YES

The TRS could be proven terminating. The proof took 1144 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (199ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4 (170ms).
 |    | – Problem 5 was processed with processor DependencyGraph (0ms).
 | – Problem 3 was processed with processor PolynomialLinearRange4 (240ms).
 |    | – Problem 6 was processed with processor PolynomialLinearRange4 (80ms).
 |    |    | – Problem 8 was processed with processor DependencyGraph (1ms).
 | – Problem 4 was processed with processor PolynomialLinearRange4 (212ms).
 |    | – Problem 7 was processed with processor DependencyGraph (1ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

isNatIList#(cons(V1, V2))isNat#(V1)U62#(tt, L)T(L)
isNat#(s(V1))U21#(isNat(V1))isNat#(s(V1))isNat#(V1)
length#(cons(N, L))U61#(isNatList(L), L, N)isNatList#(cons(V1, V2))isNat#(V1)
U41#(tt, V2)U42#(isNatIList(V2))U61#(tt, L, N)isNat#(N)
U51#(tt, V2)U52#(isNatList(V2))isNatIList#(V)isNatList#(V)
isNat#(length(V1))isNatList#(V1)T(zeros)zeros#
isNatList#(cons(V1, V2))U51#(isNat(V1), V2)isNat#(length(V1))U11#(isNatList(V1))
U61#(tt, L, N)U62#(isNat(N), L)U51#(tt, V2)isNatList#(V2)
isNatIList#(cons(V1, V2))U41#(isNat(V1), V2)isNatIList#(V)U31#(isNatList(V))
U62#(tt, L)length#(L)length#(cons(N, L))isNatList#(L)
U41#(tt, V2)isNatIList#(V2)

Rewrite Rules

zeroscons(0, zeros)U11(tt)tt
U21(tt)ttU31(tt)tt
U41(tt, V2)U42(isNatIList(V2))U42(tt)tt
U51(tt, V2)U52(isNatList(V2))U52(tt)tt
U61(tt, L, N)U62(isNat(N), L)U62(tt, L)s(length(L))
isNat(0)ttisNat(length(V1))U11(isNatList(V1))
isNat(s(V1))U21(isNat(V1))isNatIList(V)U31(isNatList(V))
isNatIList(zeros)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatList(nil)ttisNatList(cons(V1, V2))U51(isNat(V1), V2)
length(nil)0length(cons(N, L))U61(isNatList(L), L, N)

Original Signature

Termination of terms over the following signature is verified: isNatIList, isNat, U62, U61, 0, s, U42, isNatList, U51, zeros, tt, U41, U52, length, U11, U31, U21, cons, nil

Strategy

Context-sensitive strategy:
μ(isNatList#) = μ(zeros#) = μ(isNat) = μ(T) = μ(isNatIList) = μ(isNatIList#) = μ(0) = μ(isNatList) = μ(zeros) = μ(tt) = μ(isNat#) = μ(nil) = ∅
μ(U11#) = μ(U31#) = μ(length#) = μ(U21#) = μ(U62#) = μ(U52#) = μ(U62) = μ(U41#) = μ(U61) = μ(U42) = μ(U41) = μ(length) = μ(U21) = μ(cons) = μ(U61#) = μ(U51#) = μ(U42#) = μ(U51) = μ(s) = μ(U52) = μ(U11) = μ(U31) = {1}


The following SCCs where found

isNatIList#(cons(V1, V2)) → U41#(isNat(V1), V2)U41#(tt, V2) → isNatIList#(V2)

length#(cons(N, L)) → U61#(isNatList(L), L, N)U61#(tt, L, N) → U62#(isNat(N), L)
U62#(tt, L) → length#(L)

isNat#(length(V1)) → isNatList#(V1)isNat#(s(V1)) → isNat#(V1)
isNatList#(cons(V1, V2)) → U51#(isNat(V1), V2)isNatList#(cons(V1, V2)) → isNat#(V1)
U51#(tt, V2) → isNatList#(V2)

Problem 2: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

isNatIList#(cons(V1, V2))U41#(isNat(V1), V2)U41#(tt, V2)isNatIList#(V2)

Rewrite Rules

zeroscons(0, zeros)U11(tt)tt
U21(tt)ttU31(tt)tt
U41(tt, V2)U42(isNatIList(V2))U42(tt)tt
U51(tt, V2)U52(isNatList(V2))U52(tt)tt
U61(tt, L, N)U62(isNat(N), L)U62(tt, L)s(length(L))
isNat(0)ttisNat(length(V1))U11(isNatList(V1))
isNat(s(V1))U21(isNat(V1))isNatIList(V)U31(isNatList(V))
isNatIList(zeros)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatList(nil)ttisNatList(cons(V1, V2))U51(isNat(V1), V2)
length(nil)0length(cons(N, L))U61(isNatList(L), L, N)

Original Signature

Termination of terms over the following signature is verified: isNatIList, isNat, U62, U61, 0, s, U42, isNatList, U51, zeros, tt, U41, U52, length, U11, U31, U21, cons, nil

Strategy

Context-sensitive strategy:
μ(isNatList#) = μ(zeros#) = μ(isNat) = μ(T) = μ(isNatIList) = μ(isNatIList#) = μ(0) = μ(isNatList) = μ(tt) = μ(zeros) = μ(isNat#) = μ(nil) = ∅
μ(U11#) = μ(U31#) = μ(length#) = μ(U21#) = μ(U62#) = μ(U52#) = μ(U41#) = μ(U62) = μ(U61) = μ(U42) = μ(U41) = μ(length) = μ(U21) = μ(cons) = μ(U61#) = μ(U51#) = μ(U42#) = μ(s) = μ(U51) = μ(U52) = μ(U11) = μ(U31) = {1}


Polynomial Interpretation

Standard Usable rules

U11(tt)ttisNat(0)tt
isNatList(nil)ttU51(tt, V2)U52(isNatList(V2))
U21(tt)ttisNat(length(V1))U11(isNatList(V1))
isNatList(cons(V1, V2))U51(isNat(V1), V2)U52(tt)tt
isNat(s(V1))U21(isNat(V1))

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

isNatIList#(cons(V1, V2))U41#(isNat(V1), V2)

Problem 5: DependencyGraph



Dependency Pair Problem

Dependency Pairs

U41#(tt, V2)isNatIList#(V2)

Rewrite Rules

zeroscons(0, zeros)U11(tt)tt
U21(tt)ttU31(tt)tt
U41(tt, V2)U42(isNatIList(V2))U42(tt)tt
U51(tt, V2)U52(isNatList(V2))U52(tt)tt
U61(tt, L, N)U62(isNat(N), L)U62(tt, L)s(length(L))
isNat(0)ttisNat(length(V1))U11(isNatList(V1))
isNat(s(V1))U21(isNat(V1))isNatIList(V)U31(isNatList(V))
isNatIList(zeros)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatList(nil)ttisNatList(cons(V1, V2))U51(isNat(V1), V2)
length(nil)0length(cons(N, L))U61(isNatList(L), L, N)

Original Signature

Termination of terms over the following signature is verified: isNatIList, isNat, U62, U61, 0, s, U42, isNatList, U51, zeros, tt, U41, U52, length, U11, U31, U21, nil, cons

Strategy

Context-sensitive strategy:
μ(isNatList#) = μ(zeros#) = μ(isNat) = μ(T) = μ(isNatIList) = μ(isNatIList#) = μ(0) = μ(isNatList) = μ(zeros) = μ(tt) = μ(isNat#) = μ(nil) = ∅
μ(U11#) = μ(U31#) = μ(length#) = μ(U21#) = μ(U62#) = μ(U52#) = μ(U62) = μ(U41#) = μ(U61) = μ(U42) = μ(U41) = μ(length) = μ(U21) = μ(cons) = μ(U61#) = μ(U51#) = μ(U42#) = μ(U51) = μ(s) = μ(U52) = μ(U11) = μ(U31) = {1}


There are no SCCs!

Problem 3: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

isNat#(length(V1))isNatList#(V1)isNat#(s(V1))isNat#(V1)
isNatList#(cons(V1, V2))U51#(isNat(V1), V2)isNatList#(cons(V1, V2))isNat#(V1)
U51#(tt, V2)isNatList#(V2)

Rewrite Rules

zeroscons(0, zeros)U11(tt)tt
U21(tt)ttU31(tt)tt
U41(tt, V2)U42(isNatIList(V2))U42(tt)tt
U51(tt, V2)U52(isNatList(V2))U52(tt)tt
U61(tt, L, N)U62(isNat(N), L)U62(tt, L)s(length(L))
isNat(0)ttisNat(length(V1))U11(isNatList(V1))
isNat(s(V1))U21(isNat(V1))isNatIList(V)U31(isNatList(V))
isNatIList(zeros)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatList(nil)ttisNatList(cons(V1, V2))U51(isNat(V1), V2)
length(nil)0length(cons(N, L))U61(isNatList(L), L, N)

Original Signature

Termination of terms over the following signature is verified: isNatIList, isNat, U62, U61, 0, s, U42, isNatList, U51, zeros, tt, U41, U52, length, U11, U31, U21, cons, nil

Strategy

Context-sensitive strategy:
μ(isNatList#) = μ(zeros#) = μ(isNat) = μ(T) = μ(isNatIList) = μ(isNatIList#) = μ(0) = μ(isNatList) = μ(tt) = μ(zeros) = μ(isNat#) = μ(nil) = ∅
μ(U11#) = μ(U31#) = μ(length#) = μ(U21#) = μ(U62#) = μ(U52#) = μ(U41#) = μ(U62) = μ(U61) = μ(U42) = μ(U41) = μ(length) = μ(U21) = μ(cons) = μ(U61#) = μ(U51#) = μ(U42#) = μ(s) = μ(U51) = μ(U52) = μ(U11) = μ(U31) = {1}


Polynomial Interpretation

Standard Usable rules

U11(tt)ttisNat(0)tt
isNatList(nil)ttU51(tt, V2)U52(isNatList(V2))
U21(tt)ttisNat(length(V1))U11(isNatList(V1))
isNatList(cons(V1, V2))U51(isNat(V1), V2)U52(tt)tt
isNat(s(V1))U21(isNat(V1))

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

isNat#(s(V1))isNat#(V1)

Problem 6: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

isNat#(length(V1))isNatList#(V1)isNatList#(cons(V1, V2))U51#(isNat(V1), V2)
isNatList#(cons(V1, V2))isNat#(V1)U51#(tt, V2)isNatList#(V2)

Rewrite Rules

zeroscons(0, zeros)U11(tt)tt
U21(tt)ttU31(tt)tt
U41(tt, V2)U42(isNatIList(V2))U42(tt)tt
U51(tt, V2)U52(isNatList(V2))U52(tt)tt
U61(tt, L, N)U62(isNat(N), L)U62(tt, L)s(length(L))
isNat(0)ttisNat(length(V1))U11(isNatList(V1))
isNat(s(V1))U21(isNat(V1))isNatIList(V)U31(isNatList(V))
isNatIList(zeros)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatList(nil)ttisNatList(cons(V1, V2))U51(isNat(V1), V2)
length(nil)0length(cons(N, L))U61(isNatList(L), L, N)

Original Signature

Termination of terms over the following signature is verified: isNatIList, isNat, U62, U61, 0, s, U42, isNatList, U51, zeros, tt, U41, U52, length, U11, U31, U21, nil, cons

Strategy

Context-sensitive strategy:
μ(isNatList#) = μ(zeros#) = μ(isNat) = μ(T) = μ(isNatIList) = μ(isNatIList#) = μ(0) = μ(isNatList) = μ(zeros) = μ(tt) = μ(isNat#) = μ(nil) = ∅
μ(U11#) = μ(U31#) = μ(length#) = μ(U21#) = μ(U62#) = μ(U52#) = μ(U62) = μ(U41#) = μ(U61) = μ(U42) = μ(U41) = μ(length) = μ(U21) = μ(cons) = μ(U61#) = μ(U51#) = μ(U42#) = μ(U51) = μ(s) = μ(U52) = μ(U11) = μ(U31) = {1}


Polynomial Interpretation

Standard Usable rules

U11(tt)ttisNat(0)tt
isNatList(nil)ttU51(tt, V2)U52(isNatList(V2))
U21(tt)ttisNat(length(V1))U11(isNatList(V1))
isNatList(cons(V1, V2))U51(isNat(V1), V2)U52(tt)tt
isNat(s(V1))U21(isNat(V1))

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

isNatList#(cons(V1, V2))U51#(isNat(V1), V2)isNatList#(cons(V1, V2))isNat#(V1)

Problem 8: DependencyGraph



Dependency Pair Problem

Dependency Pairs

isNat#(length(V1))isNatList#(V1)U51#(tt, V2)isNatList#(V2)

Rewrite Rules

zeroscons(0, zeros)U11(tt)tt
U21(tt)ttU31(tt)tt
U41(tt, V2)U42(isNatIList(V2))U42(tt)tt
U51(tt, V2)U52(isNatList(V2))U52(tt)tt
U61(tt, L, N)U62(isNat(N), L)U62(tt, L)s(length(L))
isNat(0)ttisNat(length(V1))U11(isNatList(V1))
isNat(s(V1))U21(isNat(V1))isNatIList(V)U31(isNatList(V))
isNatIList(zeros)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatList(nil)ttisNatList(cons(V1, V2))U51(isNat(V1), V2)
length(nil)0length(cons(N, L))U61(isNatList(L), L, N)

Original Signature

Termination of terms over the following signature is verified: isNatIList, isNat, U62, U61, 0, s, U42, isNatList, U51, zeros, tt, U41, U52, length, U11, U31, U21, cons, nil

Strategy

Context-sensitive strategy:
μ(isNatList#) = μ(zeros#) = μ(isNat) = μ(T) = μ(isNatIList) = μ(isNatIList#) = μ(0) = μ(isNatList) = μ(tt) = μ(zeros) = μ(isNat#) = μ(nil) = ∅
μ(U11#) = μ(U31#) = μ(length#) = μ(U21#) = μ(U62#) = μ(U52#) = μ(U41#) = μ(U62) = μ(U61) = μ(U42) = μ(U41) = μ(length) = μ(U21) = μ(cons) = μ(U61#) = μ(U51#) = μ(U42#) = μ(s) = μ(U51) = μ(U52) = μ(U11) = μ(U31) = {1}


There are no SCCs!

Problem 4: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

length#(cons(N, L))U61#(isNatList(L), L, N)U61#(tt, L, N)U62#(isNat(N), L)
U62#(tt, L)length#(L)

Rewrite Rules

zeroscons(0, zeros)U11(tt)tt
U21(tt)ttU31(tt)tt
U41(tt, V2)U42(isNatIList(V2))U42(tt)tt
U51(tt, V2)U52(isNatList(V2))U52(tt)tt
U61(tt, L, N)U62(isNat(N), L)U62(tt, L)s(length(L))
isNat(0)ttisNat(length(V1))U11(isNatList(V1))
isNat(s(V1))U21(isNat(V1))isNatIList(V)U31(isNatList(V))
isNatIList(zeros)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatList(nil)ttisNatList(cons(V1, V2))U51(isNat(V1), V2)
length(nil)0length(cons(N, L))U61(isNatList(L), L, N)

Original Signature

Termination of terms over the following signature is verified: isNatIList, isNat, U62, U61, 0, s, U42, isNatList, U51, zeros, tt, U41, U52, length, U11, U31, U21, cons, nil

Strategy

Context-sensitive strategy:
μ(isNatList#) = μ(zeros#) = μ(isNat) = μ(T) = μ(isNatIList) = μ(isNatIList#) = μ(0) = μ(isNatList) = μ(tt) = μ(zeros) = μ(isNat#) = μ(nil) = ∅
μ(U11#) = μ(U31#) = μ(length#) = μ(U21#) = μ(U62#) = μ(U52#) = μ(U41#) = μ(U62) = μ(U61) = μ(U42) = μ(U41) = μ(length) = μ(U21) = μ(cons) = μ(U61#) = μ(U51#) = μ(U42#) = μ(s) = μ(U51) = μ(U52) = μ(U11) = μ(U31) = {1}


Polynomial Interpretation

Standard Usable rules

U11(tt)ttisNat(0)tt
isNatList(nil)ttU51(tt, V2)U52(isNatList(V2))
zeroscons(0, zeros)U61(tt, L, N)U62(isNat(N), L)
U31(tt)ttisNat(length(V1))U11(isNatList(V1))
U62(tt, L)s(length(L))isNatList(cons(V1, V2))U51(isNat(V1), V2)
isNat(s(V1))U21(isNat(V1))length(cons(N, L))U61(isNatList(L), L, N)
U42(tt)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatIList(V)U31(isNatList(V))U21(tt)tt
isNatIList(zeros)ttU41(tt, V2)U42(isNatIList(V2))
U52(tt)ttlength(nil)0

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

U61#(tt, L, N)U62#(isNat(N), L)

Problem 7: DependencyGraph



Dependency Pair Problem

Dependency Pairs

length#(cons(N, L))U61#(isNatList(L), L, N)U62#(tt, L)length#(L)

Rewrite Rules

zeroscons(0, zeros)U11(tt)tt
U21(tt)ttU31(tt)tt
U41(tt, V2)U42(isNatIList(V2))U42(tt)tt
U51(tt, V2)U52(isNatList(V2))U52(tt)tt
U61(tt, L, N)U62(isNat(N), L)U62(tt, L)s(length(L))
isNat(0)ttisNat(length(V1))U11(isNatList(V1))
isNat(s(V1))U21(isNat(V1))isNatIList(V)U31(isNatList(V))
isNatIList(zeros)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatList(nil)ttisNatList(cons(V1, V2))U51(isNat(V1), V2)
length(nil)0length(cons(N, L))U61(isNatList(L), L, N)

Original Signature

Termination of terms over the following signature is verified: isNatIList, isNat, U62, U61, 0, s, U42, isNatList, U51, zeros, tt, U41, U52, length, U11, U31, U21, nil, cons

Strategy

Context-sensitive strategy:
μ(isNatList#) = μ(zeros#) = μ(isNat) = μ(T) = μ(isNatIList) = μ(isNatIList#) = μ(0) = μ(isNatList) = μ(zeros) = μ(tt) = μ(isNat#) = μ(nil) = ∅
μ(U11#) = μ(U31#) = μ(length#) = μ(U21#) = μ(U62#) = μ(U52#) = μ(U62) = μ(U41#) = μ(U61) = μ(U42) = μ(U41) = μ(length) = μ(U21) = μ(cons) = μ(U61#) = μ(U51#) = μ(U42#) = μ(U51) = μ(s) = μ(U52) = μ(U11) = μ(U31) = {1}


There are no SCCs!