V1, V2)U33(isNatKind(V2), V1, V2)U33(tt, V1, V2)U34(isNatKind(V2), V1, V2)
U34(tt, V1, V2)U35(isNat(V1), V2)U35(tt, V2)U36(isNat(V2))
U36(tt)ttU41(tt, V2)U42(isNatKind(V2))
U42(tt)ttU51(tt)tt
U61(tt, V2)U62(isNatKind(V2))U62(tt)tt
U71(tt, N)U72(isNatKind(N), N)U72(tt, N)N
U81(tt, M, N)U82(isNatKind(M), M, N)U82(tt, M, N)U83(isNat(N), M, N)
U83(tt, M, N)U84(isNatKind(N), M, N)U84(tt, M, N)s(plus(N, M))
U91(tt, N)U92(isNatKind(N))U92(tt)0
isNat(0)ttisNat(plus(V1, V2))U11(isNatKind(V1), V1, V2)
isNat(s(V1))U21(isNatKind(V1), V1)isNat(x(V1, V2))U31(isNatKind(V1), V1, V2)
isNatKind(0)ttisNatKind(plus(V1, V2))U41(isNatKind(V1), V2)
isNatKind(s(V1))U51(isNatKind(V1))isNatKind(x(V1, V2))U61(isNatKind(V1), V2)
plus(N, 0)U71(isNat(N), N)plus(N, s(M))U81(isNat(M), M, N)
x(N, 0)U91(isNat(N), N)x(N, s(M))U101(isNat(M), M, N)

Original Signature

Termination of terms over the following signature is verified: U104, isNat, U62, U61, U42, U92, U41, U91, U23, U21, U22, plus, isNatKind, U83, U84, U71, U36, U72, 0, s, U51, U14, tt, U15, U82, U16, U81, U11, U12, U13, U31, U102, U32, U103, U33, U34, x, U101, U35

Strategy

Context-sensitive strategy:
μ(isNatKind) = μ(0) = μ(isNatKind#) = μ(isNat) = μ(T) = μ(tt) = μ(isNat#) = ∅
μ(U11#) = μ(U31#) = μ(U21#) = μ(U62#) = μ(U104) = μ(U104#) = μ(U35#) = μ(U41#) = μ(U62) = μ(U61) = μ(U72#) = μ(U16#) = μ(U23) = μ(U21) = μ(U22) = μ(U12#) = μ(U22#) = μ(U61#) = μ(U103#) = μ(U51#) = μ(U71) = μ(U36) = μ(U42#) = μ(U72) = μ(U71#) = μ(U36#) = μ(U32#) = μ(U15#) = μ(U31) = μ(U32) = μ(U33) = μ(U34) = μ(U35) = μ(U13#) = μ(U91#) = μ(U102#) = μ(U81#) = μ(U23#) = μ(U42) = μ(U92) = μ(U41) = μ(U91) = μ(U33#) = μ(U84#) = μ(U14#) = μ(U101#) = μ(U92#) = μ(U83) = μ(U84) = μ(U82#) = μ(s) = μ(U14) = μ(U51) = μ(U15) = μ(U82) = μ(U16) = μ(U81) = μ(U11) = μ(U12) = μ(U13) = μ(U102) = μ(U83#) = μ(U103) = μ(U34#) = μ(U101) = {1}
μ(plus) = μ(x#) = μ(plus#) = μ(x) = {1, 2}


Polynomial Interpretation

Standard Usable rules

U33(tt, V1, V2)U34(isNatKind(V2), V1, V2)isNat(x(V1, V2))U31(isNatKind(V1), V1, V2)
isNatKind(s(V1))U51(isNatKind(V1))isNatKind(plus(V1, V2))U41(isNatKind(V1), V2)
U15(tt, V2)U16(isNat(V2))isNat(s(V1))U21(isNatKind(V1), V1)
U12(tt, V1, V2)U13(isNatKind(V2), V1, V2)U32(tt, V1, V2)U33(isNatKind(V2), V1, V2)
U11(tt, V1, V2)U12(isNatKind(V1), V1, V2)U31(tt, V1, V2)U32(isNatKind(V1), V1, V2)
U62(tt)ttisNatKind(0)tt
U36(tt)ttisNatKind(x(V1, V2))U61(isNatKind(V1), V2)
isNat(0)ttU13(tt, V1, V2)U14(isNatKind(V2), V1, V2)
U23(tt)ttU34(tt, V1, V2)U35(isNat(V1), V2)
U14(tt, V1, V2)U15(isNat(V1), V2)U35(tt, V2)U36(isNat(V2))
U41(tt, V2)U42(isNatKind(V2))U42(tt)tt
U51(tt)ttU16(tt)tt
U61(tt, V2)U62(isNatKind(V2))isNat(plus(V1, V2))U11(isNatKind(V1), V1, V2)
U22(tt, V1)U23(isNat(V1))U21(tt, V1)U22(isNatKind(V1), V1)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

U21#(tt, V1)U22#(isNatKind(V1), V1)

Problem 10: DependencyGraph



Dependency Pair Problem

Dependency Pairs

U32#(tt, V1, V2)U33#(isNatKind(V2), V1, V2)isNat#(s(V1))U21#(isNatKind(V1), V1)
U22#(tt, V1)isNat#(V1)U34#(tt, V1, V2)U35#(isNat(V1), V2)
U35#(tt, V2)isNat#(V2)U34#(tt, V1, V2)isNat#(V1)
U33#(tt, V1, V2)U34#(isNatKind(V2), V1, V2)U31#(tt, V1, V2)U32#(isNatKind(V1), V1, V2)
isNat#(x(V1, V2))U31#(isNatKind(V1), V1, V2)

Rewrite Rules

U101(tt, M, N)U102(isNatKind(M), M, N)U102(tt, M, N)U103(isNat(N), M, N)
U103(tt, M, N)U104(isNatKind(N), M, N)U104(tt, M, N)plus(x(N, M), N)
U11(tt, V1, V2)U12(isNatKind(V1), V1, V2)U12(tt, V1, V2)U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2)U14(isNatKind(V2), V1, V2)U14(tt, V1, V2)U15(isNat(V1), V2)
U15(tt, V2)U16(isNat(V2))U16(tt)tt
U21(tt, V1)U22(isNatKind(V1), V1)U22(tt, V1)U23(isNat(V1))
U23(tt)ttU31(tt, V1, V2)U32(isNatKind(V1), V1, V2)
U32(tt, V1, V2)U33(isNatKind(V2), V1, V2)U33(tt, V1, V2)U34(isNatKind(V2), V1, V2)
U34(tt, V1, V2)U35(isNat(V1), V2)U35(tt, V2)U36(isNat(V2))
U36(tt)ttU41(tt, V2)U42(isNatKind(V2))
U42(tt)ttU51(tt)tt
U61(tt, V2)U62(isNatKind(V2))U62(tt)tt
U71(tt, N)U72(isNatKind(N), N)U72(tt, N)N
U81(tt, M, N)U82(isNatKind(M), M, N)U82(tt, M, N)U83(isNat(N), M, N)
U83(tt, M, N)U84(isNatKind(N), M, N)U84(tt, M, N)s(plus(N, M))
U91(tt, N)U92(isNatKind(N))U92(tt)0
isNat(0)ttisNat(plus(V1, V2))U11(isNatKind(V1), V1, V2)
isNat(s(V1))U21(isNatKind(V1), V1)isNat(x(V1, V2))U31(isNatKind(V1), V1, V2)
isNatKind(0)ttisNatKind(plus(V1, V2))U41(isNatKind(V1), V2)
isNatKind(s(V1))U51(isNatKind(V1))isNatKind(x(V1, V2))U61(isNatKind(V1), V2)
plus(N, 0)U71(isNat(N), N)plus(N, s(M))U81(isNat(M), M, N)
x(N, 0)U91(isNat(N), N)x(N, s(M))U101(isNat(M), M, N)

Original Signature

Termination of terms over the following signature is verified: U104, isNat, U62, U61, U42, U41, U92, U91, U23, U21, U22, plus, isNatKind, U83, U84, U71, U36, U72, 0, s, U51, U14, tt, U15, U16, U82, U81, U11, U12, U31, U13, U32, U102, U33, U103, U34, U35, U101, x

Strategy

Context-sensitive strategy:
μ(isNatKind) = μ(0) = μ(isNatKind#) = μ(isNat) = μ(T) = μ(tt) = μ(isNat#) = ∅
μ(U11#) = μ(U31#) = μ(U21#) = μ(U62#) = μ(U104) = μ(U104#) = μ(U35#) = μ(U41#) = μ(U62) = μ(U61) = μ(U72#) = μ(U16#) = μ(U23) = μ(U21) = μ(U22) = μ(U12#) = μ(U22#) = μ(U61#) = μ(U103#) = μ(U51#) = μ(U71) = μ(U36) = μ(U42#) = μ(U72) = μ(U71#) = μ(U36#) = μ(U32#) = μ(U15#) = μ(U31) = μ(U32) = μ(U33) = μ(U34) = μ(U35) = μ(U13#) = μ(U91#) = μ(U102#) = μ(U81#) = μ(U23#) = μ(U42) = μ(U92) = μ(U41) = μ(U91) = μ(U84#) = μ(U33#) = μ(U14#) = μ(U101#) = μ(U92#) = μ(U83) = μ(U84) = μ(U82#) = μ(U51) = μ(U14) = μ(s) = μ(U15) = μ(U16) = μ(U82) = μ(U81) = μ(U11) = μ(U12) = μ(U13) = μ(U83#) = μ(U102) = μ(U103) = μ(U34#) = μ(U101) = {1}
μ(plus) = μ(x#) = μ(plus#) = μ(x) = {1, 2}


The following SCCs where found

U32#(tt, V1, V2) → U33#(isNatKind(V2), V1, V2)U34#(tt, V1, V2) → U35#(isNat(V1), V2)
U35#(tt, V2) → isNat#(V2)U34#(tt, V1, V2) → isNat#(V1)
U33#(tt, V1, V2) → U34#(isNatKind(V2), V1, V2)isNat#(x(V1, V2)) → U31#(isNatKind(V1), V1, V2)
U31#(tt, V1, V2) → U32#(isNatKind(V1), V1, V2)

Problem 11: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

U32#(tt, V1, V2)U33#(isNatKind(V2), V1, V2)U34#(tt, V1, V2)U35#(isNat(V1), V2)
U35#(tt, V2)isNat#(V2)U34#(tt, V1, V2)isNat#(V1)
U33#(tt, V1, V2)U34#(isNatKind(V2), V1, V2)isNat#(x(V1, V2))U31#(isNatKind(V1), V1, V2)
U31#(tt, V1, V2)U32#(isNatKind(V1), V1, V2)

Rewrite Rules

U101(tt, M, N)U102(isNatKind(M), M, N)U102(tt, M, N)U103(isNat(N), M, N)
U103(tt, M, N)U104(isNatKind(N), M, N)U104(tt, M, N)plus(x(N, M), N)
U11(tt, V1, V2)U12(isNatKind(V1), V1, V2)U12(tt, V1, V2)U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2)U14(isNatKind(V2), V1, V2)U14(tt, V1, V2)U15(isNat(V1), V2)
U15(tt, V2)U16(isNat(V2))U16(tt)tt
U21(tt, V1)U22(isNatKind(V1), V1)U22(tt, V1)U23(isNat(V1))
U23(tt)ttU31(tt, V1, V2)U32(isNatKind(V1), V1, V2)
U32(tt, V1, V2)U33(isNatKind(V2), V1, V2)U33(tt, V1, V2)U34(isNatKind(V2), V1, V2)
U34(tt, V1, V2)U35(isNat(V1), V2)U35(tt, V2)U36(isNat(V2))
U36(tt)ttU41(tt, V2)U42(isNatKind(V2))
U42(tt)ttU51(tt)tt
U61(tt, V2)U62(isNatKind(V2))U62(tt)tt
U71(tt, N)U72(isNatKind(N), N)U72(tt, N)N
U81(tt, M, N)U82(isNatKind(M), M, N)U82(tt, M, N)U83(isNat(N), M, N)
U83(tt, M, N)U84(isNatKind(N), M, N)U84(tt, M, N)s(plus(N, M))
U91(tt, N)U92(isNatKind(N))U92(tt)0
isNat(0)ttisNat(plus(V1, V2))U11(isNatKind(V1), V1, V2)
isNat(s(V1))U21(isNatKind(V1), V1)isNat(x(V1, V2))U31(isNatKind(V1), V1, V2)
isNatKind(0)ttisNatKind(plus(V1, V2))U41(isNatKind(V1), V2)
isNatKind(s(V1))U51(isNatKind(V1))isNatKind(x(V1, V2))U61(isNatKind(V1), V2)
plus(N, 0)U71(isNat(N), N)plus(N, s(M))U81(isNat(M), M, N)
x(N, 0)U91(isNat(N), N)x(N, s(M))U101(isNat(M), M, N)

Original Signature

Termination of terms over the following signature is verified: U104, isNat, U62, U61, U42, U41, U92, U91, U23, U21, U22, plus, isNatKind, U83, U84, U71, U36, U72, 0, s, U51, U14, tt, U15, U16, U82, U81, U11, U12, U31, U13, U32, U102, U33, U103, U34, U35, U101, x

Strategy

Context-sensitive strategy:
μ(isNatKind) = μ(0) = μ(isNatKind#) = μ(isNat) = μ(T) = μ(tt) = μ(isNat#) = ∅
μ(U11#) = μ(U31#) = μ(U21#) = μ(U62#) = μ(U104) = μ(U104#) = μ(U35#) = μ(U41#) = μ(U62) = μ(U61) = μ(U72#) = μ(U16#) = μ(U23) = μ(U21) = μ(U22) = μ(U12#) = μ(U22#) = μ(U61#) = μ(U103#) = μ(U51#) = μ(U71) = μ(U36) = μ(U42#) = μ(U72) = μ(U71#) = μ(U36#) = μ(U32#) = μ(U15#) = μ(U31) = μ(U32) = μ(U33) = μ(U34) = μ(U35) = μ(U13#) = μ(U91#) = μ(U102#) = μ(U81#) = μ(U23#) = μ(U42) = μ(U92) = μ(U41) = μ(U91) = μ(U33#) = μ(U84#) = μ(U14#) = μ(U101#) = μ(U92#) = μ(U83) = μ(U84) = μ(U82#) = μ(s) = μ(U14) = μ(U51) = μ(U15) = μ(U82) = μ(U16) = μ(U81) = μ(U11) = μ(U12) = μ(U13) = μ(U102) = μ(U83#) = μ(U103) = μ(U34#) = μ(U101) = {1}
μ(plus) = μ(x#) = μ(plus#) = μ(x) = {1, 2}


Polynomial Interpretation

Standard Usable rules

U33(tt, V1, V2)U34(isNatKind(V2), V1, V2)isNat(x(V1, V2))U31(isNatKind(V1), V1, V2)
isNatKind(s(V1))U51(isNatKind(V1))isNatKind(plus(V1, V2))U41(isNatKind(V1), V2)
U15(tt, V2)U16(isNat(V2))isNat(s(V1))U21(isNatKind(V1), V1)
U12(tt, V1, V2)U13(isNatKind(V2), V1, V2)U32(tt, V1, V2)U33(isNatKind(V2), V1, V2)
U11(tt, V1, V2)U12(isNatKind(V1), V1, V2)U31(tt, V1, V2)U32(isNatKind(V1), V1, V2)
U62(tt)ttisNatKind(0)tt
U36(tt)ttisNatKind(x(V1, V2))U61(isNatKind(V1), V2)
isNat(0)ttU13(tt, V1, V2)U14(isNatKind(V2), V1, V2)
U23(tt)ttU34(tt, V1, V2)U35(isNat(V1), V2)
U14(tt, V1, V2)U15(isNat(V1), V2)U35(tt, V2)U36(isNat(V2))
U41(tt, V2)U42(isNatKind(V2))U42(tt)tt
U51(tt)ttU16(tt)tt
U61(tt, V2)U62(isNatKind(V2))isNat(plus(V1, V2))U11(isNatKind(V1), V1, V2)
U22(tt, V1)U23(isNat(V1))U21(tt, V1)U22(isNatKind(V1), V1)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

isNat#(x(V1, V2))U31#(isNatKind(V1), V1, V2)

Problem 12: DependencyGraph



Dependency Pair Problem

Dependency Pairs

U32#(tt, V1, V2)U33#(isNatKind(V2), V1, V2)U34#(tt, V1, V2)U35#(isNat(V1), V2)
U35#(tt, V2)isNat#(V2)U34#(tt, V1, V2)isNat#(V1)
U31#(tt, V1, V2)U32#(isNatKind(V1), V1, V2)U33#(tt, V1, V2)U34#(isNatKind(V2), V1, V2)

Rewrite Rules

U101(tt, M, N)U102(isNatKind(M), M, N)U102(tt, M, N)U103(isNat(N), M, N)
U103(tt, M, N)U104(isNatKind(N), M, N)U104(tt, M, N)plus(x(N, M), N)
U11(tt, V1, V2)U12(isNatKind(V1), V1, V2)U12(tt, V1, V2)U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2)U14(isNatKind(V2), V1, V2)U14(tt, V1, V2)U15(isNat(V1), V2)
U15(tt, V2)U16(isNat(V2))U16(tt)tt
U21(tt, V1)U22(isNatKind(V1), V1)U22(tt, V1)U23(isNat(V1))
U23(tt)ttU31(tt, V1, V2)U32(isNatKind(V1), V1, V2)
U32(tt, V1, V2)U33(isNatKind(V2), V1, V2)U33(tt, V1, V2)U34(isNatKind(V2), V1, V2)
U34(tt, V1, V2)U35(isNat(V1), V2)U35(tt, V2)U36(isNat(V2))
U36(tt)ttU41(tt, V2)U42(isNatKind(V2))
U42(tt)ttU51(tt)tt
U61(tt, V2)U62(isNatKind(V2))U62(tt)tt
U71(tt, N)U72(isNatKind(N), N)U72(tt, N)N
U81(tt, M, N)U82(isNatKind(M), M, N)U82(tt, M, N)U83(isNat(N), M, N)
U83(tt, M, N)U84(isNatKind(N), M, N)U84(tt, M, N)s(plus(N, M))
U91(tt, N)U92(isNatKind(N))U92(tt)0
isNat(0)ttisNat(plus(V1, V2))U11(isNatKind(V1), V1, V2)
isNat(s(V1))U21(isNatKind(V1), V1)isNat(x(V1, V2))U31(isNatKind(V1), V1, V2)
isNatKind(0)ttisNatKind(plus(V1, V2))U41(isNatKind(V1), V2)
isNatKind(s(V1))U51(isNatKind(V1))isNatKind(x(V1, V2))U61(isNatKind(V1), V2)
plus(N, 0)U71(isNat(N), N)plus(N, s(M))U81(isNat(M), M, N)
x(N, 0)U91(isNat(N), N)x(N, s(M))U101(isNat(M), M, N)

Original Signature

Termination of terms over the following signature is verified: U104, isNat, U62, U61, U42, U92, U41, U91, U23, U21, U22, plus, isNatKind, U83, U84, U71, U36, U72, 0, s, U51, U14, tt, U15, U82, U16, U81, U11, U12, U13, U31, U102, U32, U103, U33, U34, x, U101, U35

Strategy

Context-sensitive strategy:
μ(isNatKind) = μ(0) = μ(isNatKind#) = μ(isNat) = μ(T) = μ(tt) = μ(isNat#) = ∅
μ(U11#) = μ(U31#) = μ(U21#) = μ(U62#) = μ(U104) = μ(U104#) = μ(U35#) = μ(U41#) = μ(U62) = μ(U61) = μ(U72#) = μ(U16#) = μ(U23) = μ(U21) = μ(U22) = μ(U12#) = μ(U22#) = μ(U61#) = μ(U103#) = μ(U51#) = μ(U71) = μ(U36) = μ(U42#) = μ(U72) = μ(U71#) = μ(U36#) = μ(U32#) = μ(U15#) = μ(U31) = μ(U32) = μ(U33) = μ(U34) = μ(U35) = μ(U13#) = μ(U91#) = μ(U102#) = μ(U81#) = μ(U23#) = μ(U42) = μ(U92) = μ(U41) = μ(U91) = μ(U84#) = μ(U33#) = μ(U14#) = μ(U101#) = μ(U92#) = μ(U83) = μ(U84) = μ(U82#) = μ(U51) = μ(U14) = μ(s) = μ(U15) = μ(U16) = μ(U82) = μ(U81) = μ(U11) = μ(U12) = μ(U13) = μ(U83#) = μ(U102) = μ(U103) = μ(U34#) = μ(U101) = {1}
μ(plus) = μ(x#) = μ(plus#) = μ(x) = {1, 2}


There are no SCCs!

Problem 5: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

isNatKind#(s(V1))isNatKind#(V1)isNatKind#(x(V1, V2))U61#(isNatKind(V1), V2)
isNatKind#(plus(V1, V2))isNatKind#(V1)isNatKind#(plus(V1, V2))U41#(isNatKind(V1), V2)
U61#(tt, V2)isNatKind#(V2)isNatKind#(x(V1, V2))isNatKind#(V1)
U41#(tt, V2)isNatKind#(V2)

Rewrite Rules

U101(tt, M, N)U102(isNatKind(M), M, N)U102(tt, M, N)U103(isNat(N), M, N)
U103(tt, M, N)U104(isNatKind(N), M, N)U104(tt, M, N)plus(x(N, M), N)
U11(tt, V1, V2)U12(isNatKind(V1), V1, V2)U12(tt, V1, V2)U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2)U14(isNatKind(V2), V1, V2)U14(tt, V1, V2)U15(isNat(V1), V2)
U15(tt, V2)U16(isNat(V2))U16(tt)tt
U21(tt, V1)U22(isNatKind(V1), V1)U22(tt, V1)U23(isNat(V1))
U23(tt)ttU31(tt, V1, V2)U32(isNatKind(V1), V1, V2)
U32(tt, V1, V2)U33(isNatKind(V2), V1, V2)U33(tt, V1, V2)U34(isNatKind(V2), V1, V2)
U34(tt, V1, V2)U35(isNat(V1), V2)U35(tt, V2)U36(isNat(V2))
U36(tt)ttU41(tt, V2)U42(isNatKind(V2))
U42(tt)ttU51(tt)tt
U61(tt, V2)U62(isNatKind(V2))U62(tt)tt
U71(tt, N)U72(isNatKind(N), N)U72(tt, N)N
U81(tt, M, N)U82(isNatKind(M), M, N)U82(tt, M, N)U83(isNat(N), M, N)
U83(tt, M, N)U84(isNatKind(N), M, N)U84(tt, M, N)s(plus(N, M))
U91(tt, N)U92(isNatKind(N))U92(tt)0
isNat(0)ttisNat(plus(V1, V2))U11(isNatKind(V1), V1, V2)
isNat(s(V1))U21(isNatKind(V1), V1)isNat(x(V1, V2))U31(isNatKind(V1), V1, V2)
isNatKind(0)ttisNatKind(plus(V1, V2))U41(isNatKind(V1), V2)
isNatKind(s(V1))U51(isNatKind(V1))isNatKind(x(V1, V2))U61(isNatKind(V1), V2)
plus(N, 0)U71(isNat(N), N)plus(N, s(M))U81(isNat(M), M, N)
x(N, 0)U91(isNat(N), N)x(N, s(M))U101(isNat(M), M, N)

Original Signature

Termination of terms over the following signature is verified: U104, isNat, U62, U61, U42, U41, U92, U91, U23, U21, U22, plus, isNatKind, U83, U84, U71, U36, U72, 0, s, U51, U14, tt, U15, U16, U82, U81, U11, U12, U31, U13, U32, U102, U33, U103, U34, U35, U101, x

Strategy

Context-sensitive strategy:
μ(isNatKind) = μ(0) = μ(isNatKind#) = μ(isNat) = μ(T) = μ(tt) = μ(isNat#) = ∅
μ(U11#) = μ(U31#) = μ(U21#) = μ(U62#) = μ(U104) = μ(U104#) = μ(U35#) = μ(U41#) = μ(U62) = μ(U61) = μ(U72#) = μ(U16#) = μ(U23) = μ(U21) = μ(U22) = μ(U12#) = μ(U22#) = μ(U61#) = μ(U103#) = μ(U51#) = μ(U71) = μ(U36) = μ(U42#) = μ(U72) = μ(U71#) = μ(U36#) = μ(U32#) = μ(U15#) = μ(U31) = μ(U32) = μ(U33) = μ(U34) = μ(U35) = μ(U13#) = μ(U91#) = μ(U102#) = μ(U81#) = μ(U23#) = μ(U42) = μ(U92) = μ(U41) = μ(U91) = μ(U33#) = μ(U84#) = μ(U14#) = μ(U101#) = μ(U92#) = μ(U83) = μ(U84) = μ(U82#) = μ(s) = μ(U14) = μ(U51) = μ(U15) = μ(U82) = μ(U16) = μ(U81) = μ(U11) = μ(U12) = μ(U13) = μ(U102) = μ(U83#) = μ(U103) = μ(U34#) = μ(U101) = {1}
μ(plus) = μ(x#) = μ(plus#) = μ(x) = {1, 2}


Polynomial Interpretation

Standard Usable rules

U42(tt)ttU51(tt)tt
U61(tt, V2)U62(isNatKind(V2))isNatKind(s(V1))U51(isNatKind(V1))
U62(tt)ttisNatKind(plus(V1, V2))U41(isNatKind(V1), V2)
U41(tt, V2)U42(isNatKind(V2))isNatKind(0)tt
isNatKind(x(V1, V2))U61(isNatKind(V1), V2)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

U41#(tt, V2)isNatKind#(V2)

Problem 7: DependencyGraph



Dependency Pair Problem

Dependency Pairs

isNatKind#(x(V1, V2))U61#(isNatKind(V1), V2)isNatKind#(s(V1))isNatKind#(V1)
isNatKind#(plus(V1, V2))isNatKind#(V1)isNatKind#(plus(V1, V2))U41#(isNatKind(V1), V2)
U61#(tt, V2)isNatKind#(V2)isNatKind#(x(V1, V2))isNatKind#(V1)

Rewrite Rules

U101(tt, M, N)U102(isNatKind(M), M, N)U102(tt, M, N)U103(isNat(N), M, N)
U103(tt, M, N)U104(isNatKind(N), M, N)U104(tt, M, N)plus(x(N, M), N)
U11(tt, V1, V2)U12(isNatKind(V1), V1, V2)U12(tt, V1, V2)U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2)U14(isNatKind(V2), V1, V2)U14(tt, V1, V2)U15(isNat(V1), V2)
U15(tt, V2)U16(isNat(V2))U16(tt)tt
U21(tt, V1)U22(isNatKind(V1), V1)U22(tt, V1)U23(isNat(V1))
U23(tt)ttU31(tt, V1, V2)U32(isNatKind(V1), V1, V2)
U32(tt, V1, V2)U33(isNatKind(V2), V1, V2)U33(tt, V1, V2)U34(isNatKind(V2), V1, V2)
U34(tt, V1, V2)U35(isNat(V1), V2)U35(tt, V2)U36(isNat(V2))
U36(tt)ttU41(tt, V2)U42(isNatKind(V2))
U42(tt)ttU51(tt)tt
U61(tt, V2)U62(isNatKind(V2))U62(tt)tt
U71(tt, N)U72(isNatKind(N), N)U72(tt, N)N
U81(tt, M, N)U82(isNatKind(M), M, N)U82(tt, M, N)U83(isNat(N), M, N)
U83(tt, M, N)U84(isNatKind(N), M, N)U84(tt, M, N)s(plus(N, M))
U91(tt, N)U92(isNatKind(N))U92(tt)0
isNat(0)ttisNat(plus(V1, V2))U11(isNatKind(V1), V1, V2)
isNat(s(V1))U21(isNatKind(V1), V1)isNat(x(V1, V2))U31(isNatKind(V1), V1, V2)
isNatKind(0)ttisNatKind(plus(V1, V2))U41(isNatKind(V1), V2)
isNatKind(s(V1))U51(isNatKind(V1))isNatKind(x(V1, V2))U61(isNatKind(V1), V2)
plus(N, 0)U71(isNat(N), N)plus(N, s(M))U81(isNat(M), M, N)
x(N, 0)U91(isNat(N), N)x(N, s(M))U101(isNat(M), M, N)

Original Signature

Termination of terms over the following signature is verified: U104, isNat, U62, U61, U42, U92, U41, U91, U23, U21, U22, plus, isNatKind, U83, U84, U71, U36, U72, 0, s, U51, U14, tt, U15, U82, U16, U81, U11, U12, U13, U31, U102, U32, U103, U33, U34, x, U101, U35

Strategy

Context-sensitive strategy:
μ(isNatKind) = μ(0) = μ(isNatKind#) = μ(isNat) = μ(T) = μ(tt) = μ(isNat#) = ∅
μ(U11#) = μ(U31#) = μ(U21#) = μ(U62#) = μ(U104) = μ(U104#) = μ(U35#) = μ(U41#) = μ(U62) = μ(U61) = μ(U72#) = μ(U16#) = μ(U23) = μ(U21) = μ(U22) = μ(U12#) = μ(U22#) = μ(U61#) = μ(U103#) = μ(U51#) = μ(U71) = μ(U36) = μ(U42#) = μ(U72) = μ(U71#) = μ(U36#) = μ(U32#) = μ(U15#) = μ(U31) = μ(U32) = μ(U33) = μ(U34) = μ(U35) = μ(U13#) = μ(U91#) = μ(U102#) = μ(U81#) = μ(U23#) = μ(U42) = μ(U92) = μ(U41) = μ(U91) = μ(U84#) = μ(U33#) = μ(U14#) = μ(U101#) = μ(U92#) = μ(U83) = μ(U84) = μ(U82#) = μ(U51) = μ(U14) = μ(s) = μ(U15) = μ(U16) = μ(U82) = μ(U81) = μ(U11) = μ(U12) = μ(U13) = μ(U83#) = μ(U102) = μ(U103) = μ(U34#) = μ(U101) = {1}
μ(plus) = μ(x#) = μ(plus#) = μ(x) = {1, 2}


The following SCCs where found

isNatKind#(x(V1, V2)) → U61#(isNatKind(V1), V2)isNatKind#(s(V1)) → isNatKind#(V1)
isNatKind#(plus(V1, V2)) → isNatKind#(V1)U61#(tt, V2) → isNatKind#(V2)
isNatKind#(x(V1, V2)) → isNatKind#(V1)

Problem 9: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

isNatKind#(x(V1, V2))U61#(isNatKind(V1), V2)isNatKind#(s(V1))isNatKind#(V1)
isNatKind#(plus(V1, V2))isNatKind#(V1)U61#(tt, V2)isNatKind#(V2)
isNatKind#(x(V1, V2))isNatKind#(V1)

Rewrite Rules

U101(tt, M, N)U102(isNatKind(M), M, N)U102(tt, M, N)U103(isNat(N), M, N)
U103(tt, M, N)U104(isNatKind(N), M, N)U104(tt, M, N)plus(x(N, M), N)
U11(tt, V1, V2)U12(isNatKind(V1), V1, V2)U12(tt, V1, V2)U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2)U14(isNatKind(V2), V1, V2)U14(tt, V1, V2)U15(isNat(V1), V2)
U15(tt, V2)U16(isNat(V2))U16(tt)tt
U21(tt, V1)U22(isNatKind(V1), V1)U22(tt, V1)U23(isNat(V1))
U23(tt)ttU31(tt, V1, V2)U32(isNatKind(V1), V1, V2)
U32(tt, V1, V2)U33(isNatKind(V2), V1, V2)U33(tt, V1, V2)U34(isNatKind(V2), V1, V2)
U34(tt, V1, V2)U35(isNat(V1), V2)U35(tt, V2)U36(isNat(V2))
U36(tt)ttU41(tt, V2)U42(isNatKind(V2))
U42(tt)ttU51(tt)tt
U61(tt, V2)U62(isNatKind(V2))U62(tt)tt
U71(tt, N)U72(isNatKind(N), N)U72(tt, N)N
U81(tt, M, N)U82(isNatKind(M), M, N)U82(tt, M, N)U83(isNat(N), M, N)
U83(tt, M, N)U84(isNatKind(N), M, N)U84(tt, M, N)s(plus(N, M))
U91(tt, N)U92(isNatKind(N))U92(tt)0
isNat(0)ttisNat(plus(V1, V2))U11(isNatKind(V1), V1, V2)
isNat(s(V1))U21(isNatKind(V1), V1)isNat(x(V1, V2))U31(isNatKind(V1), V1, V2)
isNatKind(0)ttisNatKind(plus(V1, V2))U41(isNatKind(V1), V2)
isNatKind(s(V1))U51(isNatKind(V1))isNatKind(x(V1, V2))U61(isNatKind(V1), V2)
plus(N, 0)U71(isNat(N), N)plus(N, s(M))U81(isNat(M), M, N)
x(N, 0)U91(isNat(N), N)x(N, s(M))U101(isNat(M), M, N)

Original Signature

Termination of terms over the following signature is verified: U104, isNat, U62, U61, U42, U92, U41, U91, U23, U21, U22, plus, isNatKind, U83, U84, U71, U36, U72, 0, s, U51, U14, tt, U15, U82, U16, U81, U11, U12, U13, U31, U102, U32, U103, U33, U34, x, U101, U35

Strategy

Context-sensitive strategy:
μ(isNatKind) = μ(0) = μ(isNatKind#) = μ(isNat) = μ(T) = μ(tt) = μ(isNat#) = ∅
μ(U11#) = μ(U31#) = μ(U21#) = μ(U62#) = μ(U104) = μ(U104#) = μ(U35#) = μ(U41#) = μ(U62) = μ(U61) = μ(U72#) = μ(U16#) = μ(U23) = μ(U21) = μ(U22) = μ(U12#) = μ(U22#) = μ(U61#) = μ(U103#) = μ(U51#) = μ(U71) = μ(U36) = μ(U42#) = μ(U72) = μ(U71#) = μ(U36#) = μ(U32#) = μ(U15#) = μ(U31) = μ(U32) = μ(U33) = μ(U34) = μ(U35) = μ(U13#) = μ(U91#) = μ(U102#) = μ(U81#) = μ(U23#) = μ(U42) = μ(U92) = μ(U41) = μ(U91) = μ(U33#) = μ(U84#) = μ(U14#) = μ(U101#) = μ(U92#) = μ(U83) = μ(U84) = μ(U82#) = μ(s) = μ(U14) = μ(U51) = μ(U15) = μ(U82) = μ(U16) = μ(U81) = μ(U11) = μ(U12) = μ(U13) = μ(U102) = μ(U83#) = μ(U103) = μ(U34#) = μ(U101) = {1}
μ(plus) = μ(x#) = μ(plus#) = μ(x) = {1, 2}


Polynomial Interpretation

Standard Usable rules

U42(tt)ttU51(tt)tt
U61(tt, V2)U62(isNatKind(V2))isNatKind(s(V1))U51(isNatKind(V1))
U62(tt)ttisNatKind(plus(V1, V2))U41(isNatKind(V1), V2)
U41(tt, V2)U42(isNatKind(V2))isNatKind(0)tt
isNatKind(x(V1, V2))U61(isNatKind(V1), V2)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

isNatKind#(s(V1))isNatKind#(V1)isNatKind#(x(V1, V2))U61#(isNatKind(V1), V2)
isNatKind#(plus(V1, V2))isNatKind#(V1)U61#(tt, V2)isNatKind#(V2)
isNatKind#(x(V1, V2))isNatKind#(V1)