YES

The TRS could be proven terminating. The proof took 862 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (307ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4 (46ms).
 | – Problem 3 was processed with processor PolynomialLinearRange4 (72ms).
 | – Problem 4 was processed with processor PolynomialLinearRange4 (15ms).
 | – Problem 5 was processed with processor PolynomialLinearRange4 (283ms).
 |    | – Problem 6 was processed with processor DependencyGraph (1ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

U91#(pair(ys, zs), xs, x)qsort#(zs)qsort#(cons(x, xs))split#(x, xs)
app#(cons(x, xs), ys)app#(xs, ys)U71#(pairs(xs, zs), ys, y, x)le#(x, y)
U61#(pairs(xs, zs), ys, y, x)le#(x, y)qsort#(cons(x, xs))U91#(split(x, xs), xs, x)
U91#(pair(ys, zs), xs, x)app#(qsort(ys), cons(x, qsort(zs)))U91#(pair(ys, zs), xs, x)qsort#(ys)
U72#(false, ys, y, x, zs, xs)T(zs)split#(x, cons(y, ys))split#(x, ys)
U62#(true, ys, y, x, zs, xs)T(y)U61#(pairs(xs, zs), ys, y, x)U62#(le(x, y), ys, y, x, zs, xs)
U62#(true, ys, y, x, zs, xs)T(xs)U61#(pairs(xs, zs), ys, y, x)T(x)
U71#(pairs(xs, zs), ys, y, x)T(y)U71#(pairs(xs, zs), ys, y, x)U72#(le(x, y), ys, y, x, zs, xs)
U61#(pairs(xs, zs), ys, y, x)T(y)U72#(false, ys, y, x, zs, xs)T(xs)
U91#(pair(ys, zs), xs, x)T(x)U62#(true, ys, y, x, zs, xs)T(zs)
split#(x, cons(y, ys))U61#(split(x, ys), ys, y, x)U72#(false, ys, y, x, zs, xs)T(y)
split#(x, cons(y, ys))U71#(split(x, ys), ys, y, x)le#(s(x), s(y))le#(x, y)
U71#(pairs(xs, zs), ys, y, x)T(x)

Rewrite Rules

le(0, x)truele(s(x), 0)false
le(s(x), s(y))le(x, y)app(nil, x)x
app(cons(x, xs), ys)cons(x, app(xs, ys))split(x, nil)pair(nil, nil)
split(x, cons(y, ys))U61(split(x, ys), ys, y, x)U61(pairs(xs, zs), ys, y, x)U62(le(x, y), ys, y, x, zs, xs)
U62(true, ys, y, x, zs, xs)pair(xs, cons(y, zs))split(x, cons(y, ys))U71(split(x, ys), ys, y, x)
U71(pairs(xs, zs), ys, y, x)U72(le(x, y), ys, y, x, zs, xs)U72(false, ys, y, x, zs, xs)pair(cons(y, xs), zs)
qsort(nil)nilqsort(cons(x, xs))U91(split(x, xs), xs, x)
U91(pair(ys, zs), xs, x)app(qsort(ys), cons(x, qsort(zs)))

Original Signature

Termination of terms over the following signature is verified: app, 0, le, s, pairs, pair, true, false, split, qsort, nil, cons

Strategy

Context-sensitive strategy:
μ(T) = μ(false) = μ(true) = μ(0) = μ(nil) = ∅
μ(U91#) = μ(U62#) = μ(U62) = μ(qsort#) = μ(U61) = μ(U91) = μ(U72#) = μ(qsort) = μ(U61#) = μ(U71) = μ(U72) = μ(U71#) = μ(s) = {1}
μ(pair) = μ(split#) = μ(le#) = μ(cons) = μ(app) = μ(app#) = μ(pairs) = μ(le) = μ(split) = {1, 2}


The following SCCs where found

qsort#(cons(x, xs)) → U91#(split(x, xs), xs, x)U91#(pair(ys, zs), xs, x) → qsort#(zs)
U91#(pair(ys, zs), xs, x) → qsort#(ys)

le#(s(x), s(y)) → le#(x, y)

app#(cons(x, xs), ys) → app#(xs, ys)

split#(x, cons(y, ys)) → split#(x, ys)

Problem 2: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

split#(x, cons(y, ys))split#(x, ys)

Rewrite Rules

le(0, x)truele(s(x), 0)false
le(s(x), s(y))le(x, y)app(nil, x)x
app(cons(x, xs), ys)cons(x, app(xs, ys))split(x, nil)pair(nil, nil)
split(x, cons(y, ys))U61(split(x, ys), ys, y, x)U61(pairs(xs, zs), ys, y, x)U62(le(x, y), ys, y, x, zs, xs)
U62(true, ys, y, x, zs, xs)pair(xs, cons(y, zs))split(x, cons(y, ys))U71(split(x, ys), ys, y, x)
U71(pairs(xs, zs), ys, y, x)U72(le(x, y), ys, y, x, zs, xs)U72(false, ys, y, x, zs, xs)pair(cons(y, xs), zs)
qsort(nil)nilqsort(cons(x, xs))U91(split(x, xs), xs, x)
U91(pair(ys, zs), xs, x)app(qsort(ys), cons(x, qsort(zs)))

Original Signature

Termination of terms over the following signature is verified: app, 0, le, s, pairs, pair, true, false, split, qsort, nil, cons

Strategy

Context-sensitive strategy:
μ(T) = μ(false) = μ(true) = μ(0) = μ(nil) = ∅
μ(U91#) = μ(U62#) = μ(U62) = μ(U61) = μ(qsort#) = μ(U72#) = μ(U91) = μ(qsort) = μ(U61#) = μ(U71) = μ(U72) = μ(U71#) = μ(s) = {1}
μ(pair) = μ(split#) = μ(le#) = μ(cons) = μ(app) = μ(app#) = μ(pairs) = μ(le) = μ(split) = {1, 2}


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

split#(x, cons(y, ys))split#(x, ys)

Problem 3: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

app#(cons(x, xs), ys)app#(xs, ys)

Rewrite Rules

le(0, x)truele(s(x), 0)false
le(s(x), s(y))le(x, y)app(nil, x)x
app(cons(x, xs), ys)cons(x, app(xs, ys))split(x, nil)pair(nil, nil)
split(x, cons(y, ys))U61(split(x, ys), ys, y, x)U61(pairs(xs, zs), ys, y, x)U62(le(x, y), ys, y, x, zs, xs)
U62(true, ys, y, x, zs, xs)pair(xs, cons(y, zs))split(x, cons(y, ys))U71(split(x, ys), ys, y, x)
U71(pairs(xs, zs), ys, y, x)U72(le(x, y), ys, y, x, zs, xs)U72(false, ys, y, x, zs, xs)pair(cons(y, xs), zs)
qsort(nil)nilqsort(cons(x, xs))U91(split(x, xs), xs, x)
U91(pair(ys, zs), xs, x)app(qsort(ys), cons(x, qsort(zs)))

Original Signature

Termination of terms over the following signature is verified: app, 0, le, s, pairs, pair, true, false, split, qsort, nil, cons

Strategy

Context-sensitive strategy:
μ(T) = μ(false) = μ(true) = μ(0) = μ(nil) = ∅
μ(U91#) = μ(U62#) = μ(U62) = μ(U61) = μ(qsort#) = μ(U72#) = μ(U91) = μ(qsort) = μ(U61#) = μ(U71) = μ(U72) = μ(U71#) = μ(s) = {1}
μ(pair) = μ(split#) = μ(le#) = μ(cons) = μ(app) = μ(app#) = μ(pairs) = μ(le) = μ(split) = {1, 2}


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

app#(cons(x, xs), ys)app#(xs, ys)

Problem 4: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

le#(s(x), s(y))le#(x, y)

Rewrite Rules

le(0, x)truele(s(x), 0)false
le(s(x), s(y))le(x, y)app(nil, x)x
app(cons(x, xs), ys)cons(x, app(xs, ys))split(x, nil)pair(nil, nil)
split(x, cons(y, ys))U61(split(x, ys), ys, y, x)U61(pairs(xs, zs), ys, y, x)U62(le(x, y), ys, y, x, zs, xs)
U62(true, ys, y, x, zs, xs)pair(xs, cons(y, zs))split(x, cons(y, ys))U71(split(x, ys), ys, y, x)
U71(pairs(xs, zs), ys, y, x)U72(le(x, y), ys, y, x, zs, xs)U72(false, ys, y, x, zs, xs)pair(cons(y, xs), zs)
qsort(nil)nilqsort(cons(x, xs))U91(split(x, xs), xs, x)
U91(pair(ys, zs), xs, x)app(qsort(ys), cons(x, qsort(zs)))

Original Signature

Termination of terms over the following signature is verified: app, 0, le, s, pairs, pair, true, false, split, qsort, nil, cons

Strategy

Context-sensitive strategy:
μ(T) = μ(false) = μ(true) = μ(0) = μ(nil) = ∅
μ(U91#) = μ(U62#) = μ(U62) = μ(U61) = μ(qsort#) = μ(U72#) = μ(U91) = μ(qsort) = μ(U61#) = μ(U71) = μ(U72) = μ(U71#) = μ(s) = {1}
μ(pair) = μ(split#) = μ(le#) = μ(cons) = μ(app) = μ(app#) = μ(pairs) = μ(le) = μ(split) = {1, 2}


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

le#(s(x), s(y))le#(x, y)

Problem 5: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

qsort#(cons(x, xs))U91#(split(x, xs), xs, x)U91#(pair(ys, zs), xs, x)qsort#(zs)
U91#(pair(ys, zs), xs, x)qsort#(ys)

Rewrite Rules

le(0, x)truele(s(x), 0)false
le(s(x), s(y))le(x, y)app(nil, x)x
app(cons(x, xs), ys)cons(x, app(xs, ys))split(x, nil)pair(nil, nil)
split(x, cons(y, ys))U61(split(x, ys), ys, y, x)U61(pairs(xs, zs), ys, y, x)U62(le(x, y), ys, y, x, zs, xs)
U62(true, ys, y, x, zs, xs)pair(xs, cons(y, zs))split(x, cons(y, ys))U71(split(x, ys), ys, y, x)
U71(pairs(xs, zs), ys, y, x)U72(le(x, y), ys, y, x, zs, xs)U72(false, ys, y, x, zs, xs)pair(cons(y, xs), zs)
qsort(nil)nilqsort(cons(x, xs))U91(split(x, xs), xs, x)
U91(pair(ys, zs), xs, x)app(qsort(ys), cons(x, qsort(zs)))

Original Signature

Termination of terms over the following signature is verified: app, 0, le, s, pairs, pair, true, false, split, qsort, nil, cons

Strategy

Context-sensitive strategy:
μ(T) = μ(false) = μ(true) = μ(0) = μ(nil) = ∅
μ(U91#) = μ(U62#) = μ(U62) = μ(U61) = μ(qsort#) = μ(U72#) = μ(U91) = μ(qsort) = μ(U61#) = μ(U71) = μ(U72) = μ(U71#) = μ(s) = {1}
μ(pair) = μ(split#) = μ(le#) = μ(cons) = μ(app) = μ(app#) = μ(pairs) = μ(le) = μ(split) = {1, 2}


Polynomial Interpretation

Standard Usable rules

le(s(x), s(y))le(x, y)U71(pairs(xs, zs), ys, y, x)U72(le(x, y), ys, y, x, zs, xs)
app(cons(x, xs), ys)cons(x, app(xs, ys))app(nil, x)x
qsort(nil)nilqsort(cons(x, xs))U91(split(x, xs), xs, x)
split(x, cons(y, ys))U61(split(x, ys), ys, y, x)le(0, x)true
le(s(x), 0)falseU62(true, ys, y, x, zs, xs)pair(xs, cons(y, zs))
split(x, cons(y, ys))U71(split(x, ys), ys, y, x)U61(pairs(xs, zs), ys, y, x)U62(le(x, y), ys, y, x, zs, xs)
split(x, nil)pair(nil, nil)U72(false, ys, y, x, zs, xs)pair(cons(y, xs), zs)
U91(pair(ys, zs), xs, x)app(qsort(ys), cons(x, qsort(zs)))

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

qsort#(cons(x, xs))U91#(split(x, xs), xs, x)

Problem 6: DependencyGraph



Dependency Pair Problem

Dependency Pairs

U91#(pair(ys, zs), xs, x)qsort#(zs)U91#(pair(ys, zs), xs, x)qsort#(ys)

Rewrite Rules

le(0, x)truele(s(x), 0)false
le(s(x), s(y))le(x, y)app(nil, x)x
app(cons(x, xs), ys)cons(x, app(xs, ys))split(x, nil)pair(nil, nil)
split(x, cons(y, ys))U61(split(x, ys), ys, y, x)U61(pairs(xs, zs), ys, y, x)U62(le(x, y), ys, y, x, zs, xs)
U62(true, ys, y, x, zs, xs)pair(xs, cons(y, zs))split(x, cons(y, ys))U71(split(x, ys), ys, y, x)
U71(pairs(xs, zs), ys, y, x)U72(le(x, y), ys, y, x, zs, xs)U72(false, ys, y, x, zs, xs)pair(cons(y, xs), zs)
qsort(nil)nilqsort(cons(x, xs))U91(split(x, xs), xs, x)
U91(pair(ys, zs), xs, x)app(qsort(ys), cons(x, qsort(zs)))

Original Signature

Termination of terms over the following signature is verified: app, 0, pairs, s, le, pair, false, true, qsort, split, cons, nil

Strategy

Context-sensitive strategy:
μ(T) = μ(false) = μ(true) = μ(0) = μ(nil) = ∅
μ(U91#) = μ(U62#) = μ(U62) = μ(qsort#) = μ(U61) = μ(U91) = μ(U72#) = μ(qsort) = μ(U61#) = μ(U71) = μ(U72) = μ(U71#) = μ(s) = {1}
μ(pair) = μ(split#) = μ(le#) = μ(cons) = μ(app) = μ(app#) = μ(pairs) = μ(le) = μ(split) = {1, 2}


There are no SCCs!