YES

The TRS could be proven terminating. The proof took 1732 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (358ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4 (303ms).
 |    | – Problem 5 was processed with processor DependencyGraph (7ms).
 |    |    | – Problem 8 was processed with processor PolynomialLinearRange4 (100ms).
 |    |    |    | – Problem 10 was processed with processor DependencyGraph (5ms).
 |    |    |    |    | – Problem 11 was processed with processor PolynomialLinearRange4 (55ms).
 |    |    |    |    |    | – Problem 13 was processed with processor DependencyGraph (0ms).
 |    |    |    |    | – Problem 12 was processed with processor PolynomialLinearRange4 (80ms).
 |    |    |    |    |    | – Problem 14 was processed with processor DependencyGraph (0ms).
 | – Problem 3 was processed with processor PolynomialLinearRange4 (301ms).
 |    | – Problem 6 was processed with processor DependencyGraph (0ms).
 | – Problem 4 was processed with processor PolynomialLinearRange4 (220ms).
 |    | – Problem 7 was processed with processor DependencyGraph (4ms).
 |    |    | – Problem 9 was processed with processor PolynomialLinearRange4 (14ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

isNatIList#(cons(V1, V2))isNat#(V1)U91#(tt, IL, M, N)isNat#(M)
isNat#(s(V1))isNat#(V1)isNatList#(cons(V1, V2))isNat#(V1)
take#(s(M), cons(N, IL))isNatIList#(IL)U93#(tt, IL, M, N)T(N)
isNatList#(take(V1, V2))U61#(isNat(V1), V2)isNatIList#(V)isNatList#(V)
isNat#(length(V1))isNatList#(V1)U71#(tt, L, N)U72#(isNat(N), L)
U72#(tt, L)T(L)U72#(tt, L)length#(L)
T(take(x_1, x_2))T(x_2)T(zeros)zeros#
U91#(tt, IL, M, N)U92#(isNat(M), IL, M, N)isNatList#(take(V1, V2))isNat#(V1)
isNat#(length(V1))U11#(isNatList(V1))isNatIList#(cons(V1, V2))U41#(isNat(V1), V2)
take#(0, IL)U81#(isNatIList(IL))length#(cons(N, L))U71#(isNatList(L), L, N)
take#(s(M), cons(N, IL))U91#(isNatIList(IL), IL, M, N)isNat#(s(V1))U21#(isNat(V1))
U71#(tt, L, N)isNat#(N)U61#(tt, V2)U62#(isNatIList(V2))
T(take(x_1, x_2))T(x_1)U41#(tt, V2)U42#(isNatIList(V2))
U51#(tt, V2)U52#(isNatList(V2))U61#(tt, V2)isNatIList#(V2)
U92#(tt, IL, M, N)U93#(isNat(N), IL, M, N)take#(0, IL)isNatIList#(IL)
U92#(tt, IL, M, N)isNat#(N)isNatList#(cons(V1, V2))U51#(isNat(V1), V2)
U51#(tt, V2)isNatList#(V2)isNatIList#(V)U31#(isNatList(V))
T(take(M, IL))take#(M, IL)length#(cons(N, L))isNatList#(L)
U41#(tt, V2)isNatIList#(V2)

Rewrite Rules

zeroscons(0, zeros)U11(tt)tt
U21(tt)ttU31(tt)tt
U41(tt, V2)U42(isNatIList(V2))U42(tt)tt
U51(tt, V2)U52(isNatList(V2))U52(tt)tt
U61(tt, V2)U62(isNatIList(V2))U62(tt)tt
U71(tt, L, N)U72(isNat(N), L)U72(tt, L)s(length(L))
U81(tt)nilU91(tt, IL, M, N)U92(isNat(M), IL, M, N)
U92(tt, IL, M, N)U93(isNat(N), IL, M, N)U93(tt, IL, M, N)cons(N, take(M, IL))
isNat(0)ttisNat(length(V1))U11(isNatList(V1))
isNat(s(V1))U21(isNat(V1))isNatIList(V)U31(isNatList(V))
isNatIList(zeros)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatList(nil)ttisNatList(cons(V1, V2))U51(isNat(V1), V2)
isNatList(take(V1, V2))U61(isNat(V1), V2)length(nil)0
length(cons(N, L))U71(isNatList(L), L, N)take(0, IL)U81(isNatIList(IL))
take(s(M), cons(N, IL))U91(isNatIList(IL), IL, M, N)

Original Signature

Termination of terms over the following signature is verified: isNat, U62, U61, U93, U42, U92, U41, U91, length, U21, cons, isNatIList, U71, U72, 0, U51, isNatList, s, tt, zeros, take, U52, U81, U11, U31, nil

Strategy

Context-sensitive strategy:
μ(isNatList#) = μ(zeros#) = μ(isNat) = μ(T) = μ(isNatIList) = μ(isNatIList#) = μ(0) = μ(isNatList) = μ(tt) = μ(zeros) = μ(isNat#) = μ(nil) = ∅
μ(U93#) = μ(U11#) = μ(U31#) = μ(length#) = μ(U91#) = μ(U21#) = μ(U81#) = μ(U62#) = μ(U52#) = μ(U41#) = μ(U62) = μ(U61) = μ(U93) = μ(U42) = μ(U92) = μ(U41) = μ(U72#) = μ(U91) = μ(length) = μ(U21) = μ(cons) = μ(U92#) = μ(U61#) = μ(U51#) = μ(U71) = μ(U42#) = μ(U72) = μ(U71#) = μ(U51) = μ(s) = μ(U81) = μ(U52) = μ(U11) = μ(U31) = {1}
μ(take#) = μ(take) = {1, 2}


The following SCCs where found

T(take(x_1, x_2)) → T(x_2)U91#(tt, IL, M, N) → U92#(isNat(M), IL, M, N)
T(take(x_1, x_2)) → T(x_1)T(take(M, IL)) → take#(M, IL)
U92#(tt, IL, M, N) → U93#(isNat(N), IL, M, N)take#(s(M), cons(N, IL)) → U91#(isNatIList(IL), IL, M, N)
U93#(tt, IL, M, N) → T(N)

U71#(tt, L, N) → U72#(isNat(N), L)U72#(tt, L) → length#(L)
length#(cons(N, L)) → U71#(isNatList(L), L, N)

isNat#(length(V1)) → isNatList#(V1)isNatIList#(V) → isNatList#(V)
isNatIList#(cons(V1, V2)) → isNat#(V1)isNat#(s(V1)) → isNat#(V1)
isNatList#(cons(V1, V2)) → U51#(isNat(V1), V2)isNatList#(cons(V1, V2)) → isNat#(V1)
isNatList#(take(V1, V2)) → isNat#(V1)U61#(tt, V2) → isNatIList#(V2)
isNatIList#(cons(V1, V2)) → U41#(isNat(V1), V2)U51#(tt, V2) → isNatList#(V2)
isNatList#(take(V1, V2)) → U61#(isNat(V1), V2)U41#(tt, V2) → isNatIList#(V2)

Problem 2: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

isNat#(length(V1))isNatList#(V1)isNatIList#(V)isNatList#(V)
isNatIList#(cons(V1, V2))isNat#(V1)isNat#(s(V1))isNat#(V1)
isNatList#(cons(V1, V2))U51#(isNat(V1), V2)isNatList#(cons(V1, V2))isNat#(V1)
isNatList#(take(V1, V2))isNat#(V1)isNatIList#(cons(V1, V2))U41#(isNat(V1), V2)
U51#(tt, V2)isNatList#(V2)U61#(tt, V2)isNatIList#(V2)
U41#(tt, V2)isNatIList#(V2)isNatList#(take(V1, V2))U61#(isNat(V1), V2)

Rewrite Rules

zeroscons(0, zeros)U11(tt)tt
U21(tt)ttU31(tt)tt
U41(tt, V2)U42(isNatIList(V2))U42(tt)tt
U51(tt, V2)U52(isNatList(V2))U52(tt)tt
U61(tt, V2)U62(isNatIList(V2))U62(tt)tt
U71(tt, L, N)U72(isNat(N), L)U72(tt, L)s(length(L))
U81(tt)nilU91(tt, IL, M, N)U92(isNat(M), IL, M, N)
U92(tt, IL, M, N)U93(isNat(N), IL, M, N)U93(tt, IL, M, N)cons(N, take(M, IL))
isNat(0)ttisNat(length(V1))U11(isNatList(V1))
isNat(s(V1))U21(isNat(V1))isNatIList(V)U31(isNatList(V))
isNatIList(zeros)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatList(nil)ttisNatList(cons(V1, V2))U51(isNat(V1), V2)
isNatList(take(V1, V2))U61(isNat(V1), V2)length(nil)0
length(cons(N, L))U71(isNatList(L), L, N)take(0, IL)U81(isNatIList(IL))
take(s(M), cons(N, IL))U91(isNatIList(IL), IL, M, N)

Original Signature

Termination of terms over the following signature is verified: isNat, U62, U61, U93, U42, U92, U41, U91, length, U21, cons, isNatIList, U71, U72, 0, U51, isNatList, s, tt, zeros, take, U52, U81, U11, U31, nil

Strategy

Context-sensitive strategy:
μ(isNatList#) = μ(zeros#) = μ(isNat) = μ(T) = μ(isNatIList) = μ(isNatIList#) = μ(0) = μ(isNatList) = μ(zeros) = μ(tt) = μ(isNat#) = μ(nil) = ∅
μ(U93#) = μ(U11#) = μ(U31#) = μ(length#) = μ(U21#) = μ(U91#) = μ(U81#) = μ(U62#) = μ(U52#) = μ(U41#) = μ(U62) = μ(U61) = μ(U93) = μ(U42) = μ(U92) = μ(U41) = μ(U72#) = μ(U91) = μ(length) = μ(U21) = μ(cons) = μ(U92#) = μ(U61#) = μ(U51#) = μ(U71) = μ(U72) = μ(U42#) = μ(U71#) = μ(s) = μ(U51) = μ(U52) = μ(U81) = μ(U11) = μ(U31) = {1}
μ(take#) = μ(take) = {1, 2}


Polynomial Interpretation

Standard Usable rules

U11(tt)ttisNat(0)tt
isNatList(nil)ttU51(tt, V2)U52(isNatList(V2))
isNat(length(V1))U11(isNatList(V1))U31(tt)tt
U61(tt, V2)U62(isNatIList(V2))isNatList(take(V1, V2))U61(isNat(V1), V2)
isNatList(cons(V1, V2))U51(isNat(V1), V2)isNat(s(V1))U21(isNat(V1))
U42(tt)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatIList(V)U31(isNatList(V))U21(tt)tt
U62(tt)ttU52(tt)tt
isNatIList(zeros)ttU41(tt, V2)U42(isNatIList(V2))

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

isNatIList#(cons(V1, V2))isNat#(V1)isNat#(s(V1))isNat#(V1)
isNatList#(cons(V1, V2))isNat#(V1)isNatList#(take(V1, V2))isNat#(V1)

Problem 5: DependencyGraph



Dependency Pair Problem

Dependency Pairs

isNatIList#(V)isNatList#(V)isNat#(length(V1))isNatList#(V1)
isNatList#(cons(V1, V2))U51#(isNat(V1), V2)U61#(tt, V2)isNatIList#(V2)
U51#(tt, V2)isNatList#(V2)isNatIList#(cons(V1, V2))U41#(isNat(V1), V2)
isNatList#(take(V1, V2))U61#(isNat(V1), V2)U41#(tt, V2)isNatIList#(V2)

Rewrite Rules

zeroscons(0, zeros)U11(tt)tt
U21(tt)ttU31(tt)tt
U41(tt, V2)U42(isNatIList(V2))U42(tt)tt
U51(tt, V2)U52(isNatList(V2))U52(tt)tt
U61(tt, V2)U62(isNatIList(V2))U62(tt)tt
U71(tt, L, N)U72(isNat(N), L)U72(tt, L)s(length(L))
U81(tt)nilU91(tt, IL, M, N)U92(isNat(M), IL, M, N)
U92(tt, IL, M, N)U93(isNat(N), IL, M, N)U93(tt, IL, M, N)cons(N, take(M, IL))
isNat(0)ttisNat(length(V1))U11(isNatList(V1))
isNat(s(V1))U21(isNat(V1))isNatIList(V)U31(isNatList(V))
isNatIList(zeros)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatList(nil)ttisNatList(cons(V1, V2))U51(isNat(V1), V2)
isNatList(take(V1, V2))U61(isNat(V1), V2)length(nil)0
length(cons(N, L))U71(isNatList(L), L, N)take(0, IL)U81(isNatIList(IL))
take(s(M), cons(N, IL))U91(isNatIList(IL), IL, M, N)

Original Signature

Termination of terms over the following signature is verified: isNat, U62, U61, U42, U93, U41, U92, U91, length, U21, cons, isNatIList, U71, U72, 0, U51, isNatList, s, tt, zeros, take, U52, U81, U11, U31, nil

Strategy

Context-sensitive strategy:
μ(isNatList#) = μ(zeros#) = μ(isNat) = μ(T) = μ(isNatIList) = μ(isNatIList#) = μ(0) = μ(isNatList) = μ(tt) = μ(zeros) = μ(isNat#) = μ(nil) = ∅
μ(U93#) = μ(U11#) = μ(U31#) = μ(length#) = μ(U91#) = μ(U21#) = μ(U81#) = μ(U62#) = μ(U52#) = μ(U41#) = μ(U62) = μ(U61) = μ(U93) = μ(U42) = μ(U92) = μ(U41) = μ(U72#) = μ(U91) = μ(length) = μ(U21) = μ(cons) = μ(U92#) = μ(U61#) = μ(U51#) = μ(U71) = μ(U42#) = μ(U72) = μ(U71#) = μ(U51) = μ(s) = μ(U81) = μ(U52) = μ(U11) = μ(U31) = {1}
μ(take#) = μ(take) = {1, 2}


The following SCCs where found

isNatIList#(V) → isNatList#(V)isNatList#(cons(V1, V2)) → U51#(isNat(V1), V2)
U51#(tt, V2) → isNatList#(V2)U61#(tt, V2) → isNatIList#(V2)
isNatIList#(cons(V1, V2)) → U41#(isNat(V1), V2)isNatList#(take(V1, V2)) → U61#(isNat(V1), V2)
U41#(tt, V2) → isNatIList#(V2)

Problem 8: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

isNatIList#(V)isNatList#(V)isNatList#(cons(V1, V2))U51#(isNat(V1), V2)
U51#(tt, V2)isNatList#(V2)U61#(tt, V2)isNatIList#(V2)
isNatIList#(cons(V1, V2))U41#(isNat(V1), V2)isNatList#(take(V1, V2))U61#(isNat(V1), V2)
U41#(tt, V2)isNatIList#(V2)

Rewrite Rules

zeroscons(0, zeros)U11(tt)tt
U21(tt)ttU31(tt)tt
U41(tt, V2)U42(isNatIList(V2))U42(tt)tt
U51(tt, V2)U52(isNatList(V2))U52(tt)tt
U61(tt, V2)U62(isNatIList(V2))U62(tt)tt
U71(tt, L, N)U72(isNat(N), L)U72(tt, L)s(length(L))
U81(tt)nilU91(tt, IL, M, N)U92(isNat(M), IL, M, N)
U92(tt, IL, M, N)U93(isNat(N), IL, M, N)U93(tt, IL, M, N)cons(N, take(M, IL))
isNat(0)ttisNat(length(V1))U11(isNatList(V1))
isNat(s(V1))U21(isNat(V1))isNatIList(V)U31(isNatList(V))
isNatIList(zeros)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatList(nil)ttisNatList(cons(V1, V2))U51(isNat(V1), V2)
isNatList(take(V1, V2))U61(isNat(V1), V2)length(nil)0
length(cons(N, L))U71(isNatList(L), L, N)take(0, IL)U81(isNatIList(IL))
take(s(M), cons(N, IL))U91(isNatIList(IL), IL, M, N)

Original Signature

Termination of terms over the following signature is verified: isNat, U62, U61, U42, U93, U41, U92, U91, length, U21, cons, isNatIList, U71, U72, 0, U51, isNatList, s, tt, zeros, take, U52, U81, U11, U31, nil

Strategy

Context-sensitive strategy:
μ(isNatList#) = μ(zeros#) = μ(isNat) = μ(T) = μ(isNatIList) = μ(isNatIList#) = μ(0) = μ(isNatList) = μ(zeros) = μ(tt) = μ(isNat#) = μ(nil) = ∅
μ(U93#) = μ(U11#) = μ(U31#) = μ(length#) = μ(U21#) = μ(U91#) = μ(U81#) = μ(U62#) = μ(U52#) = μ(U41#) = μ(U62) = μ(U61) = μ(U93) = μ(U42) = μ(U92) = μ(U41) = μ(U72#) = μ(U91) = μ(length) = μ(U21) = μ(cons) = μ(U92#) = μ(U61#) = μ(U51#) = μ(U71) = μ(U72) = μ(U42#) = μ(U71#) = μ(s) = μ(U51) = μ(U52) = μ(U81) = μ(U11) = μ(U31) = {1}
μ(take#) = μ(take) = {1, 2}


Polynomial Interpretation

Standard Usable rules

U11(tt)ttisNat(0)tt
isNatList(nil)ttU51(tt, V2)U52(isNatList(V2))
isNat(length(V1))U11(isNatList(V1))U31(tt)tt
U61(tt, V2)U62(isNatIList(V2))isNatList(take(V1, V2))U61(isNat(V1), V2)
isNatList(cons(V1, V2))U51(isNat(V1), V2)isNat(s(V1))U21(isNat(V1))
U42(tt)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatIList(V)U31(isNatList(V))U21(tt)tt
U62(tt)ttU52(tt)tt
isNatIList(zeros)ttU41(tt, V2)U42(isNatIList(V2))

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

isNatList#(take(V1, V2))U61#(isNat(V1), V2)

Problem 10: DependencyGraph



Dependency Pair Problem

Dependency Pairs

isNatIList#(V)isNatList#(V)isNatList#(cons(V1, V2))U51#(isNat(V1), V2)
isNatIList#(cons(V1, V2))U41#(isNat(V1), V2)U61#(tt, V2)isNatIList#(V2)
U51#(tt, V2)isNatList#(V2)U41#(tt, V2)isNatIList#(V2)

Rewrite Rules

zeroscons(0, zeros)U11(tt)tt
U21(tt)ttU31(tt)tt
U41(tt, V2)U42(isNatIList(V2))U42(tt)tt
U51(tt, V2)U52(isNatList(V2))U52(tt)tt
U61(tt, V2)U62(isNatIList(V2))U62(tt)tt
U71(tt, L, N)U72(isNat(N), L)U72(tt, L)s(length(L))
U81(tt)nilU91(tt, IL, M, N)U92(isNat(M), IL, M, N)
U92(tt, IL, M, N)U93(isNat(N), IL, M, N)U93(tt, IL, M, N)cons(N, take(M, IL))
isNat(0)ttisNat(length(V1))U11(isNatList(V1))
isNat(s(V1))U21(isNat(V1))isNatIList(V)U31(isNatList(V))
isNatIList(zeros)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatList(nil)ttisNatList(cons(V1, V2))U51(isNat(V1), V2)
isNatList(take(V1, V2))U61(isNat(V1), V2)length(nil)0
length(cons(N, L))U71(isNatList(L), L, N)take(0, IL)U81(isNatIList(IL))
take(s(M), cons(N, IL))U91(isNatIList(IL), IL, M, N)

Original Signature

Termination of terms over the following signature is verified: isNat, U62, U61, U93, U42, U92, U41, U91, length, U21, cons, isNatIList, U71, U72, 0, U51, isNatList, s, tt, zeros, take, U52, U81, U11, U31, nil

Strategy

Context-sensitive strategy:
μ(isNatList#) = μ(zeros#) = μ(isNat) = μ(T) = μ(isNatIList) = μ(isNatIList#) = μ(0) = μ(isNatList) = μ(tt) = μ(zeros) = μ(isNat#) = μ(nil) = ∅
μ(U93#) = μ(U11#) = μ(U31#) = μ(length#) = μ(U91#) = μ(U21#) = μ(U81#) = μ(U62#) = μ(U52#) = μ(U41#) = μ(U62) = μ(U61) = μ(U93) = μ(U42) = μ(U92) = μ(U41) = μ(U72#) = μ(U91) = μ(length) = μ(U21) = μ(cons) = μ(U92#) = μ(U61#) = μ(U51#) = μ(U71) = μ(U42#) = μ(U72) = μ(U71#) = μ(U51) = μ(s) = μ(U81) = μ(U52) = μ(U11) = μ(U31) = {1}
μ(take#) = μ(take) = {1, 2}


The following SCCs where found

isNatIList#(cons(V1, V2)) → U41#(isNat(V1), V2)U41#(tt, V2) → isNatIList#(V2)

isNatList#(cons(V1, V2)) → U51#(isNat(V1), V2)U51#(tt, V2) → isNatList#(V2)

Problem 11: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

isNatList#(cons(V1, V2))U51#(isNat(V1), V2)U51#(tt, V2)isNatList#(V2)

Rewrite Rules

zeroscons(0, zeros)U11(tt)tt
U21(tt)ttU31(tt)tt
U41(tt, V2)U42(isNatIList(V2))U42(tt)tt
U51(tt, V2)U52(isNatList(V2))U52(tt)tt
U61(tt, V2)U62(isNatIList(V2))U62(tt)tt
U71(tt, L, N)U72(isNat(N), L)U72(tt, L)s(length(L))
U81(tt)nilU91(tt, IL, M, N)U92(isNat(M), IL, M, N)
U92(tt, IL, M, N)U93(isNat(N), IL, M, N)U93(tt, IL, M, N)cons(N, take(M, IL))
isNat(0)ttisNat(length(V1))U11(isNatList(V1))
isNat(s(V1))U21(isNat(V1))isNatIList(V)U31(isNatList(V))
isNatIList(zeros)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatList(nil)ttisNatList(cons(V1, V2))U51(isNat(V1), V2)
isNatList(take(V1, V2))U61(isNat(V1), V2)length(nil)0
length(cons(N, L))U71(isNatList(L), L, N)take(0, IL)U81(isNatIList(IL))
take(s(M), cons(N, IL))U91(isNatIList(IL), IL, M, N)

Original Signature

Termination of terms over the following signature is verified: isNat, U62, U61, U93, U42, U92, U41, U91, length, U21, cons, isNatIList, U71, U72, 0, U51, isNatList, s, tt, zeros, take, U52, U81, U11, U31, nil

Strategy

Context-sensitive strategy:
μ(isNatList#) = μ(zeros#) = μ(isNat) = μ(T) = μ(isNatIList) = μ(isNatIList#) = μ(0) = μ(isNatList) = μ(zeros) = μ(tt) = μ(isNat#) = μ(nil) = ∅
μ(U93#) = μ(U11#) = μ(U31#) = μ(length#) = μ(U21#) = μ(U91#) = μ(U81#) = μ(U62#) = μ(U52#) = μ(U41#) = μ(U62) = μ(U61) = μ(U93) = μ(U42) = μ(U92) = μ(U41) = μ(U72#) = μ(U91) = μ(length) = μ(U21) = μ(cons) = μ(U92#) = μ(U61#) = μ(U51#) = μ(U71) = μ(U72) = μ(U42#) = μ(U71#) = μ(s) = μ(U51) = μ(U52) = μ(U81) = μ(U11) = μ(U31) = {1}
μ(take#) = μ(take) = {1, 2}


Polynomial Interpretation

Standard Usable rules

U11(tt)ttisNat(0)tt
isNatList(nil)ttU51(tt, V2)U52(isNatList(V2))
isNat(length(V1))U11(isNatList(V1))U31(tt)tt
U61(tt, V2)U62(isNatIList(V2))isNatList(take(V1, V2))U61(isNat(V1), V2)
isNatList(cons(V1, V2))U51(isNat(V1), V2)isNat(s(V1))U21(isNat(V1))
U42(tt)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatIList(V)U31(isNatList(V))U21(tt)tt
U62(tt)ttU52(tt)tt
isNatIList(zeros)ttU41(tt, V2)U42(isNatIList(V2))

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

isNatList#(cons(V1, V2))U51#(isNat(V1), V2)

Problem 13: DependencyGraph



Dependency Pair Problem

Dependency Pairs

U51#(tt, V2)isNatList#(V2)

Rewrite Rules

zeroscons(0, zeros)U11(tt)tt
U21(tt)ttU31(tt)tt
U41(tt, V2)U42(isNatIList(V2))U42(tt)tt
U51(tt, V2)U52(isNatList(V2))U52(tt)tt
U61(tt, V2)U62(isNatIList(V2))U62(tt)tt
U71(tt, L, N)U72(isNat(N), L)U72(tt, L)s(length(L))
U81(tt)nilU91(tt, IL, M, N)U92(isNat(M), IL, M, N)
U92(tt, IL, M, N)U93(isNat(N), IL, M, N)U93(tt, IL, M, N)cons(N, take(M, IL))
isNat(0)ttisNat(length(V1))U11(isNatList(V1))
isNat(s(V1))U21(isNat(V1))isNatIList(V)U31(isNatList(V))
isNatIList(zeros)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatList(nil)ttisNatList(cons(V1, V2))U51(isNat(V1), V2)
isNatList(take(V1, V2))U61(isNat(V1), V2)length(nil)0
length(cons(N, L))U71(isNatList(L), L, N)take(0, IL)U81(isNatIList(IL))
take(s(M), cons(N, IL))U91(isNatIList(IL), IL, M, N)

Original Signature

Termination of terms over the following signature is verified: isNat, U62, U61, U42, U93, U41, U92, U91, length, U21, cons, isNatIList, U71, U72, 0, U51, isNatList, s, tt, zeros, take, U52, U81, U11, U31, nil

Strategy

Context-sensitive strategy:
μ(isNatList#) = μ(zeros#) = μ(isNat) = μ(T) = μ(isNatIList) = μ(isNatIList#) = μ(0) = μ(isNatList) = μ(tt) = μ(zeros) = μ(isNat#) = μ(nil) = ∅
μ(U93#) = μ(U11#) = μ(U31#) = μ(length#) = μ(U91#) = μ(U21#) = μ(U81#) = μ(U62#) = μ(U52#) = μ(U41#) = μ(U62) = μ(U61) = μ(U93) = μ(U42) = μ(U92) = μ(U41) = μ(U72#) = μ(U91) = μ(length) = μ(U21) = μ(cons) = μ(U92#) = μ(U61#) = μ(U51#) = μ(U71) = μ(U42#) = μ(U72) = μ(U71#) = μ(U51) = μ(s) = μ(U81) = μ(U52) = μ(U11) = μ(U31) = {1}
μ(take#) = μ(take) = {1, 2}


There are no SCCs!

Problem 12: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

isNatIList#(cons(V1, V2))U41#(isNat(V1), V2)U41#(tt, V2)isNatIList#(V2)

Rewrite Rules

zeroscons(0, zeros)U11(tt)tt
U21(tt)ttU31(tt)tt
U41(tt, V2)U42(isNatIList(V2))U42(tt)tt
U51(tt, V2)U52(isNatList(V2))U52(tt)tt
U61(tt, V2)U62(isNatIList(V2))U62(tt)tt
U71(tt, L, N)U72(isNat(N), L)U72(tt, L)s(length(L))
U81(tt)nilU91(tt, IL, M, N)U92(isNat(M), IL, M, N)
U92(tt, IL, M, N)U93(isNat(N), IL, M, N)U93(tt, IL, M, N)cons(N, take(M, IL))
isNat(0)ttisNat(length(V1))U11(isNatList(V1))
isNat(s(V1))U21(isNat(V1))isNatIList(V)U31(isNatList(V))
isNatIList(zeros)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatList(nil)ttisNatList(cons(V1, V2))U51(isNat(V1), V2)
isNatList(take(V1, V2))U61(isNat(V1), V2)length(nil)0
length(cons(N, L))U71(isNatList(L), L, N)take(0, IL)U81(isNatIList(IL))
take(s(M), cons(N, IL))U91(isNatIList(IL), IL, M, N)

Original Signature

Termination of terms over the following signature is verified: isNat, U62, U61, U93, U42, U92, U41, U91, length, U21, cons, isNatIList, U71, U72, 0, U51, isNatList, s, tt, zeros, take, U52, U81, U11, U31, nil

Strategy

Context-sensitive strategy:
μ(isNatList#) = μ(zeros#) = μ(isNat) = μ(T) = μ(isNatIList) = μ(isNatIList#) = μ(0) = μ(isNatList) = μ(zeros) = μ(tt) = μ(isNat#) = μ(nil) = ∅
μ(U93#) = μ(U11#) = μ(U31#) = μ(length#) = μ(U21#) = μ(U91#) = μ(U81#) = μ(U62#) = μ(U52#) = μ(U41#) = μ(U62) = μ(U61) = μ(U93) = μ(U42) = μ(U92) = μ(U41) = μ(U72#) = μ(U91) = μ(length) = μ(U21) = μ(cons) = μ(U92#) = μ(U61#) = μ(U51#) = μ(U71) = μ(U72) = μ(U42#) = μ(U71#) = μ(s) = μ(U51) = μ(U52) = μ(U81) = μ(U11) = μ(U31) = {1}
μ(take#) = μ(take) = {1, 2}


Polynomial Interpretation

Standard Usable rules

U11(tt)ttisNat(0)tt
isNatList(nil)ttU51(tt, V2)U52(isNatList(V2))
isNat(length(V1))U11(isNatList(V1))U31(tt)tt
U61(tt, V2)U62(isNatIList(V2))isNatList(take(V1, V2))U61(isNat(V1), V2)
isNatList(cons(V1, V2))U51(isNat(V1), V2)isNat(s(V1))U21(isNat(V1))
U42(tt)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatIList(V)U31(isNatList(V))U21(tt)tt
U62(tt)ttU52(tt)tt
isNatIList(zeros)ttU41(tt, V2)U42(isNatIList(V2))

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

isNatIList#(cons(V1, V2))U41#(isNat(V1), V2)

Problem 14: DependencyGraph



Dependency Pair Problem

Dependency Pairs

U41#(tt, V2)isNatIList#(V2)

Rewrite Rules

zeroscons(0, zeros)U11(tt)tt
U21(tt)ttU31(tt)tt
U41(tt, V2)U42(isNatIList(V2))U42(tt)tt
U51(tt, V2)U52(isNatList(V2))U52(tt)tt
U61(tt, V2)U62(isNatIList(V2))U62(tt)tt
U71(tt, L, N)U72(isNat(N), L)U72(tt, L)s(length(L))
U81(tt)nilU91(tt, IL, M, N)U92(isNat(M), IL, M, N)
U92(tt, IL, M, N)U93(isNat(N), IL, M, N)U93(tt, IL, M, N)cons(N, take(M, IL))
isNat(0)ttisNat(length(V1))U11(isNatList(V1))
isNat(s(V1))U21(isNat(V1))isNatIList(V)U31(isNatList(V))
isNatIList(zeros)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatList(nil)ttisNatList(cons(V1, V2))U51(isNat(V1), V2)
isNatList(take(V1, V2))U61(isNat(V1), V2)length(nil)0
length(cons(N, L))U71(isNatList(L), L, N)take(0, IL)U81(isNatIList(IL))
take(s(M), cons(N, IL))U91(isNatIList(IL), IL, M, N)

Original Signature

Termination of terms over the following signature is verified: isNat, U62, U61, U42, U93, U41, U92, U91, length, U21, cons, isNatIList, U71, U72, 0, U51, isNatList, s, tt, zeros, take, U52, U81, U11, U31, nil

Strategy

Context-sensitive strategy:
μ(isNatList#) = μ(zeros#) = μ(isNat) = μ(T) = μ(isNatIList) = μ(isNatIList#) = μ(0) = μ(isNatList) = μ(tt) = μ(zeros) = μ(isNat#) = μ(nil) = ∅
μ(U93#) = μ(U11#) = μ(U31#) = μ(length#) = μ(U91#) = μ(U21#) = μ(U81#) = μ(U62#) = μ(U52#) = μ(U41#) = μ(U62) = μ(U61) = μ(U93) = μ(U42) = μ(U92) = μ(U41) = μ(U72#) = μ(U91) = μ(length) = μ(U21) = μ(cons) = μ(U92#) = μ(U61#) = μ(U51#) = μ(U71) = μ(U42#) = μ(U72) = μ(U71#) = μ(U51) = μ(s) = μ(U81) = μ(U52) = μ(U11) = μ(U31) = {1}
μ(take#) = μ(take) = {1, 2}


There are no SCCs!

Problem 3: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

U71#(tt, L, N)U72#(isNat(N), L)U72#(tt, L)length#(L)
length#(cons(N, L))U71#(isNatList(L), L, N)

Rewrite Rules

zeroscons(0, zeros)U11(tt)tt
U21(tt)ttU31(tt)tt
U41(tt, V2)U42(isNatIList(V2))U42(tt)tt
U51(tt, V2)U52(isNatList(V2))U52(tt)tt
U61(tt, V2)U62(isNatIList(V2))U62(tt)tt
U71(tt, L, N)U72(isNat(N), L)U72(tt, L)s(length(L))
U81(tt)nilU91(tt, IL, M, N)U92(isNat(M), IL, M, N)
U92(tt, IL, M, N)U93(isNat(N), IL, M, N)U93(tt, IL, M, N)cons(N, take(M, IL))
isNat(0)ttisNat(length(V1))U11(isNatList(V1))
isNat(s(V1))U21(isNat(V1))isNatIList(V)U31(isNatList(V))
isNatIList(zeros)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatList(nil)ttisNatList(cons(V1, V2))U51(isNat(V1), V2)
isNatList(take(V1, V2))U61(isNat(V1), V2)length(nil)0
length(cons(N, L))U71(isNatList(L), L, N)take(0, IL)U81(isNatIList(IL))
take(s(M), cons(N, IL))U91(isNatIList(IL), IL, M, N)

Original Signature

Termination of terms over the following signature is verified: isNat, U62, U61, U93, U42, U92, U41, U91, length, U21, cons, isNatIList, U71, U72, 0, U51, isNatList, s, tt, zeros, take, U52, U81, U11, U31, nil

Strategy

Context-sensitive strategy:
μ(isNatList#) = μ(zeros#) = μ(isNat) = μ(T) = μ(isNatIList) = μ(isNatIList#) = μ(0) = μ(isNatList) = μ(zeros) = μ(tt) = μ(isNat#) = μ(nil) = ∅
μ(U93#) = μ(U11#) = μ(U31#) = μ(length#) = μ(U21#) = μ(U91#) = μ(U81#) = μ(U62#) = μ(U52#) = μ(U41#) = μ(U62) = μ(U61) = μ(U93) = μ(U42) = μ(U92) = μ(U41) = μ(U72#) = μ(U91) = μ(length) = μ(U21) = μ(cons) = μ(U92#) = μ(U61#) = μ(U51#) = μ(U71) = μ(U72) = μ(U42#) = μ(U71#) = μ(s) = μ(U51) = μ(U52) = μ(U81) = μ(U11) = μ(U31) = {1}
μ(take#) = μ(take) = {1, 2}


Polynomial Interpretation

Standard Usable rules

U51(tt, V2)U52(isNatList(V2))U61(tt, V2)U62(isNatIList(V2))
U31(tt)ttisNat(length(V1))U11(isNatList(V1))
isNatList(take(V1, V2))U61(isNat(V1), V2)U91(tt, IL, M, N)U92(isNat(M), IL, M, N)
isNatList(cons(V1, V2))U51(isNat(V1), V2)take(s(M), cons(N, IL))U91(isNatIList(IL), IL, M, N)
length(cons(N, L))U71(isNatList(L), L, N)U71(tt, L, N)U72(isNat(N), L)
isNatIList(cons(V1, V2))U41(isNat(V1), V2)take(0, IL)U81(isNatIList(IL))
U21(tt)ttU62(tt)tt
isNatIList(zeros)ttlength(nil)0
U11(tt)ttisNat(0)tt
isNatList(nil)ttzeroscons(0, zeros)
isNat(s(V1))U21(isNat(V1))U42(tt)tt
U92(tt, IL, M, N)U93(isNat(N), IL, M, N)U93(tt, IL, M, N)cons(N, take(M, IL))
isNatIList(V)U31(isNatList(V))U72(tt, L)s(length(L))
U81(tt)nilU52(tt)tt
U41(tt, V2)U42(isNatIList(V2))

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

U72#(tt, L)length#(L)

Problem 6: DependencyGraph



Dependency Pair Problem

Dependency Pairs

U71#(tt, L, N)U72#(isNat(N), L)length#(cons(N, L))U71#(isNatList(L), L, N)

Rewrite Rules

zeroscons(0, zeros)U11(tt)tt
U21(tt)ttU31(tt)tt
U41(tt, V2)U42(isNatIList(V2))U42(tt)tt
U51(tt, V2)U52(isNatList(V2))U52(tt)tt
U61(tt, V2)U62(isNatIList(V2))U62(tt)tt
U71(tt, L, N)U72(isNat(N), L)U72(tt, L)s(length(L))
U81(tt)nilU91(tt, IL, M, N)U92(isNat(M), IL, M, N)
U92(tt, IL, M, N)U93(isNat(N), IL, M, N)U93(tt, IL, M, N)cons(N, take(M, IL))
isNat(0)ttisNat(length(V1))U11(isNatList(V1))
isNat(s(V1))U21(isNat(V1))isNatIList(V)U31(isNatList(V))
isNatIList(zeros)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatList(nil)ttisNatList(cons(V1, V2))U51(isNat(V1), V2)
isNatList(take(V1, V2))U61(isNat(V1), V2)length(nil)0
length(cons(N, L))U71(isNatList(L), L, N)take(0, IL)U81(isNatIList(IL))
take(s(M), cons(N, IL))U91(isNatIList(IL), IL, M, N)

Original Signature

Termination of terms over the following signature is verified: isNat, U62, U61, U42, U93, U41, U92, U91, length, U21, cons, isNatIList, U71, U72, 0, U51, isNatList, s, tt, zeros, take, U52, U81, U11, U31, nil

Strategy

Context-sensitive strategy:
μ(isNatList#) = μ(zeros#) = μ(isNat) = μ(T) = μ(isNatIList) = μ(isNatIList#) = μ(0) = μ(isNatList) = μ(tt) = μ(zeros) = μ(isNat#) = μ(nil) = ∅
μ(U93#) = μ(U11#) = μ(U31#) = μ(length#) = μ(U91#) = μ(U21#) = μ(U81#) = μ(U62#) = μ(U52#) = μ(U41#) = μ(U62) = μ(U61) = μ(U93) = μ(U42) = μ(U92) = μ(U41) = μ(U72#) = μ(U91) = μ(length) = μ(U21) = μ(cons) = μ(U92#) = μ(U61#) = μ(U51#) = μ(U71) = μ(U42#) = μ(U72) = μ(U71#) = μ(U51) = μ(s) = μ(U81) = μ(U52) = μ(U11) = μ(U31) = {1}
μ(take#) = μ(take) = {1, 2}


There are no SCCs!

Problem 4: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

T(take(x_1, x_2))T(x_2)U91#(tt, IL, M, N)U92#(isNat(M), IL, M, N)
T(take(x_1, x_2))T(x_1)T(take(M, IL))take#(M, IL)
U92#(tt, IL, M, N)U93#(isNat(N), IL, M, N)take#(s(M), cons(N, IL))U91#(isNatIList(IL), IL, M, N)
U93#(tt, IL, M, N)T(N)

Rewrite Rules

zeroscons(0, zeros)U11(tt)tt
U21(tt)ttU31(tt)tt
U41(tt, V2)U42(isNatIList(V2))U42(tt)tt
U51(tt, V2)U52(isNatList(V2))U52(tt)tt
U61(tt, V2)U62(isNatIList(V2))U62(tt)tt
U71(tt, L, N)U72(isNat(N), L)U72(tt, L)s(length(L))
U81(tt)nilU91(tt, IL, M, N)U92(isNat(M), IL, M, N)
U92(tt, IL, M, N)U93(isNat(N), IL, M, N)U93(tt, IL, M, N)cons(N, take(M, IL))
isNat(0)ttisNat(length(V1))U11(isNatList(V1))
isNat(s(V1))U21(isNat(V1))isNatIList(V)U31(isNatList(V))
isNatIList(zeros)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatList(nil)ttisNatList(cons(V1, V2))U51(isNat(V1), V2)
isNatList(take(V1, V2))U61(isNat(V1), V2)length(nil)0
length(cons(N, L))U71(isNatList(L), L, N)take(0, IL)U81(isNatIList(IL))
take(s(M), cons(N, IL))U91(isNatIList(IL), IL, M, N)

Original Signature

Termination of terms over the following signature is verified: isNat, U62, U61, U93, U42, U92, U41, U91, length, U21, cons, isNatIList, U71, U72, 0, U51, isNatList, s, tt, zeros, take, U52, U81, U11, U31, nil

Strategy

Context-sensitive strategy:
μ(isNatList#) = μ(zeros#) = μ(isNat) = μ(T) = μ(isNatIList) = μ(isNatIList#) = μ(0) = μ(isNatList) = μ(zeros) = μ(tt) = μ(isNat#) = μ(nil) = ∅
μ(U93#) = μ(U11#) = μ(U31#) = μ(length#) = μ(U21#) = μ(U91#) = μ(U81#) = μ(U62#) = μ(U52#) = μ(U41#) = μ(U62) = μ(U61) = μ(U93) = μ(U42) = μ(U92) = μ(U41) = μ(U72#) = μ(U91) = μ(length) = μ(U21) = μ(cons) = μ(U92#) = μ(U61#) = μ(U51#) = μ(U71) = μ(U72) = μ(U42#) = μ(U71#) = μ(s) = μ(U51) = μ(U52) = μ(U81) = μ(U11) = μ(U31) = {1}
μ(take#) = μ(take) = {1, 2}


Polynomial Interpretation

Standard Usable rules

U51(tt, V2)U52(isNatList(V2))U61(tt, V2)U62(isNatIList(V2))
U31(tt)ttisNat(length(V1))U11(isNatList(V1))
isNatList(take(V1, V2))U61(isNat(V1), V2)U91(tt, IL, M, N)U92(isNat(M), IL, M, N)
isNatList(cons(V1, V2))U51(isNat(V1), V2)take(s(M), cons(N, IL))U91(isNatIList(IL), IL, M, N)
length(cons(N, L))U71(isNatList(L), L, N)U71(tt, L, N)U72(isNat(N), L)
isNatIList(cons(V1, V2))U41(isNat(V1), V2)take(0, IL)U81(isNatIList(IL))
U21(tt)ttU62(tt)tt
isNatIList(zeros)ttlength(nil)0
U11(tt)ttisNat(0)tt
isNatList(nil)ttzeroscons(0, zeros)
isNat(s(V1))U21(isNat(V1))U42(tt)tt
U92(tt, IL, M, N)U93(isNat(N), IL, M, N)U93(tt, IL, M, N)cons(N, take(M, IL))
isNatIList(V)U31(isNatList(V))U72(tt, L)s(length(L))
U81(tt)nilU52(tt)tt
U41(tt, V2)U42(isNatIList(V2))

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

U91#(tt, IL, M, N)U92#(isNat(M), IL, M, N)

Problem 7: DependencyGraph



Dependency Pair Problem

Dependency Pairs

T(take(x_1, x_2))T(x_2)T(take(x_1, x_2))T(x_1)
U92#(tt, IL, M, N)U93#(isNat(N), IL, M, N)T(take(M, IL))take#(M, IL)
U93#(tt, IL, M, N)T(N)take#(s(M), cons(N, IL))U91#(isNatIList(IL), IL, M, N)

Rewrite Rules

zeroscons(0, zeros)U11(tt)tt
U21(tt)ttU31(tt)tt
U41(tt, V2)U42(isNatIList(V2))U42(tt)tt
U51(tt, V2)U52(isNatList(V2))U52(tt)tt
U61(tt, V2)U62(isNatIList(V2))U62(tt)tt
U71(tt, L, N)U72(isNat(N), L)U72(tt, L)s(length(L))
U81(tt)nilU91(tt, IL, M, N)U92(isNat(M), IL, M, N)
U92(tt, IL, M, N)U93(isNat(N), IL, M, N)U93(tt, IL, M, N)cons(N, take(M, IL))
isNat(0)ttisNat(length(V1))U11(isNatList(V1))
isNat(s(V1))U21(isNat(V1))isNatIList(V)U31(isNatList(V))
isNatIList(zeros)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatList(nil)ttisNatList(cons(V1, V2))U51(isNat(V1), V2)
isNatList(take(V1, V2))U61(isNat(V1), V2)length(nil)0
length(cons(N, L))U71(isNatList(L), L, N)take(0, IL)U81(isNatIList(IL))
take(s(M), cons(N, IL))U91(isNatIList(IL), IL, M, N)

Original Signature

Termination of terms over the following signature is verified: isNat, U62, U61, U42, U93, U41, U92, U91, length, U21, cons, isNatIList, U71, U72, 0, U51, isNatList, s, tt, zeros, take, U52, U81, U11, U31, nil

Strategy

Context-sensitive strategy:
μ(isNatList#) = μ(zeros#) = μ(isNat) = μ(T) = μ(isNatIList) = μ(isNatIList#) = μ(0) = μ(isNatList) = μ(tt) = μ(zeros) = μ(isNat#) = μ(nil) = ∅
μ(U93#) = μ(U11#) = μ(U31#) = μ(length#) = μ(U91#) = μ(U21#) = μ(U81#) = μ(U62#) = μ(U52#) = μ(U41#) = μ(U62) = μ(U61) = μ(U93) = μ(U42) = μ(U92) = μ(U41) = μ(U72#) = μ(U91) = μ(length) = μ(U21) = μ(cons) = μ(U92#) = μ(U61#) = μ(U51#) = μ(U71) = μ(U42#) = μ(U72) = μ(U71#) = μ(U51) = μ(s) = μ(U81) = μ(U52) = μ(U11) = μ(U31) = {1}
μ(take#) = μ(take) = {1, 2}


The following SCCs where found

T(take(x_1, x_2)) → T(x_2)T(take(x_1, x_2)) → T(x_1)

Problem 9: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

T(take(x_1, x_2))T(x_2)T(take(x_1, x_2))T(x_1)

Rewrite Rules

zeroscons(0, zeros)U11(tt)tt
U21(tt)ttU31(tt)tt
U41(tt, V2)U42(isNatIList(V2))U42(tt)tt
U51(tt, V2)U52(isNatList(V2))U52(tt)tt
U61(tt, V2)U62(isNatIList(V2))U62(tt)tt
U71(tt, L, N)U72(isNat(N), L)U72(tt, L)s(length(L))
U81(tt)nilU91(tt, IL, M, N)U92(isNat(M), IL, M, N)
U92(tt, IL, M, N)U93(isNat(N), IL, M, N)U93(tt, IL, M, N)cons(N, take(M, IL))
isNat(0)ttisNat(length(V1))U11(isNatList(V1))
isNat(s(V1))U21(isNat(V1))isNatIList(V)U31(isNatList(V))
isNatIList(zeros)ttisNatIList(cons(V1, V2))U41(isNat(V1), V2)
isNatList(nil)ttisNatList(cons(V1, V2))U51(isNat(V1), V2)
isNatList(take(V1, V2))U61(isNat(V1), V2)length(nil)0
length(cons(N, L))U71(isNatList(L), L, N)take(0, IL)U81(isNatIList(IL))
take(s(M), cons(N, IL))U91(isNatIList(IL), IL, M, N)

Original Signature

Termination of terms over the following signature is verified: isNat, U62, U61, U42, U93, U41, U92, U91, length, U21, cons, isNatIList, U71, U72, 0, U51, isNatList, s, tt, zeros, take, U52, U81, U11, U31, nil

Strategy

Context-sensitive strategy:
μ(isNatList#) = μ(zeros#) = μ(isNat) = μ(T) = μ(isNatIList) = μ(isNatIList#) = μ(0) = μ(isNatList) = μ(zeros) = μ(tt) = μ(isNat#) = μ(nil) = ∅
μ(U93#) = μ(U11#) = μ(U31#) = μ(length#) = μ(U21#) = μ(U91#) = μ(U81#) = μ(U62#) = μ(U52#) = μ(U41#) = μ(U62) = μ(U61) = μ(U93) = μ(U42) = μ(U92) = μ(U41) = μ(U72#) = μ(U91) = μ(length) = μ(U21) = μ(cons) = μ(U92#) = μ(U61#) = μ(U51#) = μ(U71) = μ(U72) = μ(U42#) = μ(U71#) = μ(s) = μ(U51) = μ(U52) = μ(U81) = μ(U11) = μ(U31) = {1}
μ(take#) = μ(take) = {1, 2}


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

T(take(x_1, x_2))T(x_2)T(take(x_1, x_2))T(x_1)