TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60189 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (1174ms).
 | – Problem 2 remains open; application of the following processors failed [SubtermCriterion (0ms), DependencyGraph (1ms), PolynomialLinearRange4iUR (0ms), DependencyGraph (47ms), PolynomialOrderingProcessor (0ms), DependencyGraph (2ms), PolynomialLinearRange4 (488ms), DependencyGraph (2ms), ReductionPairSAT (1632ms), DependencyGraph (0ms), SizeChangePrinciple (timeout)].
 | – Problem 3 remains open; application of the following processors failed [SubtermCriterion (0ms), DependencyGraph (138ms), PolynomialLinearRange4iUR (0ms), DependencyGraph (219ms), PolynomialOrderingProcessor (15ms), DependencyGraph (136ms), PolynomialLinearRange4 (634ms), DependencyGraph (134ms), ReductionPairSAT (879ms), DependencyGraph (93ms)].

The following open problems remain:



Open Dependency Pair Problem 2

Dependency Pairs

splitAt#(s(N), cons(X, XS))U81#(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS)U81#(tt, N, X, XS)splitAt#(N, XS)

Rewrite Rules

U101(tt, N, XS)fst(splitAt(N, XS))U11(tt, N, XS)snd(splitAt(N, XS))
U21(tt, X)XU31(tt, N)N
U41(tt, N)cons(N, natsFrom(s(N)))U51(tt, N, XS)head(afterNth(N, XS))
U61(tt, Y)YU71(tt, XS)pair(nil, XS)
U81(tt, N, X, XS)U82(splitAt(N, XS), X)U82(pair(YS, ZS), X)pair(cons(X, YS), ZS)
U91(tt, XS)XSafterNth(N, XS)U11(and(isNatural(N), isLNat(XS)), N, XS)
and(tt, X)Xfst(pair(X, Y))U21(and(isLNat(X), isLNat(Y)), X)
head(cons(N, XS))U31(and(isNatural(N), isLNat(XS)), N)isLNat(nil)tt
isLNat(afterNth(V1, V2))and(isNatural(V1), isLNat(V2))isLNat(cons(V1, V2))and(isNatural(V1), isLNat(V2))
isLNat(fst(V1))isPLNat(V1)isLNat(natsFrom(V1))isNatural(V1)
isLNat(snd(V1))isPLNat(V1)isLNat(tail(V1))isLNat(V1)
isLNat(take(V1, V2))and(isNatural(V1), isLNat(V2))isNatural(0)tt
isNatural(head(V1))isLNat(V1)isNatural(s(V1))isNatural(V1)
isNatural(sel(V1, V2))and(isNatural(V1), isLNat(V2))isPLNat(pair(V1, V2))and(isLNat(V1), isLNat(V2))
isPLNat(splitAt(V1, V2))and(isNatural(V1), isLNat(V2))natsFrom(N)U41(isNatural(N), N)
sel(N, XS)U51(and(isNatural(N), isLNat(XS)), N, XS)snd(pair(X, Y))U61(and(isLNat(X), isLNat(Y)), Y)
splitAt(0, XS)U71(isLNat(XS), XS)splitAt(s(N), cons(X, XS))U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS)
tail(cons(N, XS))U91(and(isNatural(N), isLNat(XS)), XS)take(N, XS)U101(and(isNatural(N), isLNat(XS)), N, XS)

Original Signature

Termination of terms over the following signature is verified: pair, natsFrom, isNatural, fst, U61, U41, U91, head, U21, cons, snd, isPLNat, tail, splitAt, U71, and, 0, U51, s, tt, take, U82, U81, isLNat, U11, U31, afterNth, sel, U101, nil




Open Dependency Pair Problem 3

Dependency Pairs

isLNat#(cons(V1, V2))and#(isNatural(V1), isLNat(V2))isLNat#(fst(V1))isPLNat#(V1)
T(isLNat(V2))isLNat#(V2)isNatural#(head(V1))isLNat#(V1)
isLNat#(afterNth(V1, V2))and#(isNatural(V1), isLNat(V2))isNatural#(sel(V1, V2))isNatural#(V1)
isPLNat#(splitAt(V1, V2))and#(isNatural(V1), isLNat(V2))T(and(x_1, x_2))T(x_1)
isLNat#(natsFrom(V1))isNatural#(V1)T(isNatural(X))isNatural#(X)
isLNat#(cons(V1, V2))isNatural#(V1)isNatural#(sel(V1, V2))and#(isNatural(V1), isLNat(V2))
isLNat#(afterNth(V1, V2))isNatural#(V1)T(s(x_1))T(x_1)
isNatural#(s(V1))isNatural#(V1)isLNat#(take(V1, V2))and#(isNatural(V1), isLNat(V2))
isLNat#(take(V1, V2))isNatural#(V1)T(isLNat(x_1))T(x_1)
isPLNat#(pair(V1, V2))isLNat#(V1)T(natsFrom(x_1))T(x_1)
and#(tt, X)T(X)isPLNat#(pair(V1, V2))and#(isLNat(V1), isLNat(V2))
natsFrom#(N)U41#(isNatural(N), N)isLNat#(snd(V1))isPLNat#(V1)
natsFrom#(N)isNatural#(N)T(natsFrom(s(N)))natsFrom#(s(N))
isLNat#(tail(V1))isLNat#(V1)T(and(isNatural(X), isLNat(XS)))and#(isNatural(X), isLNat(XS))
T(isNatural(x_1))T(x_1)isPLNat#(splitAt(V1, V2))isNatural#(V1)
T(and(x_1, x_2))T(x_2)U41#(tt, N)T(N)
T(isLNat(XS))isLNat#(XS)T(isLNat(Y))isLNat#(Y)

Rewrite Rules

U101(tt, N, XS)fst(splitAt(N, XS))U11(tt, N, XS)snd(splitAt(N, XS))
U21(tt, X)XU31(tt, N)N
U41(tt, N)cons(N, natsFrom(s(N)))U51(tt, N, XS)head(afterNth(N, XS))
U61(tt, Y)YU71(tt, XS)pair(nil, XS)
U81(tt, N, X, XS)U82(splitAt(N, XS), X)U82(pair(YS, ZS), X)pair(cons(X, YS), ZS)
U91(tt, XS)XSafterNth(N, XS)U11(and(isNatural(N), isLNat(XS)), N, XS)
and(tt, X)Xfst(pair(X, Y))U21(and(isLNat(X), isLNat(Y)), X)
head(cons(N, XS))U31(and(isNatural(N), isLNat(XS)), N)isLNat(nil)tt
isLNat(afterNth(V1, V2))and(isNatural(V1), isLNat(V2))isLNat(cons(V1, V2))and(isNatural(V1), isLNat(V2))
isLNat(fst(V1))isPLNat(V1)isLNat(natsFrom(V1))isNatural(V1)
isLNat(snd(V1))isPLNat(V1)isLNat(tail(V1))isLNat(V1)
isLNat(take(V1, V2))and(isNatural(V1), isLNat(V2))isNatural(0)tt
isNatural(head(V1))isLNat(V1)isNatural(s(V1))isNatural(V1)
isNatural(sel(V1, V2))and(isNatural(V1), isLNat(V2))isPLNat(pair(V1, V2))and(isLNat(V1), isLNat(V2))
isPLNat(splitAt(V1, V2))and(isNatural(V1), isLNat(V2))natsFrom(N)U41(isNatural(N), N)
sel(N, XS)U51(and(isNatural(N), isLNat(XS)), N, XS)snd(pair(X, Y))U61(and(isLNat(X), isLNat(Y)), Y)
splitAt(0, XS)U71(isLNat(XS), XS)splitAt(s(N), cons(X, XS))U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS)
tail(cons(N, XS))U91(and(isNatural(N), isLNat(XS)), XS)take(N, XS)U101(and(isNatural(N), isLNat(XS)), N, XS)

Original Signature

Termination of terms over the following signature is verified: pair, natsFrom, isNatural, fst, U61, U41, U91, head, U21, cons, snd, isPLNat, tail, splitAt, U71, and, 0, U51, s, tt, take, U82, U81, isLNat, U11, U31, afterNth, sel, U101, nil


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

splitAt#(s(N), cons(X, XS))isNatural#(N)splitAt#(s(N), cons(X, XS))U81#(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS)
isLNat#(cons(V1, V2))and#(isNatural(V1), isLNat(V2))sel#(N, XS)and#(isNatural(N), isLNat(XS))
U81#(tt, N, X, XS)U82#(splitAt(N, XS), X)isNatural#(head(V1))isLNat#(V1)
take#(N, XS)and#(isNatural(N), isLNat(XS))U11#(tt, N, XS)splitAt#(N, XS)
isLNat#(afterNth(V1, V2))and#(isNatural(V1), isLNat(V2))T(and(x_1, x_2))T(x_1)
isPLNat#(splitAt(V1, V2))and#(isNatural(V1), isLNat(V2))afterNth#(N, XS)and#(isNatural(N), isLNat(XS))
tail#(cons(N, XS))isNatural#(N)U101#(tt, N, XS)splitAt#(N, XS)
isLNat#(natsFrom(V1))isNatural#(V1)T(isNatural(X))isNatural#(X)
isLNat#(cons(V1, V2))isNatural#(V1)U11#(tt, N, XS)T(N)
isLNat#(afterNth(V1, V2))isNatural#(V1)U51#(tt, N, XS)T(N)
head#(cons(N, XS))isNatural#(N)T(s(x_1))T(x_1)
isNatural#(s(V1))isNatural#(V1)U71#(tt, XS)T(XS)
isLNat#(take(V1, V2))isNatural#(V1)snd#(pair(X, Y))isLNat#(X)
U61#(tt, Y)T(Y)splitAt#(0, XS)isLNat#(XS)
and#(tt, X)T(X)isPLNat#(pair(V1, V2))and#(isLNat(V1), isLNat(V2))
isLNat#(snd(V1))isPLNat#(V1)natsFrom#(N)isNatural#(N)
U51#(tt, N, XS)head#(afterNth(N, XS))T(natsFrom(s(N)))natsFrom#(s(N))
splitAt#(s(N), cons(X, XS))and#(isNatural(N), and(isNatural(X), isLNat(XS)))isLNat#(tail(V1))isLNat#(V1)
U51#(tt, N, XS)afterNth#(N, XS)fst#(pair(X, Y))and#(isLNat(X), isLNat(Y))
U101#(tt, N, XS)T(N)T(isNatural(x_1))T(x_1)
T(and(x_1, x_2))T(x_2)sel#(N, XS)U51#(and(isNatural(N), isLNat(XS)), N, XS)
U41#(tt, N)T(N)T(isLNat(Y))isLNat#(Y)
fst#(pair(X, Y))U21#(and(isLNat(X), isLNat(Y)), X)fst#(pair(X, Y))isLNat#(X)
tail#(cons(N, XS))and#(isNatural(N), isLNat(XS))sel#(N, XS)isNatural#(N)
isLNat#(fst(V1))isPLNat#(V1)T(isLNat(V2))isLNat#(V2)
isNatural#(sel(V1, V2))isNatural#(V1)take#(N, XS)isNatural#(N)
U81#(tt, N, X, XS)T(XS)U101#(tt, N, XS)T(XS)
splitAt#(0, XS)U71#(isLNat(XS), XS)head#(cons(N, XS))U31#(and(isNatural(N), isLNat(XS)), N)
isNatural#(sel(V1, V2))and#(isNatural(V1), isLNat(V2))snd#(pair(X, Y))U61#(and(isLNat(X), isLNat(Y)), Y)
head#(cons(N, XS))and#(isNatural(N), isLNat(XS))U11#(tt, N, XS)T(XS)
isLNat#(take(V1, V2))and#(isNatural(V1), isLNat(V2))afterNth#(N, XS)isNatural#(N)
T(isLNat(x_1))T(x_1)isPLNat#(pair(V1, V2))isLNat#(V1)
U31#(tt, N)T(N)T(natsFrom(x_1))T(x_1)
natsFrom#(N)U41#(isNatural(N), N)U91#(tt, XS)T(XS)
afterNth#(N, XS)U11#(and(isNatural(N), isLNat(XS)), N, XS)U21#(tt, X)T(X)
U51#(tt, N, XS)T(XS)U81#(tt, N, X, XS)splitAt#(N, XS)
snd#(pair(X, Y))and#(isLNat(X), isLNat(Y))T(and(isNatural(X), isLNat(XS)))and#(isNatural(X), isLNat(XS))
U11#(tt, N, XS)snd#(splitAt(N, XS))U82#(pair(YS, ZS), X)T(X)
isPLNat#(splitAt(V1, V2))isNatural#(V1)U101#(tt, N, XS)fst#(splitAt(N, XS))
U81#(tt, N, X, XS)T(N)take#(N, XS)U101#(and(isNatural(N), isLNat(XS)), N, XS)
T(isLNat(XS))isLNat#(XS)tail#(cons(N, XS))U91#(and(isNatural(N), isLNat(XS)), XS)

Rewrite Rules

U101(tt, N, XS)fst(splitAt(N, XS))U11(tt, N, XS)snd(splitAt(N, XS))
U21(tt, X)XU31(tt, N)N
U41(tt, N)cons(N, natsFrom(s(N)))U51(tt, N, XS)head(afterNth(N, XS))
U61(tt, Y)YU71(tt, XS)pair(nil, XS)
U81(tt, N, X, XS)U82(splitAt(N, XS), X)U82(pair(YS, ZS), X)pair(cons(X, YS), ZS)
U91(tt, XS)XSafterNth(N, XS)U11(and(isNatural(N), isLNat(XS)), N, XS)
and(tt, X)Xfst(pair(X, Y))U21(and(isLNat(X), isLNat(Y)), X)
head(cons(N, XS))U31(and(isNatural(N), isLNat(XS)), N)isLNat(nil)tt
isLNat(afterNth(V1, V2))and(isNatural(V1), isLNat(V2))isLNat(cons(V1, V2))and(isNatural(V1), isLNat(V2))
isLNat(fst(V1))isPLNat(V1)isLNat(natsFrom(V1))isNatural(V1)
isLNat(snd(V1))isPLNat(V1)isLNat(tail(V1))isLNat(V1)
isLNat(take(V1, V2))and(isNatural(V1), isLNat(V2))isNatural(0)tt
isNatural(head(V1))isLNat(V1)isNatural(s(V1))isNatural(V1)
isNatural(sel(V1, V2))and(isNatural(V1), isLNat(V2))isPLNat(pair(V1, V2))and(isLNat(V1), isLNat(V2))
isPLNat(splitAt(V1, V2))and(isNatural(V1), isLNat(V2))natsFrom(N)U41(isNatural(N), N)
sel(N, XS)U51(and(isNatural(N), isLNat(XS)), N, XS)snd(pair(X, Y))U61(and(isLNat(X), isLNat(Y)), Y)
splitAt(0, XS)U71(isLNat(XS), XS)splitAt(s(N), cons(X, XS))U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS)
tail(cons(N, XS))U91(and(isNatural(N), isLNat(XS)), XS)take(N, XS)U101(and(isNatural(N), isLNat(XS)), N, XS)

Original Signature

Termination of terms over the following signature is verified: pair, isNatural, natsFrom, fst, U61, U41, U91, head, U21, snd, cons, isPLNat, tail, splitAt, U71, and, 0, U51, s, tt, take, U82, U81, isLNat, U11, afterNth, U31, sel, nil, U101

Strategy

Context-sensitive strategy:
μ(isNatural#) = μ(isPLNat) = μ(0) = μ(isLNat) = μ(isLNat#) = μ(isNatural) = μ(T) = μ(tt) = μ(isPLNat#) = μ(nil) = ∅
μ(natsFrom#) = μ(U11#) = μ(fst#) = μ(U31#) = μ(natsFrom) = μ(U21#) = μ(tail#) = μ(fst) = μ(U41#) = μ(U61) = μ(snd#) = μ(head) = μ(U21) = μ(U61#) = μ(U51#) = μ(tail) = μ(and) = μ(U71) = μ(U71#) = μ(U31) = μ(U91#) = μ(U81#) = μ(and#) = μ(U41) = μ(U91) = μ(cons) = μ(snd) = μ(U101#) = μ(U82#) = μ(U51) = μ(s) = μ(U82) = μ(U81) = μ(U11) = μ(head#) = μ(U101) = {1}
μ(sel#) = μ(take#) = μ(splitAt#) = μ(pair) = μ(splitAt) = μ(afterNth#) = μ(take) = μ(afterNth) = μ(sel) = {1, 2}


The following SCCs where found

splitAt#(s(N), cons(X, XS)) → U81#(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS)U81#(tt, N, X, XS) → splitAt#(N, XS)

isLNat#(cons(V1, V2)) → and#(isNatural(V1), isLNat(V2))T(isLNat(V2)) → isLNat#(V2)
isLNat#(fst(V1)) → isPLNat#(V1)isNatural#(head(V1)) → isLNat#(V1)
isNatural#(sel(V1, V2)) → isNatural#(V1)isLNat#(afterNth(V1, V2)) → and#(isNatural(V1), isLNat(V2))
T(and(x_1, x_2)) → T(x_1)isPLNat#(splitAt(V1, V2)) → and#(isNatural(V1), isLNat(V2))
T(isNatural(X)) → isNatural#(X)isLNat#(natsFrom(V1)) → isNatural#(V1)
isLNat#(cons(V1, V2)) → isNatural#(V1)isLNat#(afterNth(V1, V2)) → isNatural#(V1)
isNatural#(sel(V1, V2)) → and#(isNatural(V1), isLNat(V2))T(s(x_1)) → T(x_1)
isNatural#(s(V1)) → isNatural#(V1)isLNat#(take(V1, V2)) → and#(isNatural(V1), isLNat(V2))
T(isLNat(x_1)) → T(x_1)isLNat#(take(V1, V2)) → isNatural#(V1)
isPLNat#(pair(V1, V2)) → isLNat#(V1)and#(tt, X) → T(X)
T(natsFrom(x_1)) → T(x_1)natsFrom#(N) → U41#(isNatural(N), N)
isPLNat#(pair(V1, V2)) → and#(isLNat(V1), isLNat(V2))isLNat#(snd(V1)) → isPLNat#(V1)
natsFrom#(N) → isNatural#(N)T(natsFrom(s(N))) → natsFrom#(s(N))
isLNat#(tail(V1)) → isLNat#(V1)T(and(isNatural(X), isLNat(XS))) → and#(isNatural(X), isLNat(XS))
T(isNatural(x_1)) → T(x_1)T(and(x_1, x_2)) → T(x_2)
isPLNat#(splitAt(V1, V2)) → isNatural#(V1)U41#(tt, N) → T(N)
T(isLNat(XS)) → isLNat#(XS)T(isLNat(Y)) → isLNat#(Y)