YES

The TRS could be proven terminating. The proof took 1712 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (24ms).
 | – Problem 2 was processed with processor ForwardNarrowing (8ms).
 |    | – Problem 3 was processed with processor ForwardNarrowing (5ms).
 |    |    | – Problem 4 was processed with processor ForwardNarrowing (7ms).
 |    |    |    | – Problem 5 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    | – Problem 6 was processed with processor ForwardNarrowing (3ms).
 |    |    |    |    |    | – Problem 7 was processed with processor ForwardNarrowing (4ms).
 |    |    |    |    |    |    | – Problem 8 was processed with processor ForwardNarrowing (8ms).
 |    |    |    |    |    |    |    | – Problem 9 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    | – Problem 10 was processed with processor ForwardNarrowing (37ms).
 |    |    |    |    |    |    |    |    |    | – Problem 11 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    | – Problem 12 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    | – Problem 13 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 14 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 15 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 16 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 17 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 18 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 19 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 20 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 21 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 22 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 23 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 24 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 25 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 26 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 27 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 28 was processed with processor BackwardInstantiation (6ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 29 was processed with processor Propagation (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 30 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 31 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 32 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 33 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 34 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 35 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 36 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 37 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 38 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 39 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 40 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 41 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 42 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 43 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 44 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 45 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 46 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 47 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 48 was processed with processor ForwardNarrowing (1ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

A#a#g#(d, e)A#
f#(x)U71#(x, x)U71#(d, x)T(x)
A#h#(f(a), f(b))A#f#(b)
A#b#h#(x, x)g#(x, x)
A#f#(a)

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The following SCCs where found

g#(d, e) → A#A# → h#(f(a), f(b))
h#(x, x) → g#(x, x)

Problem 2: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, e)A#A#h#(f(a), f(b))
h#(x, x)g#(x, x)

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(f(a), f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(a), U71(b, b)) 
h#(f(a), f(d)) 
h#(f(d), f(b)) 
h#(f(e), f(b)) 
h#(U71(a, a), f(b)) 
h#(f(a), f(e)) 
Thus, the rule A# → h#(f(a), f(b)) is replaced by the following rules:
A# → h#(f(a), U71(b, b))A# → h#(f(a), f(e))
A# → h#(f(d), f(b))A# → h#(f(e), f(b))
A# → h#(f(a), f(d))A# → h#(U71(a, a), f(b))

Problem 3: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(a), U71(b, b))A#h#(f(a), f(e))
g#(d, e)A#A#h#(f(d), f(b))
A#h#(f(e), f(b))A#h#(f(a), f(d))
h#(x, x)g#(x, x)A#h#(U71(a, a), f(b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(f(a), U71(b, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(a), U71(d, b))h#(f(a), U71(e, b))
h#(U71(a, a), U71(b, b)) 
h#(f(d), U71(b, b)) 
h#(f(e), U71(b, b)) 
Thus, the rule A# → h#(f(a), U71(b, b)) is replaced by the following rules:
A# → h#(f(d), U71(b, b))A# → h#(f(e), U71(b, b))
A# → h#(U71(a, a), U71(b, b))A# → h#(f(a), U71(d, b))

Problem 4: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(a), f(e))A#h#(f(d), U71(b, b))
g#(d, e)A#A#h#(f(e), U71(b, b))
A#h#(f(d), f(b))A#h#(f(e), f(b))
A#h#(U71(a, a), U71(b, b))A#h#(f(a), f(d))
h#(x, x)g#(x, x)A#h#(f(a), U71(d, b))
A#h#(U71(a, a), f(b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(f(d), U71(b, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(d), U71(d, b))h#(f(d), U71(e, b))
h#(U71(d, d), U71(b, b)) 
Thus, the rule A# → h#(f(d), U71(b, b)) is replaced by the following rules:
A# → h#(f(d), U71(d, b))A# → h#(U71(d, d), U71(b, b))

Problem 5: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(a), f(e))A#h#(f(e), U71(b, b))
g#(d, e)A#A#h#(f(d), f(b))
A#h#(f(d), U71(d, b))A#h#(U71(a, a), U71(b, b))
A#h#(f(e), f(b))A#h#(f(a), f(d))
h#(x, x)g#(x, x)A#h#(f(a), U71(d, b))
A#h#(U71(a, a), f(b))A#h#(U71(d, d), U71(b, b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(f(a), f(e)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(e), f(e))h#(f(a), U71(e, e))
h#(f(d), f(e)) 
h#(U71(a, a), f(e)) 
Thus, the rule A# → h#(f(a), f(e)) is replaced by the following rules:
A# → h#(U71(a, a), f(e))A# → h#(f(e), f(e))
A# → h#(f(d), f(e))

Problem 6: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, e)A#A#h#(U71(a, a), f(e))
A#h#(f(d), f(b))A#h#(f(e), f(b))
A#h#(f(a), f(d))h#(x, x)g#(x, x)
A#h#(f(d), f(e))A#h#(f(e), U71(b, b))
A#h#(f(d), U71(d, b))A#h#(U71(a, a), U71(b, b))
A#h#(f(e), f(e))A#h#(f(a), U71(d, b))
A#h#(U71(a, a), f(b))A#h#(U71(d, d), U71(b, b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(U71(a, a), f(e)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U71(a, a), U71(e, e))h#(U71(e, a), f(e))
h#(U71(d, a), f(e)) 
Thus, the rule A# → h#(U71(a, a), f(e)) is replaced by the following rules:
A# → h#(U71(d, a), f(e))A# → h#(U71(a, a), U71(e, e))

Problem 7: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, e)A#A#h#(U71(d, a), f(e))
A#h#(f(d), f(b))A#h#(f(e), f(b))
A#h#(f(a), f(d))h#(x, x)g#(x, x)
A#h#(f(d), f(e))A#h#(f(e), U71(b, b))
A#h#(f(d), U71(d, b))A#h#(U71(a, a), U71(b, b))
A#h#(U71(a, a), U71(e, e))A#h#(f(e), f(e))
A#h#(f(a), U71(d, b))A#h#(U71(a, a), f(b))
A#h#(U71(d, d), U71(b, b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(U71(d, a), f(e)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(a, f(e))h#(U71(d, a), U71(e, e))
Thus, the rule A# → h#(U71(d, a), f(e)) is replaced by the following rules:
A# → h#(a, f(e))

Problem 8: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, e)A#A#h#(f(d), f(b))
A#h#(f(e), f(b))A#h#(f(a), f(d))
h#(x, x)g#(x, x)A#h#(f(d), f(e))
A#h#(a, f(e))A#h#(f(e), U71(b, b))
A#h#(f(d), U71(d, b))A#h#(U71(a, a), U71(b, b))
A#h#(U71(a, a), U71(e, e))A#h#(f(e), f(e))
A#h#(f(a), U71(d, b))A#h#(U71(a, a), f(b))
A#h#(U71(d, d), U71(b, b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(f(d), f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U71(d, d), f(b)) 
h#(f(d), f(e)) 
h#(f(d), U71(b, b)) 
h#(f(d), f(d)) 
Thus, the rule A# → h#(f(d), f(b)) is replaced by the following rules:
A# → h#(f(d), U71(b, b))A# → h#(U71(d, d), f(b))
A# → h#(f(d), f(e))A# → h#(f(d), f(d))

Problem 9: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(d), U71(b, b))g#(d, e)A#
A#h#(f(e), f(b))A#h#(f(a), f(d))
h#(x, x)g#(x, x)A#h#(f(d), f(e))
A#h#(a, f(e))A#h#(f(e), U71(b, b))
A#h#(f(d), U71(d, b))A#h#(U71(a, a), U71(b, b))
A#h#(U71(a, a), U71(e, e))A#h#(f(e), f(e))
A#h#(f(a), U71(d, b))A#h#(U71(a, a), f(b))
A#h#(U71(d, d), f(b))A#h#(f(d), f(d))
A#h#(U71(d, d), U71(b, b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(f(d), U71(b, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(d), U71(d, b))h#(f(d), U71(e, b))
h#(U71(d, d), U71(b, b)) 
Thus, the rule A# → h#(f(d), U71(b, b)) is replaced by the following rules:
A# → h#(f(d), U71(d, b))A# → h#(U71(d, d), U71(b, b))

Problem 10: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, e)A#A#h#(f(e), f(b))
A#h#(f(a), f(d))h#(x, x)g#(x, x)
A#h#(f(d), f(e))A#h#(a, f(e))
A#h#(f(e), U71(b, b))A#h#(f(d), U71(d, b))
A#h#(U71(a, a), U71(b, b))A#h#(U71(a, a), U71(e, e))
A#h#(f(e), f(e))A#h#(f(a), U71(d, b))
A#h#(U71(d, d), f(b))A#h#(U71(a, a), f(b))
A#h#(f(d), f(d))A#h#(U71(d, d), U71(b, b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(f(e), f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(e), f(d))h#(U71(e, e), f(b))
h#(f(e), f(e)) 
h#(f(e), U71(b, b)) 
Thus, the rule A# → h#(f(e), f(b)) is replaced by the following rules:
A# → h#(f(e), U71(b, b))A# → h#(f(e), f(d))
A# → h#(f(e), f(e))

Problem 11: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, e)A#A#h#(f(a), f(d))
h#(x, x)g#(x, x)A#h#(f(d), f(e))
A#h#(a, f(e))A#h#(f(e), U71(b, b))
A#h#(f(d), U71(d, b))A#h#(U71(a, a), U71(b, b))
A#h#(f(e), f(d))A#h#(U71(a, a), U71(e, e))
A#h#(f(e), f(e))A#h#(f(a), U71(d, b))
A#h#(U71(a, a), f(b))A#h#(U71(d, d), f(b))
A#h#(f(d), f(d))A#h#(U71(d, d), U71(b, b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(f(a), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(e), f(d)) 
h#(U71(a, a), f(d)) 
h#(f(d), f(d)) 
h#(f(a), U71(d, d)) 
Thus, the rule A# → h#(f(a), f(d)) is replaced by the following rules:
A# → h#(f(e), f(d))A# → h#(U71(a, a), f(d))
A# → h#(f(d), f(d))A# → h#(f(a), U71(d, d))

Problem 12: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, e)A#h#(x, x)g#(x, x)
A#h#(f(d), f(e))A#h#(f(a), U71(d, d))
A#h#(a, f(e))A#h#(f(e), U71(b, b))
A#h#(f(d), U71(d, b))A#h#(U71(a, a), U71(b, b))
A#h#(f(e), f(d))A#h#(U71(a, a), f(d))
A#h#(U71(a, a), U71(e, e))A#h#(f(e), f(e))
A#h#(f(a), U71(d, b))A#h#(U71(d, d), f(b))
A#h#(U71(a, a), f(b))A#h#(f(d), f(d))
A#h#(U71(d, d), U71(b, b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(f(d), f(e)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U71(d, d), f(e))h#(f(d), U71(e, e))
Thus, the rule A# → h#(f(d), f(e)) is replaced by the following rules:
A# → h#(U71(d, d), f(e))

Problem 13: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, e)A#h#(x, x)g#(x, x)
A#h#(U71(d, d), f(e))A#h#(f(a), U71(d, d))
A#h#(a, f(e))A#h#(f(e), U71(b, b))
A#h#(f(d), U71(d, b))A#h#(U71(a, a), U71(b, b))
A#h#(f(e), f(d))A#h#(U71(a, a), f(d))
A#h#(U71(a, a), U71(e, e))A#h#(f(e), f(e))
A#h#(f(a), U71(d, b))A#h#(U71(a, a), f(b))
A#h#(U71(d, d), f(b))A#h#(f(d), f(d))
A#h#(U71(d, d), U71(b, b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(U71(d, d), f(e)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U71(d, d), U71(e, e)) 
h#(d, f(e)) 
Thus, the rule A# → h#(U71(d, d), f(e)) is replaced by the following rules:
A# → h#(U71(d, d), U71(e, e))A# → h#(d, f(e))

Problem 14: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, e)A#h#(x, x)g#(x, x)
A#h#(f(a), U71(d, d))A#h#(a, f(e))
A#h#(f(e), U71(b, b))A#h#(f(d), U71(d, b))
A#h#(U71(a, a), U71(b, b))A#h#(f(e), f(d))
A#h#(U71(a, a), f(d))A#h#(U71(a, a), U71(e, e))
A#h#(U71(d, d), U71(e, e))A#h#(f(e), f(e))
A#h#(f(a), U71(d, b))A#h#(U71(d, d), f(b))
A#h#(U71(a, a), f(b))A#h#(d, f(e))
A#h#(f(d), f(d))A#h#(U71(d, d), U71(b, b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(f(a), U71(d, d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(d), U71(d, d)) 
h#(f(e), U71(d, d)) 
h#(U71(a, a), U71(d, d)) 
h#(f(a), d) 
Thus, the rule A# → h#(f(a), U71(d, d)) is replaced by the following rules:
A# → h#(U71(a, a), U71(d, d))A# → h#(f(a), d)
A# → h#(f(e), U71(d, d))A# → h#(f(d), U71(d, d))

Problem 15: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, e)A#h#(x, x)g#(x, x)
A#h#(f(a), d)A#h#(U71(a, a), U71(d, d))
A#h#(a, f(e))A#h#(f(e), U71(b, b))
A#h#(f(d), U71(d, b))A#h#(U71(a, a), U71(b, b))
A#h#(f(e), U71(d, d))A#h#(f(e), f(d))
A#h#(f(d), U71(d, d))A#h#(U71(a, a), f(d))
A#h#(U71(a, a), U71(e, e))A#h#(f(e), f(e))
A#h#(U71(d, d), U71(e, e))A#h#(f(a), U71(d, b))
A#h#(d, f(e))A#h#(U71(a, a), f(b))
A#h#(U71(d, d), f(b))A#h#(f(d), f(d))
A#h#(U71(d, d), U71(b, b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(f(a), d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(e), d) 
h#(U71(a, a), d) 
h#(f(d), d) 
Thus, the rule A# → h#(f(a), d) is replaced by the following rules:
A# → h#(f(e), d)A# → h#(U71(a, a), d)
A# → h#(f(d), d)

Problem 16: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, e)A#A#h#(f(e), d)
h#(x, x)g#(x, x)A#h#(U71(a, a), d)
A#h#(f(d), d)A#h#(U71(a, a), U71(d, d))
A#h#(a, f(e))A#h#(f(e), U71(b, b))
A#h#(f(d), U71(d, b))A#h#(U71(a, a), U71(b, b))
A#h#(f(e), U71(d, d))A#h#(f(e), f(d))
A#h#(U71(a, a), U71(e, e))A#h#(U71(a, a), f(d))
A#h#(f(d), U71(d, d))A#h#(U71(d, d), U71(e, e))
A#h#(f(e), f(e))A#h#(f(a), U71(d, b))
A#h#(U71(d, d), f(b))A#h#(U71(a, a), f(b))
A#h#(d, f(e))A#h#(f(d), f(d))
A#h#(U71(d, d), U71(b, b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(f(e), d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 h#(U71(e, e), d)
Thus, the rule A# → h#(f(e), d) is deleted.

Problem 17: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, e)A#h#(x, x)g#(x, x)
A#h#(U71(a, a), d)A#h#(f(d), d)
A#h#(U71(a, a), U71(d, d))A#h#(a, f(e))
A#h#(f(e), U71(b, b))A#h#(f(d), U71(d, b))
A#h#(U71(a, a), U71(b, b))A#h#(f(e), U71(d, d))
A#h#(f(e), f(d))A#h#(f(d), U71(d, d))
A#h#(U71(a, a), U71(e, e))A#h#(U71(a, a), f(d))
A#h#(f(e), f(e))A#h#(U71(d, d), U71(e, e))
A#h#(f(a), U71(d, b))A#h#(d, f(e))
A#h#(U71(a, a), f(b))A#h#(U71(d, d), f(b))
A#h#(f(d), f(d))A#h#(U71(d, d), U71(b, b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(U71(a, a), d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U71(d, a), d)h#(U71(e, a), d)
Thus, the rule A# → h#(U71(a, a), d) is replaced by the following rules:
A# → h#(U71(d, a), d)

Problem 18: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, e)A#h#(x, x)g#(x, x)
A#h#(U71(d, a), d)A#h#(f(d), d)
A#h#(U71(a, a), U71(d, d))A#h#(a, f(e))
A#h#(f(e), U71(b, b))A#h#(f(d), U71(d, b))
A#h#(U71(a, a), U71(b, b))A#h#(f(e), U71(d, d))
A#h#(f(e), f(d))A#h#(U71(a, a), f(d))
A#h#(f(d), U71(d, d))A#h#(U71(a, a), U71(e, e))
A#h#(U71(d, d), U71(e, e))A#h#(f(e), f(e))
A#h#(f(a), U71(d, b))A#h#(U71(d, d), f(b))
A#h#(U71(a, a), f(b))A#h#(d, f(e))
A#h#(f(d), f(d))A#h#(U71(d, d), U71(b, b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(U71(d, a), d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(a, d) 
Thus, the rule A# → h#(U71(d, a), d) is replaced by the following rules:
A# → h#(a, d)

Problem 19: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(a, d)g#(d, e)A#
h#(x, x)g#(x, x)A#h#(f(d), d)
A#h#(U71(a, a), U71(d, d))A#h#(a, f(e))
A#h#(f(e), U71(b, b))A#h#(f(d), U71(d, b))
A#h#(U71(a, a), U71(b, b))A#h#(f(e), U71(d, d))
A#h#(f(e), f(d))A#h#(U71(a, a), U71(e, e))
A#h#(U71(a, a), f(d))A#h#(f(d), U71(d, d))
A#h#(f(e), f(e))A#h#(U71(d, d), U71(e, e))
A#h#(f(a), U71(d, b))A#h#(d, f(e))
A#h#(U71(a, a), f(b))A#h#(U71(d, d), f(b))
A#h#(f(d), f(d))A#h#(U71(d, d), U71(b, b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(a, d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, d) 
h#(d, d) 
Thus, the rule A# → h#(a, d) is replaced by the following rules:
A# → h#(e, d)A# → h#(d, d)

Problem 20: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, e)A#A#h#(d, d)
h#(x, x)g#(x, x)A#h#(f(d), d)
A#h#(U71(a, a), U71(d, d))A#h#(a, f(e))
A#h#(f(e), U71(b, b))A#h#(e, d)
A#h#(f(d), U71(d, b))A#h#(U71(a, a), U71(b, b))
A#h#(f(e), U71(d, d))A#h#(f(e), f(d))
A#h#(f(d), U71(d, d))A#h#(U71(a, a), f(d))
A#h#(U71(a, a), U71(e, e))A#h#(U71(d, d), U71(e, e))
A#h#(f(e), f(e))A#h#(f(a), U71(d, b))
A#h#(U71(d, d), f(b))A#h#(U71(a, a), f(b))
A#h#(d, f(e))A#h#(f(d), f(d))
A#h#(U71(d, d), U71(b, b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(f(d), d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U71(d, d), d) 
Thus, the rule A# → h#(f(d), d) is replaced by the following rules:
A# → h#(U71(d, d), d)

Problem 21: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, e)A#A#h#(d, d)
h#(x, x)g#(x, x)A#h#(U71(a, a), U71(d, d))
A#h#(U71(d, d), d)A#h#(a, f(e))
A#h#(f(e), U71(b, b))A#h#(e, d)
A#h#(f(d), U71(d, b))A#h#(U71(a, a), U71(b, b))
A#h#(f(e), U71(d, d))A#h#(f(e), f(d))
A#h#(U71(a, a), U71(e, e))A#h#(U71(a, a), f(d))
A#h#(f(d), U71(d, d))A#h#(f(e), f(e))
A#h#(U71(d, d), U71(e, e))A#h#(f(a), U71(d, b))
A#h#(d, f(e))A#h#(U71(a, a), f(b))
A#h#(U71(d, d), f(b))A#h#(f(d), f(d))
A#h#(U71(d, d), U71(b, b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(U71(a, a), U71(d, d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U71(e, a), U71(d, d)) 
h#(U71(a, a), d) 
h#(U71(d, a), U71(d, d)) 
Thus, the rule A# → h#(U71(a, a), U71(d, d)) is replaced by the following rules:
A# → h#(U71(d, a), U71(d, d))A# → h#(U71(a, a), d)
A# → h#(U71(e, a), U71(d, d))

Problem 22: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(d, d)A#h#(U71(d, a), d)
A#h#(U71(d, a), e)A#h#(a, b)
A#h#(e, e)g#(d, e)A#
A#h#(U71(d, d), U71(d, d))A#h#(U71(a, a), U71(e, b))
h#(x, x)g#(x, x)A#h#(U71(a, a), d)
A#h#(U71(e, e), U71(d, b))A#h#(U71(e, a), U71(d, d))
A#h#(U71(a, a), U71(d, d))A#h#(d, b)
A#h#(d, U71(d, b))A#h#(a, U71(d, d))
A#h#(d, f(b))A#h#(a, f(e))
A#h#(U71(d, d), U71(d, b))A#h#(U71(d, a), f(d))
A#h#(e, d)A#h#(U71(a, a), U71(d, b))
A#h#(f(e), U71(d, d))A#h#(f(d), b)
A#h#(f(d), U71(d, d))A#h#(a, U71(b, b))
A#h#(f(e), b)A#h#(U71(d, d), U71(e, e))
A#h#(f(e), f(e))A#h#(f(a), b)
A#h#(a, e)A#h#(U71(a, a), f(b))
A#h#(d, f(e))A#h#(f(d), f(d))
A#h#(U71(d, d), U71(b, b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(U71(d, a), d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(a, d) 
Thus, the rule A# → h#(U71(d, a), d) is replaced by the following rules:
A# → h#(a, d)

Problem 23: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(a, d)A#h#(e, e)
g#(d, e)A#A#h#(U71(d, d), U71(d, d))
A#h#(d, d)h#(x, x)g#(x, x)
A#h#(a, f(d))A#h#(a, U71(d, d))
A#h#(e, d)A#h#(U71(a, a), U71(d, b))
A#h#(f(e), U71(d, d))A#h#(a, U71(b, b))
A#h#(f(d), b)A#h#(f(d), U71(d, d))
A#h#(f(e), b)A#h#(f(e), f(e))
A#h#(U71(d, d), U71(e, e))A#h#(f(a), b)
A#h#(U71(a, a), f(b))A#h#(d, f(e))
A#h#(a, e)A#h#(f(d), f(d))
A#h#(U71(d, d), U71(b, b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(a, d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, d) 
h#(d, d) 
Thus, the rule A# → h#(a, d) is replaced by the following rules:
A# → h#(e, d)A# → h#(d, d)

Problem 24: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(e, e)g#(d, e)A#
A#h#(U71(d, d), U71(d, d))A#h#(d, d)
h#(x, x)g#(x, x)A#h#(d, U71(d, b))
A#h#(f(d), U71(d, d))A#h#(f(e), b)
A#h#(e, U71(d, b))A#h#(U71(d, d), U71(e, e))
A#h#(f(e), f(e))A#h#(f(a), b)
A#h#(d, f(e))A#h#(U71(a, a), f(b))
A#h#(a, e)A#h#(e, f(d))
A#h#(f(d), f(d))A#h#(U71(d, d), U71(b, b))
A#h#(U71(d, d), e)A#h#(a, U71(d, b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(d, U71(d, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(d, b) 
Thus, the rule A# → h#(d, U71(d, b)) is replaced by the following rules:
A# → h#(d, b)

Problem 25: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U71(d, a), b)A#h#(e, e)
g#(d, e)A#A#h#(U71(d, d), U71(d, d))
A#h#(d, d)h#(x, x)g#(x, x)
A#h#(a, f(b))A#h#(a, f(e))
A#h#(U71(d, a), f(d))A#h#(U71(a, a), U71(b, b))
A#h#(a, U71(b, b))A#h#(U71(a, a), f(d))
A#h#(f(e), f(e))A#h#(a, e)
A#h#(a, b)A#h#(e, f(d))
A#h#(d, f(e))A#h#(f(d), f(d))
A#h#(U71(d, d), U71(b, b))A#h#(U71(d, d), e)
A#h#(a, U71(d, b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(U71(d, a), b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U71(d, a), d) 
h#(U71(d, a), e) 
h#(a, b) 
Thus, the rule A# → h#(U71(d, a), b) is replaced by the following rules:
A# → h#(U71(d, a), e)A# → h#(a, b)
A# → h#(U71(d, a), d)

Problem 26: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(e, e)g#(d, e)A#
A#h#(U71(d, d), U71(d, d))A#h#(d, d)
h#(x, x)g#(x, x)A#h#(d, b)
A#h#(a, U71(d, d))A#h#(a, f(e))
A#h#(d, f(b))A#h#(e, d)
A#h#(U71(d, a), f(d))A#h#(U71(a, a), U71(d, b))
A#h#(a, U71(b, b))A#h#(f(e), f(e))
A#h#(d, f(e))A#h#(a, e)
A#h#(e, f(d))A#h#(f(d), f(d))
A#h#(U71(d, d), U71(b, b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(d, b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(d, e) 
h#(d, d) 
Thus, the rule A# → h#(d, b) is replaced by the following rules:
A# → h#(d, e)A# → h#(d, d)

Problem 27: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(e, e)A#h#(e, U71(d, d))
g#(d, e)A#A#h#(U71(d, d), U71(d, d))
A#h#(d, d)h#(x, x)g#(x, x)
A#h#(f(e), f(e))A#h#(d, f(e))
A#h#(a, b)A#h#(f(d), f(d))
A#h#(U71(d, d), U71(b, b))A#h#(a, U71(d, b))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(e, U71(d, d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, d) 
Thus, the rule A# → h#(e, U71(d, d)) is replaced by the following rules:
A# → h#(e, d)

Problem 28: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

A#h#(e, e)g#(d, e)A#
A#h#(U71(d, d), U71(d, d))A#h#(d, d)
h#(x, x)g#(x, x)A#h#(f(e), f(e))
A#h#(f(d), f(d))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


Instantiation

For all potential predecessors l → r of the rule h#(x, x) → g#(x, x) on dependency pair chains it holds that: Thus, h#(x, x) → g#(x, x) is replaced by instances determined through the above matching. These instances are:
h#(f(d), f(d)) → g#(f(d), f(d))h#(d, d) → g#(d, d)
h#(e, e) → g#(e, e)h#(f(e), f(e)) → g#(f(e), f(e))
h#(U71(d, d), U71(d, d)) → g#(U71(d, d), U71(d, d))

Problem 29: Propagation



Dependency Pair Problem

Dependency Pairs

A#h#(e, e)h#(f(d), f(d))g#(f(d), f(d))
g#(d, e)A#h#(d, d)g#(d, d)
h#(e, e)g#(e, e)h#(f(e), f(e))g#(f(e), f(e))
A#h#(U71(d, d), U71(d, d))A#h#(d, d)
A#h#(f(e), f(e))A#h#(f(d), f(d))
h#(U71(d, d), U71(d, d))g#(U71(d, d), U71(d, d))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The dependency pairs A# → h#(e, e) and h#(e, e) → g#(e, e) are consolidated into the rule A# → g#(e, e) .

This is possible as

The dependency pairs g#(d, e) → A# and A# → h#(e, e) are consolidated into the rule g#(d, e) → h#(e, e) .

This is possible as

The dependency pairs g#(d, e) → A# and A# → h#(e, e) are consolidated into the rule g#(d, e) → h#(e, e) .

This is possible as

The dependency pairs g#(d, e) → A# and A# → h#(e, e) are consolidated into the rule g#(d, e) → h#(e, e) .

This is possible as

The dependency pairs g#(d, e) → A# and A# → h#(e, e) are consolidated into the rule g#(d, e) → h#(e, e) .

This is possible as

The dependency pairs g#(d, e) → A# and A# → h#(e, e) are consolidated into the rule g#(d, e) → h#(e, e) .

This is possible as

The dependency pairs g#(d, e) → A# and A# → h#(e, e) are consolidated into the rule g#(d, e) → h#(e, e) .

This is possible as

The dependency pairs A# → h#(d, d) and h#(d, d) → g#(d, d) are consolidated into the rule A# → g#(d, d) .

This is possible as


Summary

Removed Dependency PairsAdded Dependency Pairs
A# → h#(e, e)g#(d, e) → h#(e, e)
h#(d, d) → g#(d, d)A# → g#(e, e)
g#(d, e) → A#A# → g#(d, d)
h#(e, e) → g#(e, e) 
A# → h#(d, d) 

Problem 30: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, e)h#(e, e)h#(f(d), f(d))g#(f(d), f(d))
h#(f(e), f(e))g#(f(e), f(e))A#g#(e, e)
A#g#(d, d)A#h#(U71(d, d), U71(d, d))
A#h#(f(e), f(e))h#(U71(d, d), U71(d, d))g#(U71(d, d), U71(d, d))
A#h#(f(d), f(d))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule g#(d, e) → h#(e, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule g#(d, e) → h#(e, e) is deleted.

Problem 31: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(d), f(d))g#(f(d), f(d))A#g#(e, e)
h#(f(e), f(e))g#(f(e), f(e))A#g#(d, d)
A#h#(U71(d, d), U71(d, d))A#h#(f(e), f(e))
A#h#(f(d), f(d))h#(U71(d, d), U71(d, d))g#(U71(d, d), U71(d, d))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule h#(f(d), f(d)) → g#(f(d), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U71(d, d), f(d)) 
g#(f(d), U71(d, d)) 
Thus, the rule h#(f(d), f(d)) → g#(f(d), f(d)) is replaced by the following rules:
h#(f(d), f(d)) → g#(f(d), U71(d, d))h#(f(d), f(d)) → g#(U71(d, d), f(d))

Problem 32: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(d), f(d))g#(f(d), U71(d, d))h#(f(d), f(d))g#(U71(d, d), f(d))
h#(f(e), f(e))g#(f(e), f(e))A#g#(e, e)
A#g#(d, d)A#h#(U71(d, d), U71(d, d))
A#h#(f(e), f(e))h#(U71(d, d), U71(d, d))g#(U71(d, d), U71(d, d))
A#h#(f(d), f(d))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule h#(f(d), f(d)) → g#(f(d), U71(d, d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U71(d, d), U71(d, d)) 
g#(f(d), d) 
Thus, the rule h#(f(d), f(d)) → g#(f(d), U71(d, d)) is replaced by the following rules:
h#(f(d), f(d)) → g#(U71(d, d), U71(d, d))h#(f(d), f(d)) → g#(f(d), d)

Problem 33: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(d), f(d))g#(U71(d, d), U71(d, d))h#(f(d), f(d))g#(U71(d, d), f(d))
A#g#(e, e)h#(f(e), f(e))g#(f(e), f(e))
A#g#(d, d)A#h#(U71(d, d), U71(d, d))
A#h#(f(e), f(e))h#(f(d), f(d))g#(f(d), d)
A#h#(f(d), f(d))h#(U71(d, d), U71(d, d))g#(U71(d, d), U71(d, d))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule h#(f(d), f(d)) → g#(U71(d, d), U71(d, d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U71(d, d), d) 
g#(d, U71(d, d)) 
Thus, the rule h#(f(d), f(d)) → g#(U71(d, d), U71(d, d)) is replaced by the following rules:
h#(f(d), f(d)) → g#(U71(d, d), d)h#(f(d), f(d)) → g#(d, U71(d, d))

Problem 34: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(d), f(d))g#(U71(d, d), d)h#(f(d), f(d))g#(U71(d, d), f(d))
h#(f(d), f(d))g#(d, U71(d, d))h#(f(e), f(e))g#(f(e), f(e))
A#g#(e, e)A#g#(d, d)
A#h#(U71(d, d), U71(d, d))A#h#(f(e), f(e))
h#(f(d), f(d))g#(f(d), d)h#(U71(d, d), U71(d, d))g#(U71(d, d), U71(d, d))
A#h#(f(d), f(d))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule h#(f(d), f(d)) → g#(U71(d, d), d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(d, d) 
Thus, the rule h#(f(d), f(d)) → g#(U71(d, d), d) is replaced by the following rules:
h#(f(d), f(d)) → g#(d, d)

Problem 35: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(d), f(d))g#(d, U71(d, d))h#(f(d), f(d))g#(U71(d, d), f(d))
A#g#(e, e)h#(f(e), f(e))g#(f(e), f(e))
A#g#(d, d)A#h#(U71(d, d), U71(d, d))
h#(f(d), f(d))g#(d, d)A#h#(f(e), f(e))
h#(f(d), f(d))g#(f(d), d)A#h#(f(d), f(d))
h#(U71(d, d), U71(d, d))g#(U71(d, d), U71(d, d))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule h#(f(d), f(d)) → g#(U71(d, d), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U71(d, d), U71(d, d)) 
g#(d, f(d)) 
Thus, the rule h#(f(d), f(d)) → g#(U71(d, d), f(d)) is replaced by the following rules:
h#(f(d), f(d)) → g#(U71(d, d), U71(d, d))h#(f(d), f(d)) → g#(d, f(d))

Problem 36: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(d), f(d))g#(U71(d, d), U71(d, d))h#(f(d), f(d))g#(d, U71(d, d))
h#(f(e), f(e))g#(f(e), f(e))A#g#(e, e)
h#(f(d), f(d))g#(d, f(d))A#g#(d, d)
h#(f(d), f(d))g#(d, d)A#h#(U71(d, d), U71(d, d))
A#h#(f(e), f(e))h#(f(d), f(d))g#(f(d), d)
h#(U71(d, d), U71(d, d))g#(U71(d, d), U71(d, d))A#h#(f(d), f(d))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule h#(f(d), f(d)) → g#(U71(d, d), U71(d, d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U71(d, d), d) 
g#(d, U71(d, d)) 
Thus, the rule h#(f(d), f(d)) → g#(U71(d, d), U71(d, d)) is replaced by the following rules:
h#(f(d), f(d)) → g#(U71(d, d), d)h#(f(d), f(d)) → g#(d, U71(d, d))

Problem 37: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(d), f(d))g#(U71(d, d), d)h#(f(d), f(d))g#(d, U71(d, d))
h#(f(d), f(d))g#(d, f(d))A#g#(e, e)
h#(f(e), f(e))g#(f(e), f(e))A#g#(d, d)
A#h#(U71(d, d), U71(d, d))h#(f(d), f(d))g#(d, d)
A#h#(f(e), f(e))h#(f(d), f(d))g#(f(d), d)
A#h#(f(d), f(d))h#(U71(d, d), U71(d, d))g#(U71(d, d), U71(d, d))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule h#(f(d), f(d)) → g#(U71(d, d), d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(d, d) 
Thus, the rule h#(f(d), f(d)) → g#(U71(d, d), d) is replaced by the following rules:
h#(f(d), f(d)) → g#(d, d)

Problem 38: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(d), f(d))g#(d, U71(d, d))h#(f(e), f(e))g#(f(e), f(e))
A#g#(e, e)h#(f(d), f(d))g#(d, f(d))
A#g#(d, d)h#(f(d), f(d))g#(d, d)
A#h#(U71(d, d), U71(d, d))A#h#(f(e), f(e))
h#(f(d), f(d))g#(f(d), d)h#(U71(d, d), U71(d, d))g#(U71(d, d), U71(d, d))
A#h#(f(d), f(d))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule h#(f(d), f(d)) → g#(d, U71(d, d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(d, d) 
Thus, the rule h#(f(d), f(d)) → g#(d, U71(d, d)) is replaced by the following rules:
h#(f(d), f(d)) → g#(d, d)

Problem 39: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(d), f(d))g#(d, f(d))A#g#(e, e)
h#(f(e), f(e))g#(f(e), f(e))A#g#(d, d)
A#h#(U71(d, d), U71(d, d))h#(f(d), f(d))g#(d, d)
A#h#(f(e), f(e))h#(f(d), f(d))g#(f(d), d)
A#h#(f(d), f(d))h#(U71(d, d), U71(d, d))g#(U71(d, d), U71(d, d))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule h#(f(e), f(e)) → g#(f(e), f(e)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(U71(e, e), f(e))
 g#(f(e), U71(e, e))
Thus, the rule h#(f(e), f(e)) → g#(f(e), f(e)) is deleted.

Problem 40: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#g#(e, e)h#(f(d), f(d))g#(d, f(d))
A#g#(d, d)h#(f(d), f(d))g#(d, d)
A#h#(U71(d, d), U71(d, d))A#h#(f(e), f(e))
h#(f(d), f(d))g#(f(d), d)h#(U71(d, d), U71(d, d))g#(U71(d, d), U71(d, d))
A#h#(f(d), f(d))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule h#(f(d), f(d)) → g#(d, f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(d, U71(d, d)) 
Thus, the rule h#(f(d), f(d)) → g#(d, f(d)) is replaced by the following rules:
h#(f(d), f(d)) → g#(d, U71(d, d))

Problem 41: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(d), f(d))g#(d, U71(d, d))A#g#(e, e)
A#g#(d, d)A#h#(U71(d, d), U71(d, d))
h#(f(d), f(d))g#(d, d)A#h#(f(e), f(e))
h#(f(d), f(d))g#(f(d), d)A#h#(f(d), f(d))
h#(U71(d, d), U71(d, d))g#(U71(d, d), U71(d, d))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule h#(f(d), f(d)) → g#(d, U71(d, d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(d, d) 
Thus, the rule h#(f(d), f(d)) → g#(d, U71(d, d)) is replaced by the following rules:
h#(f(d), f(d)) → g#(d, d)

Problem 42: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#g#(e, e)A#g#(d, d)
h#(f(d), f(d))g#(d, d)A#h#(U71(d, d), U71(d, d))
A#h#(f(e), f(e))h#(f(d), f(d))g#(f(d), d)
h#(U71(d, d), U71(d, d))g#(U71(d, d), U71(d, d))A#h#(f(d), f(d))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → g#(e, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → g#(e, e) is deleted.

Problem 43: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#g#(d, d)A#h#(U71(d, d), U71(d, d))
h#(f(d), f(d))g#(d, d)A#h#(f(e), f(e))
h#(f(d), f(d))g#(f(d), d)A#h#(f(d), f(d))
h#(U71(d, d), U71(d, d))g#(U71(d, d), U71(d, d))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → g#(d, d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → g#(d, d) is deleted.

Problem 44: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(d), f(d))g#(d, d)A#h#(U71(d, d), U71(d, d))
A#h#(f(e), f(e))h#(f(d), f(d))g#(f(d), d)
h#(U71(d, d), U71(d, d))g#(U71(d, d), U71(d, d))A#h#(f(d), f(d))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule h#(f(d), f(d)) → g#(d, d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule h#(f(d), f(d)) → g#(d, d) is deleted.

Problem 45: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U71(d, d), U71(d, d))A#h#(f(e), f(e))
h#(f(d), f(d))g#(f(d), d)A#h#(f(d), f(d))
h#(U71(d, d), U71(d, d))g#(U71(d, d), U71(d, d))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule A# → h#(f(e), f(e)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 h#(f(e), U71(e, e))
 h#(U71(e, e), f(e))
Thus, the rule A# → h#(f(e), f(e)) is deleted.

Problem 46: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U71(d, d), U71(d, d))h#(f(d), f(d))g#(f(d), d)
h#(U71(d, d), U71(d, d))g#(U71(d, d), U71(d, d))A#h#(f(d), f(d))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule h#(f(d), f(d)) → g#(f(d), d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U71(d, d), d) 
Thus, the rule h#(f(d), f(d)) → g#(f(d), d) is replaced by the following rules:
h#(f(d), f(d)) → g#(U71(d, d), d)

Problem 47: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(d), f(d))g#(U71(d, d), d)A#h#(U71(d, d), U71(d, d))
A#h#(f(d), f(d))h#(U71(d, d), U71(d, d))g#(U71(d, d), U71(d, d))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule h#(f(d), f(d)) → g#(U71(d, d), d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(d, d) 
Thus, the rule h#(f(d), f(d)) → g#(U71(d, d), d) is replaced by the following rules:
h#(f(d), f(d)) → g#(d, d)

Problem 48: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U71(d, d), U71(d, d))h#(f(d), f(d))g#(d, d)
h#(U71(d, d), U71(d, d))g#(U71(d, d), U71(d, d))A#h#(f(d), f(d))

Rewrite Rules

adbd
aebe
Ah(f(a), f(b))h(x, x)g(x, x)
g(d, e)Af(x)U71(x, x)
U71(d, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, a, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(A) = μ(a) = μ(a#) = μ(T) = μ(A#) = μ(b#) = ∅
μ(f) = μ(f#) = μ(U71) = μ(U71#) = {1}
μ(g) = μ(h#) = μ(g#) = μ(h) = {1, 2}


The right-hand side of the rule h#(f(d), f(d)) → g#(d, d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule h#(f(d), f(d)) → g#(d, d) is deleted.