TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60266 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (1832ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4 (535ms).
 |    | – Problem 5 was processed with processor DependencyGraph (33ms).
 |    |    | – Problem 6 was processed with processor PolynomialLinearRange4 (14ms).
 |    |    |    | – Problem 7 was processed with processor PolynomialLinearRange4 (9ms).
 | – Problem 3 remains open; application of the following processors failed [SubtermCriterion (0ms), DependencyGraph (3ms), PolynomialLinearRange4iUR (0ms), DependencyGraph (3ms), PolynomialOrderingProcessor (0ms), DependencyGraph (5ms), PolynomialLinearRange4 (406ms), DependencyGraph (4ms), PolynomialLinearRange4 (336ms), DependencyGraph (3ms), PolynomialLinearRange4 (276ms), DependencyGraph (13ms), PolynomialLinearRange4 (350ms), DependencyGraph (2ms), ReductionPairSAT (12611ms), DependencyGraph (2ms), SizeChangePrinciple (timeout)].
 | – Problem 4 remains open; application of the following processors failed [SubtermCriterion (0ms), DependencyGraph (4ms), PolynomialLinearRange4iUR (0ms), DependencyGraph (5ms), PolynomialOrderingProcessor (0ms), DependencyGraph (4ms), PolynomialLinearRange4 (332ms), DependencyGraph (5ms), PolynomialLinearRange4 (233ms), DependencyGraph (3ms), PolynomialLinearRange4 (194ms), DependencyGraph (3ms), PolynomialLinearRange4 (168ms), DependencyGraph (4ms), ReductionPairSAT (6025ms), DependencyGraph (3ms)].

The following open problems remain:



Open Dependency Pair Problem 3

Dependency Pairs

U201#(tt, N, X, XS)U202#(isNatural(X), N, X, XS)splitAt#(s(N), cons(X, XS))U201#(isNatural(N), N, X, XS)
U203#(tt, N, X, XS)splitAt#(N, XS)U202#(tt, N, X, XS)U203#(isLNat(XS), N, X, XS)

Rewrite Rules

U101(tt, V2)U102(isLNat(V2))U102(tt)tt
U11(tt, N, XS)U12(isLNat(XS), N, XS)U111(tt)tt
U12(tt, N, XS)snd(splitAt(N, XS))U121(tt)tt
U131(tt, V2)U132(isLNat(V2))U132(tt)tt
U141(tt, V2)U142(isLNat(V2))U142(tt)tt
U151(tt, V2)U152(isLNat(V2))U152(tt)tt
U161(tt, N)cons(N, natsFrom(s(N)))U171(tt, N, XS)U172(isLNat(XS), N, XS)
U172(tt, N, XS)head(afterNth(N, XS))U181(tt, Y)U182(isLNat(Y), Y)
U182(tt, Y)YU191(tt, XS)pair(nil, XS)
U201(tt, N, X, XS)U202(isNatural(X), N, X, XS)U202(tt, N, X, XS)U203(isLNat(XS), N, X, XS)
U203(tt, N, X, XS)U204(splitAt(N, XS), X)U204(pair(YS, ZS), X)pair(cons(X, YS), ZS)
U21(tt, X, Y)U22(isLNat(Y), X)U211(tt, XS)U212(isLNat(XS), XS)
U212(tt, XS)XSU22(tt, X)X
U221(tt, N, XS)U222(isLNat(XS), N, XS)U222(tt, N, XS)fst(splitAt(N, XS))
U31(tt, N, XS)U32(isLNat(XS), N)U32(tt, N)N
U41(tt, V2)U42(isLNat(V2))U42(tt)tt
U51(tt, V2)U52(isLNat(V2))U52(tt)tt
U61(tt)ttU71(tt)tt
U81(tt)ttU91(tt)tt
afterNth(N, XS)U11(isNatural(N), N, XS)fst(pair(X, Y))U21(isLNat(X), X, Y)
head(cons(N, XS))U31(isNatural(N), N, XS)isLNat(nil)tt
isLNat(afterNth(V1, V2))U41(isNatural(V1), V2)isLNat(cons(V1, V2))U51(isNatural(V1), V2)
isLNat(fst(V1))U61(isPLNat(V1))isLNat(natsFrom(V1))U71(isNatural(V1))
isLNat(snd(V1))U81(isPLNat(V1))isLNat(tail(V1))U91(isLNat(V1))
isLNat(take(V1, V2))U101(isNatural(V1), V2)isNatural(0)tt
isNatural(head(V1))U111(isLNat(V1))isNatural(s(V1))U121(isNatural(V1))
isNatural(sel(V1, V2))U131(isNatural(V1), V2)isPLNat(pair(V1, V2))U141(isLNat(V1), V2)
isPLNat(splitAt(V1, V2))U151(isNatural(V1), V2)natsFrom(N)U161(isNatural(N), N)
sel(N, XS)U171(isNatural(N), N, XS)snd(pair(X, Y))U181(isLNat(X), Y)
splitAt(0, XS)U191(isLNat(XS), XS)splitAt(s(N), cons(X, XS))U201(isNatural(N), N, X, XS)
tail(cons(N, XS))U211(isNatural(N), XS)take(N, XS)U221(isNatural(N), N, XS)

Original Signature

Termination of terms over the following signature is verified: natsFrom, U161, U204, U203, fst, U111, U61, U211, U212, head, U21, U22, U151, isPLNat, U152, tail, U191, U71, 0, U121, U221, isLNat, U222, U31, U32, U181, U182, pair, isNatural, U132, U131, U42, U41, U91, cons, snd, U171, U172, splitAt, U201, U142, U202, U141, s, U51, tt, take, U81, U52, U11, U12, afterNth, U102, sel, U101, nil




Open Dependency Pair Problem 4

Dependency Pairs

T(natsFrom(x_1))T(x_1)natsFrom#(N)U161#(isNatural(N), N)
T(s(x_1))T(x_1)T(natsFrom(s(N)))natsFrom#(s(N))
U161#(tt, N)T(N)

Rewrite Rules

U101(tt, V2)U102(isLNat(V2))U102(tt)tt
U11(tt, N, XS)U12(isLNat(XS), N, XS)U111(tt)tt
U12(tt, N, XS)snd(splitAt(N, XS))U121(tt)tt
U131(tt, V2)U132(isLNat(V2))U132(tt)tt
U141(tt, V2)U142(isLNat(V2))U142(tt)tt
U151(tt, V2)U152(isLNat(V2))U152(tt)tt
U161(tt, N)cons(N, natsFrom(s(N)))U171(tt, N, XS)U172(isLNat(XS), N, XS)
U172(tt, N, XS)head(afterNth(N, XS))U181(tt, Y)U182(isLNat(Y), Y)
U182(tt, Y)YU191(tt, XS)pair(nil, XS)
U201(tt, N, X, XS)U202(isNatural(X), N, X, XS)U202(tt, N, X, XS)U203(isLNat(XS), N, X, XS)
U203(tt, N, X, XS)U204(splitAt(N, XS), X)U204(pair(YS, ZS), X)pair(cons(X, YS), ZS)
U21(tt, X, Y)U22(isLNat(Y), X)U211(tt, XS)U212(isLNat(XS), XS)
U212(tt, XS)XSU22(tt, X)X
U221(tt, N, XS)U222(isLNat(XS), N, XS)U222(tt, N, XS)fst(splitAt(N, XS))
U31(tt, N, XS)U32(isLNat(XS), N)U32(tt, N)N
U41(tt, V2)U42(isLNat(V2))U42(tt)tt
U51(tt, V2)U52(isLNat(V2))U52(tt)tt
U61(tt)ttU71(tt)tt
U81(tt)ttU91(tt)tt
afterNth(N, XS)U11(isNatural(N), N, XS)fst(pair(X, Y))U21(isLNat(X), X, Y)
head(cons(N, XS))U31(isNatural(N), N, XS)isLNat(nil)tt
isLNat(afterNth(V1, V2))U41(isNatural(V1), V2)isLNat(cons(V1, V2))U51(isNatural(V1), V2)
isLNat(fst(V1))U61(isPLNat(V1))isLNat(natsFrom(V1))U71(isNatural(V1))
isLNat(snd(V1))U81(isPLNat(V1))isLNat(tail(V1))U91(isLNat(V1))
isLNat(take(V1, V2))U101(isNatural(V1), V2)isNatural(0)tt
isNatural(head(V1))U111(isLNat(V1))isNatural(s(V1))U121(isNatural(V1))
isNatural(sel(V1, V2))U131(isNatural(V1), V2)isPLNat(pair(V1, V2))U141(isLNat(V1), V2)
isPLNat(splitAt(V1, V2))U151(isNatural(V1), V2)natsFrom(N)U161(isNatural(N), N)
sel(N, XS)U171(isNatural(N), N, XS)snd(pair(X, Y))U181(isLNat(X), Y)
splitAt(0, XS)U191(isLNat(XS), XS)splitAt(s(N), cons(X, XS))U201(isNatural(N), N, X, XS)
tail(cons(N, XS))U211(isNatural(N), XS)take(N, XS)U221(isNatural(N), N, XS)

Original Signature

Termination of terms over the following signature is verified: natsFrom, U161, U204, U203, fst, U111, U61, U211, U212, head, U21, U22, U151, isPLNat, U152, tail, U191, U71, 0, U121, U221, isLNat, U222, U31, U32, U181, U182, pair, isNatural, U132, U131, U42, U41, U91, cons, snd, U171, U172, splitAt, U201, U142, U202, U141, s, U51, tt, take, U81, U52, U11, U12, afterNth, U102, sel, U101, nil


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

U11#(tt, N, XS)isLNat#(XS)U22#(tt, X)T(X)
splitAt#(s(N), cons(X, XS))isNatural#(N)U21#(tt, X, Y)U22#(isLNat(Y), X)
U182#(tt, Y)T(Y)tail#(cons(N, XS))U211#(isNatural(N), XS)
isNatural#(head(V1))isLNat#(V1)isLNat#(snd(V1))U81#(isPLNat(V1))
tail#(cons(N, XS))isNatural#(N)U211#(tt, XS)isLNat#(XS)
isLNat#(natsFrom(V1))isNatural#(V1)U211#(tt, XS)U212#(isLNat(XS), XS)
U212#(tt, XS)T(XS)head#(cons(N, XS))isNatural#(N)
U222#(tt, N, XS)splitAt#(N, XS)U203#(tt, N, X, XS)splitAt#(N, XS)
splitAt#(s(N), cons(X, XS))U201#(isNatural(N), N, X, XS)isNatural#(s(V1))U121#(isNatural(V1))
U21#(tt, X, Y)isLNat#(Y)isLNat#(fst(V1))U61#(isPLNat(V1))
isLNat#(snd(V1))isPLNat#(V1)U12#(tt, N, XS)snd#(splitAt(N, XS))
isLNat#(tail(V1))isLNat#(V1)U181#(tt, Y)isLNat#(Y)
U203#(tt, N, X, XS)U204#(splitAt(N, XS), X)isLNat#(tail(V1))U91#(isLNat(V1))
isLNat#(natsFrom(V1))U71#(isNatural(V1))U172#(tt, N, XS)afterNth#(N, XS)
isLNat#(fst(V1))isPLNat#(V1)isLNat#(cons(V1, V2))U51#(isNatural(V1), V2)
U11#(tt, N, XS)U12#(isLNat(XS), N, XS)U202#(tt, N, X, XS)U203#(isLNat(XS), N, X, XS)
snd#(pair(X, Y))U181#(isLNat(X), Y)U141#(tt, V2)U142#(isLNat(V2))
U31#(tt, N, XS)isLNat#(XS)U12#(tt, N, XS)splitAt#(N, XS)
U161#(tt, N)T(N)U171#(tt, N, XS)U172#(isLNat(XS), N, XS)
T(natsFrom(x_1))T(x_1)natsFrom#(N)U161#(isNatural(N), N)
U12#(tt, N, XS)T(XS)U172#(tt, N, XS)head#(afterNth(N, XS))
U151#(tt, V2)U152#(isLNat(V2))head#(cons(N, XS))U31#(isNatural(N), N, XS)
U12#(tt, N, XS)T(N)U32#(tt, N)T(N)
U151#(tt, V2)isLNat#(V2)afterNth#(N, XS)U11#(isNatural(N), N, XS)
U201#(tt, N, X, XS)U202#(isNatural(X), N, X, XS)isNatural#(head(V1))U111#(isLNat(V1))
isLNat#(take(V1, V2))U101#(isNatural(V1), V2)U203#(tt, N, X, XS)T(N)
U191#(tt, XS)T(XS)U222#(tt, N, XS)fst#(splitAt(N, XS))
U101#(tt, V2)U102#(isLNat(V2))U171#(tt, N, XS)isLNat#(XS)
sel#(N, XS)U171#(isNatural(N), N, XS)U222#(tt, N, XS)T(XS)
U41#(tt, V2)U42#(isLNat(V2))isLNat#(cons(V1, V2))isNatural#(V1)
isLNat#(afterNth(V1, V2))isNatural#(V1)T(s(x_1))T(x_1)
U204#(pair(YS, ZS), X)T(X)isNatural#(s(V1))isNatural#(V1)
isLNat#(afterNth(V1, V2))U41#(isNatural(V1), V2)isPLNat#(pair(V1, V2))U141#(isLNat(V1), V2)
U51#(tt, V2)U52#(isLNat(V2))isLNat#(take(V1, V2))isNatural#(V1)
snd#(pair(X, Y))isLNat#(X)splitAt#(0, XS)isLNat#(XS)
natsFrom#(N)isNatural#(N)U202#(tt, N, X, XS)isLNat#(XS)
T(natsFrom(s(N)))natsFrom#(s(N))isNatural#(sel(V1, V2))U131#(isNatural(V1), V2)
U221#(tt, N, XS)U222#(isLNat(XS), N, XS)isPLNat#(splitAt(V1, V2))U151#(isNatural(V1), V2)
U221#(tt, N, XS)isLNat#(XS)fst#(pair(X, Y))isLNat#(X)
sel#(N, XS)isNatural#(N)fst#(pair(X, Y))U21#(isLNat(X), X, Y)
isNatural#(sel(V1, V2))isNatural#(V1)U201#(tt, N, X, XS)isNatural#(X)
take#(N, XS)isNatural#(N)U31#(tt, N, XS)U32#(isLNat(XS), N)
U131#(tt, V2)U132#(isLNat(V2))U141#(tt, V2)isLNat#(V2)
U172#(tt, N, XS)T(N)U101#(tt, V2)isLNat#(V2)
afterNth#(N, XS)isNatural#(N)U41#(tt, V2)isLNat#(V2)
isPLNat#(pair(V1, V2))isLNat#(V1)U131#(tt, V2)isLNat#(V2)
take#(N, XS)U221#(isNatural(N), N, XS)splitAt#(0, XS)U191#(isLNat(XS), XS)
U172#(tt, N, XS)T(XS)U203#(tt, N, X, XS)T(XS)
isPLNat#(splitAt(V1, V2))isNatural#(V1)U222#(tt, N, XS)T(N)
U51#(tt, V2)isLNat#(V2)U181#(tt, Y)U182#(isLNat(Y), Y)

Rewrite Rules

U101(tt, V2)U102(isLNat(V2))U102(tt)tt
U11(tt, N, XS)U12(isLNat(XS), N, XS)U111(tt)tt
U12(tt, N, XS)snd(splitAt(N, XS))U121(tt)tt
U131(tt, V2)U132(isLNat(V2))U132(tt)tt
U141(tt, V2)U142(isLNat(V2))U142(tt)tt
U151(tt, V2)U152(isLNat(V2))U152(tt)tt
U161(tt, N)cons(N, natsFrom(s(N)))U171(tt, N, XS)U172(isLNat(XS), N, XS)
U172(tt, N, XS)head(afterNth(N, XS))U181(tt, Y)U182(isLNat(Y), Y)
U182(tt, Y)YU191(tt, XS)pair(nil, XS)
U201(tt, N, X, XS)U202(isNatural(X), N, X, XS)U202(tt, N, X, XS)U203(isLNat(XS), N, X, XS)
U203(tt, N, X, XS)U204(splitAt(N, XS), X)U204(pair(YS, ZS), X)pair(cons(X, YS), ZS)
U21(tt, X, Y)U22(isLNat(Y), X)U211(tt, XS)U212(isLNat(XS), XS)
U212(tt, XS)XSU22(tt, X)X
U221(tt, N, XS)U222(isLNat(XS), N, XS)U222(tt, N, XS)fst(splitAt(N, XS))
U31(tt, N, XS)U32(isLNat(XS), N)U32(tt, N)N
U41(tt, V2)U42(isLNat(V2))U42(tt)tt
U51(tt, V2)U52(isLNat(V2))U52(tt)tt
U61(tt)ttU71(tt)tt
U81(tt)ttU91(tt)tt
afterNth(N, XS)U11(isNatural(N), N, XS)fst(pair(X, Y))U21(isLNat(X), X, Y)
head(cons(N, XS))U31(isNatural(N), N, XS)isLNat(nil)tt
isLNat(afterNth(V1, V2))U41(isNatural(V1), V2)isLNat(cons(V1, V2))U51(isNatural(V1), V2)
isLNat(fst(V1))U61(isPLNat(V1))isLNat(natsFrom(V1))U71(isNatural(V1))
isLNat(snd(V1))U81(isPLNat(V1))isLNat(tail(V1))U91(isLNat(V1))
isLNat(take(V1, V2))U101(isNatural(V1), V2)isNatural(0)tt
isNatural(head(V1))U111(isLNat(V1))isNatural(s(V1))U121(isNatural(V1))
isNatural(sel(V1, V2))U131(isNatural(V1), V2)isPLNat(pair(V1, V2))U141(isLNat(V1), V2)
isPLNat(splitAt(V1, V2))U151(isNatural(V1), V2)natsFrom(N)U161(isNatural(N), N)
sel(N, XS)U171(isNatural(N), N, XS)snd(pair(X, Y))U181(isLNat(X), Y)
splitAt(0, XS)U191(isLNat(XS), XS)splitAt(s(N), cons(X, XS))U201(isNatural(N), N, X, XS)
tail(cons(N, XS))U211(isNatural(N), XS)take(N, XS)U221(isNatural(N), N, XS)

Original Signature

Termination of terms over the following signature is verified: natsFrom, U161, U204, U203, fst, U111, U61, U211, U212, head, U21, U22, U151, U152, isPLNat, tail, U71, U191, 0, U121, U221, U222, isLNat, U31, U32, U181, U182, pair, isNatural, U132, U131, U42, U41, U91, cons, snd, U171, U172, splitAt, U201, U142, U202, U141, s, U51, tt, take, U81, U52, U11, U12, afterNth, U102, sel, nil, U101

Strategy

Context-sensitive strategy:
μ(isNatural#) = μ(isPLNat) = μ(0) = μ(isLNat#) = μ(T) = μ(tt) = μ(isLNat) = μ(isNatural) = μ(isPLNat#) = μ(nil) = ∅
μ(natsFrom#) = μ(U11#) = μ(fst#) = μ(U31#) = μ(U181#) = μ(U203#) = μ(tail#) = μ(U52#) = μ(U111) = μ(U61) = μ(U161#) = μ(U212#) = μ(U12#) = μ(U182#) = μ(U202#) = μ(U51#) = μ(tail) = μ(U71) = μ(U191) = μ(U71#) = μ(U121) = μ(U222#) = μ(U32#) = μ(U102#) = μ(U201#) = μ(U221#) = μ(U132) = μ(U131) = μ(U42) = μ(U41) = μ(U142#) = μ(cons) = μ(U101#) = μ(U121#) = μ(U142) = μ(U141) = μ(U51) = μ(s) = μ(U52) = μ(U141#) = μ(U151#) = μ(natsFrom) = μ(U21#) = μ(U161) = μ(U204) = μ(U203) = μ(U171#) = μ(fst) = μ(U41#) = μ(U211) = μ(U212) = μ(snd#) = μ(head) = μ(U21) = μ(U22) = μ(U152#) = μ(U22#) = μ(U61#) = μ(U151) = μ(U152) = μ(U172#) = μ(U42#) = μ(U191#) = μ(U221) = μ(U222) = μ(U31) = μ(U32) = μ(U181) = μ(U182) = μ(U91#) = μ(U81#) = μ(U211#) = μ(U91) = μ(U132#) = μ(U111#) = μ(snd) = μ(U171) = μ(U172) = μ(U201) = μ(U202) = μ(U204#) = μ(U81) = μ(U11) = μ(U12) = μ(U131#) = μ(head#) = μ(U102) = μ(U101) = {1}
μ(sel#) = μ(take#) = μ(pair) = μ(splitAt) = μ(afterNth) = μ(splitAt#) = μ(afterNth#) = μ(take) = μ(sel) = {1, 2}


The following SCCs where found

isPLNat#(pair(V1, V2)) → isLNat#(V1)U41#(tt, V2) → isLNat#(V2)
U131#(tt, V2) → isLNat#(V2)isLNat#(snd(V1)) → isPLNat#(V1)
isLNat#(fst(V1)) → isPLNat#(V1)isNatural#(head(V1)) → isLNat#(V1)
isNatural#(sel(V1, V2)) → isNatural#(V1)isLNat#(cons(V1, V2)) → U51#(isNatural(V1), V2)
isLNat#(tail(V1)) → isLNat#(V1)isNatural#(sel(V1, V2)) → U131#(isNatural(V1), V2)
isLNat#(natsFrom(V1)) → isNatural#(V1)U151#(tt, V2) → isLNat#(V2)
isLNat#(cons(V1, V2)) → isNatural#(V1)isLNat#(afterNth(V1, V2)) → isNatural#(V1)
isPLNat#(splitAt(V1, V2)) → U151#(isNatural(V1), V2)isLNat#(take(V1, V2)) → U101#(isNatural(V1), V2)
U141#(tt, V2) → isLNat#(V2)isNatural#(s(V1)) → isNatural#(V1)
U101#(tt, V2) → isLNat#(V2)isLNat#(afterNth(V1, V2)) → U41#(isNatural(V1), V2)
isPLNat#(pair(V1, V2)) → U141#(isLNat(V1), V2)isPLNat#(splitAt(V1, V2)) → isNatural#(V1)
U51#(tt, V2) → isLNat#(V2)isLNat#(take(V1, V2)) → isNatural#(V1)

U201#(tt, N, X, XS) → U202#(isNatural(X), N, X, XS)U203#(tt, N, X, XS) → splitAt#(N, XS)
splitAt#(s(N), cons(X, XS)) → U201#(isNatural(N), N, X, XS)U202#(tt, N, X, XS) → U203#(isLNat(XS), N, X, XS)

T(natsFrom(x_1)) → T(x_1)natsFrom#(N) → U161#(isNatural(N), N)
T(s(x_1)) → T(x_1)T(natsFrom(s(N))) → natsFrom#(s(N))
U161#(tt, N) → T(N)

Problem 2: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

isPLNat#(pair(V1, V2))isLNat#(V1)U41#(tt, V2)isLNat#(V2)
U131#(tt, V2)isLNat#(V2)isLNat#(snd(V1))isPLNat#(V1)
isLNat#(fst(V1))isPLNat#(V1)isNatural#(head(V1))isLNat#(V1)
isLNat#(cons(V1, V2))U51#(isNatural(V1), V2)isNatural#(sel(V1, V2))isNatural#(V1)
isLNat#(tail(V1))isLNat#(V1)isNatural#(sel(V1, V2))U131#(isNatural(V1), V2)
isLNat#(natsFrom(V1))isNatural#(V1)U151#(tt, V2)isLNat#(V2)
isLNat#(cons(V1, V2))isNatural#(V1)isLNat#(afterNth(V1, V2))isNatural#(V1)
isPLNat#(splitAt(V1, V2))U151#(isNatural(V1), V2)isLNat#(take(V1, V2))U101#(isNatural(V1), V2)
U141#(tt, V2)isLNat#(V2)U101#(tt, V2)isLNat#(V2)
isNatural#(s(V1))isNatural#(V1)isLNat#(afterNth(V1, V2))U41#(isNatural(V1), V2)
isPLNat#(splitAt(V1, V2))isNatural#(V1)isPLNat#(pair(V1, V2))U141#(isLNat(V1), V2)
U51#(tt, V2)isLNat#(V2)isLNat#(take(V1, V2))isNatural#(V1)

Rewrite Rules

U101(tt, V2)U102(isLNat(V2))U102(tt)tt
U11(tt, N, XS)U12(isLNat(XS), N, XS)U111(tt)tt
U12(tt, N, XS)snd(splitAt(N, XS))U121(tt)tt
U131(tt, V2)U132(isLNat(V2))U132(tt)tt
U141(tt, V2)U142(isLNat(V2))U142(tt)tt
U151(tt, V2)U152(isLNat(V2))U152(tt)tt
U161(tt, N)cons(N, natsFrom(s(N)))U171(tt, N, XS)U172(isLNat(XS), N, XS)
U172(tt, N, XS)head(afterNth(N, XS))U181(tt, Y)U182(isLNat(Y), Y)
U182(tt, Y)YU191(tt, XS)pair(nil, XS)
U201(tt, N, X, XS)U202(isNatural(X), N, X, XS)U202(tt, N, X, XS)U203(isLNat(XS), N, X, XS)
U203(tt, N, X, XS)U204(splitAt(N, XS), X)U204(pair(YS, ZS), X)pair(cons(X, YS), ZS)
U21(tt, X, Y)U22(isLNat(Y), X)U211(tt, XS)U212(isLNat(XS), XS)
U212(tt, XS)XSU22(tt, X)X
U221(tt, N, XS)U222(isLNat(XS), N, XS)U222(tt, N, XS)fst(splitAt(N, XS))
U31(tt, N, XS)U32(isLNat(XS), N)U32(tt, N)N
U41(tt, V2)U42(isLNat(V2))U42(tt)tt
U51(tt, V2)U52(isLNat(V2))U52(tt)tt
U61(tt)ttU71(tt)tt
U81(tt)ttU91(tt)tt
afterNth(N, XS)U11(isNatural(N), N, XS)fst(pair(X, Y))U21(isLNat(X), X, Y)
head(cons(N, XS))U31(isNatural(N), N, XS)isLNat(nil)tt
isLNat(afterNth(V1, V2))U41(isNatural(V1), V2)isLNat(cons(V1, V2))U51(isNatural(V1), V2)
isLNat(fst(V1))U61(isPLNat(V1))isLNat(natsFrom(V1))U71(isNatural(V1))
isLNat(snd(V1))U81(isPLNat(V1))isLNat(tail(V1))U91(isLNat(V1))
isLNat(take(V1, V2))U101(isNatural(V1), V2)isNatural(0)tt
isNatural(head(V1))U111(isLNat(V1))isNatural(s(V1))U121(isNatural(V1))
isNatural(sel(V1, V2))U131(isNatural(V1), V2)isPLNat(pair(V1, V2))U141(isLNat(V1), V2)
isPLNat(splitAt(V1, V2))U151(isNatural(V1), V2)natsFrom(N)U161(isNatural(N), N)
sel(N, XS)U171(isNatural(N), N, XS)snd(pair(X, Y))U181(isLNat(X), Y)
splitAt(0, XS)U191(isLNat(XS), XS)splitAt(s(N), cons(X, XS))U201(isNatural(N), N, X, XS)
tail(cons(N, XS))U211(isNatural(N), XS)take(N, XS)U221(isNatural(N), N, XS)

Original Signature

Termination of terms over the following signature is verified: natsFrom, U161, U204, U203, fst, U111, U61, U211, U212, head, U21, U22, U151, U152, isPLNat, tail, U71, U191, 0, U121, U221, U222, isLNat, U31, U32, U181, U182, pair, isNatural, U132, U131, U42, U41, U91, cons, snd, U171, U172, splitAt, U201, U142, U202, U141, s, U51, tt, take, U81, U52, U11, U12, afterNth, U102, sel, nil, U101

Strategy

Context-sensitive strategy:
μ(isNatural#) = μ(isPLNat) = μ(0) = μ(isLNat#) = μ(T) = μ(tt) = μ(isLNat) = μ(isNatural) = μ(isPLNat#) = μ(nil) = ∅
μ(natsFrom#) = μ(U11#) = μ(U31#) = μ(fst#) = μ(U181#) = μ(U203#) = μ(U52#) = μ(tail#) = μ(U111) = μ(U161#) = μ(U61) = μ(U212#) = μ(U12#) = μ(U182#) = μ(U202#) = μ(U51#) = μ(tail) = μ(U71) = μ(U191) = μ(U71#) = μ(U121) = μ(U222#) = μ(U32#) = μ(U102#) = μ(U201#) = μ(U221#) = μ(U132) = μ(U131) = μ(U42) = μ(U41) = μ(U142#) = μ(cons) = μ(U121#) = μ(U101#) = μ(U142) = μ(U141) = μ(s) = μ(U51) = μ(U52) = μ(U141#) = μ(U151#) = μ(natsFrom) = μ(U21#) = μ(U161) = μ(U204) = μ(U203) = μ(U171#) = μ(fst) = μ(U41#) = μ(U211) = μ(U212) = μ(snd#) = μ(head) = μ(U21) = μ(U22) = μ(U152#) = μ(U22#) = μ(U61#) = μ(U151) = μ(U152) = μ(U172#) = μ(U42#) = μ(U191#) = μ(U221) = μ(U222) = μ(U31) = μ(U32) = μ(U181) = μ(U182) = μ(U91#) = μ(U81#) = μ(U211#) = μ(U91) = μ(U132#) = μ(U111#) = μ(snd) = μ(U171) = μ(U172) = μ(U201) = μ(U202) = μ(U204#) = μ(U81) = μ(U11) = μ(U12) = μ(head#) = μ(U131#) = μ(U102) = μ(U101) = {1}
μ(sel#) = μ(take#) = μ(pair) = μ(splitAt) = μ(afterNth) = μ(splitAt#) = μ(afterNth#) = μ(take) = μ(sel) = {1, 2}


Polynomial Interpretation

Standard Usable rules

U141(tt, V2)U142(isLNat(V2))U41(tt, V2)U42(isLNat(V2))
U151(tt, V2)U152(isLNat(V2))isPLNat(pair(V1, V2))U141(isLNat(V1), V2)
isLNat(nil)ttisLNat(natsFrom(V1))U71(isNatural(V1))
isNatural(0)ttisNatural(head(V1))U111(isLNat(V1))
isLNat(afterNth(V1, V2))U41(isNatural(V1), V2)U81(tt)tt
isLNat(snd(V1))U81(isPLNat(V1))isLNat(tail(V1))U91(isLNat(V1))
U152(tt)ttU102(tt)tt
U61(tt)ttU121(tt)tt
U71(tt)ttisLNat(fst(V1))U61(isPLNat(V1))
U111(tt)ttU131(tt, V2)U132(isLNat(V2))
U132(tt)ttU42(tt)tt
isLNat(cons(V1, V2))U51(isNatural(V1), V2)U101(tt, V2)U102(isLNat(V2))
U142(tt)ttisLNat(take(V1, V2))U101(isNatural(V1), V2)
U91(tt)ttU51(tt, V2)U52(isLNat(V2))
isPLNat(splitAt(V1, V2))U151(isNatural(V1), V2)isNatural(s(V1))U121(isNatural(V1))
U52(tt)ttisNatural(sel(V1, V2))U131(isNatural(V1), V2)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

isLNat#(fst(V1))isPLNat#(V1)isNatural#(head(V1))isLNat#(V1)
U101#(tt, V2)isLNat#(V2)isLNat#(afterNth(V1, V2))U41#(isNatural(V1), V2)
U41#(tt, V2)isLNat#(V2)isPLNat#(pair(V1, V2))isLNat#(V1)
isLNat#(snd(V1))isPLNat#(V1)isLNat#(tail(V1))isLNat#(V1)
isNatural#(sel(V1, V2))U131#(isNatural(V1), V2)U151#(tt, V2)isLNat#(V2)
U51#(tt, V2)isLNat#(V2)

Problem 5: DependencyGraph



Dependency Pair Problem

Dependency Pairs

U131#(tt, V2)isLNat#(V2)isLNat#(cons(V1, V2))U51#(isNatural(V1), V2)
isNatural#(sel(V1, V2))isNatural#(V1)isLNat#(natsFrom(V1))isNatural#(V1)
isLNat#(cons(V1, V2))isNatural#(V1)isLNat#(afterNth(V1, V2))isNatural#(V1)
isPLNat#(splitAt(V1, V2))U151#(isNatural(V1), V2)isLNat#(take(V1, V2))U101#(isNatural(V1), V2)
U141#(tt, V2)isLNat#(V2)isNatural#(s(V1))isNatural#(V1)
isPLNat#(splitAt(V1, V2))isNatural#(V1)isPLNat#(pair(V1, V2))U141#(isLNat(V1), V2)
isLNat#(take(V1, V2))isNatural#(V1)

Rewrite Rules

U101(tt, V2)U102(isLNat(V2))U102(tt)tt
U11(tt, N, XS)U12(isLNat(XS), N, XS)U111(tt)tt
U12(tt, N, XS)snd(splitAt(N, XS))U121(tt)tt
U131(tt, V2)U132(isLNat(V2))U132(tt)tt
U141(tt, V2)U142(isLNat(V2))U142(tt)tt
U151(tt, V2)U152(isLNat(V2))U152(tt)tt
U161(tt, N)cons(N, natsFrom(s(N)))U171(tt, N, XS)U172(isLNat(XS), N, XS)
U172(tt, N, XS)head(afterNth(N, XS))U181(tt, Y)U182(isLNat(Y), Y)
U182(tt, Y)YU191(tt, XS)pair(nil, XS)
U201(tt, N, X, XS)U202(isNatural(X), N, X, XS)U202(tt, N, X, XS)U203(isLNat(XS), N, X, XS)
U203(tt, N, X, XS)U204(splitAt(N, XS), X)U204(pair(YS, ZS), X)pair(cons(X, YS), ZS)
U21(tt, X, Y)U22(isLNat(Y), X)U211(tt, XS)U212(isLNat(XS), XS)
U212(tt, XS)XSU22(tt, X)X
U221(tt, N, XS)U222(isLNat(XS), N, XS)U222(tt, N, XS)fst(splitAt(N, XS))
U31(tt, N, XS)U32(isLNat(XS), N)U32(tt, N)N
U41(tt, V2)U42(isLNat(V2))U42(tt)tt
U51(tt, V2)U52(isLNat(V2))U52(tt)tt
U61(tt)ttU71(tt)tt
U81(tt)ttU91(tt)tt
afterNth(N, XS)U11(isNatural(N), N, XS)fst(pair(X, Y))U21(isLNat(X), X, Y)
head(cons(N, XS))U31(isNatural(N), N, XS)isLNat(nil)tt
isLNat(afterNth(V1, V2))U41(isNatural(V1), V2)isLNat(cons(V1, V2))U51(isNatural(V1), V2)
isLNat(fst(V1))U61(isPLNat(V1))isLNat(natsFrom(V1))U71(isNatural(V1))
isLNat(snd(V1))U81(isPLNat(V1))isLNat(tail(V1))U91(isLNat(V1))
isLNat(take(V1, V2))U101(isNatural(V1), V2)isNatural(0)tt
isNatural(head(V1))U111(isLNat(V1))isNatural(s(V1))U121(isNatural(V1))
isNatural(sel(V1, V2))U131(isNatural(V1), V2)isPLNat(pair(V1, V2))U141(isLNat(V1), V2)
isPLNat(splitAt(V1, V2))U151(isNatural(V1), V2)natsFrom(N)U161(isNatural(N), N)
sel(N, XS)U171(isNatural(N), N, XS)snd(pair(X, Y))U181(isLNat(X), Y)
splitAt(0, XS)U191(isLNat(XS), XS)splitAt(s(N), cons(X, XS))U201(isNatural(N), N, X, XS)
tail(cons(N, XS))U211(isNatural(N), XS)take(N, XS)U221(isNatural(N), N, XS)

Original Signature

Termination of terms over the following signature is verified: natsFrom, U161, U204, U203, fst, U111, U61, U211, U212, head, U21, U22, U151, isPLNat, U152, tail, U191, U71, 0, U121, U221, isLNat, U222, U31, U32, U181, U182, pair, isNatural, U132, U131, U42, U41, U91, cons, snd, U171, U172, splitAt, U201, U142, U202, U141, s, U51, tt, take, U81, U52, U11, U12, afterNth, U102, sel, U101, nil

Strategy

Context-sensitive strategy:
μ(isNatural#) = μ(isPLNat) = μ(0) = μ(isLNat#) = μ(T) = μ(tt) = μ(isLNat) = μ(isNatural) = μ(isPLNat#) = μ(nil) = ∅
μ(natsFrom#) = μ(U11#) = μ(fst#) = μ(U31#) = μ(U181#) = μ(U203#) = μ(tail#) = μ(U52#) = μ(U111) = μ(U61) = μ(U161#) = μ(U212#) = μ(U12#) = μ(U182#) = μ(U202#) = μ(U51#) = μ(tail) = μ(U71) = μ(U191) = μ(U71#) = μ(U121) = μ(U222#) = μ(U32#) = μ(U102#) = μ(U201#) = μ(U221#) = μ(U132) = μ(U131) = μ(U42) = μ(U41) = μ(U142#) = μ(cons) = μ(U101#) = μ(U121#) = μ(U142) = μ(U141) = μ(U51) = μ(s) = μ(U52) = μ(U141#) = μ(U151#) = μ(natsFrom) = μ(U21#) = μ(U161) = μ(U204) = μ(U203) = μ(U171#) = μ(fst) = μ(U41#) = μ(U211) = μ(U212) = μ(snd#) = μ(head) = μ(U21) = μ(U22) = μ(U152#) = μ(U22#) = μ(U61#) = μ(U151) = μ(U152) = μ(U172#) = μ(U42#) = μ(U191#) = μ(U221) = μ(U222) = μ(U31) = μ(U32) = μ(U181) = μ(U182) = μ(U91#) = μ(U81#) = μ(U211#) = μ(U91) = μ(U132#) = μ(U111#) = μ(snd) = μ(U171) = μ(U172) = μ(U201) = μ(U202) = μ(U204#) = μ(U81) = μ(U11) = μ(U12) = μ(U131#) = μ(head#) = μ(U102) = μ(U101) = {1}
μ(sel#) = μ(take#) = μ(pair) = μ(splitAt) = μ(afterNth) = μ(splitAt#) = μ(afterNth#) = μ(take) = μ(sel) = {1, 2}


The following SCCs where found

isNatural#(s(V1)) → isNatural#(V1)isNatural#(sel(V1, V2)) → isNatural#(V1)

Problem 6: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

isNatural#(s(V1))isNatural#(V1)isNatural#(sel(V1, V2))isNatural#(V1)

Rewrite Rules

U101(tt, V2)U102(isLNat(V2))U102(tt)tt
U11(tt, N, XS)U12(isLNat(XS), N, XS)U111(tt)tt
U12(tt, N, XS)snd(splitAt(N, XS))U121(tt)tt
U131(tt, V2)U132(isLNat(V2))U132(tt)tt
U141(tt, V2)U142(isLNat(V2))U142(tt)tt
U151(tt, V2)U152(isLNat(V2))U152(tt)tt
U161(tt, N)cons(N, natsFrom(s(N)))U171(tt, N, XS)U172(isLNat(XS), N, XS)
U172(tt, N, XS)head(afterNth(N, XS))U181(tt, Y)U182(isLNat(Y), Y)
U182(tt, Y)YU191(tt, XS)pair(nil, XS)
U201(tt, N, X, XS)U202(isNatural(X), N, X, XS)U202(tt, N, X, XS)U203(isLNat(XS), N, X, XS)
U203(tt, N, X, XS)U204(splitAt(N, XS), X)U204(pair(YS, ZS), X)pair(cons(X, YS), ZS)
U21(tt, X, Y)U22(isLNat(Y), X)U211(tt, XS)U212(isLNat(XS), XS)
U212(tt, XS)XSU22(tt, X)X
U221(tt, N, XS)U222(isLNat(XS), N, XS)U222(tt, N, XS)fst(splitAt(N, XS))
U31(tt, N, XS)U32(isLNat(XS), N)U32(tt, N)N
U41(tt, V2)U42(isLNat(V2))U42(tt)tt
U51(tt, V2)U52(isLNat(V2))U52(tt)tt
U61(tt)ttU71(tt)tt
U81(tt)ttU91(tt)tt
afterNth(N, XS)U11(isNatural(N), N, XS)fst(pair(X, Y))U21(isLNat(X), X, Y)
head(cons(N, XS))U31(isNatural(N), N, XS)isLNat(nil)tt
isLNat(afterNth(V1, V2))U41(isNatural(V1), V2)isLNat(cons(V1, V2))U51(isNatural(V1), V2)
isLNat(fst(V1))U61(isPLNat(V1))isLNat(natsFrom(V1))U71(isNatural(V1))
isLNat(snd(V1))U81(isPLNat(V1))isLNat(tail(V1))U91(isLNat(V1))
isLNat(take(V1, V2))U101(isNatural(V1), V2)isNatural(0)tt
isNatural(head(V1))U111(isLNat(V1))isNatural(s(V1))U121(isNatural(V1))
isNatural(sel(V1, V2))U131(isNatural(V1), V2)isPLNat(pair(V1, V2))U141(isLNat(V1), V2)
isPLNat(splitAt(V1, V2))U151(isNatural(V1), V2)natsFrom(N)U161(isNatural(N), N)
sel(N, XS)U171(isNatural(N), N, XS)snd(pair(X, Y))U181(isLNat(X), Y)
splitAt(0, XS)U191(isLNat(XS), XS)splitAt(s(N), cons(X, XS))U201(isNatural(N), N, X, XS)
tail(cons(N, XS))U211(isNatural(N), XS)take(N, XS)U221(isNatural(N), N, XS)

Original Signature

Termination of terms over the following signature is verified: natsFrom, U161, U204, U203, fst, U111, U61, U211, U212, head, U21, U22, U151, isPLNat, U152, tail, U191, U71, 0, U121, U221, isLNat, U222, U31, U32, U181, U182, pair, isNatural, U132, U131, U42, U41, U91, cons, snd, U171, U172, splitAt, U201, U142, U202, U141, s, U51, tt, take, U81, U52, U11, U12, afterNth, U102, sel, U101, nil

Strategy

Context-sensitive strategy:
μ(isNatural#) = μ(isPLNat) = μ(0) = μ(isLNat#) = μ(T) = μ(tt) = μ(isLNat) = μ(isNatural) = μ(isPLNat#) = μ(nil) = ∅
μ(natsFrom#) = μ(U11#) = μ(U31#) = μ(fst#) = μ(U181#) = μ(U203#) = μ(U52#) = μ(tail#) = μ(U111) = μ(U161#) = μ(U61) = μ(U212#) = μ(U12#) = μ(U182#) = μ(U202#) = μ(U51#) = μ(tail) = μ(U71) = μ(U191) = μ(U71#) = μ(U121) = μ(U222#) = μ(U32#) = μ(U102#) = μ(U201#) = μ(U221#) = μ(U132) = μ(U131) = μ(U42) = μ(U41) = μ(U142#) = μ(cons) = μ(U121#) = μ(U101#) = μ(U142) = μ(U141) = μ(s) = μ(U51) = μ(U52) = μ(U141#) = μ(U151#) = μ(natsFrom) = μ(U21#) = μ(U161) = μ(U204) = μ(U203) = μ(U171#) = μ(fst) = μ(U41#) = μ(U211) = μ(U212) = μ(snd#) = μ(head) = μ(U21) = μ(U22) = μ(U152#) = μ(U22#) = μ(U61#) = μ(U151) = μ(U152) = μ(U172#) = μ(U42#) = μ(U191#) = μ(U221) = μ(U222) = μ(U31) = μ(U32) = μ(U181) = μ(U182) = μ(U91#) = μ(U81#) = μ(U211#) = μ(U91) = μ(U132#) = μ(U111#) = μ(snd) = μ(U171) = μ(U172) = μ(U201) = μ(U202) = μ(U204#) = μ(U81) = μ(U11) = μ(U12) = μ(head#) = μ(U131#) = μ(U102) = μ(U101) = {1}
μ(sel#) = μ(take#) = μ(pair) = μ(splitAt) = μ(afterNth) = μ(splitAt#) = μ(afterNth#) = μ(take) = μ(sel) = {1, 2}


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

isNatural#(s(V1))isNatural#(V1)

Problem 7: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

isNatural#(sel(V1, V2))isNatural#(V1)

Rewrite Rules

U101(tt, V2)U102(isLNat(V2))U102(tt)tt
U11(tt, N, XS)U12(isLNat(XS), N, XS)U111(tt)tt
U12(tt, N, XS)snd(splitAt(N, XS))U121(tt)tt
U131(tt, V2)U132(isLNat(V2))U132(tt)tt
U141(tt, V2)U142(isLNat(V2))U142(tt)tt
U151(tt, V2)U152(isLNat(V2))U152(tt)tt
U161(tt, N)cons(N, natsFrom(s(N)))U171(tt, N, XS)U172(isLNat(XS), N, XS)
U172(tt, N, XS)head(afterNth(N, XS))U181(tt, Y)U182(isLNat(Y), Y)
U182(tt, Y)YU191(tt, XS)pair(nil, XS)
U201(tt, N, X, XS)U202(isNatural(X), N, X, XS)U202(tt, N, X, XS)U203(isLNat(XS), N, X, XS)
U203(tt, N, X, XS)U204(splitAt(N, XS), X)U204(pair(YS, ZS), X)pair(cons(X, YS), ZS)
U21(tt, X, Y)U22(isLNat(Y), X)U211(tt, XS)U212(isLNat(XS), XS)
U212(tt, XS)XSU22(tt, X)X
U221(tt, N, XS)U222(isLNat(XS), N, XS)U222(tt, N, XS)fst(splitAt(N, XS))
U31(tt, N, XS)U32(isLNat(XS), N)U32(tt, N)N
U41(tt, V2)U42(isLNat(V2))U42(tt)tt
U51(tt, V2)U52(isLNat(V2))U52(tt)tt
U61(tt)ttU71(tt)tt
U81(tt)ttU91(tt)tt
afterNth(N, XS)U11(isNatural(N), N, XS)fst(pair(X, Y))U21(isLNat(X), X, Y)
head(cons(N, XS))U31(isNatural(N), N, XS)isLNat(nil)tt
isLNat(afterNth(V1, V2))U41(isNatural(V1), V2)isLNat(cons(V1, V2))U51(isNatural(V1), V2)
isLNat(fst(V1))U61(isPLNat(V1))isLNat(natsFrom(V1))U71(isNatural(V1))
isLNat(snd(V1))U81(isPLNat(V1))isLNat(tail(V1))U91(isLNat(V1))
isLNat(take(V1, V2))U101(isNatural(V1), V2)isNatural(0)tt
isNatural(head(V1))U111(isLNat(V1))isNatural(s(V1))U121(isNatural(V1))
isNatural(sel(V1, V2))U131(isNatural(V1), V2)isPLNat(pair(V1, V2))U141(isLNat(V1), V2)
isPLNat(splitAt(V1, V2))U151(isNatural(V1), V2)natsFrom(N)U161(isNatural(N), N)
sel(N, XS)U171(isNatural(N), N, XS)snd(pair(X, Y))U181(isLNat(X), Y)
splitAt(0, XS)U191(isLNat(XS), XS)splitAt(s(N), cons(X, XS))U201(isNatural(N), N, X, XS)
tail(cons(N, XS))U211(isNatural(N), XS)take(N, XS)U221(isNatural(N), N, XS)

Original Signature

Termination of terms over the following signature is verified: natsFrom, U161, U204, U203, fst, U111, U61, U211, U212, head, U21, U22, U151, U152, isPLNat, tail, U71, U191, 0, U121, U221, U222, isLNat, U31, U32, U181, U182, pair, isNatural, U132, U131, U42, U41, U91, cons, snd, U171, U172, splitAt, U201, U142, U202, U141, s, U51, tt, take, U81, U52, U11, U12, afterNth, U102, sel, nil, U101

Strategy

Context-sensitive strategy:
μ(isNatural#) = μ(isPLNat) = μ(0) = μ(isLNat#) = μ(T) = μ(tt) = μ(isLNat) = μ(isNatural) = μ(isPLNat#) = μ(nil) = ∅
μ(natsFrom#) = μ(U11#) = μ(fst#) = μ(U31#) = μ(U181#) = μ(U203#) = μ(tail#) = μ(U52#) = μ(U111) = μ(U61) = μ(U161#) = μ(U212#) = μ(U12#) = μ(U182#) = μ(U202#) = μ(U51#) = μ(tail) = μ(U71) = μ(U191) = μ(U71#) = μ(U121) = μ(U222#) = μ(U32#) = μ(U102#) = μ(U201#) = μ(U221#) = μ(U132) = μ(U131) = μ(U42) = μ(U41) = μ(U142#) = μ(cons) = μ(U101#) = μ(U121#) = μ(U142) = μ(U141) = μ(U51) = μ(s) = μ(U52) = μ(U141#) = μ(U151#) = μ(natsFrom) = μ(U21#) = μ(U161) = μ(U204) = μ(U203) = μ(U171#) = μ(fst) = μ(U41#) = μ(U211) = μ(U212) = μ(snd#) = μ(head) = μ(U21) = μ(U22) = μ(U152#) = μ(U22#) = μ(U61#) = μ(U151) = μ(U152) = μ(U172#) = μ(U42#) = μ(U191#) = μ(U221) = μ(U222) = μ(U31) = μ(U32) = μ(U181) = μ(U182) = μ(U91#) = μ(U81#) = μ(U211#) = μ(U91) = μ(U132#) = μ(U111#) = μ(snd) = μ(U171) = μ(U172) = μ(U201) = μ(U202) = μ(U204#) = μ(U81) = μ(U11) = μ(U12) = μ(U131#) = μ(head#) = μ(U102) = μ(U101) = {1}
μ(sel#) = μ(take#) = μ(pair) = μ(splitAt) = μ(afterNth) = μ(splitAt#) = μ(afterNth#) = μ(take) = μ(sel) = {1, 2}


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

isNatural#(sel(V1, V2))isNatural#(V1)