YES

The TRS could be proven terminating. The proof took 10572 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (72ms).
 | – Problem 2 was processed with processor ForwardNarrowing (4ms).
 |    | – Problem 3 was processed with processor ForwardNarrowing (28ms).
 |    |    | – Problem 4 was processed with processor ForwardNarrowing (24ms).
 |    |    |    | – Problem 5 was processed with processor ForwardNarrowing (7ms).
 |    |    |    |    | – Problem 6 was processed with processor ForwardNarrowing (18ms).
 |    |    |    |    |    | – Problem 7 was processed with processor ForwardNarrowing (7ms).
 |    |    |    |    |    |    | – Problem 8 was processed with processor ForwardNarrowing (7ms).
 |    |    |    |    |    |    |    | – Problem 9 was processed with processor ForwardNarrowing (4ms).
 |    |    |    |    |    |    |    |    | – Problem 10 was processed with processor ForwardNarrowing (8ms).
 |    |    |    |    |    |    |    |    |    | – Problem 11 was processed with processor ForwardNarrowing (19ms).
 |    |    |    |    |    |    |    |    |    |    | – Problem 12 was processed with processor ForwardNarrowing (13ms).
 |    |    |    |    |    |    |    |    |    |    |    | – Problem 13 was processed with processor ForwardNarrowing (5ms).
 |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 14 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 15 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 16 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 17 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 18 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 19 was processed with processor ForwardNarrowing (3ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 20 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 21 was processed with processor ForwardNarrowing (38ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 22 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 23 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 24 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 25 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 26 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 27 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 28 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 29 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 30 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 31 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 32 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 33 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 34 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 35 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 36 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 37 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 38 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 39 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 40 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 41 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 42 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 43 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 44 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 45 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 46 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 47 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 48 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 49 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 50 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 51 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 52 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 53 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 54 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 55 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 56 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 57 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 58 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 59 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 60 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 61 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 62 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 63 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 64 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 65 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 66 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 67 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 68 was processed with processor BackwardInstantiation (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 69 was processed with processor Propagation (4ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 70 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 71 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 72 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 73 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 74 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 75 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 76 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 77 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 78 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 79 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 80 was processed with processor ForwardNarrowing (13ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 81 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 82 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 83 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 84 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 85 was processed with processor ForwardNarrowing (4ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 86 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 87 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 88 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 89 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 90 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 91 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 92 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 93 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 94 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 95 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 96 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 97 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 98 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 99 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 100 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 101 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 102 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 103 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 104 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 105 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 106 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 107 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 108 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 109 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 110 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 111 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 112 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 113 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 114 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 115 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 116 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 117 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 118 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 119 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 120 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 121 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 122 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 123 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 124 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 125 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 126 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 127 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 128 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 129 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 130 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 131 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 132 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 133 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 134 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 135 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 136 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 137 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 138 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 139 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 140 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 141 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 142 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 143 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 144 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 145 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 146 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 147 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 148 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 149 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 150 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 151 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 152 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 153 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 154 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 155 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 156 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 157 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 158 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 159 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 160 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 161 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 162 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 163 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 164 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 165 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 166 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 167 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 168 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 169 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 170 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 171 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 172 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 173 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 174 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 175 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 176 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 177 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 178 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 179 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 180 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 181 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 182 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 183 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 184 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 185 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 186 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 187 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 188 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 189 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 190 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 191 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 192 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 193 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 194 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 195 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 196 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 197 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 198 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 199 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 200 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 201 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 202 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 203 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 204 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 205 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 206 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 207 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 208 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 209 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 210 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 211 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 212 was processed with processor ForwardNarrowing (0ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#b#
a#c#A#f#(a)
A#a#f#(x)U111#(x, x)
b#c#h#(x, x)k#
A#h#(f(a), f(b))A#f#(b)
h#(x, x)f#(k)U111#(e, x)T(x)
g#(d, x, x)A#

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The following SCCs where found

h#(x, x) → g#(x, x, f(k))A# → h#(f(a), f(b))
g#(d, x, x) → A#

Problem 2: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(a), f(b))
g#(d, x, x)A#

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(a), f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(c), f(b)) 
h#(f(a), f(d)) 
h#(f(a), U111(b, b)) 
h#(f(d), f(b)) 
h#(U111(a, a), f(b)) 
h#(f(a), f(c)) 
Thus, the rule A# → h#(f(a), f(b)) is replaced by the following rules:
A# → h#(f(c), f(b))A# → h#(f(d), f(b))
A# → h#(U111(a, a), f(b))A# → h#(f(a), f(d))
A# → h#(f(a), U111(b, b))A# → h#(f(a), f(c))

Problem 3: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(c), f(b))
A#h#(f(d), f(b))A#h#(U111(a, a), f(b))
A#h#(f(a), f(d))A#h#(f(a), U111(b, b))
A#h#(f(a), f(c))g#(d, x, x)A#

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(c), f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(c), U111(b, b)) 
h#(U111(c, c), f(b)) 
h#(f(l), f(b)) 
h#(f(e), f(b)) 
h#(f(c), f(c)) 
h#(f(c), f(d)) 
Thus, the rule A# → h#(f(c), f(b)) is replaced by the following rules:
A# → h#(U111(c, c), f(b))A# → h#(f(l), f(b))
A# → h#(f(e), f(b))A# → h#(f(c), f(d))
A# → h#(f(c), U111(b, b))A# → h#(f(c), f(c))

Problem 4: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(d), f(b))
A#h#(f(e), f(b))A#h#(U111(a, a), f(b))
A#h#(f(a), f(d))A#h#(f(a), f(c))
A#h#(f(c), f(c))A#h#(U111(c, c), f(b))
A#h#(f(l), f(b))A#h#(f(c), f(d))
A#h#(f(a), U111(b, b))g#(d, x, x)A#
A#h#(f(c), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(d), f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(d), f(c))h#(U111(d, d), f(b))
h#(f(d), U111(b, b)) 
h#(f(d), f(d)) 
Thus, the rule A# → h#(f(d), f(b)) is replaced by the following rules:
A# → h#(f(d), U111(b, b))A# → h#(f(d), f(d))
A# → h#(f(d), f(c))

Problem 5: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(e), f(b))
A#h#(U111(a, a), f(b))A#h#(f(a), f(d))
A#h#(f(d), U111(b, b))A#h#(f(a), f(c))
A#h#(f(d), f(c))A#h#(f(c), f(c))
A#h#(U111(c, c), f(b))A#h#(f(l), f(b))
A#h#(f(c), f(d))A#h#(f(a), U111(b, b))
g#(d, x, x)A#A#h#(f(c), U111(b, b))
A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(e), f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(e), f(d)) 
h#(U111(e, e), f(b)) 
h#(f(e), f(c)) 
h#(f(e), U111(b, b)) 
Thus, the rule A# → h#(f(e), f(b)) is replaced by the following rules:
A# → h#(U111(e, e), f(b))A# → h#(f(e), f(d))
A# → h#(f(e), U111(b, b))A# → h#(f(e), f(c))

Problem 6: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U111(a, a), f(b))
A#h#(f(a), f(d))A#h#(f(d), U111(b, b))
A#h#(f(a), f(c))A#h#(f(d), f(c))
A#h#(f(c), f(c))A#h#(U111(e, e), f(b))
A#h#(U111(c, c), f(b))A#h#(f(l), f(b))
A#h#(f(e), f(d))A#h#(f(c), f(d))
A#h#(f(a), U111(b, b))A#h#(f(e), U111(b, b))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(f(c), U111(b, b))A#h#(f(e), f(c))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U111(a, a), f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U111(a, a), f(c))h#(U111(d, a), f(b))
h#(U111(a, a), f(d)) 
h#(U111(a, a), U111(b, b)) 
h#(U111(c, a), f(b)) 
Thus, the rule A# → h#(U111(a, a), f(b)) is replaced by the following rules:
A# → h#(U111(c, a), f(b))A# → h#(U111(a, a), U111(b, b))
A# → h#(U111(a, a), f(c))A# → h#(U111(a, a), f(d))

Problem 7: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U111(a, a), U111(b, b))
A#h#(U111(a, a), f(c))A#h#(f(a), f(d))
A#h#(f(d), U111(b, b))A#h#(f(a), f(c))
A#h#(U111(a, a), f(d))A#h#(f(d), f(c))
A#h#(f(c), f(c))A#h#(U111(e, e), f(b))
A#h#(U111(c, c), f(b))A#h#(f(l), f(b))
A#h#(U111(c, a), f(b))A#h#(f(c), f(d))
A#h#(f(e), f(d))A#h#(f(a), U111(b, b))
A#h#(f(e), U111(b, b))g#(d, x, x)A#
A#h#(f(e), f(c))A#h#(f(c), U111(b, b))
A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U111(a, a), U111(b, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U111(a, a), U111(c, b))h#(U111(a, a), U111(d, b))
h#(U111(c, a), U111(b, b))h#(U111(d, a), U111(b, b))
Thus, the rule A# → h#(U111(a, a), U111(b, b)) is replaced by the following rules:
A# → h#(U111(a, a), U111(c, b))A# → h#(U111(c, a), U111(b, b))

Problem 8: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U111(a, a), f(c))
A#h#(f(a), f(d))A#h#(f(d), U111(b, b))
A#h#(f(a), f(c))A#h#(U111(a, a), f(d))
A#h#(f(d), f(c))A#h#(f(c), f(c))
A#h#(U111(e, e), f(b))A#h#(U111(c, c), f(b))
A#h#(f(l), f(b))A#h#(U111(c, a), f(b))
A#h#(f(e), f(d))A#h#(f(c), f(d))
A#h#(f(a), U111(b, b))A#h#(f(e), U111(b, b))
g#(d, x, x)A#A#h#(U111(a, a), U111(c, b))
A#h#(f(d), f(d))A#h#(f(c), U111(b, b))
A#h#(f(e), f(c))A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U111(a, a), f(c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U111(c, a), f(c))h#(U111(d, a), f(c))
h#(U111(a, a), f(l)) 
h#(U111(a, a), U111(c, c)) 
h#(U111(a, a), f(e)) 
Thus, the rule A# → h#(U111(a, a), f(c)) is replaced by the following rules:
A# → h#(U111(a, a), f(l))A# → h#(U111(a, a), f(e))
A# → h#(U111(c, a), f(c))A# → h#(U111(a, a), U111(c, c))

Problem 9: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(a), f(d))
A#h#(f(a), f(c))A#h#(U111(a, a), f(d))
A#h#(f(d), f(c))A#h#(U111(e, e), f(b))
A#h#(U111(c, c), f(b))A#h#(f(e), f(d))
A#h#(f(c), f(d))A#h#(f(a), U111(b, b))
A#h#(U111(a, a), f(l))A#h#(f(d), U111(b, b))
A#h#(U111(c, a), f(c))A#h#(f(c), f(c))
A#h#(f(l), f(b))A#h#(U111(c, a), f(b))
A#h#(U111(a, a), f(e))A#h#(f(e), U111(b, b))
A#h#(U111(a, a), U111(c, c))A#h#(U111(a, a), U111(c, b))
g#(d, x, x)A#A#h#(U111(c, a), U111(b, b))
A#h#(f(e), f(c))A#h#(f(c), U111(b, b))
A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(a), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U111(a, a), f(d))h#(f(a), U111(d, d))
h#(f(d), f(d)) 
h#(f(c), f(d)) 
Thus, the rule A# → h#(f(a), f(d)) is replaced by the following rules:
A# → h#(f(c), f(d))A# → h#(U111(a, a), f(d))
A# → h#(f(d), f(d))

Problem 10: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U111(a, a), f(l))h#(x, x)g#(x, x, f(k))
A#h#(f(d), U111(b, b))A#h#(f(a), f(c))
A#h#(U111(c, a), f(c))A#h#(U111(a, a), f(d))
A#h#(f(d), f(c))A#h#(f(c), f(c))
A#h#(f(l), f(b))A#h#(U111(e, e), f(b))
A#h#(U111(c, c), f(b))A#h#(U111(c, a), f(b))
A#h#(U111(a, a), f(e))A#h#(f(e), f(d))
A#h#(f(c), f(d))A#h#(f(a), U111(b, b))
A#h#(U111(a, a), U111(c, c))A#h#(f(e), U111(b, b))
g#(d, x, x)A#A#h#(U111(a, a), U111(c, b))
A#h#(f(d), f(d))A#h#(f(c), U111(b, b))
A#h#(f(e), f(c))A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(a), f(c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(d), f(c)) 
h#(U111(a, a), f(c)) 
h#(f(a), U111(c, c)) 
h#(f(a), f(e)) 
h#(f(c), f(c)) 
h#(f(a), f(l)) 
Thus, the rule A# → h#(f(a), f(c)) is replaced by the following rules:
A# → h#(f(a), f(e))A# → h#(f(a), f(l))
A# → h#(U111(a, a), f(c))A# → h#(f(a), U111(c, c))
A# → h#(f(c), f(c))A# → h#(f(d), f(c))

Problem 11: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U111(a, a), f(d))
A#h#(f(d), f(c))A#h#(U111(e, e), f(b))
A#h#(U111(c, c), f(b))A#h#(f(a), f(e))
A#h#(f(e), f(d))A#h#(f(c), f(d))
A#h#(f(a), U111(b, b))A#h#(U111(a, a), f(l))
A#h#(U111(a, a), f(c))A#h#(f(d), U111(b, b))
A#h#(U111(c, a), f(c))A#h#(f(c), f(c))
A#h#(f(l), f(b))A#h#(U111(c, a), f(b))
A#h#(U111(a, a), f(e))A#h#(f(a), f(l))
A#h#(f(a), U111(c, c))A#h#(f(e), U111(b, b))
A#h#(U111(a, a), U111(c, c))A#h#(U111(a, a), U111(c, b))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(f(c), U111(b, b))A#h#(U111(c, a), U111(b, b))
A#h#(f(e), f(c))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U111(a, a), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U111(c, a), f(d))h#(U111(a, a), U111(d, d))
 h#(U111(d, a), f(d))
Thus, the rule A# → h#(U111(a, a), f(d)) is replaced by the following rules:
A# → h#(U111(c, a), f(d))

Problem 12: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(d), f(c))
A#h#(U111(c, c), f(b))A#h#(U111(e, e), f(b))
A#h#(f(a), f(e))A#h#(f(c), f(d))
A#h#(f(e), f(d))A#h#(f(a), U111(b, b))
A#h#(U111(a, a), f(l))A#h#(U111(c, a), f(d))
A#h#(U111(a, a), f(c))A#h#(f(d), U111(b, b))
A#h#(U111(c, a), f(c))A#h#(f(c), f(c))
A#h#(f(l), f(b))A#h#(U111(c, a), f(b))
A#h#(U111(a, a), f(e))A#h#(f(a), f(l))
A#h#(f(a), U111(c, c))A#h#(f(e), U111(b, b))
A#h#(U111(a, a), U111(c, c))A#h#(U111(a, a), U111(c, b))
g#(d, x, x)A#A#h#(f(e), f(c))
A#h#(U111(c, a), U111(b, b))A#h#(f(d), f(d))
A#h#(f(c), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(d), f(c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(d), f(e))h#(U111(d, d), f(c))
h#(f(d), U111(c, c)) 
h#(f(d), f(l)) 
Thus, the rule A# → h#(f(d), f(c)) is replaced by the following rules:
A# → h#(f(d), U111(c, c))A# → h#(f(d), f(l))
A# → h#(f(d), f(e))

Problem 13: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(d), U111(c, c))
A#h#(f(d), f(l))A#h#(f(d), f(e))
A#h#(U111(e, e), f(b))A#h#(U111(c, c), f(b))
A#h#(f(a), f(e))A#h#(f(e), f(d))
A#h#(f(c), f(d))A#h#(f(a), U111(b, b))
A#h#(U111(a, a), f(l))A#h#(U111(c, a), f(d))
A#h#(U111(a, a), f(c))A#h#(f(d), U111(b, b))
A#h#(U111(c, a), f(c))A#h#(f(c), f(c))
A#h#(f(l), f(b))A#h#(U111(c, a), f(b))
A#h#(U111(a, a), f(e))A#h#(f(a), f(l))
A#h#(f(a), U111(c, c))A#h#(f(e), U111(b, b))
A#h#(U111(a, a), U111(c, c))A#h#(U111(a, a), U111(c, b))
g#(d, x, x)A#A#h#(f(c), U111(b, b))
A#h#(f(d), f(d))A#h#(U111(c, a), U111(b, b))
A#h#(f(e), f(c))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(d), U111(c, c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U111(d, d), U111(c, c))h#(f(d), U111(l, c))
h#(f(d), U111(e, c)) 
Thus, the rule A# → h#(f(d), U111(c, c)) is replaced by the following rules:
A# → h#(f(d), U111(e, c))A# → h#(U111(d, d), U111(c, c))

Problem 14: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(d), f(l))
A#h#(f(d), f(e))A#h#(U111(c, c), f(b))
A#h#(U111(e, e), f(b))A#h#(f(a), f(e))
A#h#(U111(d, d), U111(c, c))A#h#(f(c), f(d))
A#h#(f(e), f(d))A#h#(f(a), U111(b, b))
A#h#(U111(a, a), f(l))A#h#(f(d), U111(e, c))
A#h#(U111(c, a), f(d))A#h#(U111(a, a), f(c))
A#h#(f(d), U111(b, b))A#h#(U111(c, a), f(c))
A#h#(f(c), f(c))A#h#(f(l), f(b))
A#h#(U111(c, a), f(b))A#h#(U111(a, a), f(e))
A#h#(f(a), f(l))A#h#(f(a), U111(c, c))
A#h#(f(e), U111(b, b))A#h#(U111(a, a), U111(c, c))
g#(d, x, x)A#A#h#(U111(a, a), U111(c, b))
A#h#(f(e), f(c))A#h#(U111(c, a), U111(b, b))
A#h#(f(d), f(d))A#h#(f(c), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(d), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 h#(f(d), U111(l, l))
 h#(U111(d, d), f(l))
Thus, the rule A# → h#(f(d), f(l)) is deleted.

Problem 15: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(d), f(e))
A#h#(U111(e, e), f(b))A#h#(U111(c, c), f(b))
A#h#(f(a), f(e))A#h#(U111(d, d), U111(c, c))
A#h#(f(e), f(d))A#h#(f(c), f(d))
A#h#(f(a), U111(b, b))A#h#(U111(a, a), f(l))
A#h#(f(d), U111(e, c))A#h#(U111(c, a), f(d))
A#h#(U111(a, a), f(c))A#h#(f(d), U111(b, b))
A#h#(U111(c, a), f(c))A#h#(f(c), f(c))
A#h#(f(l), f(b))A#h#(U111(c, a), f(b))
A#h#(U111(a, a), f(e))A#h#(f(a), f(l))
A#h#(f(a), U111(c, c))A#h#(f(e), U111(b, b))
A#h#(U111(a, a), U111(c, c))g#(d, x, x)A#
A#h#(U111(a, a), U111(c, b))A#h#(f(c), U111(b, b))
A#h#(f(d), f(d))A#h#(U111(c, a), U111(b, b))
A#h#(f(e), f(c))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(d), f(e)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(d), U111(e, e))h#(U111(d, d), f(e))
Thus, the rule A# → h#(f(d), f(e)) is replaced by the following rules:
A# → h#(f(d), U111(e, e))

Problem 16: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U111(c, c), f(b))
A#h#(U111(e, e), f(b))A#h#(f(a), f(e))
A#h#(U111(d, d), U111(c, c))A#h#(f(c), f(d))
A#h#(f(e), f(d))A#h#(f(a), U111(b, b))
A#h#(U111(a, a), f(l))A#h#(f(d), U111(e, c))
A#h#(U111(c, a), f(d))A#h#(U111(a, a), f(c))
A#h#(f(d), U111(b, b))A#h#(U111(c, a), f(c))
A#h#(f(c), f(c))A#h#(f(l), f(b))
A#h#(U111(c, a), f(b))A#h#(U111(a, a), f(e))
A#h#(f(a), f(l))A#h#(f(a), U111(c, c))
A#h#(f(e), U111(b, b))A#h#(U111(a, a), U111(c, c))
g#(d, x, x)A#A#h#(U111(a, a), U111(c, b))
A#h#(f(e), f(c))A#h#(U111(c, a), U111(b, b))
A#h#(f(d), f(d))A#h#(f(c), U111(b, b))
A#h#(f(d), U111(e, e))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U111(e, e), f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U111(e, e), f(d)) 
h#(U111(e, e), f(c)) 
h#(e, f(b)) 
h#(U111(e, e), U111(b, b)) 
Thus, the rule A# → h#(U111(e, e), f(b)) is replaced by the following rules:
A# → h#(U111(e, e), U111(b, b))A# → h#(e, f(b))
A# → h#(U111(e, e), f(c))A# → h#(U111(e, e), f(d))

Problem 17: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U111(c, c), f(b))
A#h#(f(a), f(e))A#h#(U111(e, e), U111(b, b))
A#h#(e, f(b))A#h#(U111(d, d), U111(c, c))
A#h#(f(e), f(d))A#h#(f(c), f(d))
A#h#(U111(e, e), f(d))A#h#(f(a), U111(b, b))
A#h#(U111(a, a), f(l))A#h#(f(d), U111(e, c))
A#h#(U111(c, a), f(d))A#h#(U111(a, a), f(c))
A#h#(f(d), U111(b, b))A#h#(U111(c, a), f(c))
A#h#(f(c), f(c))A#h#(f(l), f(b))
A#h#(U111(c, a), f(b))A#h#(U111(a, a), f(e))
A#h#(U111(e, e), f(c))A#h#(f(a), f(l))
A#h#(f(a), U111(c, c))A#h#(f(e), U111(b, b))
A#h#(U111(a, a), U111(c, c))A#h#(U111(a, a), U111(c, b))
g#(d, x, x)A#A#h#(f(c), U111(b, b))
A#h#(f(d), f(d))A#h#(U111(c, a), U111(b, b))
A#h#(f(e), f(c))A#h#(f(d), U111(e, e))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U111(c, c), f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U111(c, c), f(d))h#(U111(l, c), f(b))
h#(U111(e, c), f(b)) 
h#(U111(c, c), f(c)) 
h#(U111(c, c), U111(b, b)) 
Thus, the rule A# → h#(U111(c, c), f(b)) is replaced by the following rules:
A# → h#(U111(c, c), U111(b, b))A# → h#(U111(e, c), f(b))
A# → h#(U111(c, c), f(d))A# → h#(U111(c, c), f(c))

Problem 18: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U111(c, c), f(d))
A#h#(U111(c, c), f(c))A#h#(f(a), f(e))
A#h#(e, f(b))A#h#(U111(e, e), U111(b, b))
A#h#(U111(d, d), U111(c, c))A#h#(U111(e, e), f(d))
A#h#(f(c), f(d))A#h#(f(e), f(d))
A#h#(f(a), U111(b, b))A#h#(U111(a, a), f(l))
A#h#(f(d), U111(e, c))A#h#(U111(c, a), f(d))
A#h#(U111(a, a), f(c))A#h#(f(d), U111(b, b))
A#h#(U111(c, a), f(c))A#h#(f(c), f(c))
A#h#(f(l), f(b))A#h#(U111(c, c), U111(b, b))
A#h#(U111(c, a), f(b))A#h#(U111(e, c), f(b))
A#h#(U111(a, a), f(e))A#h#(U111(e, e), f(c))
A#h#(f(a), f(l))A#h#(f(a), U111(c, c))
A#h#(U111(a, a), U111(c, c))A#h#(f(e), U111(b, b))
g#(d, x, x)A#A#h#(U111(a, a), U111(c, b))
A#h#(f(e), f(c))A#h#(U111(c, a), U111(b, b))
A#h#(f(d), f(d))A#h#(f(c), U111(b, b))
A#h#(f(d), U111(e, e))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U111(c, c), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U111(e, c), f(d))h#(U111(c, c), U111(d, d))
 h#(U111(l, c), f(d))
Thus, the rule A# → h#(U111(c, c), f(d)) is replaced by the following rules:
A# → h#(U111(e, c), f(d))

Problem 19: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U111(c, c), f(c))
A#h#(U111(e, c), f(d))A#h#(f(a), f(e))
A#h#(U111(e, e), U111(b, b))A#h#(e, f(b))
A#h#(U111(d, d), U111(c, c))A#h#(f(e), f(d))
A#h#(f(c), f(d))A#h#(U111(e, e), f(d))
A#h#(f(a), U111(b, b))A#h#(U111(a, a), f(l))
A#h#(f(d), U111(e, c))A#h#(U111(c, a), f(d))
A#h#(U111(a, a), f(c))A#h#(f(d), U111(b, b))
A#h#(U111(c, a), f(c))A#h#(f(c), f(c))
A#h#(f(l), f(b))A#h#(U111(c, c), U111(b, b))
A#h#(U111(c, a), f(b))A#h#(U111(e, c), f(b))
A#h#(U111(a, a), f(e))A#h#(U111(e, e), f(c))
A#h#(f(a), f(l))A#h#(f(a), U111(c, c))
A#h#(f(e), U111(b, b))A#h#(U111(a, a), U111(c, c))
A#h#(U111(a, a), U111(c, b))g#(d, x, x)A#
A#h#(f(c), U111(b, b))A#h#(f(d), f(d))
A#h#(U111(c, a), U111(b, b))A#h#(f(e), f(c))
A#h#(f(d), U111(e, e))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U111(c, c), f(c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U111(c, c), f(l))h#(U111(l, c), f(c))
h#(U111(c, c), U111(c, c)) 
h#(U111(e, c), f(c)) 
h#(U111(c, c), f(e)) 
Thus, the rule A# → h#(U111(c, c), f(c)) is replaced by the following rules:
A# → h#(U111(c, c), f(l))A# → h#(U111(c, c), U111(c, c))
A# → h#(U111(e, c), f(c))A# → h#(U111(c, c), f(e))

Problem 20: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U111(e, c), f(d))
A#h#(f(a), f(e))A#h#(e, f(b))
A#h#(U111(e, e), U111(b, b))A#h#(U111(d, d), U111(c, c))
A#h#(U111(e, e), f(d))A#h#(f(c), f(d))
A#h#(f(e), f(d))A#h#(U111(c, c), f(e))
A#h#(f(a), U111(b, b))A#h#(U111(a, a), f(l))
A#h#(f(d), U111(e, c))A#h#(U111(c, a), f(d))
A#h#(U111(a, a), f(c))A#h#(f(d), U111(b, b))
A#h#(U111(c, a), f(c))A#h#(f(c), f(c))
A#h#(f(l), f(b))A#h#(U111(c, c), U111(b, b))
A#h#(U111(c, a), f(b))A#h#(U111(e, c), f(b))
A#h#(U111(a, a), f(e))A#h#(U111(c, c), f(l))
A#h#(U111(c, c), U111(c, c))A#h#(U111(e, e), f(c))
A#h#(f(a), f(l))A#h#(U111(e, c), f(c))
A#h#(f(a), U111(c, c))A#h#(U111(a, a), U111(c, c))
A#h#(f(e), U111(b, b))g#(d, x, x)A#
A#h#(U111(a, a), U111(c, b))A#h#(f(e), f(c))
A#h#(U111(c, a), U111(b, b))A#h#(f(d), f(d))
A#h#(f(c), U111(b, b))A#h#(f(d), U111(e, e))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U111(e, c), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U111(e, c), U111(d, d)) 
h#(c, f(d)) 
Thus, the rule A# → h#(U111(e, c), f(d)) is replaced by the following rules:
A# → h#(U111(e, c), U111(d, d))A# → h#(c, f(d))

Problem 21: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(a), f(e))
A#h#(U111(e, e), U111(b, b))A#h#(e, f(b))
A#h#(c, f(d))A#h#(U111(d, d), U111(c, c))
A#h#(f(e), f(d))A#h#(f(c), f(d))
A#h#(U111(e, e), f(d))A#h#(U111(c, c), f(e))
A#h#(f(a), U111(b, b))A#h#(U111(a, a), f(l))
A#h#(f(d), U111(e, c))A#h#(U111(c, a), f(d))
A#h#(U111(a, a), f(c))A#h#(f(d), U111(b, b))
A#h#(U111(c, a), f(c))A#h#(f(c), f(c))
A#h#(f(l), f(b))A#h#(U111(c, c), U111(b, b))
A#h#(U111(c, a), f(b))A#h#(U111(e, c), U111(d, d))
A#h#(U111(e, c), f(b))A#h#(U111(a, a), f(e))
A#h#(U111(c, c), f(l))A#h#(U111(c, c), U111(c, c))
A#h#(U111(e, e), f(c))A#h#(U111(e, c), f(c))
A#h#(f(a), f(l))A#h#(f(a), U111(c, c))
A#h#(f(e), U111(b, b))A#h#(U111(a, a), U111(c, c))
A#h#(U111(a, a), U111(c, b))g#(d, x, x)A#
A#h#(f(c), U111(b, b))A#h#(f(d), f(d))
A#h#(U111(c, a), U111(b, b))A#h#(f(e), f(c))
A#h#(f(d), U111(e, e))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(a), f(e)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(a), U111(e, e)) 
h#(f(d), f(e)) 
h#(U111(a, a), f(e)) 
h#(f(c), f(e)) 
Thus, the rule A# → h#(f(a), f(e)) is replaced by the following rules:
A# → h#(U111(a, a), f(e))A# → h#(f(a), U111(e, e))
A# → h#(f(c), f(e))A# → h#(f(d), f(e))

Problem 22: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U111(e, a), U111(e, e))
A#h#(U111(c, a), e)A#h#(f(c), f(c))
A#h#(e, U111(c, c))A#h#(f(l), f(b))
A#h#(a, U111(c, c))A#h#(U111(c, c), U111(b, b))
A#h#(U111(c, a), f(b))A#h#(U111(e, c), f(b))
A#h#(U111(e, c), U111(d, d))A#h#(U111(a, a), f(e))
A#h#(e, U111(e, e))A#h#(U111(c, c), f(l))
A#h#(a, f(e))A#h#(U111(c, a), U111(e, c))
A#h#(U111(c, c), U111(c, c))A#h#(U111(e, e), f(c))
A#h#(f(a), f(l))A#h#(U111(e, c), f(c))
A#h#(f(d), e)A#h#(f(e), f(e))
A#h#(f(a), U111(c, c))A#h#(U111(a, a), U111(c, c))
A#h#(e, f(d))g#(d, x, x)A#
A#h#(f(c), U111(b, b))A#h#(f(d), f(d))
A#h#(f(d), U111(e, e))A#h#(U111(e, e), U111(d, d))
A#h#(U111(e, c), f(e))A#h#(U111(a, a), U111(b, b))
A#h#(U111(e, a), e)A#h#(f(d), c)
A#h#(a, U111(e, e))A#h#(f(e), f(d))
A#h#(f(c), f(d))A#h#(U111(c, a), f(l))
A#h#(f(l), f(e))A#h#(a, U111(e, c))
A#h#(U111(e, a), f(c))A#h#(U111(a, a), f(l))
A#h#(e, f(l))A#h#(U111(a, a), e)
A#h#(f(a), U111(c, b))A#h#(U111(c, a), f(d))
A#h#(U111(a, a), f(c))A#h#(U111(c, c), U111(e, e))
A#h#(f(c), e)A#h#(U111(e, e), U111(c, b))
A#h#(U111(d, d), U111(e, c))A#h#(f(c), U111(e, e))
A#h#(U111(e, a), c)A#h#(f(e), U111(b, b))
A#h#(f(d), U111(c, b))A#h#(U111(a, a), U111(c, b))
A#h#(e, U111(e, b))A#h#(f(e), f(c))
A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U111(e, a), U111(e, e)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(a, U111(e, e)) 
h#(U111(e, a), e) 
Thus, the rule A# → h#(U111(e, a), U111(e, e)) is replaced by the following rules:
A# → h#(a, U111(e, e))A# → h#(U111(e, a), e)

Problem 23: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(U111(e, c), f(c))
A#h#(c, f(l))A#h#(l, f(c))
A#h#(f(d), e)A#h#(f(e), f(l))
A#h#(f(e), f(e))A#h#(f(a), U111(c, c))
A#h#(U111(e, c), U111(b, b))A#h#(U111(a, a), U111(c, c))
A#h#(d, f(e))A#h#(e, f(d))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(f(c), U111(b, b))A#h#(f(d), U111(e, e))
A#h#(U111(e, e), f(l))A#h#(e, c)
A#h#(U111(e, e), U111(d, d))A#h#(l, U111(c, b))
A#h#(U111(e, c), f(e))A#h#(U111(a, a), U111(b, b))
A#h#(U111(e, c), f(l))A#h#(c, U111(c, c))
A#h#(U111(e, a), e)A#h#(U111(c, a), c)
A#h#(f(l), U111(b, b))A#h#(c, f(e))
A#h#(e, f(c))A#h#(c, f(d))
A#h#(l, f(b))A#h#(e, f(b))
A#h#(U111(a, a), U111(e, e))A#h#(U111(l, l), U111(c, c))
A#h#(f(d), c)A#h#(a, U111(e, e))
A#h#(c, U111(c, b))A#h#(f(e), f(d))
A#h#(f(c), f(d))A#h#(U111(c, a), f(l))
A#h#(f(l), f(e))A#h#(f(l), c)
A#h#(a, U111(e, c))A#h#(U111(e, a), f(c))
A#h#(U111(a, a), f(l))A#h#(e, f(l))
A#h#(U111(e, e), f(e))A#h#(U111(c, c), U111(c, b))
A#h#(U111(a, a), e)A#h#(U111(e, a), f(b))
A#h#(f(a), U111(c, b))A#h#(U111(c, a), f(d))
A#h#(U111(a, a), f(c))A#h#(U111(c, c), U111(e, e))
A#h#(f(c), e)A#h#(f(l), f(d))
A#h#(U111(e, e), U111(c, b))A#h#(U111(d, d), U111(e, c))
A#h#(f(c), U111(e, e))A#h#(U111(e, a), c)
A#h#(U111(e, e), U111(c, c))A#h#(f(e), U111(b, b))
A#h#(f(d), U111(c, b))A#h#(U111(a, a), U111(c, b))
A#h#(d, U111(e, c))A#h#(e, U111(e, b))
A#h#(f(e), f(c))A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U111(e, c), f(c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(c, f(c)) 
h#(U111(e, c), U111(c, c)) 
h#(U111(e, c), f(l)) 
h#(U111(e, c), f(e)) 
Thus, the rule A# → h#(U111(e, c), f(c)) is replaced by the following rules:
A# → h#(U111(e, c), f(e))A# → h#(c, f(c))
A# → h#(U111(e, c), U111(c, c))A# → h#(U111(e, c), f(l))

Problem 24: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(l), b)
A#h#(e, e)A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(U111(c, c), U111(c, c))
A#h#(U111(e, c), U111(b, b))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(f(d), U111(e, e))A#h#(U111(e, e), f(l))
A#h#(U111(e, e), U111(d, d))A#h#(e, c)
A#h#(l, U111(c, b))A#h#(U111(e, c), f(e))
A#h#(f(e), U111(e, c))A#h#(U111(a, a), U111(b, b))
A#h#(U111(e, c), U111(c, b))A#h#(U111(e, c), f(l))
A#h#(c, U111(c, c))A#h#(U111(e, a), e)
A#h#(U111(c, a), c)A#h#(f(l), U111(b, b))
A#h#(e, f(c))A#h#(c, f(e))
A#h#(c, f(d))A#h#(l, f(b))
A#h#(e, f(b))A#h#(f(c), U111(e, b))
A#h#(f(e), U111(c, b))A#h#(U111(a, a), U111(e, e))
A#h#(U111(l, l), U111(c, c))A#h#(f(d), c)
A#h#(a, U111(e, e))A#h#(c, U111(c, b))
A#h#(f(e), f(d))A#h#(f(c), f(d))
A#h#(U111(c, a), f(l))A#h#(f(l), f(e))
A#h#(f(l), c)A#h#(a, U111(e, c))
A#h#(U111(e, a), f(c))A#h#(U111(a, a), f(l))
A#h#(e, f(l))A#h#(l, f(e))
A#h#(U111(e, e), f(e))A#h#(U111(c, c), U111(c, b))
A#h#(U111(a, a), e)A#h#(f(a), l)
A#h#(f(a), U111(c, b))A#h#(U111(e, a), f(b))
A#h#(U111(c, a), f(d))A#h#(l, U111(c, c))
A#h#(U111(a, a), f(c))A#h#(U111(a, a), U111(e, c))
A#h#(U111(c, c), U111(e, c))A#h#(U111(c, c), U111(e, e))
A#h#(f(c), e)A#h#(f(c), c)
A#h#(f(l), f(d))A#h#(U111(e, e), U111(c, b))
A#h#(U111(d, d), U111(e, c))A#h#(U111(l, l), U111(e, b))
A#h#(f(c), U111(e, e))A#h#(U111(e, a), c)
A#h#(U111(e, e), U111(c, c))A#h#(U111(e, c), U111(e, c))
A#h#(f(e), U111(b, b))A#h#(f(d), U111(c, b))
A#h#(U111(a, a), U111(c, b))A#h#(U111(a, a), l)
A#h#(d, U111(e, c))A#h#(e, U111(e, b))
A#h#(f(e), f(c))A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(l), b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(l), d)h#(U111(l, l), b)
h#(f(l), c) 
Thus, the rule A# → h#(f(l), b) is replaced by the following rules:
A# → h#(f(l), d)A# → h#(f(l), c)

Problem 25: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(l, e)A#h#(U111(c, a), c)
A#h#(f(l), U111(b, b))A#h#(e, f(c))
A#h#(c, f(e))A#h#(e, f(b))
A#h#(l, f(b))A#h#(c, f(d))
A#h#(f(c), U111(e, b))A#h#(U111(a, a), U111(e, e))
A#h#(U111(l, l), U111(c, c))A#h#(f(e), U111(c, b))
A#h#(f(d), c)A#h#(a, U111(e, e))
A#h#(c, U111(e, c))A#h#(f(e), f(d))
A#h#(c, U111(c, b))A#h#(f(c), f(d))
A#h#(U111(c, a), f(l))A#h#(f(l), f(e))
A#h#(l, U111(e, b))A#h#(f(l), c)
A#h#(a, U111(e, c))A#h#(U111(e, a), f(c))
A#h#(U111(a, a), f(l))A#h#(e, f(l))
A#h#(l, f(e))A#h#(U111(e, e), f(e))
A#h#(U111(d, d), U111(e, e))A#h#(U111(c, c), U111(c, b))
A#h#(f(a), l)A#h#(U111(a, a), e)
A#h#(U111(e, a), f(b))A#h#(f(a), U111(c, b))
A#h#(U111(c, a), f(d))A#h#(l, U111(c, c))
A#h#(U111(a, a), f(c))A#h#(U111(a, a), U111(e, c))
A#h#(U111(c, c), U111(e, c))A#h#(U111(c, c), U111(e, e))
A#h#(f(c), e)A#h#(f(c), c)
A#h#(f(l), f(d))A#h#(U111(e, e), e)
A#h#(U111(e, e), U111(c, b))A#h#(U111(e, c), U111(e, b))
A#h#(U111(d, d), U111(e, c))A#h#(f(e), e)
A#h#(U111(e, e), l)A#h#(U111(l, l), U111(e, b))
A#h#(f(c), U111(e, e))A#h#(U111(e, a), c)
A#h#(U111(e, e), U111(c, c))A#h#(U111(e, c), U111(e, c))
A#h#(f(e), U111(b, b))A#h#(f(d), U111(c, b))
A#h#(U111(a, a), U111(c, b))A#h#(e, l)
A#h#(U111(a, a), l)A#h#(d, U111(e, c))
A#h#(e, U111(e, b))A#h#(f(e), f(c))
A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(l, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(l, e) is deleted.

Problem 26: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(f(e), U111(e, b))A#h#(f(c), b)
A#h#(U111(c, c), U111(e, b))A#h#(f(e), U111(c, b))
A#h#(f(d), c)A#h#(U111(a, a), U111(e, e))
A#h#(U111(l, l), U111(c, c))A#h#(a, U111(e, e))
A#h#(c, U111(e, c))A#h#(f(c), f(d))
A#h#(f(e), f(d))A#h#(c, U111(c, b))
A#h#(U111(c, a), f(l))A#h#(f(l), f(e))
A#h#(l, U111(e, b))A#h#(f(l), c)
A#h#(a, U111(e, c))A#h#(U111(a, a), f(l))
A#h#(U111(e, a), f(c))A#h#(e, f(l))
A#h#(l, f(e))A#h#(U111(e, e), f(e))
A#h#(U111(d, d), U111(e, e))A#h#(U111(c, c), U111(c, b))
A#h#(f(a), l)A#h#(U111(a, a), e)
A#h#(U111(e, a), f(b))A#h#(f(a), U111(c, b))
A#h#(U111(c, a), f(d))A#h#(l, U111(c, c))
A#h#(U111(a, a), f(c))A#h#(U111(a, a), U111(e, c))
A#h#(U111(c, c), U111(e, c))A#h#(U111(c, c), U111(e, e))
A#h#(f(c), e)A#h#(f(l), f(d))
A#h#(f(c), c)A#h#(U111(e, c), U111(e, b))
A#h#(U111(e, e), U111(c, b))A#h#(U111(c, a), l)
A#h#(U111(e, e), e)A#h#(f(e), e)
A#h#(U111(d, d), U111(e, c))A#h#(U111(e, e), l)
A#h#(U111(l, l), U111(e, b))A#h#(f(c), U111(e, e))
A#h#(U111(e, a), c)A#h#(U111(e, e), U111(c, c))
A#h#(U111(e, c), U111(e, c))A#h#(f(e), U111(b, b))
A#h#(f(d), U111(c, b))A#h#(U111(a, a), U111(c, b))
A#h#(e, l)A#h#(U111(a, a), l)
A#h#(d, U111(e, c))A#h#(e, U111(e, b))
A#h#(f(e), f(c))A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(e), U111(e, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(e), b) 
h#(U111(e, e), U111(e, b)) 
Thus, the rule A# → h#(f(e), U111(e, b)) is replaced by the following rules:
A# → h#(U111(e, e), U111(e, b))A# → h#(f(e), b)

Problem 27: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(l, e)A#h#(a, U111(e, e))
A#h#(c, U111(e, c))A#h#(U111(e, e), U111(e, b))
A#h#(f(c), f(d))A#h#(f(e), f(d))
A#h#(c, U111(c, b))A#h#(f(l), f(e))
A#h#(U111(c, a), f(l))A#h#(a, U111(e, c))
A#h#(l, U111(e, b))A#h#(f(l), c)
A#h#(U111(e, a), f(c))A#h#(U111(a, a), f(l))
A#h#(l, f(e))A#h#(U111(e, e), f(e))
A#h#(e, f(l))A#h#(U111(d, d), U111(e, e))
A#h#(U111(c, c), U111(c, b))A#h#(c, c)
A#h#(f(a), l)A#h#(U111(a, a), e)
A#h#(U111(e, a), f(b))A#h#(f(a), U111(c, b))
A#h#(U111(c, a), f(d))A#h#(f(e), d)
A#h#(l, U111(c, c))A#h#(U111(a, a), f(c))
A#h#(U111(a, a), U111(e, c))A#h#(l, l)
A#h#(U111(c, c), d)A#h#(U111(c, c), U111(e, c))
A#h#(U111(c, c), U111(e, e))A#h#(f(c), e)
A#h#(f(l), f(d))A#h#(f(c), c)
A#h#(U111(e, e), e)A#h#(U111(e, e), U111(c, b))
A#h#(U111(e, c), U111(e, b))A#h#(U111(c, a), l)
A#h#(f(e), e)A#h#(U111(d, d), U111(e, c))
A#h#(U111(e, e), l)A#h#(U111(l, l), U111(e, b))
A#h#(e, d)A#h#(f(c), U111(e, e))
A#h#(U111(e, a), c)A#h#(U111(e, e), U111(c, c))
A#h#(U111(e, c), U111(e, c))A#h#(l, c)
A#h#(f(e), b)A#h#(f(e), U111(b, b))
A#h#(f(d), U111(c, b))A#h#(U111(a, a), U111(c, b))
A#h#(e, l)A#h#(U111(a, a), l)
A#h#(d, U111(e, c))A#h#(e, U111(e, b))
A#h#(f(e), f(c))A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(l, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(l, e) is deleted.

Problem 28: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(a, U111(e, c))A#h#(f(l), c)
A#h#(U111(e, a), f(c))A#h#(U111(a, a), f(l))
A#h#(l, f(e))A#h#(U111(e, e), f(e))
A#h#(e, f(l))A#h#(U111(c, c), U111(c, b))
A#h#(U111(d, d), U111(e, e))A#h#(c, c)
A#h#(f(a), l)A#h#(U111(a, a), e)
A#h#(f(a), U111(c, b))A#h#(U111(e, a), f(b))
A#h#(U111(c, a), f(d))A#h#(l, U111(c, c))
A#h#(f(e), d)A#h#(c, U111(e, b))
A#h#(U111(a, a), f(c))A#h#(U111(a, a), U111(e, c))
A#h#(l, l)A#h#(U111(c, c), d)
A#h#(U111(c, c), U111(e, c))A#h#(U111(c, c), U111(e, e))
A#h#(f(c), e)A#h#(f(l), f(d))
A#h#(f(c), c)A#h#(U111(e, c), U111(e, b))
A#h#(U111(c, a), l)A#h#(U111(e, e), e)
A#h#(U111(e, e), U111(c, b))A#h#(f(e), e)
A#h#(U111(d, d), U111(e, c))A#h#(U111(e, e), l)
A#h#(e, d)A#h#(U111(l, l), U111(e, b))
A#h#(U111(e, a), c)A#h#(f(c), U111(e, e))
A#h#(U111(e, e), U111(c, c))A#h#(U111(e, c), U111(e, c))
A#h#(l, c)A#h#(f(e), b)
A#h#(f(e), U111(b, b))A#h#(f(d), U111(c, b))
A#h#(U111(a, a), U111(c, b))A#h#(e, l)
A#h#(U111(a, a), l)A#h#(d, U111(e, c))
A#h#(e, U111(e, b))A#h#(f(e), f(c))
A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(a, U111(e, c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(a, c) 
h#(d, U111(e, c)) 
h#(c, U111(e, c)) 
Thus, the rule A# → h#(a, U111(e, c)) is replaced by the following rules:
A# → h#(c, U111(e, c))A# → h#(a, c)
A# → h#(d, U111(e, c))

Problem 29: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(l, e)A#h#(c, U111(e, c))
A#h#(a, U111(e, e))A#h#(a, f(c))
A#h#(a, U111(e, c))A#h#(U111(a, a), f(l))
A#h#(U111(e, e), f(e))A#h#(l, f(e))
A#h#(e, f(l))A#h#(U111(c, c), U111(c, b))
A#h#(U111(d, d), U111(e, e))A#h#(c, c)
A#h#(f(a), l)A#h#(U111(a, a), e)
A#h#(U111(e, a), f(b))A#h#(f(a), U111(c, b))
A#h#(U111(c, a), f(d))A#h#(f(e), d)
A#h#(l, U111(c, c))A#h#(U111(a, a), f(c))
A#h#(c, U111(e, b))A#h#(U111(a, a), U111(e, c))
A#h#(l, l)A#h#(U111(c, c), d)
A#h#(U111(c, c), U111(e, c))A#h#(U111(c, c), U111(e, e))
A#h#(f(c), e)A#h#(f(l), f(d))
A#h#(f(c), c)A#h#(U111(e, c), U111(e, b))
A#h#(U111(c, a), l)A#h#(U111(e, e), e)
A#h#(U111(e, e), U111(c, b))A#h#(f(e), e)
A#h#(U111(d, d), U111(e, c))A#h#(U111(e, e), l)
A#h#(e, d)A#h#(U111(l, l), U111(e, b))
A#h#(f(l), l)A#h#(f(c), U111(e, e))
A#h#(U111(e, a), c)A#h#(U111(e, e), U111(c, c))
A#h#(U111(e, c), U111(e, c))A#h#(l, c)
A#h#(f(e), b)A#h#(f(e), U111(b, b))
A#h#(f(d), U111(c, b))A#h#(U111(a, a), U111(c, b))
A#h#(e, l)A#h#(U111(a, a), l)
A#h#(d, U111(e, c))A#h#(e, U111(e, b))
A#h#(f(e), f(c))A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(l, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(l, e) is deleted.

Problem 30: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(d, U111(c, c))A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(U111(c, c), U111(c, c))
A#h#(f(e), f(e))A#h#(d, f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(d, f(l))A#h#(a, U111(e, e))
A#h#(c, U111(e, c))A#h#(l, U111(e, c))
A#h#(a, U111(e, c))A#h#(U111(a, a), f(l))
A#h#(U111(e, e), f(e))A#h#(l, f(e))
A#h#(e, f(l))A#h#(U111(c, c), U111(c, b))
A#h#(U111(d, d), U111(e, e))A#h#(c, c)
A#h#(f(a), l)A#h#(U111(a, a), e)
A#h#(f(a), U111(c, b))A#h#(U111(e, a), f(b))
A#h#(U111(c, a), f(d))A#h#(l, U111(c, c))
A#h#(f(e), d)A#h#(U111(a, a), f(c))
A#h#(c, U111(e, b))A#h#(U111(a, a), U111(e, c))
A#h#(l, l)A#h#(U111(c, c), d)
A#h#(U111(c, c), U111(e, c))A#h#(U111(c, c), U111(e, e))
A#h#(f(c), e)A#h#(f(l), f(d))
A#h#(f(c), c)A#h#(U111(e, c), U111(e, b))
A#h#(U111(c, a), l)A#h#(U111(e, e), e)
A#h#(U111(e, e), U111(c, b))A#h#(f(e), e)
A#h#(U111(d, d), U111(e, c))A#h#(U111(e, e), l)
A#h#(e, d)A#h#(U111(l, l), U111(e, b))
A#h#(f(l), l)A#h#(U111(e, a), c)
A#h#(f(c), U111(e, e))A#h#(U111(e, c), U111(e, c))
A#h#(U111(e, e), U111(c, c))A#h#(l, c)
A#h#(f(e), b)A#h#(f(e), U111(b, b))
A#h#(f(d), U111(c, b))A#h#(U111(a, a), U111(c, b))
A#h#(e, l)A#h#(U111(a, a), l)
A#h#(d, U111(e, c))A#h#(e, U111(e, b))
A#h#(f(e), f(c))A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(d, U111(c, c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(d, U111(e, c))h#(d, U111(l, c))
Thus, the rule A# → h#(d, U111(c, c)) is replaced by the following rules:
A# → h#(d, U111(e, c))

Problem 31: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U111(e, e), U111(e, e))A#h#(U111(c, c), U111(c, b))
A#h#(U111(d, d), U111(e, e))A#h#(c, c)
A#h#(U111(a, a), e)A#h#(f(a), l)
A#h#(f(a), U111(c, b))A#h#(U111(e, a), f(b))
A#h#(U111(c, a), f(d))A#h#(l, U111(c, c))
A#h#(f(e), d)A#h#(U111(a, a), f(c))
A#h#(c, U111(e, b))A#h#(U111(a, a), U111(e, c))
A#h#(U111(c, c), U111(e, c))A#h#(l, l)
A#h#(U111(c, c), d)A#h#(U111(c, c), U111(e, e))
A#h#(f(c), e)A#h#(f(l), f(d))
A#h#(f(c), c)A#h#(U111(e, c), U111(e, b))
A#h#(U111(c, a), l)A#h#(U111(e, e), e)
A#h#(U111(e, e), U111(c, b))A#h#(f(e), e)
A#h#(U111(d, d), U111(e, c))A#h#(U111(e, e), l)
A#h#(e, d)A#h#(U111(l, l), U111(e, b))
A#h#(f(c), U111(e, e))A#h#(f(l), l)
A#h#(U111(e, a), c)A#h#(U111(e, c), U111(e, c))
A#h#(U111(e, e), U111(c, c))A#h#(l, c)
A#h#(f(e), b)A#h#(f(e), U111(b, b))
A#h#(f(d), U111(c, b))A#h#(U111(a, a), U111(c, b))
A#h#(e, l)A#h#(U111(a, a), l)
A#h#(d, U111(e, c))A#h#(e, U111(e, b))
A#h#(f(e), f(c))A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U111(c, c), U111(c, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U111(c, c), U111(l, b))h#(U111(l, c), U111(c, b))
h#(U111(e, c), U111(c, b)) 
h#(U111(c, c), U111(e, b)) 
Thus, the rule A# → h#(U111(c, c), U111(c, b)) is replaced by the following rules:
A# → h#(U111(c, c), U111(l, b))A# → h#(U111(e, c), U111(c, b))
A# → h#(U111(c, c), U111(e, b))

Problem 32: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U111(e, e), U111(e, e))A#h#(c, c)
A#h#(f(a), l)A#h#(U111(e, a), f(b))
A#h#(f(a), U111(c, b))A#h#(U111(c, a), f(d))
A#h#(l, U111(c, c))A#h#(f(e), d)
A#h#(U111(a, a), f(c))A#h#(c, U111(e, b))
A#h#(U111(a, a), U111(e, c))A#h#(U111(c, c), U111(e, c))
A#h#(U111(c, c), d)A#h#(l, l)
A#h#(U111(c, c), U111(e, e))A#h#(f(c), e)
A#h#(f(l), f(d))A#h#(f(c), c)
A#h#(U111(e, c), U111(e, b))A#h#(U111(c, a), l)
A#h#(U111(e, e), e)A#h#(U111(e, e), U111(c, b))
A#h#(f(e), e)A#h#(U111(d, d), U111(e, c))
A#h#(U111(e, e), l)A#h#(e, d)
A#h#(U111(l, l), U111(e, b))A#h#(f(c), U111(e, e))
A#h#(f(l), l)A#h#(U111(e, a), c)
A#h#(U111(e, c), U111(e, c))A#h#(U111(e, e), U111(c, c))
A#h#(l, c)A#h#(f(e), b)
A#h#(f(d), U111(c, b))A#h#(f(e), U111(b, b))
A#h#(U111(a, a), U111(c, b))A#h#(d, U111(e, c))
A#h#(e, l)A#h#(e, U111(e, b))
A#h#(U111(c, a), U111(b, b))A#h#(f(e), f(c))
A#h#(U111(a, a), l)

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(a), l) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(c), l) 
h#(f(d), l) 
h#(U111(a, a), l) 
Thus, the rule A# → h#(f(a), l) is replaced by the following rules:
A# → h#(f(d), l)A# → h#(f(c), l)
A# → h#(U111(a, a), l)

Problem 33: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(e, b)A#h#(U111(e, c), d)
A#h#(c, d)A#h#(l, b)
A#h#(U111(e, c), c)A#h#(f(e), U111(c, b))
A#h#(f(c), U111(e, b))A#h#(f(d), c)
A#h#(U111(l, l), U111(c, b))A#h#(U111(a, a), d)
A#h#(f(l), c)A#h#(U111(e, e), U111(e, e))
A#h#(U111(c, a), b)A#h#(U111(c, c), U111(c, b))
A#h#(U111(c, a), U111(e, b))A#h#(c, c)
A#h#(U111(a, a), e)A#h#(f(a), l)
A#h#(U111(e, a), f(b))A#h#(U111(c, a), f(d))
A#h#(f(e), d)A#h#(l, U111(c, c))
A#h#(U111(a, a), f(c))A#h#(c, U111(e, b))
A#h#(U111(a, a), U111(e, c))A#h#(l, l)
A#h#(U111(c, c), d)A#h#(U111(c, c), U111(e, c))
A#h#(U111(c, c), U111(e, e))A#h#(f(c), e)
A#h#(f(c), c)A#h#(f(l), f(d))
A#h#(U111(e, c), U111(e, b))A#h#(U111(c, a), l)
A#h#(U111(e, e), e)A#h#(U111(e, e), U111(c, b))
A#h#(f(e), e)A#h#(U111(d, d), U111(e, c))
A#h#(U111(e, e), l)A#h#(e, d)
A#h#(U111(l, l), U111(e, b))A#h#(f(c), U111(e, e))
A#h#(f(l), l)A#h#(U111(e, a), c)
A#h#(U111(e, e), U111(c, c))A#h#(U111(e, c), U111(e, c))
A#h#(f(d), b)A#h#(l, c)
A#h#(f(e), b)A#h#(f(d), U111(c, b))
A#h#(f(e), U111(b, b))A#h#(U111(a, a), U111(c, b))
A#h#(d, U111(e, c))A#h#(U111(c, a), U111(b, b))
A#h#(e, l)A#h#(U111(a, a), l)
A#h#(f(e), f(c))A#h#(e, U111(e, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, d) 
h#(e, c) 
Thus, the rule A# → h#(e, b) is replaced by the following rules:
A# → h#(e, c)A# → h#(e, d)

Problem 34: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(l, e)A#h#(f(e), U111(c, b))
A#h#(f(d), c)A#h#(U111(e, e), U111(e, b))
A#h#(U111(l, l), U111(c, b))A#h#(U111(a, a), d)
A#h#(f(l), c)A#h#(U111(e, e), U111(e, e))
A#h#(U111(c, a), b)A#h#(U111(c, c), U111(c, b))
A#h#(U111(c, a), U111(e, b))A#h#(U111(a, a), e)
A#h#(c, c)A#h#(f(a), l)
A#h#(U111(e, a), f(b))A#h#(U111(c, a), f(d))
A#h#(l, U111(c, c))A#h#(f(e), d)
A#h#(U111(a, a), f(c))A#h#(c, U111(e, b))
A#h#(U111(a, a), U111(e, c))A#h#(l, l)
A#h#(U111(c, c), d)A#h#(U111(c, c), U111(e, c))
A#h#(U111(c, c), U111(e, e))A#h#(f(c), e)
A#h#(f(c), c)A#h#(f(l), f(d))
A#h#(U111(e, c), U111(e, b))A#h#(U111(c, a), l)
A#h#(U111(e, e), e)A#h#(U111(e, e), U111(c, b))
A#h#(f(e), e)A#h#(U111(d, d), U111(e, c))
A#h#(U111(e, e), l)A#h#(U111(l, l), U111(e, b))
A#h#(e, d)A#h#(U111(e, a), c)
A#h#(f(c), U111(e, e))A#h#(f(l), l)
A#h#(U111(e, c), U111(e, c))A#h#(U111(e, e), U111(c, c))
A#h#(f(d), b)A#h#(l, c)
A#h#(f(e), b)A#h#(f(d), U111(c, b))
A#h#(f(e), U111(b, b))A#h#(U111(a, a), U111(c, b))
A#h#(d, U111(e, c))A#h#(U111(c, a), U111(b, b))
A#h#(e, l)A#h#(U111(a, a), l)
A#h#(f(e), f(c))A#h#(e, U111(e, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(l, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(l, e) is deleted.

Problem 35: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(l, e)A#h#(d, d)
A#h#(e, b)A#h#(c, d)
A#h#(l, b)A#h#(U111(e, e), U111(e, e))
A#h#(a, d)A#h#(U111(c, c), U111(c, b))
A#h#(U111(c, a), U111(e, b))A#h#(U111(a, a), e)
A#h#(c, c)A#h#(f(a), l)
A#h#(U111(e, a), f(b))A#h#(U111(c, a), f(d))
A#h#(f(e), d)A#h#(l, U111(c, c))
A#h#(U111(a, a), f(c))A#h#(c, U111(e, b))
A#h#(U111(a, a), U111(e, c))A#h#(l, l)
A#h#(U111(c, c), d)A#h#(U111(c, c), U111(e, c))
A#h#(U111(c, c), U111(e, e))A#h#(f(c), e)
A#h#(f(c), c)A#h#(f(l), f(d))
A#h#(U111(e, c), U111(e, b))A#h#(U111(c, a), l)
A#h#(U111(e, e), e)A#h#(U111(e, e), U111(c, b))
A#h#(f(e), e)A#h#(U111(d, d), U111(e, c))
A#h#(U111(e, e), l)A#h#(U111(l, l), U111(e, b))
A#h#(e, d)A#h#(U111(e, a), c)
A#h#(f(l), l)A#h#(f(c), U111(e, e))
A#h#(U111(e, c), U111(e, c))A#h#(f(d), b)
A#h#(U111(e, e), U111(c, c))A#h#(l, c)
A#h#(f(e), b)A#h#(f(d), U111(c, b))
A#h#(f(e), U111(b, b))A#h#(U111(a, a), U111(c, b))
A#h#(d, U111(e, c))A#h#(U111(c, a), U111(b, b))
A#h#(e, l)A#h#(U111(a, a), l)
A#h#(f(e), f(c))A#h#(e, U111(e, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(l, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(l, e) is deleted.

Problem 36: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(d, d)A#h#(U111(e, e), U111(e, e))
A#h#(U111(c, a), U111(e, b))A#h#(U111(a, a), e)
A#h#(f(a), l)A#h#(c, c)
A#h#(U111(e, a), f(b))A#h#(U111(c, a), f(d))
A#h#(f(e), d)A#h#(l, U111(c, c))
A#h#(U111(a, a), f(c))A#h#(c, U111(e, b))
A#h#(U111(a, a), U111(e, c))A#h#(U111(c, c), U111(e, c))
A#h#(U111(c, c), d)A#h#(l, l)
A#h#(U111(c, c), U111(e, e))A#h#(f(c), e)
A#h#(f(c), c)A#h#(f(l), f(d))
A#h#(U111(e, c), U111(e, b))A#h#(U111(c, a), l)
A#h#(U111(e, e), e)A#h#(U111(e, e), U111(c, b))
A#h#(f(e), e)A#h#(U111(d, d), U111(e, c))
A#h#(U111(e, e), l)A#h#(U111(l, l), U111(e, b))
A#h#(e, d)A#h#(U111(e, a), c)
A#h#(f(l), l)A#h#(f(c), U111(e, e))
A#h#(U111(e, c), U111(e, c))A#h#(f(d), b)
A#h#(U111(e, e), U111(c, c))A#h#(f(e), b)
A#h#(l, c)A#h#(f(e), U111(b, b))
A#h#(f(d), U111(c, b))A#h#(U111(a, a), U111(c, b))
A#h#(d, U111(e, c))A#h#(U111(c, a), U111(b, b))
A#h#(e, l)A#h#(U111(a, a), l)
A#h#(f(e), f(c))A#h#(e, U111(e, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U111(c, a), U111(e, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U111(e, a), U111(e, b))h#(U111(l, a), U111(e, b))
h#(U111(c, a), b) 
Thus, the rule A# → h#(U111(c, a), U111(e, b)) is replaced by the following rules:
A# → h#(U111(c, a), b)A# → h#(U111(e, a), U111(e, b))

Problem 37: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(c, e)A#h#(d, d)
A#h#(U111(c, a), c)A#h#(e, b)
A#h#(c, d)A#h#(l, b)
A#h#(U111(e, e), U111(e, e))A#h#(a, d)
A#h#(a, U111(e, b))A#h#(U111(a, a), e)
A#h#(f(a), l)A#h#(c, c)
A#h#(U111(e, a), f(b))A#h#(U111(c, a), f(d))
A#h#(f(e), d)A#h#(l, U111(c, c))
A#h#(c, U111(e, b))A#h#(U111(a, a), f(c))
A#h#(U111(a, a), U111(e, c))A#h#(U111(c, c), U111(e, c))
A#h#(U111(c, c), d)A#h#(l, l)
A#h#(U111(c, c), U111(e, e))A#h#(f(c), e)
A#h#(f(c), c)A#h#(f(l), f(d))
A#h#(U111(e, c), U111(e, b))A#h#(U111(c, a), l)
A#h#(U111(e, e), e)A#h#(U111(e, e), U111(c, b))
A#h#(f(e), e)A#h#(U111(d, d), U111(e, c))
A#h#(U111(e, e), l)A#h#(U111(l, l), U111(e, b))
A#h#(e, d)A#h#(f(l), l)
A#h#(f(c), U111(e, e))A#h#(U111(e, a), c)
A#h#(U111(e, c), U111(e, c))A#h#(f(d), b)
A#h#(U111(e, e), U111(c, c))A#h#(l, c)
A#h#(f(e), b)A#h#(f(e), U111(b, b))
A#h#(f(d), U111(c, b))A#h#(U111(a, a), U111(c, b))
A#h#(d, U111(e, c))A#h#(U111(c, a), U111(b, b))
A#h#(e, l)A#h#(U111(a, a), l)
A#h#(f(e), f(c))A#h#(e, U111(e, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(c, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(l, e) 
h#(e, e) 
Thus, the rule A# → h#(c, e) is replaced by the following rules:
A# → h#(e, e)A# → h#(l, e)

Problem 38: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(d, d)A#h#(U111(e, e), U111(e, e))
A#h#(U111(a, a), e)A#h#(c, c)
A#h#(f(a), l)A#h#(U111(e, a), f(b))
A#h#(U111(c, a), f(d))A#h#(f(e), d)
A#h#(l, U111(c, c))A#h#(U111(a, a), f(c))
A#h#(c, U111(e, b))A#h#(U111(a, a), U111(e, c))
A#h#(l, l)A#h#(U111(c, c), U111(e, c))
A#h#(U111(c, c), d)A#h#(U111(c, c), U111(e, e))
A#h#(f(c), e)A#h#(f(c), c)
A#h#(f(l), f(d))A#h#(U111(e, c), U111(e, b))
A#h#(U111(c, a), l)A#h#(U111(e, e), e)
A#h#(U111(e, e), U111(c, b))A#h#(f(e), e)
A#h#(U111(d, d), U111(e, c))A#h#(U111(e, e), l)
A#h#(U111(l, l), U111(e, b))A#h#(e, d)
A#h#(f(l), l)A#h#(f(c), U111(e, e))
A#h#(U111(e, a), c)A#h#(U111(e, e), U111(c, c))
A#h#(U111(e, c), U111(e, c))A#h#(f(d), b)
A#h#(f(e), b)A#h#(l, c)
A#h#(f(e), U111(b, b))A#h#(f(d), U111(c, b))
A#h#(U111(a, a), U111(c, b))A#h#(d, U111(e, c))
A#h#(U111(c, a), U111(b, b))A#h#(e, l)
A#h#(U111(a, a), l)A#h#(e, U111(e, b))
A#h#(f(e), f(c))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U111(a, a), e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U111(c, a), e)h#(U111(d, a), e)
Thus, the rule A# → h#(U111(a, a), e) is replaced by the following rules:
A# → h#(U111(c, a), e)

Problem 39: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(d, d)A#h#(e, f(c))
A#h#(c, f(d))A#h#(d, f(c))
A#h#(l, f(b))A#h#(e, f(b))
A#h#(d, U111(e, b))A#h#(c, U111(e, c))
A#h#(c, U111(c, b))A#h#(a, f(c))
A#h#(U111(e, a), U111(b, b))A#h#(l, U111(e, b))
A#h#(U111(e, e), U111(e, e))A#h#(U111(e, a), f(c))
A#h#(a, U111(e, b))A#h#(e, f(l))
A#h#(l, f(e))A#h#(c, c)
A#h#(U111(e, a), f(d))A#h#(U111(c, a), f(d))
A#h#(f(e), d)A#h#(l, U111(c, c))
A#h#(U111(a, a), f(c))A#h#(c, U111(e, b))
A#h#(U111(a, a), U111(e, c))A#h#(U111(c, c), d)
A#h#(U111(c, c), U111(e, c))A#h#(l, l)
A#h#(U111(c, c), U111(e, e))A#h#(f(c), e)
A#h#(f(l), f(d))A#h#(f(c), c)
A#h#(U111(e, c), U111(e, b))A#h#(U111(c, a), l)
A#h#(U111(e, e), e)A#h#(U111(e, e), U111(c, b))
A#h#(f(e), e)A#h#(U111(d, d), U111(e, c))
A#h#(U111(e, e), l)A#h#(e, d)
A#h#(U111(l, l), U111(e, b))A#h#(f(c), U111(e, e))
A#h#(f(l), l)A#h#(U111(e, a), c)
A#h#(U111(e, e), U111(c, c))A#h#(U111(e, c), U111(e, c))
A#h#(f(d), b)A#h#(f(e), b)
A#h#(l, c)A#h#(f(d), U111(c, b))
A#h#(f(e), U111(b, b))A#h#(U111(a, a), U111(c, b))
A#h#(e, l)A#h#(d, U111(e, c))
A#h#(U111(a, a), l)A#h#(e, U111(e, b))
A#h#(f(e), f(c))A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, f(c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, f(e)) 
h#(e, U111(c, c)) 
h#(e, f(l)) 
Thus, the rule A# → h#(e, f(c)) is replaced by the following rules:
A# → h#(e, U111(c, c))A# → h#(e, f(l))
A# → h#(e, f(e))

Problem 40: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(l, f(l))
A#h#(f(c), f(c))A#h#(U111(c, c), U111(c, c))
A#h#(f(e), f(e))A#h#(d, f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(a, f(l))A#h#(d, d)
A#h#(c, U111(c, c))A#h#(e, f(c))
A#h#(c, f(e))A#h#(d, f(c))
A#h#(a, U111(e, e))A#h#(l, U111(e, c))
A#h#(U111(e, a), U111(b, b))A#h#(l, U111(e, b))
A#h#(a, U111(e, c))A#h#(U111(e, e), U111(e, e))
A#h#(U111(e, a), f(c))A#h#(a, U111(e, b))
A#h#(e, f(l))A#h#(l, f(e))
A#h#(U111(e, a), f(d))A#h#(c, c)
A#h#(U111(c, a), f(d))A#h#(l, U111(c, c))
A#h#(f(e), d)A#h#(c, U111(e, b))
A#h#(U111(a, a), f(c))A#h#(U111(a, a), U111(e, c))
A#h#(U111(c, c), d)A#h#(U111(c, c), U111(e, c))
A#h#(l, l)A#h#(U111(c, c), U111(e, e))
A#h#(f(c), e)A#h#(f(l), f(d))
A#h#(f(c), c)A#h#(U111(e, c), U111(e, b))
A#h#(U111(c, a), l)A#h#(U111(e, e), e)
A#h#(U111(e, e), U111(c, b))A#h#(f(e), e)
A#h#(U111(d, d), U111(e, c))A#h#(U111(e, e), l)
A#h#(e, d)A#h#(U111(l, l), U111(e, b))
A#h#(f(l), l)A#h#(f(c), U111(e, e))
A#h#(U111(e, a), c)A#h#(U111(e, e), U111(c, c))
A#h#(f(d), b)A#h#(U111(e, c), U111(e, c))
A#h#(f(e), b)A#h#(l, c)
A#h#(f(d), U111(c, b))A#h#(f(e), U111(b, b))
A#h#(U111(a, a), U111(c, b))A#h#(e, l)
A#h#(d, U111(e, c))A#h#(U111(a, a), l)
A#h#(e, U111(e, b))A#h#(f(e), f(c))
A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(l, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 h#(l, U111(l, l))
Thus, the rule A# → h#(l, f(l)) is deleted.

Problem 41: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(l, U111(b, b))
A#h#(d, U111(b, b))A#h#(e, e)
A#h#(e, U111(b, b))A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(U111(c, c), U111(c, c))
A#h#(U111(e, a), U111(c, b))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(d, d)A#h#(a, U111(c, b))
A#h#(c, U111(c, b))A#h#(a, U111(e, c))
A#h#(l, U111(e, b))A#h#(U111(e, e), U111(e, e))
A#h#(U111(e, a), f(c))A#h#(a, U111(e, b))
A#h#(e, f(l))A#h#(l, f(e))
A#h#(c, c)A#h#(U111(e, a), f(d))
A#h#(U111(c, a), f(d))A#h#(l, U111(c, c))
A#h#(f(e), d)A#h#(U111(a, a), f(c))
A#h#(c, U111(e, b))A#h#(U111(a, a), U111(e, c))
A#h#(U111(c, c), d)A#h#(U111(c, c), U111(e, c))
A#h#(l, l)A#h#(U111(c, c), U111(e, e))
A#h#(f(c), e)A#h#(f(l), f(d))
A#h#(f(c), c)A#h#(U111(e, c), U111(e, b))
A#h#(U111(c, a), l)A#h#(U111(e, e), e)
A#h#(U111(e, e), U111(c, b))A#h#(f(e), e)
A#h#(U111(d, d), U111(e, c))A#h#(U111(e, e), l)
A#h#(e, d)A#h#(U111(l, l), U111(e, b))
A#h#(f(l), l)A#h#(U111(e, a), c)
A#h#(f(c), U111(e, e))A#h#(U111(e, e), U111(c, c))
A#h#(f(d), b)A#h#(U111(e, c), U111(e, c))
A#h#(l, c)A#h#(f(e), b)
A#h#(f(d), U111(c, b))A#h#(f(e), U111(b, b))
A#h#(U111(a, a), U111(c, b))A#h#(e, l)
A#h#(d, U111(e, c))A#h#(U111(a, a), l)
A#h#(e, U111(e, b))A#h#(f(e), f(c))
A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(l, U111(b, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(l, U111(c, b))h#(l, U111(d, b))
Thus, the rule A# → h#(l, U111(b, b)) is replaced by the following rules:
A# → h#(l, U111(c, b))

Problem 42: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(d, l)A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(U111(c, c), U111(c, c))
A#h#(f(e), f(e))A#h#(a, e)
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(a, l)A#h#(d, d)
A#h#(c, U111(e, c))A#h#(U111(e, e), U111(e, e))
A#h#(a, U111(e, b))A#h#(U111(e, a), f(c))
A#h#(a, d)A#h#(l, f(e))
A#h#(e, f(l))A#h#(U111(e, a), f(d))
A#h#(c, c)A#h#(U111(c, a), f(d))
A#h#(l, U111(c, c))A#h#(f(e), d)
A#h#(c, U111(e, b))A#h#(U111(a, a), f(c))
A#h#(U111(a, a), U111(e, c))A#h#(U111(c, c), d)
A#h#(U111(c, c), U111(e, c))A#h#(l, l)
A#h#(U111(c, c), U111(e, e))A#h#(f(c), e)
A#h#(f(l), f(d))A#h#(f(c), c)
A#h#(U111(e, c), U111(e, b))A#h#(U111(c, a), l)
A#h#(U111(e, e), e)A#h#(U111(e, e), U111(c, b))
A#h#(f(e), e)A#h#(U111(d, d), U111(e, c))
A#h#(U111(e, e), l)A#h#(U111(l, l), U111(e, b))
A#h#(e, d)A#h#(U111(e, a), c)
A#h#(f(l), l)A#h#(f(c), U111(e, e))
A#h#(f(d), b)A#h#(U111(e, c), U111(e, c))
A#h#(U111(e, e), U111(c, c))A#h#(f(e), b)
A#h#(l, c)A#h#(f(d), U111(c, b))
A#h#(f(e), U111(b, b))A#h#(U111(a, a), U111(c, b))
A#h#(e, l)A#h#(d, U111(e, c))
A#h#(U111(a, a), l)A#h#(e, U111(e, b))
A#h#(f(e), f(c))A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(d, l) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(d, l) is deleted.

Problem 43: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(d, e)h#(x, x)g#(x, x, f(k))
A#h#(e, e)A#h#(f(l), f(l))
A#h#(c, U111(e, e))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
A#h#(a, e)g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(d, d)
A#h#(a, f(c))A#h#(l, U111(e, c))
A#h#(a, U111(e, c))A#h#(U111(e, e), U111(e, e))
A#h#(a, U111(e, b))A#h#(a, d)
A#h#(l, f(e))A#h#(e, f(l))
A#h#(U111(e, a), f(d))A#h#(c, c)
A#h#(U111(c, a), f(d))A#h#(l, U111(c, c))
A#h#(f(e), d)A#h#(U111(a, a), f(c))
A#h#(c, U111(e, b))A#h#(U111(a, a), U111(e, c))
A#h#(U111(c, c), U111(e, c))A#h#(U111(c, c), d)
A#h#(l, l)A#h#(U111(c, c), U111(e, e))
A#h#(f(c), e)A#h#(f(l), f(d))
A#h#(f(c), c)A#h#(U111(e, c), U111(e, b))
A#h#(U111(c, a), l)A#h#(U111(e, e), e)
A#h#(U111(e, e), U111(c, b))A#h#(f(e), e)
A#h#(U111(d, d), U111(e, c))A#h#(U111(e, e), l)
A#h#(U111(l, l), U111(e, b))A#h#(e, d)
A#h#(U111(e, a), c)A#h#(f(l), l)
A#h#(f(c), U111(e, e))A#h#(U111(e, c), U111(e, c))
A#h#(U111(e, e), U111(c, c))A#h#(f(d), b)
A#h#(l, c)A#h#(f(e), b)
A#h#(f(e), U111(b, b))A#h#(f(d), U111(c, b))
A#h#(U111(a, a), U111(c, b))A#h#(e, l)
A#h#(d, U111(e, c))A#h#(U111(a, a), l)
A#h#(e, U111(e, b))A#h#(f(e), f(c))
A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(d, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(d, e) is deleted.

Problem 44: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(e, U111(e, c))
A#h#(f(c), f(c))A#h#(U111(c, c), U111(c, c))
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(d, d)
A#h#(a, U111(e, e))A#h#(l, U111(e, c))
A#h#(a, U111(e, c))A#h#(U111(e, e), U111(e, e))
A#h#(a, U111(e, b))A#h#(a, d)
A#h#(l, f(e))A#h#(e, f(l))
A#h#(U111(e, a), f(d))A#h#(c, c)
A#h#(U111(c, a), f(d))A#h#(l, U111(c, c))
A#h#(f(e), d)A#h#(c, U111(e, b))
A#h#(U111(a, a), f(c))A#h#(U111(a, a), U111(e, c))
A#h#(U111(c, c), U111(e, c))A#h#(U111(c, c), d)
A#h#(l, l)A#h#(U111(c, c), U111(e, e))
A#h#(f(c), e)A#h#(f(l), f(d))
A#h#(f(c), c)A#h#(U111(e, c), U111(e, b))
A#h#(U111(c, a), l)A#h#(U111(e, e), e)
A#h#(U111(e, e), U111(c, b))A#h#(f(e), e)
A#h#(U111(d, d), U111(e, c))A#h#(U111(e, e), l)
A#h#(U111(l, l), U111(e, b))A#h#(e, d)
A#h#(f(l), l)A#h#(f(c), U111(e, e))
A#h#(U111(e, a), c)A#h#(U111(e, c), U111(e, c))
A#h#(U111(e, e), U111(c, c))A#h#(f(d), b)
A#h#(f(e), b)A#h#(l, c)
A#h#(f(e), U111(b, b))A#h#(f(d), U111(c, b))
A#h#(U111(a, a), U111(c, b))A#h#(e, l)
A#h#(d, U111(e, c))A#h#(U111(a, a), l)
A#h#(e, U111(e, b))A#h#(f(e), f(c))
A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, U111(e, c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, c) 
Thus, the rule A# → h#(e, U111(e, c)) is replaced by the following rules:
A# → h#(e, c)

Problem 45: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(d, d)A#h#(c, d)
A#h#(l, b)A#h#(d, U111(e, b))
A#h#(U111(e, e), U111(e, e))A#h#(a, d)
A#h#(l, f(e))A#h#(e, f(l))
A#h#(U111(e, a), f(d))A#h#(c, c)
A#h#(U111(c, a), f(d))A#h#(l, U111(c, c))
A#h#(f(e), d)A#h#(c, U111(e, b))
A#h#(U111(a, a), f(c))A#h#(U111(a, a), U111(e, c))
A#h#(U111(c, c), U111(e, c))A#h#(l, l)
A#h#(U111(c, c), d)A#h#(U111(c, c), U111(e, e))
A#h#(f(c), e)A#h#(f(l), f(d))
A#h#(f(c), c)A#h#(U111(e, c), U111(e, b))
A#h#(U111(c, a), l)A#h#(U111(e, e), e)
A#h#(U111(e, e), U111(c, b))A#h#(f(e), e)
A#h#(U111(d, d), U111(e, c))A#h#(U111(e, e), l)
A#h#(U111(l, l), U111(e, b))A#h#(e, d)
A#h#(f(l), l)A#h#(f(c), U111(e, e))
A#h#(U111(e, a), c)A#h#(U111(e, c), U111(e, c))
A#h#(U111(e, e), U111(c, c))A#h#(f(d), b)
A#h#(l, c)A#h#(f(e), b)
A#h#(f(d), U111(c, b))A#h#(f(e), U111(b, b))
A#h#(U111(a, a), U111(c, b))A#h#(e, l)
A#h#(d, U111(e, c))A#h#(U111(a, a), l)
A#h#(e, U111(e, b))A#h#(f(e), f(c))
A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(c, d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, d) 
h#(l, d) 
Thus, the rule A# → h#(c, d) is replaced by the following rules:
A# → h#(e, d)A# → h#(l, d)

Problem 46: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U111(c, a), e)
A#h#(e, e)A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(a, f(e))
A#h#(U111(c, a), U111(e, c))A#h#(U111(c, c), U111(c, c))
A#h#(f(e), f(e))A#h#(U111(a, a), U111(c, c))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(d, d)A#h#(c, U111(c, c))
A#h#(U111(e, a), e)A#h#(U111(a, a), U111(e, e))
A#h#(a, U111(e, e))A#h#(U111(c, a), f(l))
A#h#(a, U111(e, c))A#h#(U111(e, e), U111(e, e))
A#h#(U111(e, a), f(c))A#h#(U111(a, a), f(l))
A#h#(c, c)A#h#(c, U111(e, b))
A#h#(U111(a, a), U111(e, c))A#h#(l, l)
A#h#(U111(c, c), d)A#h#(U111(c, c), U111(e, c))
A#h#(U111(c, c), U111(e, e))A#h#(f(c), e)
A#h#(f(c), c)A#h#(f(l), f(d))
A#h#(U111(e, e), e)A#h#(U111(c, a), l)
A#h#(U111(e, c), U111(e, b))A#h#(U111(e, e), U111(c, b))
A#h#(f(e), e)A#h#(U111(d, d), U111(e, c))
A#h#(U111(e, e), l)A#h#(U111(l, l), U111(e, b))
A#h#(e, d)A#h#(f(l), l)
A#h#(f(c), U111(e, e))A#h#(U111(e, a), c)
A#h#(U111(e, c), U111(e, c))A#h#(U111(e, e), U111(c, c))
A#h#(f(d), b)A#h#(f(e), b)
A#h#(l, c)A#h#(f(d), U111(c, b))
A#h#(f(e), U111(b, b))A#h#(U111(a, a), U111(c, b))
A#h#(e, l)A#h#(e, U111(e, b))
A#h#(U111(a, a), l)A#h#(U111(c, a), U111(b, b))
A#h#(f(e), f(c))A#h#(d, U111(e, c))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U111(c, a), e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U111(e, a), e)h#(U111(l, a), e)
Thus, the rule A# → h#(U111(c, a), e) is replaced by the following rules:
A# → h#(U111(e, a), e)

Problem 47: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(c, e)A#h#(d, d)
A#h#(c, U111(e, c))A#h#(a, U111(e, e))
A#h#(U111(c, a), f(l))A#h#(a, U111(e, c))
A#h#(U111(e, e), U111(e, e))A#h#(U111(e, a), f(c))
A#h#(U111(a, a), f(l))A#h#(l, f(e))
A#h#(U111(a, a), e)A#h#(c, c)
A#h#(l, U111(c, c))A#h#(c, U111(e, b))
A#h#(U111(a, a), U111(e, c))A#h#(l, l)
A#h#(U111(c, c), d)A#h#(U111(c, c), U111(e, c))
A#h#(U111(c, c), U111(e, e))A#h#(f(c), e)
A#h#(f(c), c)A#h#(f(l), f(d))
A#h#(U111(e, e), e)A#h#(U111(c, a), l)
A#h#(U111(e, c), U111(e, b))A#h#(U111(e, e), U111(c, b))
A#h#(f(e), e)A#h#(U111(d, d), U111(e, c))
A#h#(U111(e, e), l)A#h#(U111(l, l), U111(e, b))
A#h#(e, d)A#h#(f(l), l)
A#h#(f(c), U111(e, e))A#h#(U111(e, a), c)
A#h#(U111(e, c), U111(e, c))A#h#(U111(e, e), U111(c, c))
A#h#(f(d), b)A#h#(f(e), b)
A#h#(U111(d, a), U111(e, c))A#h#(l, c)
A#h#(f(d), U111(c, b))A#h#(f(e), U111(b, b))
A#h#(U111(a, a), U111(c, b))A#h#(e, l)
A#h#(e, U111(e, b))A#h#(U111(a, a), l)
A#h#(U111(c, a), U111(b, b))A#h#(f(e), f(c))
A#h#(d, U111(e, c))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(c, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(l, e) 
h#(e, e) 
Thus, the rule A# → h#(c, e) is replaced by the following rules:
A# → h#(e, e)A# → h#(l, e)

Problem 48: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U111(e, a), U111(e, c))
A#h#(U111(e, a), U111(e, e))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(a, U111(c, c))A#h#(a, f(e))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(d, d)A#h#(a, f(l))
A#h#(a, f(c))A#h#(U111(e, e), U111(e, e))
A#h#(l, f(e))A#h#(e, f(l))
A#h#(U111(a, a), e)A#h#(c, c)
A#h#(l, U111(c, c))A#h#(c, U111(e, b))
A#h#(U111(a, a), U111(e, c))A#h#(U111(c, c), U111(e, c))
A#h#(U111(c, c), d)A#h#(l, l)
A#h#(U111(c, c), U111(e, e))A#h#(f(c), e)
A#h#(f(l), f(d))A#h#(f(c), c)
A#h#(U111(e, e), e)A#h#(U111(c, a), l)
A#h#(U111(e, c), U111(e, b))A#h#(U111(e, e), U111(c, b))
A#h#(f(e), e)A#h#(U111(d, d), U111(e, c))
A#h#(U111(e, e), l)A#h#(U111(l, l), U111(e, b))
A#h#(e, d)A#h#(f(l), l)
A#h#(f(c), U111(e, e))A#h#(U111(e, a), c)
A#h#(U111(e, c), U111(e, c))A#h#(U111(e, e), U111(c, c))
A#h#(f(d), b)A#h#(U111(d, a), U111(e, c))
A#h#(l, c)A#h#(f(e), b)
A#h#(f(e), U111(b, b))A#h#(f(d), U111(c, b))
A#h#(U111(a, a), U111(c, b))A#h#(e, U111(e, b))
A#h#(e, l)A#h#(U111(a, a), l)
A#h#(d, U111(e, c))A#h#(f(e), f(c))
A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U111(e, a), U111(e, c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U111(e, a), c) 
h#(a, U111(e, c)) 
Thus, the rule A# → h#(U111(e, a), U111(e, c)) is replaced by the following rules:
A# → h#(U111(e, a), c)A# → h#(a, U111(e, c))

Problem 49: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(l, f(c))
A#h#(f(e), f(e))A#h#(d, f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(a, f(l))A#h#(d, d)
A#h#(c, U111(c, c))A#h#(e, f(c))
A#h#(c, f(e))A#h#(d, f(c))
A#h#(a, U111(e, e))A#h#(l, U111(e, c))
A#h#(a, U111(e, c))A#h#(U111(e, e), U111(e, e))
A#h#(l, f(e))A#h#(e, f(l))
A#h#(U111(a, a), e)A#h#(c, c)
A#h#(l, U111(c, c))A#h#(c, U111(e, b))
A#h#(U111(a, a), U111(e, c))A#h#(U111(c, c), U111(e, c))
A#h#(l, l)A#h#(U111(c, c), d)
A#h#(U111(c, c), U111(e, e))A#h#(f(c), e)
A#h#(f(l), f(d))A#h#(f(c), c)
A#h#(U111(e, e), e)A#h#(U111(c, a), l)
A#h#(U111(e, c), U111(e, b))A#h#(U111(e, e), U111(c, b))
A#h#(f(e), e)A#h#(U111(d, d), U111(e, c))
A#h#(U111(e, e), l)A#h#(U111(l, l), U111(e, b))
A#h#(e, d)A#h#(f(l), l)
A#h#(f(c), U111(e, e))A#h#(U111(e, a), c)
A#h#(U111(e, e), U111(c, c))A#h#(f(d), b)
A#h#(U111(e, c), U111(e, c))A#h#(f(e), b)
A#h#(U111(d, a), U111(e, c))A#h#(l, c)
A#h#(f(e), U111(b, b))A#h#(f(d), U111(c, b))
A#h#(U111(a, a), U111(c, b))A#h#(e, U111(e, b))
A#h#(e, l)A#h#(U111(a, a), l)
A#h#(d, U111(e, c))A#h#(f(e), f(c))
A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(l, f(c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(l, U111(c, c)) 
h#(l, f(l)) 
h#(l, f(e)) 
Thus, the rule A# → h#(l, f(c)) is replaced by the following rules:
A# → h#(l, f(e))A# → h#(l, U111(c, c))
A# → h#(l, f(l))

Problem 50: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(d, c)
A#h#(e, e)A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(U111(c, c), U111(c, c))
A#h#(f(e), f(e))A#h#(a, e)
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(a, l)A#h#(d, d)
A#h#(c, U111(e, c))A#h#(U111(e, e), U111(e, e))
A#h#(e, f(l))A#h#(l, f(e))
A#h#(U111(a, a), e)A#h#(c, c)
A#h#(l, U111(c, c))A#h#(c, U111(e, b))
A#h#(U111(a, a), U111(e, c))A#h#(l, l)
A#h#(U111(c, c), d)A#h#(U111(c, c), U111(e, c))
A#h#(U111(c, c), U111(e, e))A#h#(f(c), e)
A#h#(f(c), c)A#h#(f(l), f(d))
A#h#(U111(e, e), e)A#h#(U111(c, a), l)
A#h#(U111(e, c), U111(e, b))A#h#(U111(e, e), U111(c, b))
A#h#(f(e), e)A#h#(U111(d, d), U111(e, c))
A#h#(U111(e, e), l)A#h#(U111(l, l), U111(e, b))
A#h#(e, d)A#h#(f(l), l)
A#h#(f(c), U111(e, e))A#h#(U111(e, a), c)
A#h#(U111(e, e), U111(c, c))A#h#(f(d), b)
A#h#(U111(e, c), U111(e, c))A#h#(U111(d, a), U111(e, c))
A#h#(l, c)A#h#(f(e), b)
A#h#(f(e), U111(b, b))A#h#(f(d), U111(c, b))
A#h#(U111(a, a), U111(c, b))A#h#(e, U111(e, b))
A#h#(e, l)A#h#(U111(a, a), l)
A#h#(U111(c, a), U111(b, b))A#h#(f(e), f(c))
A#h#(d, U111(e, c))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(d, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(d, e) 
h#(d, l) 
Thus, the rule A# → h#(d, c) is replaced by the following rules:
A# → h#(d, e)A# → h#(d, l)

Problem 51: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(U111(e, e), U111(e, e))A#h#(e, e)
A#h#(c, c)A#h#(f(l), f(l))
A#h#(U111(c, c), U111(e, c))A#h#(l, l)
A#h#(U111(c, c), U111(e, e))A#h#(f(c), f(c))
A#h#(f(c), e)A#h#(f(l), f(d))
A#h#(f(c), c)A#h#(U111(e, e), U111(c, b))
A#h#(U111(e, c), U111(e, b))A#h#(U111(c, a), l)
A#h#(U111(e, e), e)A#h#(U111(d, d), U111(e, c))
A#h#(f(e), e)A#h#(U111(e, e), l)
A#h#(U111(c, a), U111(e, c))A#h#(U111(c, c), U111(c, c))
A#h#(e, d)A#h#(U111(l, l), U111(e, b))
A#h#(U111(e, a), c)A#h#(f(c), U111(e, e))
A#h#(f(l), l)A#h#(U111(e, c), U111(e, c))
A#h#(f(d), b)A#h#(U111(e, e), U111(c, c))
A#h#(f(e), b)A#h#(l, c)
A#h#(U111(d, a), U111(e, c))A#h#(f(e), f(e))
A#h#(f(d), U111(c, b))A#h#(f(e), U111(b, b))
A#h#(a, e)g#(d, x, x)A#
A#h#(U111(a, a), U111(c, b))A#h#(f(d), f(d))
A#h#(e, l)A#h#(U111(a, a), l)
A#h#(f(e), f(c))A#h#(e, U111(e, b))
A#h#(d, U111(e, c))A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U111(c, c), U111(e, c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U111(l, c), U111(e, c)) 
h#(U111(e, c), U111(e, c)) 
h#(U111(c, c), c) 
Thus, the rule A# → h#(U111(c, c), U111(e, c)) is replaced by the following rules:
A# → h#(U111(c, c), c)A# → h#(U111(e, c), U111(e, c))
A# → h#(U111(l, c), U111(e, c))

Problem 52: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(c, e)A#h#(U111(e, e), U111(e, e))
A#h#(e, e)A#h#(c, c)
A#h#(f(l), f(l))A#h#(l, l)
A#h#(f(c), f(c))A#h#(f(c), e)
A#h#(U111(e, e), U111(c, b))A#h#(U111(e, c), U111(e, b))
A#h#(U111(c, a), l)A#h#(U111(e, e), e)
A#h#(U111(d, d), U111(e, c))A#h#(f(e), e)
A#h#(U111(e, e), l)A#h#(U111(c, a), U111(e, c))
A#h#(U111(c, c), U111(c, c))A#h#(U111(l, l), U111(e, b))
A#h#(e, d)A#h#(f(l), l)
A#h#(U111(e, c), U111(e, e))A#h#(f(c), U111(e, e))
A#h#(U111(e, a), c)A#h#(U111(e, c), U111(e, c))
A#h#(f(d), b)A#h#(U111(e, e), U111(c, c))
A#h#(f(e), b)A#h#(l, c)
A#h#(U111(d, a), U111(e, c))A#h#(f(e), f(e))
A#h#(f(d), U111(c, b))A#h#(f(e), U111(b, b))
A#h#(a, e)g#(d, x, x)A#
A#h#(U111(a, a), U111(c, b))A#h#(f(d), f(d))
A#h#(e, l)A#h#(U111(a, a), l)
A#h#(f(e), f(c))A#h#(e, U111(e, b))
A#h#(d, U111(e, c))A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(c, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(l, e) 
h#(e, e) 
Thus, the rule A# → h#(c, e) is replaced by the following rules:
A# → h#(e, e)A# → h#(l, e)

Problem 53: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(U111(e, e), U111(e, e))A#h#(e, e)
A#h#(c, c)A#h#(e, U111(c, b))
A#h#(f(l), f(l))A#h#(l, l)
A#h#(f(c), f(c))A#h#(U111(e, e), e)
A#h#(f(e), e)A#h#(U111(d, d), U111(e, c))
A#h#(U111(e, e), l)A#h#(U111(c, a), U111(e, c))
A#h#(U111(c, c), U111(c, c))A#h#(U111(l, l), U111(e, b))
A#h#(e, d)A#h#(f(c), U111(e, e))
A#h#(U111(e, c), U111(e, e))A#h#(U111(e, a), c)
A#h#(f(l), l)A#h#(U111(e, e), U111(c, c))
A#h#(f(d), b)A#h#(U111(e, c), U111(e, c))
A#h#(l, c)A#h#(f(e), b)
A#h#(U111(d, a), U111(e, c))A#h#(f(e), f(e))
A#h#(f(d), U111(c, b))A#h#(f(e), U111(b, b))
A#h#(a, e)g#(d, x, x)A#
A#h#(U111(a, a), U111(c, b))A#h#(f(d), f(d))
A#h#(e, l)A#h#(U111(a, a), l)
A#h#(f(e), f(c))A#h#(e, U111(e, b))
A#h#(d, U111(e, c))A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, U111(c, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, U111(e, b))h#(e, U111(l, b))
Thus, the rule A# → h#(e, U111(c, b)) is replaced by the following rules:
A# → h#(e, U111(e, b))

Problem 54: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(l, e)
A#h#(d, d)A#h#(U111(e, e), U111(e, e))
A#h#(e, e)A#h#(c, c)
A#h#(f(l), f(l))A#h#(l, l)
A#h#(f(c), f(c))A#h#(e, U111(e, e))
A#h#(U111(c, c), U111(c, c))A#h#(f(c), U111(e, e))
A#h#(f(l), l)A#h#(U111(e, e), U111(c, c))
A#h#(f(d), b)A#h#(U111(e, c), U111(e, c))
A#h#(f(e), b)A#h#(l, c)
A#h#(U111(d, a), U111(e, c))A#h#(f(e), f(e))
A#h#(f(d), U111(c, b))A#h#(f(e), U111(b, b))
A#h#(U111(a, a), U111(c, b))A#h#(a, e)
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(e, l)A#h#(U111(a, a), l)
A#h#(f(e), f(c))A#h#(e, U111(e, b))
A#h#(d, U111(e, c))A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(l, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(l, e) is deleted.

Problem 55: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(e), c)
A#h#(U111(e, e), b)A#h#(d, d)
A#h#(U111(e, e), U111(e, e))A#h#(e, e)
A#h#(c, c)A#h#(f(e), d)
A#h#(f(l), f(l))A#h#(l, l)
A#h#(f(c), f(c))A#h#(U111(c, c), U111(c, c))
A#h#(U111(e, c), U111(e, c))A#h#(U111(d, a), U111(e, c))
A#h#(f(e), f(e))A#h#(f(d), U111(c, b))
A#h#(f(e), U111(b, b))g#(d, x, x)A#
A#h#(U111(a, a), U111(c, b))A#h#(a, e)
A#h#(U111(c, a), U111(b, b))A#h#(f(d), f(d))
A#h#(d, U111(e, c))A#h#(e, U111(e, b))
A#h#(U111(a, a), l)A#h#(f(e), f(c))
A#h#(e, l)

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(e), c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(e), e) 
h#(f(e), l) 
h#(U111(e, e), c) 
Thus, the rule A# → h#(f(e), c) is replaced by the following rules:
A# → h#(U111(e, e), c)A# → h#(f(e), l)
A# → h#(f(e), e)

Problem 56: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(e, c)h#(x, x)g#(x, x, f(k))
A#h#(d, d)A#h#(U111(e, e), d)
A#h#(U111(e, e), U111(e, e))A#h#(e, e)
A#h#(c, c)A#h#(f(e), d)
A#h#(f(l), f(l))A#h#(l, l)
A#h#(f(c), f(c))A#h#(U111(e, e), e)
A#h#(f(e), e)A#h#(U111(e, e), l)
A#h#(U111(c, c), U111(c, c))A#h#(e, d)
A#h#(U111(e, c), U111(e, c))A#h#(f(e), f(e))
A#h#(f(d), U111(c, b))A#h#(a, e)
A#h#(U111(a, a), U111(c, b))g#(d, x, x)A#
A#h#(d, U111(e, c))A#h#(U111(a, a), l)
A#h#(e, U111(e, b))A#h#(f(e), f(c))
A#h#(U111(c, a), U111(b, b))A#h#(f(d), f(d))
A#h#(e, l)

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, e) 
h#(e, l) 
Thus, the rule A# → h#(e, c) is replaced by the following rules:
A# → h#(e, e)A# → h#(e, l)

Problem 57: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(l, b)A#h#(U111(e, e), U111(e, e))
A#h#(e, e)A#h#(c, c)
A#h#(f(l), f(l))A#h#(l, l)
A#h#(f(c), f(c))A#h#(d, b)
A#h#(U111(c, a), l)A#h#(U111(a, a), U111(e, b))
A#h#(U111(c, a), d)A#h#(U111(c, c), U111(c, c))
A#h#(e, d)A#h#(U111(e, a), c)
A#h#(U111(e, a), b)A#h#(U111(e, c), U111(e, c))
A#h#(U111(e, a), U111(c, b))A#h#(l, c)
A#h#(f(e), f(e))A#h#(a, e)
g#(d, x, x)A#A#h#(f(e), f(c))
A#h#(e, U111(e, b))A#h#(e, l)
A#h#(f(d), f(d))A#h#(f(d), U111(e, b))
A#h#(d, U111(e, c))A#h#(U111(c, a), U111(b, b))
A#h#(U111(a, a), l)

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(l, b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(l, c) 
h#(l, d) 
Thus, the rule A# → h#(l, b) is replaced by the following rules:
A# → h#(l, c)A# → h#(l, d)

Problem 58: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(e, b)A#h#(c, d)
A#h#(l, b)A#h#(l, U111(e, b))
A#h#(U111(e, e), U111(e, e))A#h#(e, e)
A#h#(c, c)A#h#(f(l), f(l))
A#h#(l, l)A#h#(f(c), f(c))
A#h#(d, b)A#h#(U111(c, a), l)
A#h#(U111(c, a), d)A#h#(U111(c, c), U111(c, c))
A#h#(e, d)A#h#(U111(e, a), c)
A#h#(U111(e, a), b)A#h#(U111(e, c), U111(e, c))
A#h#(U111(e, a), U111(c, b))A#h#(l, c)
A#h#(f(e), f(e))A#h#(a, e)
g#(d, x, x)A#A#h#(e, U111(e, b))
A#h#(U111(c, a), U111(b, b))A#h#(f(d), f(d))
A#h#(e, l)A#h#(f(d), U111(e, b))
A#h#(U111(a, a), l)A#h#(f(e), f(c))
A#h#(d, U111(e, c))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, d) 
h#(e, c) 
Thus, the rule A# → h#(e, b) is replaced by the following rules:
A# → h#(e, c)A# → h#(e, d)

Problem 59: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(a, l)
A#h#(d, d)A#h#(d, c)
A#h#(U111(e, e), U111(e, e))A#h#(e, e)
A#h#(c, c)A#h#(f(l), f(l))
A#h#(l, l)A#h#(f(c), f(c))
A#h#(d, b)A#h#(U111(c, c), U111(c, c))
A#h#(e, d)A#h#(U111(e, a), c)
A#h#(U111(e, c), U111(e, c))A#h#(U111(e, a), U111(c, b))
A#h#(l, c)A#h#(f(e), f(e))
A#h#(a, e)g#(d, x, x)A#
A#h#(e, l)A#h#(f(e), f(c))
A#h#(U111(c, a), U111(b, b))A#h#(d, U111(e, c))
A#h#(U111(a, a), l)A#h#(e, U111(e, b))
A#h#(f(d), f(d))A#h#(f(d), U111(e, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(a, l) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(c, l) 
h#(d, l) 
Thus, the rule A# → h#(a, l) is replaced by the following rules:
A# → h#(d, l)A# → h#(c, l)

Problem 60: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(c, l)A#h#(U111(e, e), U111(e, e))
A#h#(e, e)A#h#(c, c)
A#h#(d, l)A#h#(c, U111(e, b))
A#h#(f(l), f(l))A#h#(l, l)
A#h#(f(c), f(c))A#h#(d, b)
A#h#(U111(c, c), U111(c, c))A#h#(e, d)
A#h#(U111(e, a), b)A#h#(U111(e, c), U111(e, c))
A#h#(l, c)A#h#(f(e), f(e))
A#h#(a, e)g#(d, x, x)A#
A#h#(e, U111(e, b))A#h#(f(e), f(c))
A#h#(f(d), U111(e, b))A#h#(f(d), f(d))
A#h#(U111(c, a), U111(b, b))A#h#(e, l)
A#h#(d, U111(e, c))A#h#(U111(a, a), l)

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(c, l) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(l, l) 
h#(e, l) 
Thus, the rule A# → h#(c, l) is replaced by the following rules:
A# → h#(l, l)A# → h#(e, l)

Problem 61: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(d, c)A#h#(c, l)
A#h#(U111(e, e), U111(e, e))A#h#(e, e)
A#h#(d, l)A#h#(c, c)
A#h#(f(l), f(l))A#h#(l, l)
A#h#(f(c), f(c))A#h#(U111(c, c), U111(c, c))
A#h#(U111(e, c), U111(e, c))A#h#(l, c)
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(a, e)A#h#(f(d), f(d))
A#h#(d, U111(e, c))A#h#(f(d), U111(e, b))
A#h#(f(e), f(c))A#h#(U111(a, a), l)
A#h#(e, U111(e, b))A#h#(e, l)
A#h#(U111(c, a), U111(b, b))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(d, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(d, e) 
h#(d, l) 
Thus, the rule A# → h#(d, c) is replaced by the following rules:
A# → h#(d, e)A# → h#(d, l)

Problem 62: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(c, c)A#h#(d, d)
A#h#(f(l), f(l))A#h#(l, l)
A#h#(e, U111(e, c))A#h#(f(c), f(c))
A#h#(e, U111(c, c))A#h#(U111(e, e), c)
A#h#(U111(c, c), U111(c, c))A#h#(U111(e, c), U111(e, c))
A#h#(f(e), f(l))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(U111(c, a), U111(b, b))
A#h#(e, l)A#h#(e, U111(e, b))
A#h#(U111(a, a), l)A#h#(f(d), f(d))
A#h#(U111(e, e), U111(e, e))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, U111(e, c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, c) 
Thus, the rule A# → h#(e, U111(e, c)) is replaced by the following rules:
A# → h#(e, c)

Problem 63: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(c, U111(c, b))A#h#(c, U111(b, b))
A#h#(U111(e, e), U111(e, e))A#h#(a, U111(e, b))
A#h#(d, U111(b, b))A#h#(e, e)
A#h#(c, c)A#h#(a, c)
A#h#(f(l), f(l))A#h#(l, l)
A#h#(f(c), f(c))A#h#(d, b)
A#h#(U111(c, a), l)A#h#(U111(c, a), d)
A#h#(U111(c, c), U111(c, c))A#h#(e, d)
A#h#(U111(e, a), c)A#h#(U111(e, a), b)
A#h#(U111(e, a), U111(c, b))A#h#(U111(e, c), U111(e, c))
A#h#(l, c)A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(a, e)
A#h#(e, l)A#h#(e, U111(e, b))
A#h#(U111(a, a), l)A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(c, U111(c, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, U111(c, b))h#(c, U111(l, b))
h#(l, U111(c, b)) 
h#(c, U111(e, b)) 
Thus, the rule A# → h#(c, U111(c, b)) is replaced by the following rules:
A# → h#(l, U111(c, b))A# → h#(e, U111(c, b))
A# → h#(c, U111(e, b))

Problem 64: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(c, c)A#h#(d, d)
A#h#(f(l), f(l))A#h#(l, l)
A#h#(f(c), f(c))A#h#(U111(c, a), l)
A#h#(U111(c, a), d)A#h#(U111(c, c), U111(c, c))
A#h#(e, d)A#h#(U111(e, a), c)
A#h#(U111(e, a), b)A#h#(U111(e, c), U111(e, c))
A#h#(U111(e, a), U111(c, b))A#h#(l, c)
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(a, e)A#h#(U111(a, a), l)
A#h#(e, U111(e, b))A#h#(e, l)
A#h#(f(d), f(d))A#h#(U111(e, e), U111(e, e))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U111(c, a), l) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U111(e, a), l)h#(U111(l, a), l)
Thus, the rule A# → h#(U111(c, a), l) is replaced by the following rules:
A# → h#(U111(e, a), l)

Problem 65: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(l, b)A#h#(d, U111(e, b))
A#h#(c, U111(c, b))A#h#(c, l)
A#h#(a, b)A#h#(l, U111(e, b))
A#h#(U111(e, e), U111(e, e))A#h#(a, U111(e, b))
A#h#(e, e)A#h#(c, c)
A#h#(f(l), f(l))A#h#(l, l)
A#h#(f(c), f(c))A#h#(U111(c, c), U111(c, c))
A#h#(e, d)A#h#(U111(e, a), b)
A#h#(U111(e, c), U111(e, c))A#h#(l, c)
A#h#(f(e), f(e))A#h#(a, e)
g#(d, x, x)A#A#h#(U111(a, a), l)
A#h#(e, U111(e, b))A#h#(e, l)
A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(l, b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(l, c) 
h#(l, d) 
Thus, the rule A# → h#(l, b) is replaced by the following rules:
A# → h#(l, c)A# → h#(l, d)

Problem 66: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(c, c)A#h#(d, d)
A#h#(f(l), f(l))A#h#(l, l)
A#h#(f(c), f(c))A#h#(U111(c, c), U111(c, c))
A#h#(d, c)A#h#(U111(e, a), b)
A#h#(U111(e, c), U111(e, c))A#h#(l, c)
A#h#(f(e), f(e))A#h#(a, e)
g#(d, x, x)A#A#h#(e, U111(e, b))
A#h#(f(d), f(d))A#h#(U111(a, a), l)
A#h#(e, l)A#h#(l, U111(e, b))
A#h#(U111(e, e), U111(e, e))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(d, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(d, e) 
h#(d, l) 
Thus, the rule A# → h#(d, c) is replaced by the following rules:
A# → h#(d, e)A# → h#(d, l)

Problem 67: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(d, e)h#(x, x)g#(x, x, f(k))
A#h#(e, e)A#h#(c, c)
A#h#(c, e)A#h#(d, d)
A#h#(f(l), f(l))A#h#(l, l)
A#h#(f(c), f(c))A#h#(U111(c, c), U111(c, c))
A#h#(U111(e, c), U111(e, c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(U111(a, a), l)
A#h#(f(d), f(d))A#h#(e, U111(e, b))
A#h#(e, l)A#h#(l, U111(e, b))
A#h#(U111(e, e), U111(e, e))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(d, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(d, e) is deleted.

Problem 68: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(c, c)A#h#(d, d)
A#h#(f(l), f(l))A#h#(l, l)
A#h#(f(c), f(c))A#h#(U111(c, c), U111(c, c))
A#h#(U111(e, c), U111(e, c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U111(e, e), U111(e, e))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


Instantiation

For all potential predecessors l → r of the rule h#(x, x) → g#(x, x, f(k)) on dependency pair chains it holds that: Thus, h#(x, x) → g#(x, x, f(k)) is replaced by instances determined through the above matching. These instances are:
h#(f(d), f(d)) → g#(f(d), f(d), f(k))h#(f(e), f(e)) → g#(f(e), f(e), f(k))
h#(c, c) → g#(c, c, f(k))h#(U111(c, c), U111(c, c)) → g#(U111(c, c), U111(c, c), f(k))
h#(e, e) → g#(e, e, f(k))h#(U111(e, c), U111(e, c)) → g#(U111(e, c), U111(e, c), f(k))
h#(l, l) → g#(l, l, f(k))h#(f(c), f(c)) → g#(f(c), f(c), f(k))
h#(U111(e, e), U111(e, e)) → g#(U111(e, e), U111(e, e), f(k))h#(d, d) → g#(d, d, f(k))
h#(f(l), f(l)) → g#(f(l), f(l), f(k))

Problem 69: Propagation



Dependency Pair Problem

Dependency Pairs

h#(c, c)g#(c, c, f(k))h#(f(e), f(e))g#(f(e), f(e), f(k))
A#h#(e, e)h#(e, e)g#(e, e, f(k))
A#h#(c, c)h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(k))
A#h#(d, d)A#h#(f(l), f(l))
h#(f(c), f(c))g#(f(c), f(c), f(k))A#h#(l, l)
h#(d, d)g#(d, d, f(k))A#h#(f(c), f(c))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), f(k))
A#h#(U111(c, c), U111(c, c))h#(l, l)g#(l, l, f(k))
A#h#(U111(e, c), U111(e, c))A#h#(f(e), f(e))
h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(k))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U111(e, e), U111(e, e))
h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The dependency pairs A# → h#(c, c) and h#(c, c) → g#(c, c, f(k)) are consolidated into the rule A# → g#(c, c, f(k)) .

This is possible as

The dependency pairs g#(d, x, x) → A# and A# → h#(e, e) are consolidated into the rule g#(d, x, x) → h#(e, e) .

This is possible as

The dependency pairs g#(d, x, x) → A# and A# → h#(e, e) are consolidated into the rule g#(d, x, x) → h#(e, e) .

This is possible as

The dependency pairs g#(d, x, x) → A# and A# → h#(e, e) are consolidated into the rule g#(d, x, x) → h#(e, e) .

This is possible as

The dependency pairs g#(d, x, x) → A# and A# → h#(e, e) are consolidated into the rule g#(d, x, x) → h#(e, e) .

This is possible as


Summary

Removed Dependency PairsAdded Dependency Pairs
h#(c, c) → g#(c, c, f(k))A# → g#(c, c, f(k))
A# → h#(e, e)g#(d, x, x) → h#(e, e)
A# → h#(c, c) 
g#(d, x, x) → A# 

Problem 70: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(e), f(e))g#(f(e), f(e), f(k))g#(d, x, x)h#(e, e)
h#(e, e)g#(e, e, f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(k))
A#h#(d, d)A#h#(f(l), f(l))
h#(f(c), f(c))g#(f(c), f(c), f(k))A#h#(l, l)
h#(d, d)g#(d, d, f(k))A#h#(f(c), f(c))
A#g#(c, c, f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), f(k))A#h#(U111(c, c), U111(c, c))
h#(l, l)g#(l, l, f(k))A#h#(U111(e, c), U111(e, c))
A#h#(f(e), f(e))h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(k))
A#h#(f(d), f(d))h#(f(l), f(l))g#(f(l), f(l), f(k))
A#h#(U111(e, e), U111(e, e))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(e), f(e)) → g#(f(e), f(e), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(f(e), f(e), f(d)) 
g#(f(e), f(e), U111(k, k)) 
g#(U111(e, e), f(e), f(k)) 
g#(f(e), U111(e, e), f(k)) 
g#(f(e), f(e), f(l)) 
Thus, the rule h#(f(e), f(e)) → g#(f(e), f(e), f(k)) is replaced by the following rules:
h#(f(e), f(e)) → g#(f(e), f(e), U111(k, k))h#(f(e), f(e)) → g#(U111(e, e), f(e), f(k))
h#(f(e), f(e)) → g#(f(e), f(e), f(l))h#(f(e), f(e)) → g#(f(e), U111(e, e), f(k))
h#(f(e), f(e)) → g#(f(e), f(e), f(d))

Problem 71: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(e, e)h#(e, e)g#(e, e, f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(k))A#h#(d, d)
h#(f(e), f(e))g#(f(e), f(e), f(l))h#(f(c), f(c))g#(f(c), f(c), f(k))
A#g#(c, c, f(k))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), f(k))
h#(f(e), f(e))g#(f(e), f(e), U111(k, k))h#(f(e), f(e))g#(U111(e, e), f(e), f(k))
A#h#(U111(e, e), U111(e, e))A#h#(f(l), f(l))
A#h#(l, l)h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))h#(f(d), f(d))g#(f(d), f(d), f(k))
A#h#(U111(c, c), U111(c, c))h#(l, l)g#(l, l, f(k))
A#h#(U111(e, c), U111(e, c))A#h#(f(e), f(e))
h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(k))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
A#h#(f(d), f(d))h#(f(l), f(l))g#(f(l), f(l), f(k))
h#(f(e), f(e))g#(f(e), f(e), f(d))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(e, e) → g#(e, e, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, e, f(l)) 
g#(e, e, f(d)) 
g#(e, e, U111(k, k)) 
Thus, the rule h#(e, e) → g#(e, e, f(k)) is replaced by the following rules:
h#(e, e) → g#(e, e, f(d))h#(e, e) → g#(e, e, f(l))
h#(e, e) → g#(e, e, U111(k, k))

Problem 72: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(e, e)h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(k))
A#h#(d, d)h#(f(e), f(e))g#(f(e), f(e), f(l))
h#(f(c), f(c))g#(f(c), f(c), f(k))h#(e, e)g#(e, e, U111(k, k))
A#g#(c, c, f(k))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), f(k))
h#(f(e), f(e))g#(f(e), f(e), U111(k, k))h#(f(e), f(e))g#(U111(e, e), f(e), f(k))
A#h#(U111(e, e), U111(e, e))A#h#(f(l), f(l))
A#h#(l, l)h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(e, e)g#(e, e, f(d))A#h#(U111(c, c), U111(c, c))
h#(l, l)g#(l, l, f(k))h#(e, e)g#(e, e, f(l))
A#h#(U111(e, c), U111(e, c))A#h#(f(e), f(e))
h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(k))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
A#h#(f(d), f(d))h#(f(e), f(e))g#(f(e), f(e), f(d))
h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(e, c), U111(e, c)) → g#(U111(e, c), U111(e, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(e, c), U111(e, c), U111(k, k)) 
g#(U111(e, c), U111(e, c), f(l)) 
g#(c, U111(e, c), f(k)) 
g#(U111(e, c), c, f(k)) 
g#(U111(e, c), U111(e, c), f(d)) 
Thus, the rule h#(U111(e, c), U111(e, c)) → g#(U111(e, c), U111(e, c), f(k)) is replaced by the following rules:
h#(U111(e, c), U111(e, c)) → g#(U111(e, c), c, f(k))h#(U111(e, c), U111(e, c)) → g#(c, U111(e, c), f(k))
h#(U111(e, c), U111(e, c)) → g#(U111(e, c), U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c)) → g#(U111(e, c), U111(e, c), f(l))
h#(U111(e, c), U111(e, c)) → g#(U111(e, c), U111(e, c), f(d))

Problem 73: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(e, e)A#h#(d, d)
h#(f(e), f(e))g#(f(e), f(e), f(l))h#(f(c), f(c))g#(f(c), f(c), f(k))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(k))h#(e, e)g#(e, e, U111(k, k))
A#g#(c, c, f(k))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), f(k))
h#(f(e), f(e))g#(f(e), f(e), U111(k, k))h#(f(e), f(e))g#(U111(e, e), f(e), f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))
A#h#(U111(e, e), U111(e, e))A#h#(f(l), f(l))
A#h#(l, l)h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(e, e)g#(e, e, f(d))
A#h#(U111(c, c), U111(c, c))h#(l, l)g#(l, l, f(k))
h#(e, e)g#(e, e, f(l))A#h#(U111(e, c), U111(e, c))
A#h#(f(e), f(e))h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(k))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))A#h#(f(d), f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))h#(f(l), f(l))g#(f(l), f(l), f(k))
h#(f(e), f(e))g#(f(e), f(e), f(d))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(e), f(e)) → g#(f(e), f(e), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(e, e), f(e), f(l))g#(f(e), f(e), U111(l, l))
g#(f(e), U111(e, e), f(l)) 
Thus, the rule h#(f(e), f(e)) → g#(f(e), f(e), f(l)) is replaced by the following rules:
h#(f(e), f(e)) → g#(U111(e, e), f(e), f(l))h#(f(e), f(e)) → g#(f(e), U111(e, e), f(l))

Problem 74: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(e, e)A#h#(d, d)
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(k))h#(f(c), f(c))g#(f(c), f(c), f(k))
h#(e, e)g#(e, e, U111(k, k))A#g#(c, c, f(k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), f(k))h#(f(e), f(e))g#(f(e), f(e), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), f(e), f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(l))
A#h#(U111(e, e), U111(e, e))h#(f(e), f(e))g#(U111(e, e), f(e), f(l))
A#h#(f(l), f(l))A#h#(l, l)
h#(d, d)g#(d, d, f(k))A#h#(f(c), f(c))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(e, e)g#(e, e, f(d))A#h#(U111(c, c), U111(c, c))
h#(l, l)g#(l, l, f(k))h#(e, e)g#(e, e, f(l))
A#h#(U111(e, c), U111(e, c))A#h#(f(e), f(e))
h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(k))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))A#h#(f(d), f(d))
h#(f(e), f(e))g#(f(e), f(e), f(d))h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(c), f(c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(f(c), f(e), f(k)) 
g#(f(c), f(c), f(d)) 
g#(f(c), f(l), f(k)) 
g#(f(l), f(c), f(k)) 
g#(f(c), U111(c, c), f(k)) 
g#(f(c), f(c), f(l)) 
g#(f(e), f(c), f(k)) 
g#(U111(c, c), f(c), f(k)) 
g#(f(c), f(c), U111(k, k)) 
Thus, the rule h#(f(c), f(c)) → g#(f(c), f(c), f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(f(c), f(c), f(d))h#(f(c), f(c)) → g#(U111(c, c), f(c), f(k))
h#(f(c), f(c)) → g#(f(c), f(c), U111(k, k))h#(f(c), f(c)) → g#(f(e), f(c), f(k))
h#(f(c), f(c)) → g#(f(c), U111(c, c), f(k))h#(f(c), f(c)) → g#(f(c), f(c), f(l))
h#(f(c), f(c)) → g#(f(l), f(c), f(k))h#(f(c), f(c)) → g#(f(c), f(e), f(k))
h#(f(c), f(c)) → g#(f(c), f(l), f(k))

Problem 75: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(e, e)h#(f(c), f(c))g#(f(c), U111(c, c), f(k))
h#(f(c), f(c))g#(f(c), f(c), f(l))A#h#(d, d)
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(k))h#(e, e)g#(e, e, U111(k, k))
A#g#(c, c, f(k))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), f(k))
h#(f(e), f(e))g#(f(e), f(e), U111(k, k))h#(f(e), f(e))g#(U111(e, e), f(e), f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(l))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(f(c), f(c))g#(f(e), f(c), f(k))
h#(f(e), f(e))g#(U111(e, e), f(e), f(l))A#h#(f(l), f(l))
A#h#(l, l)h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(e, e)g#(e, e, f(d))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(f(c), f(c))g#(f(c), f(c), U111(k, k))
A#h#(U111(c, c), U111(c, c))h#(l, l)g#(l, l, f(k))
A#h#(U111(e, c), U111(e, c))h#(e, e)g#(e, e, f(l))
A#h#(f(e), f(e))h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(k))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
A#h#(f(d), f(d))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))
h#(f(l), f(l))g#(f(l), f(l), f(k))h#(f(e), f(e))g#(f(e), f(e), f(d))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(c), f(c), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(f(c), f(l), f(l))g#(f(c), f(c), U111(l, l))
g#(f(e), f(c), f(l)) 
g#(f(c), f(e), f(l)) 
g#(U111(c, c), f(c), f(l)) 
g#(f(l), f(c), f(l)) 
g#(f(c), U111(c, c), f(l)) 
Thus, the rule h#(f(c), f(c)) → g#(f(c), f(c), f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(f(c), U111(c, c), f(l))h#(f(c), f(c)) → g#(f(e), f(c), f(l))
h#(f(c), f(c)) → g#(f(c), f(l), f(l))h#(f(c), f(c)) → g#(f(c), f(e), f(l))
h#(f(c), f(c)) → g#(U111(c, c), f(c), f(l))h#(f(c), f(c)) → g#(f(l), f(c), f(l))

Problem 76: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(e, e)h#(f(c), f(c))g#(f(c), U111(c, c), f(k))
A#h#(d, d)h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(k))
h#(e, e)g#(e, e, U111(k, k))h#(f(c), f(c))g#(f(c), U111(c, c), f(l))
A#g#(c, c, f(k))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), f(k))
h#(f(c), f(c))g#(f(e), f(c), f(l))h#(f(e), f(e))g#(f(e), f(e), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), f(e), f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(f(c), f(e), f(l))h#(f(c), f(c))g#(U111(c, c), f(c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(l))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(c), f(c), f(d))
h#(f(c), f(c))g#(f(e), f(c), f(k))h#(f(e), f(e))g#(U111(e, e), f(e), f(l))
A#h#(f(l), f(l))A#h#(l, l)
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(d, d)g#(d, d, f(k))A#h#(f(c), f(c))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(e, e)g#(e, e, f(d))
h#(f(c), f(c))g#(f(c), f(c), U111(k, k))A#h#(U111(c, c), U111(c, c))
h#(l, l)g#(l, l, f(k))h#(f(c), f(c))g#(f(c), f(l), f(l))
h#(e, e)g#(e, e, f(l))A#h#(U111(e, c), U111(e, c))
A#h#(f(e), f(e))h#(f(c), f(c))g#(f(l), f(c), f(k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(k))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(e), f(e))g#(f(e), f(e), f(d))
h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(c), U111(c, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(f(l), U111(c, c), f(k))g#(f(c), U111(l, c), f(k))
g#(f(c), U111(e, c), f(k)) 
g#(f(e), U111(c, c), f(k)) 
g#(f(c), U111(c, c), f(d)) 
g#(U111(c, c), U111(c, c), f(k)) 
g#(f(c), U111(c, c), U111(k, k)) 
g#(f(c), U111(c, c), f(l)) 
Thus, the rule h#(f(c), f(c)) → g#(f(c), U111(c, c), f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(f(c), U111(c, c), f(l))h#(f(c), f(c)) → g#(f(c), U111(e, c), f(k))
h#(f(c), f(c)) → g#(f(e), U111(c, c), f(k))h#(f(c), f(c)) → g#(U111(c, c), U111(c, c), f(k))
h#(f(c), f(c)) → g#(f(l), U111(c, c), f(k))h#(f(c), f(c)) → g#(f(c), U111(c, c), f(d))
h#(f(c), f(c)) → g#(f(c), U111(c, c), U111(k, k))

Problem 77: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(e, e)h#(f(c), f(c))g#(f(c), U111(c, c), f(d))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(k))h#(e, e)g#(e, e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), f(k))h#(f(c), f(c))g#(f(e), f(c), f(l))
h#(f(e), f(e))g#(f(e), f(e), U111(k, k))h#(f(e), f(e))g#(U111(e, e), f(e), f(k))
h#(f(c), f(c))g#(f(c), f(e), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), f(c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(f(c), f(c))g#(f(e), f(c), f(k))
A#h#(f(l), f(l))h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(e, e)g#(e, e, f(d))
A#h#(U111(c, c), U111(c, c))h#(l, l)g#(l, l, f(k))
h#(f(c), f(c))g#(f(c), f(l), f(l))A#h#(f(e), f(e))
h#(f(c), f(c))g#(f(l), f(c), f(k))h#(f(c), f(c))g#(f(c), U111(c, c), U111(k, k))
A#h#(f(d), f(d))h#(f(e), f(e))g#(f(e), f(e), f(d))
A#h#(d, d)h#(f(c), f(c))g#(f(c), U111(c, c), f(l))
A#g#(c, c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(k))
h#(f(c), f(c))g#(f(l), U111(c, c), f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))
A#h#(U111(e, e), U111(e, e))h#(f(e), f(e))g#(U111(e, e), f(e), f(l))
A#h#(l, l)h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(f(c), U111(e, c), f(k))h#(f(c), f(c))g#(f(e), U111(c, c), f(k))
h#(f(c), f(c))g#(f(c), f(c), U111(k, k))A#h#(U111(e, c), U111(e, c))
h#(e, e)g#(e, e, f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(k))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(c), U111(c, c), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(c, c), U111(c, c), f(d))g#(f(c), U111(c, c), U111(d, d))
g#(f(c), U111(e, c), f(d))g#(f(c), U111(l, c), f(d))
g#(f(e), U111(c, c), f(d)) 
g#(f(l), U111(c, c), f(d)) 
Thus, the rule h#(f(c), f(c)) → g#(f(c), U111(c, c), f(d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(f(c), U111(e, c), f(d))h#(f(c), f(c)) → g#(f(e), U111(c, c), f(d))
h#(f(c), f(c)) → g#(U111(c, c), U111(c, c), f(d))h#(f(c), f(c)) → g#(f(l), U111(c, c), f(d))

Problem 78: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(e, e)h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(k))
h#(e, e)g#(e, e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), f(k))
h#(f(c), f(c))g#(f(e), f(c), f(l))h#(f(e), f(e))g#(f(e), f(e), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(d))h#(f(e), f(e))g#(U111(e, e), f(e), f(k))
h#(f(c), f(c))g#(f(c), f(e), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), f(c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(f(c), f(c))g#(f(e), f(c), f(k))
A#h#(f(l), f(l))h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(k))
h#(e, e)g#(e, e, f(d))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
A#h#(U111(c, c), U111(c, c))h#(l, l)g#(l, l, f(k))
h#(f(c), f(c))g#(f(c), f(l), f(l))A#h#(f(e), f(e))
h#(f(c), f(c))g#(f(l), f(c), f(k))h#(f(c), f(c))g#(f(c), U111(c, c), U111(k, k))
A#h#(f(d), f(d))h#(f(e), f(e))g#(f(e), f(e), f(d))
A#h#(d, d)h#(f(c), f(c))g#(f(c), U111(c, c), f(l))
A#g#(c, c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(k))
h#(f(c), f(c))g#(f(l), U111(c, c), f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(e), U111(c, c), f(d))
h#(f(c), f(c))g#(f(c), U111(e, c), f(d))h#(f(e), f(e))g#(U111(e, e), f(e), f(l))
A#h#(l, l)h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(f(c), U111(e, c), f(k))h#(f(c), f(c))g#(f(e), U111(c, c), f(k))
h#(f(c), f(c))g#(f(c), f(c), U111(k, k))A#h#(U111(e, c), U111(e, c))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(f(l), U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(k))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(e, c), U111(e, c)) → g#(c, U111(e, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(c, U111(e, c), U111(k, k)) 
g#(c, c, f(k)) 
g#(c, U111(e, c), f(d)) 
g#(e, U111(e, c), f(k)) 
g#(c, U111(e, c), f(l)) 
g#(l, U111(e, c), f(k)) 
Thus, the rule h#(U111(e, c), U111(e, c)) → g#(c, U111(e, c), f(k)) is replaced by the following rules:
h#(U111(e, c), U111(e, c)) → g#(l, U111(e, c), f(k))h#(U111(e, c), U111(e, c)) → g#(c, U111(e, c), f(l))
h#(U111(e, c), U111(e, c)) → g#(c, U111(e, c), f(d))h#(U111(e, c), U111(e, c)) → g#(e, U111(e, c), f(k))
h#(U111(e, c), U111(e, c)) → g#(c, c, f(k))h#(U111(e, c), U111(e, c)) → g#(c, U111(e, c), U111(k, k))

Problem 79: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(e, e)h#(e, e)g#(e, e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), f(k))h#(f(c), f(c))g#(f(e), f(c), f(l))
h#(f(e), f(e))g#(f(e), f(e), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(d))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(k))h#(f(e), f(e))g#(U111(e, e), f(e), f(k))
h#(f(c), f(c))g#(f(c), f(e), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), f(c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(f(c), f(c))g#(f(e), f(c), f(k))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(d))
A#h#(f(l), f(l))h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(e, e)g#(e, e, f(d))
A#h#(U111(c, c), U111(c, c))h#(l, l)g#(l, l, f(k))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(f(c), f(l), f(l))
A#h#(f(e), f(e))h#(f(c), f(c))g#(f(l), f(c), f(k))
h#(f(c), f(c))g#(f(c), U111(c, c), U111(k, k))A#h#(f(d), f(d))
h#(f(e), f(e))g#(f(e), f(e), f(d))A#h#(d, d)
h#(U111(e, c), U111(e, c))g#(c, c, f(k))h#(f(c), f(c))g#(f(c), U111(c, c), f(l))
A#g#(c, c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(k))
h#(f(c), f(c))g#(f(l), U111(c, c), f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(f(e), U111(c, c), f(d))h#(f(c), f(c))g#(f(c), U111(e, c), f(d))
h#(f(e), f(e))g#(U111(e, e), f(e), f(l))A#h#(l, l)
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(c), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(c, c), f(k))h#(f(c), f(c))g#(f(c), f(c), U111(k, k))
h#(e, e)g#(e, e, f(l))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(f(l), U111(c, c), f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(k))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(e, e) → g#(e, e, U111(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U111(d, k))
 g#(e, e, U111(l, k))
Thus, the rule h#(e, e) → g#(e, e, U111(k, k)) is deleted.

Problem 80: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(e, e)h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), f(k))
h#(f(c), f(c))g#(f(e), f(c), f(l))h#(f(e), f(e))g#(f(e), f(e), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(d))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(k))
h#(f(e), f(e))g#(U111(e, e), f(e), f(k))h#(f(c), f(c))g#(f(c), f(e), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), f(c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(f(c), f(c), f(d))
h#(f(c), f(c))g#(f(e), f(c), f(k))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(d))A#h#(f(l), f(l))
h#(d, d)g#(d, d, f(k))A#h#(f(c), f(c))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(k))h#(e, e)g#(e, e, f(d))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))A#h#(U111(c, c), U111(c, c))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(k))h#(l, l)g#(l, l, f(k))
h#(f(c), f(c))g#(f(c), f(l), f(l))A#h#(f(e), f(e))
h#(f(c), f(c))g#(f(l), f(c), f(k))h#(f(c), f(c))g#(f(c), U111(c, c), U111(k, k))
A#h#(f(d), f(d))h#(f(e), f(e))g#(f(e), f(e), f(d))
A#h#(d, d)h#(U111(e, c), U111(e, c))g#(c, c, f(k))
h#(f(c), f(c))g#(f(c), U111(c, c), f(l))A#g#(c, c, f(k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(k))h#(f(c), f(c))g#(f(l), U111(c, c), f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(e), U111(c, c), f(d))
h#(f(c), f(c))g#(f(c), U111(e, c), f(d))h#(f(e), f(e))g#(U111(e, e), f(e), f(l))
A#h#(l, l)h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(f(c), U111(e, c), f(k))h#(f(c), f(c))g#(f(e), U111(c, c), f(k))
h#(f(c), f(c))g#(f(c), f(c), U111(k, k))A#h#(U111(e, c), U111(e, c))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(f(l), U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(k))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(c, c), U111(c, c)) → g#(U111(c, c), U111(c, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(c, c), U111(c, c), f(l))g#(U111(c, c), U111(l, c), f(k))
g#(U111(e, c), U111(c, c), f(k))g#(U111(l, c), U111(c, c), f(k))
g#(U111(c, c), U111(c, c), f(d)) 
g#(U111(c, c), U111(e, c), f(k)) 
g#(U111(c, c), U111(c, c), U111(k, k)) 
Thus, the rule h#(U111(c, c), U111(c, c)) → g#(U111(c, c), U111(c, c), f(k)) is replaced by the following rules:
h#(U111(c, c), U111(c, c)) → g#(U111(e, c), U111(c, c), f(k))h#(U111(c, c), U111(c, c)) → g#(U111(c, c), U111(c, c), U111(k, k))
h#(U111(c, c), U111(c, c)) → g#(U111(c, c), U111(c, c), f(d))h#(U111(c, c), U111(c, c)) → g#(U111(c, c), U111(c, c), f(l))
h#(U111(c, c), U111(c, c)) → g#(U111(c, c), U111(e, c), f(k))

Problem 81: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(e, e)h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), f(c), f(l))h#(f(e), f(e))g#(f(e), f(e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(d))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(k))h#(f(e), f(e))g#(U111(e, e), f(e), f(k))
h#(f(c), f(c))g#(f(c), f(e), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), f(c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(f(c), f(c))g#(f(e), f(c), f(k))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(d))
A#h#(f(l), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), f(d))
h#(d, d)g#(d, d, f(k))A#h#(f(c), f(c))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), f(k))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(e, e)g#(e, e, f(d))
A#h#(U111(c, c), U111(c, c))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(k))
h#(l, l)g#(l, l, f(k))h#(f(c), f(c))g#(f(c), f(l), f(l))
A#h#(f(e), f(e))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(k))h#(f(c), f(c))g#(f(c), U111(c, c), U111(k, k))
A#h#(f(d), f(d))h#(f(e), f(e))g#(f(e), f(e), f(d))
A#h#(d, d)h#(U111(e, c), U111(e, c))g#(c, c, f(k))
h#(f(c), f(c))g#(f(c), U111(c, c), f(l))A#g#(c, c, f(k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(k))h#(f(c), f(c))g#(f(l), U111(c, c), f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(e), U111(c, c), f(d))
h#(f(c), f(c))g#(f(c), U111(e, c), f(d))h#(f(e), f(e))g#(U111(e, e), f(e), f(l))
A#h#(l, l)h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(f(e), U111(c, c), f(k))
h#(f(c), f(c))g#(f(c), U111(e, c), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(f(c), f(c), U111(k, k))h#(e, e)g#(e, e, f(l))
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(f(l), U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(k))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))
h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(c, c), U111(c, c)) → g#(U111(c, c), U111(c, c), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(e, c), U111(c, c), f(l))g#(U111(l, c), U111(c, c), f(l))
g#(U111(c, c), U111(e, c), f(l))g#(U111(c, c), U111(l, c), f(l))
g#(U111(c, c), U111(c, c), U111(l, l)) 
Thus, the rule h#(U111(c, c), U111(c, c)) → g#(U111(c, c), U111(c, c), f(l)) is replaced by the following rules:
h#(U111(c, c), U111(c, c)) → g#(U111(c, c), U111(e, c), f(l))h#(U111(c, c), U111(c, c)) → g#(U111(e, c), U111(c, c), f(l))
h#(U111(c, c), U111(c, c)) → g#(U111(c, c), U111(c, c), U111(l, l))

Problem 82: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(e, e)h#(f(c), f(c))g#(f(e), f(c), f(l))
h#(f(e), f(e))g#(f(e), f(e), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(d))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(k))
h#(f(e), f(e))g#(U111(e, e), f(e), f(k))h#(f(c), f(c))g#(f(c), f(e), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), f(c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), f(l))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(f(c), f(c))g#(f(e), f(c), f(k))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(d))
A#h#(f(l), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), f(d))
h#(d, d)g#(d, d, f(k))A#h#(f(c), f(c))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), f(k))
h#(e, e)g#(e, e, f(d))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
A#h#(U111(c, c), U111(c, c))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(k))
h#(l, l)g#(l, l, f(k))h#(f(c), f(c))g#(f(c), f(l), f(l))
A#h#(f(e), f(e))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(k))h#(f(c), f(c))g#(f(c), U111(c, c), U111(k, k))
A#h#(f(d), f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), U111(l, l))
h#(f(e), f(e))g#(f(e), f(e), f(d))A#h#(d, d)
h#(U111(e, c), U111(e, c))g#(c, c, f(k))h#(f(c), f(c))g#(f(c), U111(c, c), f(l))
A#g#(c, c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(k))
h#(f(c), f(c))g#(f(l), U111(c, c), f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(f(e), U111(c, c), f(d))h#(f(c), f(c))g#(f(c), U111(e, c), f(d))
h#(f(e), f(e))g#(U111(e, e), f(e), f(l))A#h#(l, l)
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), f(l))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(f(c), U111(e, c), f(k))h#(f(c), f(c))g#(f(e), U111(c, c), f(k))
h#(f(c), f(c))g#(f(c), f(c), U111(k, k))A#h#(U111(e, c), U111(e, c))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(f(l), U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(k))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(e), f(c), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(e, e), f(c), f(l))g#(f(e), f(c), U111(l, l))
g#(f(e), f(l), f(l)) 
g#(f(e), f(e), f(l)) 
g#(f(e), U111(c, c), f(l)) 
Thus, the rule h#(f(c), f(c)) → g#(f(e), f(c), f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(f(e), f(e), f(l))h#(f(c), f(c)) → g#(U111(e, e), f(c), f(l))
h#(f(c), f(c)) → g#(f(e), f(l), f(l))h#(f(c), f(c)) → g#(f(e), U111(c, c), f(l))

Problem 83: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(e, e)h#(f(e), f(e))g#(f(e), f(e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(d))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(k))h#(f(e), f(e))g#(U111(e, e), f(e), f(k))
h#(f(c), f(c))g#(f(c), f(e), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), f(c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(f(c), f(c), f(d))
h#(f(c), f(c))g#(f(e), f(c), f(k))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(d))A#h#(f(l), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), f(d))h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), f(k))h#(f(c), f(c))g#(f(e), f(e), f(l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(e, e)g#(e, e, f(d))
A#h#(U111(c, c), U111(c, c))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(k))
h#(l, l)g#(l, l, f(k))h#(f(c), f(c))g#(f(c), f(l), f(l))
A#h#(f(e), f(e))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(k))h#(f(c), f(c))g#(f(c), U111(c, c), U111(k, k))
A#h#(f(d), f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), U111(l, l))
h#(f(e), f(e))g#(f(e), f(e), f(d))A#h#(d, d)
h#(U111(e, c), U111(e, c))g#(c, c, f(k))h#(f(c), f(c))g#(f(c), U111(c, c), f(l))
A#g#(c, c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(k))
h#(f(c), f(c))g#(f(l), U111(c, c), f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))
h#(f(c), f(c))g#(f(e), U111(c, c), f(l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(e), U111(c, c), f(d))
h#(f(c), f(c))g#(f(c), U111(e, c), f(d))h#(f(e), f(e))g#(U111(e, e), f(e), f(l))
h#(f(c), f(c))g#(f(e), f(l), f(l))A#h#(l, l)
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), f(l))h#(f(c), f(c))g#(f(e), U111(c, c), f(k))
h#(f(c), f(c))g#(f(c), U111(e, c), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(f(c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(c), f(l))
h#(e, e)g#(e, e, f(l))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(f(l), U111(c, c), f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(k))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(e), f(e)) → g#(f(e), f(e), U111(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(f(e), U111(e, e), U111(k, k))g#(f(e), f(e), U111(d, k))
g#(U111(e, e), f(e), U111(k, k))g#(f(e), f(e), U111(l, k))
Thus, the rule h#(f(e), f(e)) → g#(f(e), f(e), U111(k, k)) is replaced by the following rules:
h#(f(e), f(e)) → g#(U111(e, e), f(e), U111(k, k))h#(f(e), f(e)) → g#(f(e), U111(e, e), U111(k, k))

Problem 84: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(e, e)h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(d))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(k))
h#(f(e), f(e))g#(U111(e, e), f(e), f(k))h#(f(c), f(c))g#(f(c), f(e), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), f(c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), f(l))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(f(c), f(c))g#(f(e), f(c), f(k))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(d))
A#h#(f(l), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), f(d))
h#(d, d)g#(d, d, f(k))A#h#(f(c), f(c))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(f(e), f(e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), f(k))h#(e, e)g#(e, e, f(d))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))A#h#(U111(c, c), U111(c, c))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(k))h#(l, l)g#(l, l, f(k))
h#(f(c), f(c))g#(f(c), f(l), f(l))A#h#(f(e), f(e))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), f(k))h#(f(c), f(c))g#(f(l), f(c), f(k))
h#(f(c), f(c))g#(f(c), U111(c, c), U111(k, k))A#h#(f(d), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), U111(l, l))h#(f(e), f(e))g#(f(e), f(e), f(d))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(k, k))A#h#(d, d)
h#(U111(e, c), U111(e, c))g#(c, c, f(k))h#(f(c), f(c))g#(f(c), U111(c, c), f(l))
A#g#(c, c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(k))
h#(f(c), f(c))g#(f(l), U111(c, c), f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))
h#(f(c), f(c))g#(f(e), U111(c, c), f(l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(e), U111(c, c), f(d))
h#(f(c), f(c))g#(f(c), U111(e, c), f(d))h#(f(e), f(e))g#(U111(e, e), f(e), f(l))
h#(f(c), f(c))g#(f(e), f(l), f(l))A#h#(l, l)
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), f(l))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(f(c), U111(e, c), f(k))h#(f(c), f(c))g#(f(e), U111(c, c), f(k))
h#(f(c), f(c))g#(f(c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), U111(k, k))A#h#(U111(e, c), U111(e, c))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(f(l), U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(k))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(c, c), U111(c, c)) → g#(U111(c, c), U111(c, c), U111(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(c, c), U111(e, c), U111(k, k))g#(U111(c, c), U111(c, c), U111(d, k))
g#(U111(e, c), U111(c, c), U111(k, k))g#(U111(l, c), U111(c, c), U111(k, k))
 g#(U111(c, c), U111(c, c), U111(l, k))
 g#(U111(c, c), U111(l, c), U111(k, k))
Thus, the rule h#(U111(c, c), U111(c, c)) → g#(U111(c, c), U111(c, c), U111(k, k)) is replaced by the following rules:
h#(U111(c, c), U111(c, c)) → g#(U111(e, c), U111(c, c), U111(k, k))h#(U111(c, c), U111(c, c)) → g#(U111(c, c), U111(e, c), U111(k, k))

Problem 85: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(e, e)h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(d))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(k))h#(f(e), f(e))g#(U111(e, e), f(e), f(k))
h#(f(c), f(c))g#(f(c), f(e), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), f(c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(f(c), f(c), f(d))
h#(f(c), f(c))g#(f(e), f(c), f(k))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), U111(k, k))
A#h#(f(l), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), f(d))
h#(d, d)g#(d, d, f(k))A#h#(f(c), f(c))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), f(k))
h#(f(c), f(c))g#(f(e), f(e), f(l))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
h#(e, e)g#(e, e, f(d))A#h#(U111(c, c), U111(c, c))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(k))h#(l, l)g#(l, l, f(k))
h#(f(c), f(c))g#(f(c), f(l), f(l))A#h#(f(e), f(e))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), f(k))h#(f(c), f(c))g#(f(l), f(c), f(k))
h#(f(c), f(c))g#(f(c), U111(c, c), U111(k, k))A#h#(f(d), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), U111(l, l))h#(f(e), f(e))g#(f(e), f(e), f(d))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(k, k))A#h#(d, d)
h#(U111(e, c), U111(e, c))g#(c, c, f(k))h#(f(c), f(c))g#(f(c), U111(c, c), f(l))
A#g#(c, c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(k))
h#(f(c), f(c))g#(f(l), U111(c, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))h#(f(c), f(c))g#(f(e), U111(c, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(f(e), U111(c, c), f(d))h#(f(c), f(c))g#(f(c), U111(e, c), f(d))
h#(f(e), f(e))g#(U111(e, e), f(e), f(l))h#(f(c), f(c))g#(f(e), f(l), f(l))
A#h#(l, l)h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), f(l))
h#(f(c), f(c))g#(f(e), U111(c, c), f(k))h#(f(c), f(c))g#(f(c), U111(e, c), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), U111(k, k))
h#(e, e)g#(e, e, f(l))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(f(l), U111(c, c), f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(k))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(c, c), U111(c, c), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(c, c), U111(e, c), f(d))g#(U111(c, c), U111(l, c), f(d))
g#(U111(c, c), U111(c, c), U111(d, d))g#(U111(l, c), U111(c, c), f(d))
g#(U111(e, c), U111(c, c), f(d)) 
Thus, the rule h#(f(c), f(c)) → g#(U111(c, c), U111(c, c), f(d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U111(c, c), U111(e, c), f(d))h#(f(c), f(c)) → g#(U111(e, c), U111(c, c), f(d))
h#(f(c), f(c)) → g#(U111(c, c), U111(c, c), U111(d, d))

Problem 86: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(e, e)h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(k))
h#(f(e), f(e))g#(U111(e, e), f(e), f(k))h#(f(c), f(c))g#(f(c), f(e), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), f(c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), f(l))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(f(c), f(c))g#(f(e), f(c), f(k))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), U111(k, k))A#h#(f(l), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), f(d))h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(f(e), f(e), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), f(k))
h#(e, e)g#(e, e, f(d))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
A#h#(U111(c, c), U111(c, c))h#(l, l)g#(l, l, f(k))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(f(c), f(l), f(l))
A#h#(f(e), f(e))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(k))h#(f(c), f(c))g#(f(c), U111(c, c), U111(k, k))
A#h#(f(d), f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), U111(l, l))
h#(f(e), f(e))g#(f(e), f(e), f(d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(k, k))
A#h#(d, d)h#(U111(e, c), U111(e, c))g#(c, c, f(k))
h#(f(c), f(c))g#(f(c), U111(c, c), f(l))A#g#(c, c, f(k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(d))
h#(f(c), f(c))g#(f(l), U111(c, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))h#(f(c), f(c))g#(f(e), U111(c, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))h#(f(c), f(c))g#(f(e), U111(c, c), f(d))
h#(f(c), f(c))g#(f(c), U111(e, c), f(d))h#(f(e), f(e))g#(U111(e, e), f(e), f(l))
h#(f(c), f(c))g#(f(e), f(l), f(l))A#h#(l, l)
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), f(l))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(c), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(c, c), f(k))h#(f(c), f(c))g#(f(c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), U111(k, k))
A#h#(U111(e, c), U111(e, c))h#(e, e)g#(e, e, f(l))
h#(f(c), f(c))g#(f(l), U111(c, c), f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(k))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(e, c), U111(e, c)) → g#(e, U111(e, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, c, f(k)) 
g#(e, U111(e, c), f(l)) 
g#(e, U111(e, c), U111(k, k)) 
g#(e, U111(e, c), f(d)) 
Thus, the rule h#(U111(e, c), U111(e, c)) → g#(e, U111(e, c), f(k)) is replaced by the following rules:
h#(U111(e, c), U111(e, c)) → g#(e, U111(e, c), f(d))h#(U111(e, c), U111(e, c)) → g#(e, c, f(k))
h#(U111(e, c), U111(e, c)) → g#(e, U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c)) → g#(e, U111(e, c), f(l))

Problem 87: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(e, e)h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(d))
h#(U111(e, c), U111(e, c))g#(e, c, f(k))h#(f(e), f(e))g#(U111(e, e), f(e), f(k))
h#(f(c), f(c))g#(f(c), f(e), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), f(c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(f(c), f(c), f(d))
h#(f(c), f(c))g#(f(e), f(c), f(k))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(d))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))A#h#(f(l), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), f(d))h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), f(k))h#(f(c), f(c))g#(f(e), f(e), f(l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(e, e)g#(e, e, f(d))
A#h#(U111(c, c), U111(c, c))h#(l, l)g#(l, l, f(k))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(f(c), f(l), f(l))
A#h#(f(e), f(e))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(k))h#(f(c), f(c))g#(f(c), U111(c, c), U111(k, k))
A#h#(f(d), f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), U111(l, l))
h#(f(e), f(e))g#(f(e), f(e), f(d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(k, k))
A#h#(d, d)h#(U111(e, c), U111(e, c))g#(c, c, f(k))
h#(f(c), f(c))g#(f(c), U111(c, c), f(l))A#g#(c, c, f(k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(d))
h#(f(c), f(c))g#(f(l), U111(c, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))h#(f(c), f(c))g#(f(e), U111(c, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(f(c), U111(e, c), f(d))h#(f(c), f(c))g#(f(e), U111(c, c), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))h#(f(e), f(e))g#(U111(e, e), f(e), f(l))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(k, k))h#(f(c), f(c))g#(f(e), f(l), f(l))
A#h#(l, l)h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), f(l))h#(f(c), f(c))g#(f(e), U111(c, c), f(k))
h#(f(c), f(c))g#(f(c), U111(e, c), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(f(c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), U111(k, k))h#(e, e)g#(e, e, f(l))
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(f(l), U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(k))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))
h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(e, c), U111(e, c)) → g#(e, U111(e, c), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, U111(e, c), U111(d, d)) 
g#(e, c, f(d)) 
Thus, the rule h#(U111(e, c), U111(e, c)) → g#(e, U111(e, c), f(d)) is replaced by the following rules:
h#(U111(e, c), U111(e, c)) → g#(e, c, f(d))h#(U111(e, c), U111(e, c)) → g#(e, U111(e, c), U111(d, d))

Problem 88: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(e, e)h#(U111(e, c), U111(e, c))g#(e, c, f(k))
h#(f(e), f(e))g#(U111(e, e), f(e), f(k))h#(f(c), f(c))g#(f(c), f(e), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), f(c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(l))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(f(c), f(c), f(d))
h#(f(c), f(c))g#(f(e), f(c), f(k))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), U111(k, k))A#h#(f(l), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), f(d))h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(f(e), f(e), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), f(k))
h#(e, e)g#(e, e, f(d))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
A#h#(U111(c, c), U111(c, c))h#(l, l)g#(l, l, f(k))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(k))h#(U111(e, c), U111(e, c))g#(e, c, f(d))
h#(f(c), f(c))g#(f(c), f(l), f(l))A#h#(f(e), f(e))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), f(k))h#(f(c), f(c))g#(f(l), f(c), f(k))
h#(f(c), f(c))g#(f(c), U111(c, c), U111(k, k))A#h#(f(d), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), U111(l, l))h#(f(e), f(e))g#(f(e), f(e), f(d))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(k, k))A#h#(d, d)
h#(U111(e, c), U111(e, c))g#(c, c, f(k))h#(f(c), f(c))g#(f(c), U111(c, c), f(l))
A#g#(c, c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(d))h#(f(c), f(c))g#(f(l), U111(c, c), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))
h#(f(c), f(c))g#(f(e), U111(c, c), f(l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))
h#(f(c), f(c))g#(f(e), U111(c, c), f(d))h#(f(c), f(c))g#(f(c), U111(e, c), f(d))
h#(f(e), f(e))g#(U111(e, e), f(e), f(l))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(f(e), f(l), f(l))A#h#(l, l)
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), f(l))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(c), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(c, c), f(k))h#(f(c), f(c))g#(f(c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), U111(k, k))
A#h#(U111(e, c), U111(e, c))h#(e, e)g#(e, e, f(l))
h#(f(c), f(c))g#(f(l), U111(c, c), f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(k))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(e, c), U111(e, c)) → g#(e, c, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, l, f(k)) 
g#(e, c, f(l)) 
g#(e, c, U111(k, k)) 
g#(e, c, f(d)) 
g#(e, e, f(k)) 
Thus, the rule h#(U111(e, c), U111(e, c)) → g#(e, c, f(k)) is replaced by the following rules:
h#(U111(e, c), U111(e, c)) → g#(e, c, f(d))h#(U111(e, c), U111(e, c)) → g#(e, c, f(l))
h#(U111(e, c), U111(e, c)) → g#(e, l, f(k))h#(U111(e, c), U111(e, c)) → g#(e, c, U111(k, k))
h#(U111(e, c), U111(e, c)) → g#(e, e, f(k))

Problem 89: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(f(c), f(c))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), f(k))h#(e, e)g#(e, e, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, f(d))h#(f(c), f(c))g#(f(c), f(l), f(l))
h#(f(c), f(c))g#(c, f(c), f(l))h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(l))
A#h#(f(e), f(e))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(k))h#(f(c), f(c))g#(f(c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(c, U111(c, c), U111(l, l))h#(f(e), f(e))g#(f(e), f(e), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), U111(l, l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(l, l))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(c), U111(l, l))
h#(U111(e, c), U111(e, c))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), f(d))
h#(f(e), f(e))g#(e, f(e), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(d))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(l))
h#(f(c), f(c))g#(f(l), U111(e, e), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))
h#(f(c), f(c))g#(f(e), U111(c, c), f(l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(f(e), U111(c, c), f(d))h#(f(c), f(c))g#(f(c), U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), f(l))h#(f(e), f(e))g#(U111(e, e), f(e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), U111(d, d))A#h#(l, l)
h#(f(e), f(e))g#(U111(e, e), f(e), f(d))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(U111(e, c), U111(e, c))g#(e, e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), f(l))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(f(c), f(c))g#(f(c), U111(e, c), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(f(e), U111(c, c), f(k))h#(f(c), f(c))g#(U111(e, e), f(c), f(l))
h#(f(c), f(c))g#(U111(e, c), f(e), U111(l, l))h#(f(c), f(c))g#(f(e), f(l), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(k, k))h#(e, e)g#(e, e, f(l))
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(f(l), U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))
h#(f(e), f(e))g#(e, U111(e, e), f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(f(l), f(l))g#(f(l), f(l), f(k))h#(f(c), f(c))g#(l, U111(c, c), f(l))
g#(d, x, x)h#(e, e)h#(f(c), f(c))g#(f(e), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(c), f(k))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(l, l))h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))
h#(d, d)g#(d, d, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))h#(f(c), f(c))g#(f(e), f(c), f(d))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))
h#(f(c), f(c))g#(f(c), e, f(l))h#(f(c), f(c))g#(f(c), f(c), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))
h#(f(c), f(c))g#(f(c), U111(e, e), U111(l, l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(l, l))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(d))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))h#(f(c), f(c))g#(f(e), f(e), f(l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))A#h#(U111(c, c), U111(c, c))
h#(l, l)g#(l, l, f(k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(k))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
A#h#(f(d), f(d))h#(f(e), f(e))g#(e, U111(e, e), f(k))
A#h#(d, d)h#(f(c), f(c))g#(e, U111(c, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, c, f(k))h#(f(c), f(c))g#(f(c), U111(c, c), f(l))
A#g#(c, c, f(k))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(f(e), f(e))g#(e, f(e), U111(k, k))
h#(f(c), f(c))g#(f(l), U111(c, c), f(k))h#(d, d)g#(d, d, f(l))
h#(f(c), f(c))g#(c, f(e), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), f(c), U111(k, k))h#(f(e), f(e))g#(f(e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(c, c), U111(c, c)) → g#(U111(e, c), U111(c, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(e, c), U111(c, c), f(l)) 
g#(U111(e, c), U111(l, c), f(k)) 
g#(U111(e, c), U111(c, c), f(d)) 
g#(c, U111(c, c), f(k)) 
g#(U111(e, c), U111(e, c), f(k)) 
g#(U111(e, c), U111(c, c), U111(k, k)) 
Thus, the rule h#(U111(c, c), U111(c, c)) → g#(U111(e, c), U111(c, c), f(k)) is replaced by the following rules:
h#(U111(c, c), U111(c, c)) → g#(U111(e, c), U111(c, c), U111(k, k))h#(U111(c, c), U111(c, c)) → g#(c, U111(c, c), f(k))
h#(U111(c, c), U111(c, c)) → g#(U111(e, c), U111(c, c), f(d))h#(U111(c, c), U111(c, c)) → g#(U111(e, c), U111(e, c), f(k))
h#(U111(c, c), U111(c, c)) → g#(U111(e, c), U111(l, c), f(k))h#(U111(c, c), U111(c, c)) → g#(U111(e, c), U111(c, c), f(l))

Problem 90: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(f(e), f(e))h#(f(c), f(c))g#(f(l), f(l), f(l))
h#(f(c), f(c))g#(U111(c, c), f(c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(c, c), U111(l, l))
h#(U111(e, c), U111(e, c))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), U111(l, l))h#(f(e), f(e))g#(e, f(e), f(l))
h#(f(c), f(c))g#(f(l), f(e), f(k))h#(U111(c, c), U111(c, c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(l, U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(e, l, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(d))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))h#(f(c), f(c))g#(f(l), U111(e, e), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(l))h#(f(c), f(c))g#(f(e), U111(c, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))h#(f(c), f(c))g#(f(e), U111(c, c), f(d))
h#(f(c), f(c))g#(f(c), U111(e, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), f(l))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(l, l))h#(f(e), f(e))g#(U111(e, e), f(e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), f(k))
A#h#(l, l)h#(f(e), f(e))g#(U111(e, e), f(e), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(U111(c, c), U111(c, c))g#(l, l, f(l))h#(U111(e, c), U111(e, c))g#(e, e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), f(d))h#(U111(e, c), U111(e, c))g#(e, l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), f(l))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(f(c), f(c))g#(f(c), U111(e, c), f(k))h#(f(c), f(c))g#(f(e), U111(c, c), f(k))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(l, k))h#(f(e), f(e))g#(f(e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(c), f(l))
h#(f(c), f(c))g#(U111(e, c), f(e), U111(l, l))h#(f(c), f(c))g#(f(e), f(l), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(k, k))h#(e, e)g#(e, e, f(l))
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(f(l), U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))
h#(f(e), f(e))g#(e, U111(e, e), f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))h#(f(l), f(l))g#(f(l), f(l), f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(l))h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))
g#(d, x, x)h#(e, e)h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(e), f(c), U111(k, k))h#(f(c), f(c))g#(e, U111(e, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))
h#(f(c), f(c))g#(e, f(l), f(l))h#(f(c), f(c))g#(l, f(e), f(l))
h#(U111(c, c), U111(c, c))g#(c, l, f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(l, l))h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))
h#(d, d)g#(d, d, U111(k, k))h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))h#(f(c), f(c))g#(f(e), f(c), f(d))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))
h#(f(c), f(c))g#(f(c), e, f(l))h#(f(c), f(c))g#(U111(e, e), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))h#(f(c), f(c))g#(f(c), U111(e, e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(l, l))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(c, c, f(k))
h#(f(c), f(c))g#(f(l), U111(c, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(l, l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(d))h#(U111(e, c), U111(e, c))g#(e, e, f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(f(e), f(e), f(l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))A#h#(U111(c, c), U111(c, c))
h#(l, l)g#(l, l, f(k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(k))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(f(l), U111(e, e), f(d))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
A#h#(f(d), f(d))h#(U111(c, c), U111(c, c))g#(e, l, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(c, c, f(l))
h#(f(e), f(e))g#(e, U111(e, e), f(k))A#h#(d, d)
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(U111(c, c), U111(c, c))g#(l, l, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(U111(e, c), U111(e, c))g#(c, c, f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(f(c), U111(c, c), f(l))A#g#(c, c, f(k))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(f(e), f(e))g#(e, f(e), U111(k, k))
h#(f(c), f(c))g#(f(l), U111(c, c), f(k))h#(d, d)g#(d, d, f(l))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
A#h#(U111(e, e), U111(e, e))h#(U111(c, c), U111(c, c))g#(c, c, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(e), f(e))g#(f(e), e, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(f(c), f(c))g#(f(c), f(c), U111(k, k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(e), f(e))g#(f(e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(e, c), U111(e, c)) → g#(e, e, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U111(l, l))
Thus, the rule h#(U111(e, c), U111(e, c)) → g#(e, e, f(l)) is deleted.

Problem 91: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(l, l)
h#(f(e), f(e))g#(U111(e, e), f(e), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), f(d))
h#(U111(e, c), U111(e, c))g#(e, e, f(k))h#(U111(c, c), U111(c, c))g#(l, l, f(l))
h#(U111(e, c), U111(e, c))g#(e, l, f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(e, c), f(l))
h#(f(c), f(c))g#(f(c), U111(e, c), f(k))h#(f(c), f(c))g#(f(e), U111(c, c), f(k))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(d, d))
h#(f(e), f(e))g#(f(e), U111(e, e), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), f(e), U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), f(l), f(k))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(f(l), U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(l), f(l))g#(f(l), f(l), f(k))h#(f(c), f(c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(e, U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(e, e), f(c), f(k))h#(f(c), f(c))g#(f(l), f(e), f(l))
h#(f(c), f(c))g#(l, f(e), f(l))h#(f(c), f(c))g#(e, f(l), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(c, l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(l, l))h#(d, d)g#(d, d, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(l))
h#(f(c), f(c))g#(e, U111(c, c), f(d))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(c), e, f(l))h#(f(c), f(c))g#(U111(e, e), U111(e, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(c, c, f(k))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), U111(c, c), U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(d))
h#(U111(e, c), U111(e, c))g#(e, e, f(d))h#(f(c), f(c))g#(f(l), e, f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(f(e), f(e), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(k))
h#(l, l)g#(l, l, f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(k))
h#(f(c), f(c))g#(c, U111(e, c), f(d))h#(f(c), f(c))g#(f(l), U111(e, e), f(d))
h#(U111(c, c), U111(c, c))g#(e, l, f(d))h#(f(c), f(c))g#(c, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))h#(f(e), f(e))g#(e, U111(e, e), f(k))
h#(U111(c, c), U111(c, c))g#(l, l, f(k))h#(f(c), f(c))g#(e, U111(c, c), f(l))
h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, c, f(k))h#(f(c), f(c))g#(f(c), U111(c, c), f(l))
h#(f(e), f(e))g#(e, f(e), U111(k, k))h#(f(c), f(c))g#(f(l), U111(c, c), f(k))
h#(d, d)g#(d, d, f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(k, k))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(e, f(c), f(l))
A#h#(U111(e, e), U111(e, e))h#(U111(c, c), U111(c, c))g#(c, c, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))h#(f(c), f(c))g#(f(l), f(e), U111(k, k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(d))
h#(f(e), f(e))g#(f(e), e, f(d))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(l), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(f(c), f(c))g#(f(c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(e), f(e))g#(f(e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(l), l, f(d))
h#(f(c), f(c))g#(f(l), e, f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(k, k))A#h#(f(c), f(c))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(k, k))A#h#(f(e), f(e))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(c, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))
h#(f(c), f(c))g#(f(l), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(f(e), U111(c, c), f(l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), f(l))h#(f(e), f(e))g#(U111(e, e), f(e), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(f(c), f(c))g#(c, U111(c, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(f(e), f(e))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(c), f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))
A#h#(U111(e, c), U111(e, c))h#(e, e)g#(e, e, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))h#(f(e), f(e))g#(e, U111(e, e), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))
h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))g#(d, x, x)h#(e, e)
h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), f(c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(f(c), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), f(c), f(d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))A#h#(U111(c, c), U111(c, c))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(f(c), f(c))g#(c, c, f(l))A#h#(d, d)
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
A#g#(c, c, f(k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(e), f(e)) → g#(U111(e, e), f(e), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, f(e), f(d)) 
g#(U111(e, e), f(e), U111(d, d)) 
g#(U111(e, e), U111(e, e), f(d)) 
Thus, the rule h#(f(e), f(e)) → g#(U111(e, e), f(e), f(d)) is replaced by the following rules:
h#(f(e), f(e)) → g#(U111(e, e), f(e), U111(d, d))h#(f(e), f(e)) → g#(e, f(e), f(d))
h#(f(e), f(e)) → g#(U111(e, e), U111(e, e), f(d))

Problem 92: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(l, l)
h#(f(c), f(c))g#(f(l), U111(c, c), f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, l))h#(f(l), f(l))g#(f(l), f(l), f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(l), U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(e, U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(l), f(e), f(l))
h#(f(c), f(c))g#(U111(e, e), f(c), f(k))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(d))
h#(f(c), f(c))g#(e, f(l), f(l))h#(f(c), f(c))g#(l, f(e), f(l))
h#(U111(c, c), U111(c, c))g#(c, l, f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(l, l))h#(d, d)g#(d, d, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(d, d))h#(f(c), f(c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(l))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(c), e, f(l))h#(f(c), f(c))g#(U111(e, e), U111(e, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(k))h#(U111(c, c), U111(c, c))g#(c, c, f(k))
h#(f(c), f(c))g#(f(l), U111(c, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(l, l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(d))h#(U111(e, c), U111(e, c))g#(e, e, f(d))
h#(f(c), f(c))g#(f(l), e, f(d))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(f(e), f(e), f(l))h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(k))
h#(l, l)g#(l, l, f(k))h#(f(c), f(c))g#(c, U111(e, c), f(d))
h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))h#(f(c), f(c))g#(e, l, f(l))
h#(f(c), f(c))g#(f(l), U111(e, e), f(d))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(e, l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(l))h#(f(c), f(c))g#(c, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))h#(f(e), f(e))g#(e, U111(e, e), f(k))
h#(U111(c, c), U111(c, c))g#(l, l, f(k))h#(f(c), f(c))g#(e, U111(c, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(d))h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(c, c, f(k))
h#(f(c), f(c))g#(f(c), U111(c, c), f(l))h#(f(e), f(e))g#(e, f(e), U111(k, k))
h#(f(c), f(c))g#(f(l), U111(c, c), f(k))h#(d, d)g#(d, d, f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(k, k))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(e, f(c), f(l))A#h#(U111(e, e), U111(e, e))
h#(U111(c, c), U111(c, c))g#(c, c, f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))
h#(f(c), f(c))g#(f(l), f(e), U111(k, k))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(d))h#(f(e), f(e))g#(f(e), e, f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(l), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(f(c), f(c))g#(f(c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(e), f(e))g#(f(e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(c), f(c))g#(f(c), c, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(e, U111(e, c), f(l))
h#(f(c), f(c))g#(f(l), l, f(d))h#(f(c), f(c))g#(f(l), e, f(k))
h#(f(c), f(c))g#(e, l, f(d))h#(f(c), f(c))g#(e, e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(d))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(k, k))A#h#(f(c), f(c))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(k, k))
A#h#(f(e), f(e))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(l, l))
h#(U111(e, c), U111(e, c))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), f(k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(l))
h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))
h#(f(c), f(c))g#(f(l), U111(e, e), f(l))h#(U111(e, c), U111(e, c))g#(e, e, U111(k, k))
h#(f(c), f(c))g#(f(c), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(f(e), U111(c, c), f(l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, c, f(k))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(e), f(l), f(l))h#(f(c), f(c))g#(c, U111(c, c), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(f(e), f(e))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(c), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))A#h#(U111(e, c), U111(e, c))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))h#(f(e), f(e))g#(e, U111(e, e), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))
h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))g#(d, x, x)h#(e, e)
h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), f(c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(f(c), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), f(c), f(d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))A#h#(U111(c, c), U111(c, c))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
A#h#(f(d), f(d))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(c, c, f(l))
A#h#(d, d)h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))A#g#(c, c, f(k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(l), U111(c, c), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(f(l), U111(e, c), f(d))g#(U111(l, l), U111(c, c), f(d))
g#(f(l), U111(c, c), U111(d, d))g#(f(l), U111(l, c), f(d))
Thus, the rule h#(f(c), f(c)) → g#(f(l), U111(c, c), f(d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(f(l), U111(c, c), U111(d, d))h#(f(c), f(c)) → g#(f(l), U111(e, c), f(d))

Problem 93: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(l, l)h#(f(c), f(c))g#(U111(e, e), c, f(d))
h#(f(c), f(c))g#(f(l), f(e), f(l))h#(f(c), f(c))g#(l, f(e), f(l))
h#(f(c), f(c))g#(e, f(l), f(l))h#(U111(c, c), U111(c, c))g#(c, l, f(d))
h#(f(c), f(c))g#(f(l), c, f(k))h#(U111(c, c), U111(c, c))g#(U111(c, c), U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(l, l))h#(d, d)g#(d, d, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(l))h#(f(c), f(c))g#(e, U111(c, c), f(d))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(c), e, f(l))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, e), U111(l, l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(c, c, f(k))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(k))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), U111(c, c), U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(d))
h#(U111(e, c), U111(e, c))g#(e, e, f(d))h#(f(c), f(c))g#(f(l), e, f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(f(e), f(e), f(l))
h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(k))h#(l, l)g#(l, l, f(k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(c, U111(e, c), f(d))
h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(l), U111(e, e), f(d))h#(f(c), f(c))g#(e, l, f(l))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(e, l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(l))h#(f(c), f(c))g#(c, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))
h#(f(e), f(e))g#(e, U111(e, e), f(k))h#(U111(c, c), U111(c, c))g#(l, l, f(k))
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), f(l))h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(c, c, f(k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(d))h#(f(c), f(c))g#(f(c), U111(c, c), f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(l, l))h#(f(e), f(e))g#(e, f(e), U111(k, k))
h#(f(c), f(c))g#(f(l), U111(c, c), f(k))h#(d, d)g#(d, d, f(l))
h#(f(c), f(c))g#(U111(e, e), f(e), f(d))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(k, k))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(e, f(c), f(l))
A#h#(U111(e, e), U111(e, e))h#(U111(c, c), U111(c, c))g#(c, c, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))h#(f(c), f(c))g#(f(l), f(e), U111(k, k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(d))h#(f(e), f(e))g#(f(e), e, f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(f(l), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(f(c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(e), f(e))g#(f(e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(c), f(c))g#(f(c), c, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), f(d))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(l), e, f(k))h#(f(c), f(c))g#(f(l), l, f(d))
h#(U111(c, c), U111(c, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(e, l, f(d))
h#(f(c), f(c))g#(e, e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(k, k))
A#h#(f(c), f(c))h#(f(c), f(c))g#(U111(e, e), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(d, d))
A#h#(f(e), f(e))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(l, l))
h#(U111(e, c), U111(e, c))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), f(k))
h#(f(c), f(c))g#(l, U111(e, c), f(l))h#(f(c), f(c))g#(f(l), U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), U111(l, k))h#(f(c), f(c))g#(e, f(c), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(l))h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))h#(f(c), f(c))g#(f(l), U111(e, e), f(l))
h#(U111(e, c), U111(e, c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(f(c), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(e), U111(c, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(e, c, f(k))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), f(l))h#(f(e), f(e))g#(U111(e, e), f(e), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))
h#(f(c), f(c))g#(f(e), f(l), f(l))h#(f(c), f(c))g#(c, U111(c, c), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(f(e), f(e))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(c), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))A#h#(U111(e, c), U111(e, c))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))h#(f(e), f(e))g#(e, U111(e, e), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))
h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))g#(d, x, x)h#(e, e)
h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), f(c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))
h#(f(c), f(c))g#(e, f(l), f(d))h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))
h#(f(c), f(c))g#(e, f(l), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(c), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), f(c), f(d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))h#(f(c), f(c))g#(f(c), f(c), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), f(k))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
A#h#(U111(c, c), U111(c, c))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
A#g#(c, c, f(k))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, e), c, f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(e, e), l, f(d)) 
g#(U111(e, e), c, U111(d, d)) 
g#(U111(e, e), e, f(d)) 
g#(e, c, f(d)) 
Thus, the rule h#(f(c), f(c)) → g#(U111(e, e), c, f(d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U111(e, e), l, f(d))h#(f(c), f(c)) → g#(U111(e, e), c, U111(d, d))
h#(f(c), f(c)) → g#(U111(e, e), e, f(d))h#(f(c), f(c)) → g#(e, c, f(d))

Problem 94: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(l, l)h#(U111(c, c), U111(c, c))g#(c, l, f(d))
h#(U111(c, c), U111(c, c))g#(c, e, f(k))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), U111(c, c), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(d))h#(U111(e, c), U111(e, c))g#(e, e, f(d))
h#(f(c), f(c))g#(f(l), e, f(d))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))h#(f(c), f(c))g#(f(e), f(e), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(k))
h#(l, l)g#(l, l, f(k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(c, U111(e, c), f(d))h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), f(d))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(e, l, f(l))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(c, c, f(l))h#(U111(e, c), U111(e, c))g#(c, l, f(d))
h#(f(c), f(c))g#(U111(e, c), e, f(l))h#(U111(c, c), U111(c, c))g#(e, l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(l))h#(f(c), f(c))g#(c, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))
h#(f(e), f(e))g#(e, U111(e, e), f(k))h#(f(c), f(c))g#(e, U111(c, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, l, f(k))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(c, c, f(k))
h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(d))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(c), U111(c, c), f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(l, l))
h#(f(e), f(e))g#(e, f(e), U111(k, k))h#(f(c), f(c))g#(f(l), U111(c, c), f(k))
h#(d, d)g#(d, d, f(l))h#(f(c), f(c))g#(f(l), l, f(k))
h#(f(c), f(c))g#(U111(e, e), f(e), f(d))h#(f(c), f(c))g#(c, f(e), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(k, k))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(f(l), c, f(l))h#(f(c), f(c))g#(c, e, f(l))
A#h#(U111(e, e), U111(e, e))h#(U111(c, c), U111(c, c))g#(c, c, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))h#(f(c), f(c))g#(f(l), f(e), U111(k, k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(d))h#(f(e), f(e))g#(f(e), e, f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(f(l), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(f(c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(e), f(e))g#(f(e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(c), f(c))g#(f(c), c, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(k, k))h#(f(c), f(c))g#(U111(e, e), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(e, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(c, l, f(l))h#(U111(c, c), U111(c, c))g#(e, U111(e, c), f(l))
h#(f(c), f(c))g#(f(l), e, f(k))h#(f(c), f(c))g#(f(l), l, f(d))
h#(U111(c, c), U111(c, c))g#(e, l, f(k))h#(f(c), f(c))g#(e, e, f(k))
h#(f(c), f(c))g#(e, l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, e, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(d, d))A#h#(f(c), f(c))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(d, d))h#(f(c), f(c))g#(U111(e, e), e, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, f(d))A#h#(f(e), f(e))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(l, l))h#(U111(e, c), U111(e, c))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(l, e, f(l))
h#(U111(c, c), U111(c, c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), f(k))h#(f(c), f(c))g#(l, U111(e, c), f(l))
h#(f(c), f(c))g#(f(l), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(c, c), U111(l, k))
h#(f(c), f(c))g#(e, f(c), f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(l))
h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))
h#(f(c), f(c))g#(f(l), U111(e, e), f(l))h#(U111(e, c), U111(e, c))g#(e, e, U111(k, k))
h#(f(c), f(c))g#(f(c), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(f(e), U111(c, c), f(l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, c, f(k))h#(U111(e, c), U111(e, c))g#(c, e, f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), f(l))h#(f(e), f(e))g#(U111(e, e), f(e), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))
h#(f(c), f(c))g#(f(e), f(l), f(l))h#(f(c), f(c))g#(c, U111(c, c), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(f(e), f(e))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(c), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))A#h#(U111(e, c), U111(e, c))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))h#(f(e), f(e))g#(e, U111(e, e), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, c, f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(f(e), e, f(l))g#(d, x, x)h#(e, e)
h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), f(c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))
h#(f(c), f(c))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(e, f(l), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(e, f(l), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(c), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), e, f(l))h#(f(c), f(c))g#(f(e), f(c), f(d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))h#(f(c), f(c))g#(f(c), f(c), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))
h#(f(c), f(c))g#(l, l, f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), f(k))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))A#h#(U111(c, c), U111(c, c))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
A#h#(f(d), f(d))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
A#g#(c, c, f(k))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(c, c), U111(c, c)) → g#(c, l, f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, l, f(d))g#(c, l, U111(d, d))
g#(e, l, f(d)) 
Thus, the rule h#(U111(c, c), U111(c, c)) → g#(c, l, f(d)) is replaced by the following rules:
h#(U111(c, c), U111(c, c)) → g#(e, l, f(d))h#(U111(c, c), U111(c, c)) → g#(l, l, f(d))

Problem 95: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(l, l)h#(f(c), f(c))g#(U111(e, e), f(e), f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(k))
h#(l, l)g#(l, l, f(k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(c, U111(e, c), f(d))h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, l, f(l))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(l), U111(e, e), f(d))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(c, c, f(l))h#(U111(e, c), U111(e, c))g#(c, l, f(d))
h#(U111(e, c), U111(e, c))g#(c, e, f(k))h#(f(c), f(c))g#(U111(e, c), e, f(l))
h#(U111(c, c), U111(c, c))g#(e, e, f(k))h#(U111(c, c), U111(c, c))g#(e, l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(l))h#(f(c), f(c))g#(c, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))
h#(f(e), f(e))g#(e, U111(e, e), f(k))h#(f(c), f(c))g#(e, U111(c, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, l, f(k))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(c, c, f(k))
h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(d))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(c), U111(c, c), f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(l, l))
h#(f(e), f(e))g#(e, f(e), U111(k, k))h#(f(c), f(c))g#(f(l), U111(c, c), f(k))
h#(d, d)g#(d, d, f(l))h#(f(c), f(c))g#(f(l), l, f(k))
h#(f(c), f(c))g#(U111(e, e), f(e), f(d))h#(f(c), f(c))g#(f(l), c, f(l))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(k, k))h#(f(c), f(c))g#(c, e, f(l))
A#h#(U111(e, e), U111(e, e))h#(U111(c, c), U111(c, c))g#(c, c, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))h#(f(c), f(c))g#(f(l), f(e), U111(k, k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(d))h#(f(e), f(e))g#(f(e), e, f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(f(l), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(f(c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(e), f(e))g#(f(e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(e), c, f(d))h#(U111(e, c), U111(e, c))g#(U111(e, c), e, U111(l, k))
h#(U111(e, c), U111(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(f(c), c, f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(l, l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, l, f(l))h#(f(c), f(c))g#(U111(e, e), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(e, e), l, f(l))h#(U111(c, c), U111(c, c))g#(e, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(c, l, f(l))
h#(U111(c, c), U111(c, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(f(l), e, f(k))
h#(f(c), f(c))g#(f(l), l, f(d))h#(U111(c, c), U111(c, c))g#(e, l, f(k))
h#(f(c), f(c))g#(e, e, f(k))h#(f(c), f(c))g#(e, l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(d))h#(U111(e, c), U111(e, c))g#(U111(e, c), e, f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, e, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(d, d))h#(f(e), f(e))g#(U111(e, e), e, f(d))
A#h#(f(c), f(c))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(d, d))
h#(U111(e, c), U111(e, c))g#(c, e, f(l))h#(f(c), f(c))g#(U111(e, e), e, f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), e, U111(l, l))h#(U111(e, c), U111(e, c))g#(e, c, f(d))
A#h#(f(e), f(e))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(l, l))
h#(U111(e, c), U111(e, c))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(l, e, f(l))h#(U111(c, c), U111(c, c))g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, l))h#(f(c), f(c))g#(U111(e, e), f(l), f(k))
h#(f(c), f(c))g#(l, U111(e, c), f(l))h#(f(c), f(c))g#(f(l), U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(l, k))
h#(f(c), f(c))g#(e, f(c), f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(l))
h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))
h#(f(c), f(c))g#(f(l), U111(e, e), f(l))h#(U111(e, c), U111(e, c))g#(e, e, U111(k, k))
h#(f(c), f(c))g#(f(c), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(f(e), U111(c, c), f(l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, c, f(k))
h#(U111(e, c), U111(e, c))g#(c, e, f(d))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, e), l, f(k))h#(f(e), f(e))g#(U111(e, e), f(e), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(l, l))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(l, l))
h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(f(c), f(c))g#(c, U111(c, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(f(e), f(e))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(c), f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))
A#h#(U111(e, c), U111(e, c))h#(e, e)g#(e, e, f(l))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))
h#(f(e), f(e))g#(e, U111(e, e), f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))
h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), e, f(l))g#(d, x, x)h#(e, e)
h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), f(c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))
h#(f(c), f(c))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(e, f(l), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(e, f(l), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(c), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), e, f(l))h#(f(c), f(c))g#(f(e), f(c), f(d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(l, l, f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), f(k))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, l, f(d))
h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
A#h#(U111(c, c), U111(c, c))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
A#g#(c, c, f(k))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, e), f(e), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, f(e), f(l)) 
g#(U111(e, e), f(e), U111(l, l)) 
g#(U111(e, e), U111(e, e), f(l)) 
Thus, the rule h#(f(c), f(c)) → g#(U111(e, e), f(e), f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c)) → g#(U111(e, e), U111(e, e), f(l))
h#(f(c), f(c)) → g#(e, f(e), f(l))

Problem 96: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(U111(e, e), c, U111(d, d))A#h#(l, l)
h#(f(c), f(c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))h#(f(e), f(e))g#(e, U111(e, e), f(k))
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(U111(c, c), U111(c, c))g#(l, l, f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, c), f(l))
h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, c, f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), f(d))
h#(f(c), f(c))g#(f(c), U111(c, c), f(l))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(l, l))h#(f(e), f(e))g#(e, f(e), U111(k, k))
h#(f(c), f(c))g#(f(l), U111(c, c), f(k))h#(d, d)g#(d, d, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(f(c), f(c))g#(f(l), l, f(k))
h#(f(c), f(c))g#(U111(e, e), f(e), f(d))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(f(l), c, f(l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(k, k))h#(f(c), f(c))g#(c, e, f(l))
A#h#(U111(e, e), U111(e, e))h#(U111(c, c), U111(c, c))g#(c, c, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))h#(f(c), f(c))g#(f(l), f(e), U111(k, k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(c), U111(d, d))
h#(f(e), f(e))g#(f(e), e, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(f(l), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(c), f(c))g#(f(c), f(c), U111(k, k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), c, f(l))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(e), f(e))g#(f(e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, c, f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), c, f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), e, U111(l, k))h#(U111(e, c), U111(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(f(c), c, f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(l, l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(k, k))h#(U111(e, c), U111(e, c))g#(c, l, f(l))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, e), f(e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), f(d))h#(f(c), f(c))g#(U111(e, e), l, f(l))
h#(U111(c, c), U111(c, c))g#(e, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(c, l, f(l))h#(U111(c, c), U111(c, c))g#(e, U111(e, c), f(l))
h#(f(c), f(c))g#(f(l), e, f(k))h#(f(c), f(c))g#(f(l), l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), e, f(l))h#(U111(c, c), U111(c, c))g#(e, l, f(k))
h#(f(c), f(c))g#(e, e, f(k))h#(f(c), f(c))g#(e, l, f(d))
h#(f(c), f(c))g#(U111(e, c), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), e, f(d))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, e, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(d, d))
h#(f(e), f(e))g#(U111(e, e), e, f(d))A#h#(f(c), f(c))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(d, d))
h#(U111(e, c), U111(e, c))g#(c, e, f(l))h#(f(c), f(c))g#(U111(e, e), e, f(d))
h#(f(c), f(c))g#(U111(c, c), e, f(d))h#(U111(e, c), U111(e, c))g#(U111(e, c), e, U111(l, l))
h#(U111(e, c), U111(e, c))g#(e, c, f(d))h#(f(c), f(c))g#(e, f(e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), l, f(l))h#(f(c), f(c))g#(e, U111(e, c), U111(l, k))
A#h#(f(e), f(e))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(l, l))
h#(f(c), f(c))g#(U111(c, c), l, f(k))h#(f(c), f(c))g#(U111(c, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(c, c, f(d))h#(f(c), f(c))g#(l, e, f(l))
h#(U111(c, c), U111(c, c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), f(k))h#(f(c), f(c))g#(l, U111(e, c), f(l))
h#(f(c), f(c))g#(f(l), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(c, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(l, k))h#(f(c), f(c))g#(e, f(c), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(l))h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))h#(f(c), f(c))g#(f(l), U111(e, e), f(l))
h#(U111(e, c), U111(e, c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(f(c), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(e), U111(c, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, c, f(k))h#(U111(e, c), U111(e, c))g#(c, e, f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, e), l, f(k))
h#(f(e), f(e))g#(U111(e, e), f(e), f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(l, l))
h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(f(c), f(c))g#(c, U111(c, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(f(e), f(e))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(l))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(c), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))A#h#(U111(e, c), U111(e, c))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))h#(f(e), f(e))g#(e, U111(e, e), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, c, f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(l))
h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), e, f(l))h#(f(c), f(c))g#(l, c, f(d))
g#(d, x, x)h#(e, e)h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), f(c), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(e, f(l), f(d))h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))
h#(f(c), f(c))g#(e, f(l), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(c), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), e, f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))h#(f(c), f(c))g#(f(e), f(c), f(d))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(f(c), f(c), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))
h#(f(c), f(c))g#(l, l, f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), f(k))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
A#h#(U111(c, c), U111(c, c))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))A#g#(c, c, f(k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, e), c, U111(d, d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(e, e), e, U111(d, d))g#(e, c, U111(d, d))
g#(U111(e, e), l, U111(d, d)) 
Thus, the rule h#(f(c), f(c)) → g#(U111(e, e), c, U111(d, d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U111(e, e), e, U111(d, d))h#(f(c), f(c)) → g#(U111(e, e), l, U111(d, d))

Problem 97: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(l, l)h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(l, l))
h#(f(e), f(e))g#(e, f(e), U111(k, k))h#(f(c), f(c))g#(f(l), U111(c, c), f(k))
h#(d, d)g#(d, d, f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(f(l), l, f(k))h#(f(c), f(c))g#(U111(e, e), f(e), f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(k, k))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(f(l), c, f(l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(c, e, f(l))A#h#(U111(e, e), U111(e, e))
h#(U111(c, c), U111(c, c))g#(c, c, f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))
h#(f(c), f(c))g#(f(l), f(e), U111(k, k))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(c), U111(d, d))h#(f(c), f(c))g#(f(l), U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), e, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(f(l), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(c), f(c))g#(f(c), f(c), U111(k, k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), c, f(l))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(e), f(e))g#(f(e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, c, f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), c, f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), e, U111(l, k))h#(U111(e, c), U111(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(f(c), c, f(k))h#(U111(e, c), U111(e, c))g#(e, c, f(l))
h#(f(e), f(e))g#(e, e, f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(l, l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(k, k))h#(U111(e, c), U111(e, c))g#(c, l, f(l))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, e), f(e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), f(d))h#(f(c), f(c))g#(U111(e, e), l, f(l))
h#(U111(c, c), U111(c, c))g#(e, l, U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(c, l, f(l))
h#(U111(c, c), U111(c, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(f(l), e, f(k))
h#(f(c), f(c))g#(f(l), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), e, f(l))
h#(U111(c, c), U111(c, c))g#(e, l, f(k))h#(f(c), f(c))g#(e, e, f(k))
h#(f(c), f(c))g#(e, l, f(d))h#(f(c), f(c))g#(e, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), e, f(d))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, e, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(d, d))
h#(f(e), f(e))g#(U111(e, e), e, f(d))A#h#(f(c), f(c))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(d, d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, e, f(l))
h#(f(c), f(c))g#(U111(e, e), e, f(d))h#(f(c), f(c))g#(U111(c, c), e, f(d))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), e, U111(l, l))
h#(U111(e, c), U111(e, c))g#(e, c, f(d))h#(f(c), f(c))g#(e, f(e), f(l))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), l, f(l))
h#(f(c), f(c))g#(e, U111(e, c), U111(l, k))A#h#(f(e), f(e))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(l, l))h#(f(c), f(c))g#(U111(c, c), l, f(k))
h#(f(c), f(c))g#(U111(c, c), c, f(d))h#(U111(e, c), U111(e, c))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(c, c, f(d))
h#(f(c), f(c))g#(l, e, f(l))h#(U111(c, c), U111(c, c))g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, l))h#(f(c), f(c))g#(U111(e, e), f(l), f(k))
h#(f(c), f(c))g#(l, U111(e, c), f(l))h#(f(c), f(c))g#(f(l), U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(l, k))
h#(f(c), f(c))g#(e, f(c), f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(l))
h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))
h#(f(c), f(c))g#(f(l), U111(e, e), f(l))h#(U111(e, c), U111(e, c))g#(e, e, U111(k, k))
h#(f(c), f(c))g#(f(c), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(f(e), U111(c, c), f(l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, c, f(k))
h#(U111(e, c), U111(e, c))g#(c, e, f(d))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, e), l, f(k))h#(f(e), f(e))g#(U111(e, e), f(e), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(l, l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(l, l))h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))
h#(f(c), f(c))g#(f(e), f(l), f(l))h#(f(c), f(c))g#(c, U111(c, c), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(f(e), f(e))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(l))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(c), f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(d))A#h#(U111(e, c), U111(e, c))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))h#(f(e), f(e))g#(e, U111(e, e), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, c, f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(l))
h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), e, f(l))h#(f(c), f(c))g#(l, c, f(d))
g#(d, x, x)h#(e, e)h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), f(c), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(e, f(l), f(d))h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))
h#(f(c), f(c))g#(e, f(l), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(c), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), e, f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))h#(f(c), f(c))g#(f(e), f(c), f(d))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))
h#(f(c), f(c))g#(l, l, f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), f(k))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
A#h#(U111(c, c), U111(c, c))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))A#g#(c, c, f(k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(e, e), U111(e, e)) → g#(U111(e, e), e, U111(l, l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U111(l, l))
Thus, the rule h#(U111(e, e), U111(e, e)) → g#(U111(e, e), e, U111(l, l)) is deleted.

Problem 98: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(U111(e, c), U111(e, c))g#(U111(e, c), e, U111(k, k))A#h#(l, l)
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(c, e, f(l))A#h#(U111(e, e), U111(e, e))
h#(U111(c, c), U111(c, c))g#(c, c, f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))
h#(f(c), f(c))g#(f(l), f(e), U111(k, k))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(c), U111(d, d))h#(f(c), f(c))g#(f(l), U111(c, c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(d))
h#(f(e), f(e))g#(f(e), e, f(d))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(f(l), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(c), f(c))g#(f(c), f(c), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), c, f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(k))h#(f(e), f(e))g#(f(e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, c, f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), c, f(d))
h#(U111(e, c), U111(e, c))g#(c, l, f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(c), c, f(k))h#(U111(e, c), U111(e, c))g#(e, c, f(l))
h#(f(e), f(e))g#(e, e, f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, l, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, e), f(e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), f(d))h#(f(c), f(c))g#(U111(e, e), l, f(l))
h#(U111(c, c), U111(c, c))g#(e, l, U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(c, l, f(l))
h#(U111(c, c), U111(c, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(f(l), e, f(k))
h#(f(c), f(c))g#(f(l), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), e, f(l))
h#(U111(c, c), U111(c, c))g#(e, l, f(k))h#(f(c), f(c))g#(e, e, f(k))
h#(f(c), f(c))g#(e, l, f(d))h#(f(c), f(c))g#(e, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), e, f(d))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, e, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(d, d))
h#(f(e), f(e))g#(U111(e, e), e, f(d))A#h#(f(c), f(c))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(d, d))h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(c, e, f(l))h#(f(c), f(c))g#(U111(e, e), e, f(d))
h#(f(c), f(c))g#(U111(c, c), e, f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), e, U111(l, l))h#(U111(e, c), U111(e, c))g#(e, c, f(d))
h#(f(c), f(c))g#(e, f(e), f(l))h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), l, f(l))h#(f(c), f(c))g#(e, U111(e, c), U111(l, k))
A#h#(f(e), f(e))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(l, l))
h#(f(c), f(c))g#(U111(c, c), l, f(k))h#(f(c), f(c))g#(U111(c, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(c, c, f(d))h#(U111(c, c), U111(c, c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(l, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), f(k))h#(f(c), f(c))g#(l, U111(e, c), f(l))
h#(f(c), f(c))g#(f(l), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(c, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(l, k))h#(f(c), f(c))g#(e, f(c), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(l))h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))h#(f(c), f(c))g#(f(l), U111(e, e), f(l))
h#(U111(e, c), U111(e, c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(f(c), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(e), U111(c, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, c, f(k))h#(U111(e, c), U111(e, c))g#(c, e, f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, e), l, f(k))
h#(f(e), f(e))g#(U111(e, e), f(e), f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(l, l))
h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(f(c), f(c))g#(c, U111(c, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(f(e), f(e))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(l))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(c), f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(d))A#h#(U111(e, c), U111(e, c))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))h#(f(e), f(e))g#(e, U111(e, e), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, c, f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(l))
h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), e, f(l))h#(f(c), f(c))g#(l, c, f(d))
g#(d, x, x)h#(e, e)h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), f(c), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(e, f(l), f(d))h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))
h#(f(c), f(c))g#(e, f(l), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(c), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(e, f(e), f(d))h#(f(c), f(c))g#(f(l), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), e, f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))h#(f(c), f(c))g#(f(e), f(c), f(d))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), f(k))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
A#h#(U111(c, c), U111(c, c))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))A#g#(c, c, f(k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(e, c), U111(e, c)) → g#(U111(e, c), e, U111(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(e, c), e, U111(l, k))g#(U111(e, c), e, U111(d, k))
g#(c, e, U111(k, k)) 
Thus, the rule h#(U111(e, c), U111(e, c)) → g#(U111(e, c), e, U111(k, k)) is replaced by the following rules:
h#(U111(e, c), U111(e, c)) → g#(c, e, U111(k, k))h#(U111(e, c), U111(e, c)) → g#(U111(e, c), e, U111(l, k))

Problem 99: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(l, l)A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(f(l), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(f(c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(k))h#(f(e), f(e))g#(f(e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, c, f(k))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), e, U111(l, k))h#(U111(e, c), U111(e, c))g#(c, l, f(k))
h#(U111(e, c), U111(e, c))g#(e, c, f(l))h#(f(c), f(c))g#(f(c), c, f(k))
h#(f(e), f(e))g#(e, e, f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, l, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, e), f(e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), f(d))h#(f(c), f(c))g#(U111(e, e), l, f(l))
h#(U111(c, c), U111(c, c))g#(e, l, U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(c, l, f(l))
h#(U111(c, c), U111(c, c))g#(e, U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), e, f(l))
h#(f(c), f(c))g#(f(l), l, f(d))h#(f(c), f(c))g#(f(l), e, f(k))
h#(f(c), f(c))g#(e, U111(c, c), U111(d, d))h#(f(c), f(c))g#(e, e, f(k))
h#(f(c), f(c))g#(e, l, f(d))h#(U111(c, c), U111(c, c))g#(e, l, f(k))
h#(f(c), f(c))g#(U111(e, c), e, f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), e, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(d))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, e, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(d, d))
h#(f(e), f(e))g#(U111(e, e), e, f(d))A#h#(f(c), f(c))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(d, d))h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(c, e, f(l))h#(f(c), f(c))g#(U111(e, e), e, f(d))
h#(f(c), f(c))g#(U111(c, c), e, f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), e, U111(l, l))h#(U111(e, c), U111(e, c))g#(e, c, f(d))
h#(f(c), f(c))g#(e, f(e), f(l))h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), l, f(l))h#(f(c), f(c))g#(e, U111(e, c), U111(l, k))
A#h#(f(e), f(e))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(l, l))
h#(f(c), f(c))g#(U111(c, c), l, f(k))h#(f(c), f(c))g#(U111(c, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(c, c, f(d))h#(U111(c, c), U111(c, c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(l, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), f(k))h#(f(c), f(c))g#(l, U111(e, c), f(l))
h#(f(c), f(c))g#(f(l), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(l, k))h#(f(c), f(c))g#(e, f(c), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(l))h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(l), U111(e, e), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), f(l))h#(f(c), f(c))g#(f(e), U111(c, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, c, f(k))h#(U111(e, c), U111(e, c))g#(c, e, f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, e), l, f(k))
h#(f(e), f(e))g#(U111(e, e), f(e), f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), c, U111(d, d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(l, l))h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))
h#(f(c), f(c))g#(f(e), f(l), f(l))h#(f(c), f(c))g#(c, U111(c, c), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(f(e), f(e))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(l))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(c), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(d))
A#h#(U111(e, c), U111(e, c))h#(e, e)g#(e, e, f(l))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))
h#(f(e), f(e))g#(e, U111(e, e), f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(l))h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(l, c, f(d))g#(d, x, x)h#(e, e)
h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), f(c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))
h#(f(c), f(c))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(e, f(l), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(e, f(l), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(c), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(e, f(e), f(d))
h#(f(c), f(c))g#(f(l), c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(c, c), e, f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))h#(f(c), f(c))g#(f(e), f(c), f(d))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(e, e), f(e), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))A#h#(U111(c, c), U111(c, c))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
A#h#(f(d), f(d))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
A#g#(c, c, f(k))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(l), U111(e, c), U111(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(l, l), U111(e, c), U111(k, k))g#(f(l), U111(e, c), U111(d, k))
g#(f(l), c, U111(k, k)) 
g#(f(l), U111(e, c), U111(l, k)) 
Thus, the rule h#(f(c), f(c)) → g#(f(l), U111(e, c), U111(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(f(l), U111(e, c), U111(l, k))h#(f(c), f(c)) → g#(f(l), c, U111(k, k))
h#(f(c), f(c)) → g#(U111(l, l), U111(e, c), U111(k, k))

Problem 100: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(l, l)A#h#(U111(e, e), U111(e, e))
h#(f(e), f(e))g#(f(e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, c, f(k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(e), c, f(d))h#(U111(e, c), U111(e, c))g#(U111(e, c), e, U111(l, k))
h#(U111(e, c), U111(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U111(c, c), f(c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(e, c, f(l))h#(f(c), f(c))g#(f(c), c, f(k))
h#(f(e), f(e))g#(e, e, f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, l, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, e), f(e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), f(d))h#(f(c), f(c))g#(U111(e, e), l, f(l))
h#(U111(c, c), U111(c, c))g#(e, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(c, l, f(l))
h#(U111(c, c), U111(c, c))g#(e, U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), e, f(l))
h#(f(c), f(c))g#(f(l), l, f(d))h#(f(c), f(c))g#(f(l), e, f(k))
h#(f(c), f(c))g#(e, U111(c, c), U111(d, d))h#(f(c), f(c))g#(e, e, f(k))
h#(f(c), f(c))g#(e, l, f(d))h#(U111(c, c), U111(c, c))g#(e, l, f(k))
h#(f(c), f(c))g#(U111(e, c), e, f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), e, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(d))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, e, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(d, d))
h#(f(e), f(e))g#(U111(e, e), e, f(d))A#h#(f(c), f(c))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), f(l), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, e, U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(c, e, f(l))h#(f(c), f(c))g#(U111(e, e), e, f(d))
h#(f(c), f(c))g#(U111(c, c), e, f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), e, U111(l, l))h#(U111(e, c), U111(e, c))g#(e, c, f(d))
h#(f(c), f(c))g#(e, f(e), f(l))h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), l, f(l))h#(f(c), f(c))g#(e, U111(e, c), U111(l, k))
A#h#(f(e), f(e))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(l, l))
h#(f(c), f(c))g#(U111(c, c), l, f(k))h#(f(c), f(c))g#(U111(e, c), c, f(l))
h#(f(c), f(c))g#(U111(c, c), l, f(l))h#(f(c), f(c))g#(U111(c, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(c, c, f(d))h#(U111(c, c), U111(c, c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(l, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), f(k))h#(f(c), f(c))g#(l, U111(e, c), f(l))
h#(f(c), f(c))g#(f(l), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(l), U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(c, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, l))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(l, k))
h#(f(c), f(c))g#(e, f(c), f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(l))h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(l), U111(e, e), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(f(e), U111(c, c), f(l))h#(f(c), f(c))g#(f(c), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(e, c, f(k))
h#(f(c), f(c))g#(U111(e, e), e, U111(k, k))h#(U111(e, c), U111(e, c))g#(c, e, f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, e), l, f(k))
h#(f(e), f(e))g#(U111(e, e), f(e), f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), c, U111(d, d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(l, l))h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))
h#(f(c), f(c))g#(f(e), f(l), f(l))h#(f(c), f(c))g#(c, U111(c, c), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(f(e), f(e))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(l))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(c), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(d))
A#h#(U111(e, c), U111(e, c))h#(e, e)g#(e, e, f(l))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))
h#(f(e), f(e))g#(e, U111(e, e), f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(l))h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(l, c, f(d))g#(d, x, x)h#(e, e)
h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), f(c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))
h#(f(c), f(c))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(e, f(l), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(e, f(l), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(c), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(e, f(e), f(d))
h#(f(c), f(c))g#(f(l), c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(c, c), e, f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))
h#(f(c), f(c))g#(f(e), f(c), f(d))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))h#(f(c), f(c))g#(f(c), f(c), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(c), f(e), U111(k, k))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(e, e), f(e), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))A#h#(U111(c, c), U111(c, c))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))A#g#(c, c, f(k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(e), f(e)) → g#(f(e), U111(e, e), U111(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(f(e), e, U111(k, k))g#(f(e), U111(e, e), U111(l, k))
g#(U111(e, e), U111(e, e), U111(k, k))g#(f(e), U111(e, e), U111(d, k))
Thus, the rule h#(f(e), f(e)) → g#(f(e), U111(e, e), U111(k, k)) is replaced by the following rules:
h#(f(e), f(e)) → g#(f(e), e, U111(k, k))h#(f(e), f(e)) → g#(U111(e, e), U111(e, e), U111(k, k))

Problem 101: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(l, l)h#(f(c), f(c))g#(f(c), l, f(k))
h#(f(c), f(c))g#(f(e), c, f(l))h#(f(c), f(c))g#(f(l), l, f(k))
h#(f(c), f(c))g#(f(l), c, f(l))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(f(e), c, f(k))h#(f(c), f(c))g#(U111(c, c), c, f(l))
h#(U111(e, c), U111(e, c))g#(e, c, f(l))h#(f(e), f(e))g#(e, e, f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(l, l))h#(U111(e, c), U111(e, c))g#(c, l, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(k, k))h#(f(c), f(c))g#(U111(e, e), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(e, e), l, f(l))h#(U111(c, c), U111(c, c))g#(e, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(c, l, f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), e, f(l))
h#(U111(c, c), U111(c, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(f(l), l, f(d))
h#(f(c), f(c))g#(f(l), e, f(k))h#(f(c), f(c))g#(e, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(e, e, f(k))h#(U111(c, c), U111(c, c))g#(e, l, f(k))
h#(f(c), f(c))g#(e, l, f(d))h#(f(c), f(c))g#(U111(e, c), e, f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), e, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, e, U111(k, k))h#(f(e), f(e))g#(U111(e, e), e, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(d, d))
h#(f(e), f(e))g#(U111(e, e), e, f(d))A#h#(f(c), f(c))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), f(l), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, e, U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(c, e, f(l))h#(f(c), f(c))g#(U111(e, e), e, f(d))
h#(f(c), f(c))g#(U111(c, c), e, f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), e, U111(l, l))h#(U111(e, c), U111(e, c))g#(e, c, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(l))h#(f(c), f(c))g#(e, f(e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), l, f(l))h#(f(c), f(c))g#(e, U111(e, c), U111(l, k))
A#h#(f(e), f(e))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(l, l))
h#(f(c), f(c))g#(U111(c, c), l, f(k))h#(f(e), f(e))g#(f(e), e, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, f(l))h#(f(c), f(c))g#(U111(c, c), l, f(l))
h#(f(c), f(c))g#(U111(c, c), c, f(d))h#(U111(e, c), U111(e, c))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(c, c, f(d))
h#(U111(c, c), U111(c, c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(l, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, l))h#(f(c), f(c))g#(U111(e, e), f(l), f(k))
h#(f(c), f(c))g#(l, U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, c), f(e), U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(l), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(e), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(l, k))h#(f(c), f(c))g#(e, f(c), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(l))
h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(l), U111(e, e), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(e, e, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(e), U111(c, c), f(l))
h#(f(c), f(c))g#(f(c), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, c, f(k))h#(f(c), f(c))g#(U111(e, e), e, U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, e, f(d))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, e), l, f(k))h#(f(e), f(e))g#(U111(e, e), f(e), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(l, l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), c, U111(d, d))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(l, l))
h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(f(c), f(c))g#(c, U111(c, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(f(e), f(e))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(l))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(c), f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(d))A#h#(U111(e, c), U111(e, c))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))h#(f(e), f(e))g#(e, U111(e, e), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, c, f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(l))
h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), e, f(l))h#(f(c), f(c))g#(l, c, f(d))
g#(d, x, x)h#(e, e)h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), f(c), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(e, f(l), f(d))h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))
h#(f(c), f(c))g#(e, f(l), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(c), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(e, f(e), f(d))h#(f(c), f(c))g#(f(l), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(c, c), e, f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))h#(f(c), f(c))g#(f(e), f(c), f(d))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(c), f(e), U111(k, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(l, l, f(l))
h#(U111(e, c), U111(e, c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(e, e), f(e), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, l, f(d))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
A#h#(U111(c, c), U111(c, c))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
A#g#(c, c, f(k))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(c), l, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(f(c), l, U111(k, k)) 
g#(f(e), l, f(k)) 
g#(U111(c, c), l, f(k)) 
g#(f(l), l, f(k)) 
g#(f(c), l, f(l)) 
g#(f(c), l, f(d)) 
Thus, the rule h#(f(c), f(c)) → g#(f(c), l, f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(f(c), l, U111(k, k))h#(f(c), f(c)) → g#(U111(c, c), l, f(k))
h#(f(c), f(c)) → g#(f(c), l, f(d))h#(f(c), f(c)) → g#(f(l), l, f(k))
h#(f(c), f(c)) → g#(f(e), l, f(k))h#(f(c), f(c)) → g#(f(c), l, f(l))

Problem 102: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(U111(e, e), l, U111(l, l))A#h#(l, l)
h#(f(c), f(c))g#(e, l, f(l))A#h#(U111(e, e), U111(e, e))
h#(U111(c, c), U111(c, c))g#(e, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(c, l, f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), e, f(l))h#(f(c), f(c))g#(f(l), e, f(k))
h#(f(c), f(c))g#(f(l), l, f(d))h#(U111(c, c), U111(c, c))g#(e, U111(e, c), f(l))
h#(f(c), f(c))g#(e, e, f(k))h#(U111(c, c), U111(c, c))g#(e, l, f(k))
h#(f(c), f(c))g#(e, l, f(d))h#(f(c), f(c))g#(e, U111(c, c), U111(d, d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), e, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(e, c), e, f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, e, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), e, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(d, d))h#(f(e), f(e))g#(U111(e, e), e, f(d))
A#h#(f(c), f(c))h#(f(c), f(c))g#(U111(e, e), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, e, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, e, f(l))
h#(f(c), f(c))g#(U111(e, e), e, f(d))h#(f(c), f(c))g#(U111(c, c), e, f(d))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), e, U111(l, l))
h#(U111(e, c), U111(e, c))g#(e, c, f(d))h#(f(c), f(c))g#(e, f(e), f(l))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), l, f(l))
h#(f(c), f(c))g#(e, U111(e, c), U111(l, k))A#h#(f(e), f(e))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(l, l))h#(f(c), f(c))g#(U111(c, c), l, f(k))
h#(f(e), f(e))g#(f(e), e, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, f(l))
h#(f(c), f(c))g#(U111(c, c), c, f(d))h#(f(c), f(c))g#(U111(c, c), l, f(l))
h#(U111(e, c), U111(e, c))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(c, c, f(d))h#(U111(c, c), U111(c, c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(l, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), f(k))h#(f(c), f(c))g#(l, U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), f(e), U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(l), U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(e), l, f(d))
h#(f(c), f(c))g#(f(e), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(l, k))h#(f(c), f(c))g#(e, f(c), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(l))
h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(l), U111(e, e), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(e, e, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(e), U111(c, c), f(l))
h#(f(c), f(c))g#(f(c), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, c, f(k))
h#(U111(e, c), U111(e, c))g#(c, e, f(d))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, e), l, f(k))h#(f(e), f(e))g#(U111(e, e), f(e), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(l, l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), c, U111(d, d))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(l, l))
h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(f(c), f(c))g#(c, U111(c, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(f(e), f(e))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(l))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(c), f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(d))A#h#(U111(e, c), U111(e, c))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))h#(f(e), f(e))g#(e, U111(e, e), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, c, f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(l))
h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), e, f(l))h#(f(c), f(c))g#(l, c, f(d))
g#(d, x, x)h#(e, e)h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), f(c), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(e, f(l), f(d))h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))
h#(U111(e, c), U111(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(e, f(l), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(c), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(e, f(e), f(d))
h#(f(c), f(c))g#(f(l), c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(c, c), e, f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))
h#(f(c), f(c))g#(f(e), f(c), f(d))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))h#(f(c), f(c))g#(f(c), f(c), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(c), f(e), U111(k, k))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(f(c), l, f(d))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(l, l, f(l))
h#(U111(e, c), U111(e, c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(e, e), f(e), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, l, f(d))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
A#h#(U111(c, c), U111(c, c))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(f(c), f(c))g#(f(e), l, U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))A#g#(c, c, f(k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, e), l, U111(l, l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, l, U111(l, l))
Thus, the rule h#(f(c), f(c)) → g#(U111(e, e), l, U111(l, l)) is deleted.

Problem 103: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(e, e, f(l))A#h#(l, l)
A#h#(U111(e, e), U111(e, e))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, e, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), e, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(d, d))h#(f(e), f(e))g#(U111(e, e), e, f(d))
A#h#(f(c), f(c))h#(f(c), f(c))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, e, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, e, f(l))
h#(f(c), f(c))g#(U111(e, e), e, f(d))h#(f(c), f(c))g#(U111(c, c), e, f(d))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), e, U111(l, l))
h#(U111(e, c), U111(e, c))g#(e, c, f(d))h#(f(c), f(c))g#(U111(c, c), U111(c, c), f(l))
h#(f(c), f(c))g#(e, f(e), f(l))h#(f(c), f(c))g#(c, e, f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), l, f(l))h#(f(c), f(c))g#(e, U111(e, c), U111(l, k))
A#h#(f(e), f(e))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(l, l))
h#(f(c), f(c))g#(l, e, U111(k, k))h#(f(c), f(c))g#(U111(c, c), l, f(k))
h#(f(e), f(e))g#(f(e), e, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, f(l))
h#(f(c), f(c))g#(U111(c, c), c, f(d))h#(f(c), f(c))g#(U111(c, c), l, f(l))
h#(U111(e, c), U111(e, c))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(c, c, f(d))h#(U111(c, c), U111(c, c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(l, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), f(k))h#(f(c), f(c))g#(l, U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), f(e), U111(k, k))h#(U111(c, c), U111(c, c))g#(e, l, f(l))
h#(f(c), f(c))g#(f(l), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(l), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(e), l, f(d))h#(f(c), f(c))g#(f(e), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(c, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, l))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(l, k))
h#(f(c), f(c))g#(e, f(c), f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(l))h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(l), U111(e, e), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(f(e), U111(c, c), f(l))h#(f(c), f(c))g#(f(c), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, c, f(k))h#(U111(e, c), U111(e, c))g#(c, e, f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, e), l, f(k))
h#(f(e), f(e))g#(U111(e, e), f(e), f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, U111(d, d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(l, l))h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))
h#(f(c), f(c))g#(f(e), f(l), f(l))h#(f(c), f(c))g#(c, U111(c, c), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(f(e), f(e))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(l))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(c), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(d))
A#h#(U111(e, c), U111(e, c))h#(e, e)g#(e, e, f(l))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))
h#(f(e), f(e))g#(e, U111(e, e), f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(l))h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(l, c, f(d))g#(d, x, x)h#(e, e)
h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))h#(f(c), f(c))g#(e, e, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), f(c), U111(k, k))h#(f(c), f(c))g#(f(l), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))
h#(f(c), f(c))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(e, f(l), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(U111(e, c), U111(e, c))g#(e, l, f(l))
h#(f(c), f(c))g#(l, e, f(k))h#(f(c), f(c))g#(e, f(l), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(c), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(e, f(e), f(d))
h#(f(c), f(c))g#(f(l), c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(c, c), e, f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))
h#(f(c), f(c))g#(f(e), f(c), f(d))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))h#(f(c), f(c))g#(f(c), f(c), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(c), f(e), U111(k, k))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(f(c), l, f(d))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))
h#(f(c), f(c))g#(l, l, f(l))h#(U111(e, c), U111(e, c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(e, e), f(e), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))A#h#(U111(c, c), U111(c, c))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))A#g#(c, c, f(k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, e, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U111(l, l))
Thus, the rule h#(f(c), f(c)) → g#(e, e, f(l)) is deleted.

Problem 104: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(l, l)h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))A#h#(f(c), f(c))
h#(U111(c, c), U111(c, c))g#(U111(c, c), l, f(l))h#(f(c), f(c))g#(e, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(c, e, f(d))A#h#(f(e), f(e))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(l, l))h#(f(c), f(c))g#(U111(c, c), l, f(k))
h#(f(c), f(c))g#(l, e, U111(k, k))h#(f(e), f(e))g#(f(e), e, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, f(l))h#(f(c), f(c))g#(U111(c, c), c, f(d))
h#(f(c), f(c))g#(U111(c, c), l, f(l))h#(U111(e, c), U111(e, c))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(c, c, f(d))
h#(f(c), f(c))g#(l, e, f(l))h#(U111(c, c), U111(c, c))g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, l))h#(f(c), f(c))g#(U111(e, e), f(l), f(k))
h#(U111(c, c), U111(c, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), f(e), U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(l), U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(e), l, f(d))
h#(f(c), f(c))g#(f(e), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(c, c), U111(l, k))
h#(f(c), f(c))g#(e, f(c), f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(l, k))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(l))
h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(l), U111(e, e), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(e, e, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), f(l))
h#(f(c), f(c))g#(f(e), U111(c, c), f(l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, c, f(k))
h#(U111(e, c), U111(e, c))g#(c, e, f(d))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, e), l, f(k))h#(f(e), f(e))g#(U111(e, e), f(e), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(l, l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), c, U111(d, d))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(l, l))
h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(f(c), f(c))g#(c, U111(c, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(f(e), f(e))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(l))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(c), f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(d))A#h#(U111(e, c), U111(e, c))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))h#(f(e), f(e))g#(e, U111(e, e), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, c, f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(l))
h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(l, c, f(d))
h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))g#(d, x, x)h#(e, e)
h#(f(c), f(c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), f(c), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(l), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(e, f(l), f(d))h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))
h#(U111(e, c), U111(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(e, f(l), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(c), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(e, f(e), f(d))h#(f(c), f(c))g#(f(l), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(c, c), e, f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))h#(f(c), f(c))g#(f(e), f(c), f(d))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(f(c), f(e), U111(k, k))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(f(c), l, f(d))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))
h#(f(c), f(c))g#(l, l, f(l))h#(U111(e, c), U111(e, c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(e, e), f(e), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))A#h#(U111(c, c), U111(c, c))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))A#g#(c, c, f(k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, c), U111(l, c), U111(l, l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(c, U111(l, c), U111(l, l))
Thus, the rule h#(f(c), f(c)) → g#(U111(e, c), U111(l, c), U111(l, l)) is deleted.

Problem 105: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(c, l, f(d))A#h#(l, l)
A#h#(U111(e, e), U111(e, e))A#h#(f(c), f(c))
h#(f(c), f(c))g#(c, e, f(d))A#h#(f(e), f(e))
h#(f(c), f(c))g#(c, l, f(l))h#(f(c), f(c))g#(l, e, f(l))
h#(U111(c, c), U111(c, c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), f(e), U111(k, k))
h#(f(c), f(c))g#(l, U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(e, l, f(l))
h#(f(c), f(c))g#(f(l), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(l), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(e), e, f(k))h#(f(c), f(c))g#(f(e), l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), U111(l, k))h#(f(c), f(c))g#(e, f(c), f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(l, k))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(l))h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(l), U111(e, e), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), f(l))h#(f(c), f(c))g#(f(e), U111(c, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, c, f(k))h#(U111(e, c), U111(e, c))g#(c, e, f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, e), l, f(k))
h#(f(e), f(e))g#(U111(e, e), f(e), f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), c, U111(d, d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(l, l))h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))
h#(f(c), f(c))g#(f(e), f(l), f(l))h#(f(c), f(c))g#(c, U111(c, c), f(k))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(e), f(e))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(l))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(c), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(d))
A#h#(U111(e, c), U111(e, c))h#(e, e)g#(e, e, f(l))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))
h#(f(e), f(e))g#(e, U111(e, e), f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(l))h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(f(e), e, f(l))h#(f(c), f(c))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(l, c, f(d))h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))
g#(d, x, x)h#(e, e)h#(f(c), f(c))g#(e, e, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), f(k))h#(f(c), f(c))g#(f(e), f(c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(l), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(e, f(l), f(d))
h#(U111(e, c), U111(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, l, f(d))
h#(f(c), f(c))g#(e, f(l), U111(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(c), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(e, f(e), f(d))
h#(f(c), f(c))g#(f(l), c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(c, c), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))h#(f(c), f(c))g#(f(e), f(c), f(d))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(f(c), f(e), U111(k, k))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(f(c), l, f(d))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))
h#(f(c), f(c))g#(l, l, f(l))h#(U111(e, c), U111(e, c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(e, e), f(e), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))A#h#(U111(c, c), U111(c, c))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
A#h#(f(d), f(d))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
A#g#(c, c, f(k))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(e), f(e))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(f(c), f(c))g#(e, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(c, l, f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, l, f(d))g#(c, l, U111(d, d))
g#(e, l, f(d)) 
Thus, the rule h#(f(c), f(c)) → g#(c, l, f(d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(l, l, f(d))h#(f(c), f(c)) → g#(e, l, f(d))

Problem 106: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(c, c), U111(l, k))A#h#(l, l)
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(k, k))A#h#(U111(e, e), U111(e, e))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(k, k))A#h#(f(c), f(c))
A#h#(f(e), f(e))h#(f(c), f(c))g#(U111(e, c), U111(c, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, l))h#(f(c), f(c))g#(e, f(c), f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(l, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(l))h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(l), U111(e, e), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), f(l))h#(f(c), f(c))g#(f(e), U111(c, c), f(l))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, c, f(k))
h#(U111(e, c), U111(e, c))g#(c, e, f(d))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, e), l, f(k))h#(f(e), f(e))g#(U111(e, e), f(e), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(c, c), c, U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(l, l))
h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(f(c), f(c))g#(c, U111(c, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(f(e), f(e))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(f(e), e, U111(k, k))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(l))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(c), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), c, f(d))A#h#(U111(e, c), U111(e, c))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))h#(f(e), f(e))g#(e, U111(e, e), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, c, f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(l))
h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(l, c, f(d))
h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))g#(d, x, x)h#(e, e)
h#(f(c), f(c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), f(c), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(l), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))
h#(f(c), f(c))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))
h#(f(c), f(c))g#(e, f(l), f(d))h#(U111(e, c), U111(e, c))g#(e, l, f(l))
h#(f(c), f(c))g#(l, f(e), U111(k, k))h#(f(c), f(c))g#(l, l, f(d))
h#(f(c), f(c))g#(e, f(l), U111(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(c), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(e, f(e), f(d))
h#(f(c), f(c))g#(f(l), c, U111(k, k))h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(c, c), e, f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, l))h#(f(c), f(c))g#(f(e), f(c), f(d))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(f(c), f(e), U111(k, k))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(f(c), l, f(d))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))
h#(f(c), f(c))g#(l, l, f(l))h#(U111(e, c), U111(e, c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(e, e), f(e), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
A#g#(c, c, f(k))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(f(e), f(e))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(l, l)g#(l, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(f(c), f(c))g#(e, c, f(d))h#(f(c), f(c))g#(e, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(c, c), U111(c, c)) → g#(U111(e, c), U111(c, c), U111(l, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(e, c), U111(e, c), U111(l, k))g#(c, U111(c, c), U111(l, k))
g#(U111(e, c), U111(l, c), U111(l, k)) 
Thus, the rule h#(U111(c, c), U111(c, c)) → g#(U111(e, c), U111(c, c), U111(l, k)) is replaced by the following rules:
h#(U111(c, c), U111(c, c)) → g#(U111(e, c), U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c)) → g#(U111(e, c), U111(l, c), U111(l, k))

Problem 107: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(l, l)h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(e, f(c), f(l))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(e, f(c), f(d))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(e, e, f(k))h#(f(c), f(c))g#(e, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(e, l, f(d))A#h#(f(c), f(c))
h#(f(c), f(c))g#(e, U111(e, c), U111(l, k))A#h#(f(e), f(e))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(l, k))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(l))h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(l))h#(f(c), f(c))g#(f(l), U111(e, e), f(l))
h#(U111(e, c), U111(e, c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(f(c), U111(e, c), f(l))
h#(f(c), f(c))g#(f(e), U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, e), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, c, f(k))
h#(U111(e, c), U111(e, c))g#(c, e, f(d))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), f(l))h#(f(c), f(c))g#(U111(e, e), l, f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(c, c), c, U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(l, l))
h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(f(c), f(c))g#(c, U111(c, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(f(e), f(e))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(l))h#(f(c), f(c))g#(f(e), e, U111(k, k))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(c), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), c, f(d))A#h#(U111(e, c), U111(e, c))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))h#(f(e), f(e))g#(e, U111(e, e), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, c, f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(l))
h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(l, c, f(d))
h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))g#(d, x, x)h#(e, e)
h#(f(c), f(c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), f(c), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(l), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(e, f(l), f(d))
h#(U111(e, c), U111(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, f(e), U111(k, k))
h#(f(c), f(c))g#(l, l, f(d))h#(f(c), f(c))g#(e, f(l), U111(k, k))
h#(f(c), f(c))g#(l, e, f(k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(c), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(d))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(c, c), e, f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, l))
h#(f(c), f(c))g#(f(e), f(c), f(d))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))h#(f(c), f(c))g#(f(c), f(c), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))
h#(f(c), f(c))g#(f(c), f(e), U111(k, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))
h#(f(c), f(c))g#(f(c), l, f(d))h#(f(c), f(c))g#(f(c), e, f(k))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))h#(f(c), f(c))g#(l, l, f(l))
h#(U111(e, c), U111(e, c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(e, e), f(e), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, l, f(d))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
A#h#(f(d), f(d))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))A#g#(c, c, f(k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, U111(c, c), U111(l, l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, U111(e, c), U111(l, l))g#(e, U111(l, c), U111(l, l))
Thus, the rule h#(f(c), f(c)) → g#(e, U111(c, c), U111(l, l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, U111(e, c), U111(l, l))

Problem 108: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, f(l))
A#h#(l, l)A#h#(U111(e, e), U111(e, e))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), U111(l, l))A#h#(f(c), f(c))
h#(U111(e, c), U111(e, c))g#(c, e, f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), e, U111(l, l))
A#h#(f(e), f(e))h#(f(c), f(c))g#(f(l), U111(e, e), f(l))
h#(U111(e, c), U111(e, c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(f(c), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(e), U111(c, c), f(l))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, c, f(k))
h#(U111(e, c), U111(e, c))g#(c, e, f(d))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), f(l))h#(f(c), f(c))g#(U111(e, e), l, f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(l, l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), c, U111(d, d))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(l, l))
h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(f(c), f(c))g#(c, U111(c, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(f(e), f(e))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(l))h#(f(c), f(c))g#(f(e), e, U111(k, k))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(c), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), c, f(d))h#(e, e)g#(e, e, f(l))
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))
h#(f(e), f(e))g#(e, U111(e, e), f(d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(d, d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(e, c, f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(l))
h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(l, c, f(d))
h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))g#(d, x, x)h#(e, e)
h#(f(c), f(c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), f(c), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(l), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(e, f(l), f(d))
h#(U111(e, c), U111(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, f(e), U111(k, k))
h#(f(c), f(c))g#(l, l, f(d))h#(f(c), f(c))g#(e, f(l), U111(k, k))
h#(f(c), f(c))g#(l, e, f(k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(c), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(d))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(c, c), e, f(l))
h#(f(c), f(c))g#(f(e), f(c), f(d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, l))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))
h#(f(c), f(c))g#(f(c), f(e), U111(k, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))
h#(f(c), f(c))g#(f(c), l, f(d))h#(f(c), f(c))g#(f(c), e, f(k))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))h#(f(c), f(c))g#(l, l, f(l))
h#(U111(e, c), U111(e, c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(e, e), f(e), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))A#g#(c, c, f(k))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(e, c), U111(e, c)) → g#(c, U111(e, c), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, U111(e, c), f(l)) 
g#(c, c, f(l)) 
g#(c, U111(e, c), U111(l, l)) 
g#(e, U111(e, c), f(l)) 
Thus, the rule h#(U111(e, c), U111(e, c)) → g#(c, U111(e, c), f(l)) is replaced by the following rules:
h#(U111(e, c), U111(e, c)) → g#(c, U111(e, c), U111(l, l))h#(U111(e, c), U111(e, c)) → g#(c, c, f(l))
h#(U111(e, c), U111(e, c)) → g#(e, U111(e, c), f(l))h#(U111(e, c), U111(e, c)) → g#(l, U111(e, c), f(l))

Problem 109: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(U111(e, e), c, f(l))A#h#(l, l)
h#(f(c), f(c))g#(f(e), l, f(l))h#(f(c), f(c))g#(f(l), c, f(l))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(U111(c, c), c, f(l))
A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, c, f(k))h#(f(c), f(c))g#(U111(e, e), e, U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, e, f(d))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), f(l))h#(f(c), f(c))g#(U111(e, e), l, f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(l, l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), c, U111(d, d))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(l, l))
h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(f(c), f(c))g#(c, U111(c, c), f(k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(e), f(e))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(l))h#(f(c), f(c))g#(f(e), e, U111(k, k))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(c), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), c, f(d))h#(e, e)g#(e, e, f(l))
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))
h#(f(e), f(e))g#(e, U111(e, e), f(d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, c, f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, e, f(l))h#(f(c), f(c))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), e, f(l))h#(f(c), f(c))g#(l, c, f(d))
h#(f(c), f(c))g#(f(l), U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))
g#(d, x, x)h#(e, e)h#(f(c), f(c))g#(e, e, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), f(k))h#(f(c), f(c))g#(f(e), f(c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(l), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))
h#(f(c), f(c))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))
h#(f(c), f(c))g#(e, f(l), f(d))h#(U111(e, c), U111(e, c))g#(e, l, f(l))
h#(f(c), f(c))g#(l, f(e), U111(k, k))h#(f(c), f(c))g#(l, l, f(d))
h#(f(c), f(c))g#(e, f(l), U111(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(c), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), c, U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(d))h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(c, c), e, f(l))h#(f(c), f(c))g#(f(e), f(c), f(d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, l))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))
h#(f(c), f(c))g#(f(c), f(e), U111(k, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))
h#(f(c), f(c))g#(f(c), l, f(d))h#(f(c), f(c))g#(f(c), e, f(k))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))h#(f(c), f(c))g#(l, l, f(l))
h#(U111(e, c), U111(e, c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(e, e), f(e), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))A#g#(c, c, f(k))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(e, e, f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, e), c, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(e, e), l, f(l)) 
g#(U111(e, e), e, f(l)) 
g#(U111(e, e), c, U111(l, l)) 
g#(e, c, f(l)) 
Thus, the rule h#(f(c), f(c)) → g#(U111(e, e), c, f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U111(e, e), e, f(l))h#(f(c), f(c)) → g#(U111(e, e), l, f(l))
h#(f(c), f(c)) → g#(U111(e, e), c, U111(l, l))h#(f(c), f(c)) → g#(e, c, f(l))

Problem 110: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(U111(c, c), U111(c, c))g#(l, e, f(l))A#h#(l, l)
A#h#(U111(e, e), U111(e, e))h#(U111(c, c), U111(c, c))g#(c, l, f(l))
h#(U111(c, c), U111(c, c))g#(e, U111(e, c), f(l))A#h#(f(c), f(c))
A#h#(f(e), f(e))h#(f(e), f(e))g#(U111(e, e), f(e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, f(k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, U111(d, d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(l, l))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(f(e), f(e))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(l))h#(f(c), f(c))g#(f(e), e, U111(k, k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(c), f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), c, f(d))
h#(e, e)g#(e, e, f(l))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))h#(f(e), f(e))g#(e, U111(e, e), f(d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(l))h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(l, c, f(d))h#(f(c), f(c))g#(f(l), U111(e, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))g#(d, x, x)h#(e, e)
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(l))h#(f(c), f(c))g#(e, e, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), f(k))h#(f(c), f(c))g#(f(e), f(c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(l), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))
h#(f(c), f(c))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))
h#(f(c), f(c))g#(e, f(l), f(d))h#(U111(e, c), U111(e, c))g#(e, l, f(l))
h#(f(c), f(c))g#(l, f(e), U111(k, k))h#(f(c), f(c))g#(l, l, f(d))
h#(f(c), f(c))g#(e, f(l), U111(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(c), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), c, U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(d))h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(c, c), e, f(l))h#(f(c), f(c))g#(f(e), f(c), f(d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, l))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))
h#(f(c), f(c))g#(f(c), f(e), U111(k, k))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(f(c), f(c))g#(f(c), l, f(d))h#(f(c), f(c))g#(f(c), e, f(k))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))h#(f(c), f(c))g#(l, l, f(l))
h#(U111(e, c), U111(e, c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(e, e), f(e), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))A#g#(c, c, f(k))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(e, e, f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(c, c), U111(c, c)) → g#(l, e, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(l, e, U111(l, l))
Thus, the rule h#(U111(c, c), U111(c, c)) → g#(l, e, f(l)) is deleted.

Problem 111: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(e, c, f(k))A#h#(l, l)
h#(f(c), f(c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(e, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(c, U111(e, c), f(d))
h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(k, k))h#(f(c), f(c))g#(e, U111(c, c), f(l))
h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))A#h#(f(c), f(c))
A#h#(f(e), f(e))h#(f(c), f(c))g#(l, U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(f(e), f(e))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(f(e), e, U111(k, k))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(l))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), f(c), f(l))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), c, f(d))
h#(e, e)g#(e, e, f(l))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))
h#(f(e), f(e))g#(e, U111(e, e), f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(l))h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(l, c, f(d))h#(f(c), f(c))g#(f(l), U111(e, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))g#(d, x, x)h#(e, e)
h#(f(c), f(c))g#(e, e, U111(k, k))h#(f(e), f(e))g#(U111(e, e), f(e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(l))h#(f(c), f(c))g#(l, U111(c, c), f(k))
h#(f(c), f(c))g#(c, U111(e, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), f(c), U111(k, k))h#(f(c), f(c))g#(f(l), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))
h#(f(c), f(c))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))
h#(f(c), f(c))g#(e, f(l), f(d))h#(U111(e, c), U111(e, c))g#(e, l, f(l))
h#(f(c), f(c))g#(l, f(e), U111(k, k))h#(f(c), f(c))g#(l, l, f(d))
h#(f(c), f(c))g#(e, f(l), U111(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(c), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), c, U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(d))h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(c, c), e, f(l))h#(f(c), f(c))g#(f(e), f(c), f(d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, l))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))
h#(f(c), f(c))g#(f(c), f(e), U111(k, k))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(f(c), l, f(d))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(e, e), f(e), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
A#g#(c, c, f(k))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, c, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, l, f(k)) 
g#(e, c, f(l)) 
g#(e, c, U111(k, k)) 
g#(e, c, f(d)) 
g#(e, e, f(k)) 
Thus, the rule h#(f(c), f(c)) → g#(e, c, f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, l, f(k))h#(f(c), f(c)) → g#(e, c, f(d))
h#(f(c), f(c)) → g#(e, c, U111(k, k))h#(f(c), f(c)) → g#(e, e, f(k))
h#(f(c), f(c)) → g#(e, c, f(l))

Problem 112: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(d))A#h#(l, l)
h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(e, c), f(e), f(d))h#(f(c), f(c))g#(U111(e, e), f(e), f(d))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(c), U111(e, e), f(l))h#(f(c), f(c))g#(f(l), e, f(k))
A#h#(f(c), f(c))h#(f(c), f(c))g#(U111(e, e), e, f(d))
A#h#(f(e), f(e))h#(f(c), f(c))g#(f(l), f(e), f(d))
h#(f(c), f(c))g#(f(l), f(e), f(k))h#(f(c), f(c))g#(f(l), U111(e, e), f(l))
h#(f(c), f(c))g#(f(c), U111(e, e), f(d))h#(f(c), f(c))g#(f(c), e, U111(k, k))
h#(f(e), f(e))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(c), f(c))g#(f(e), e, U111(k, k))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(l))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), f(c), f(l))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), c, f(d))
A#h#(U111(e, c), U111(e, c))h#(e, e)g#(e, e, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(l))
h#(f(e), f(e))g#(e, U111(e, e), f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(l))h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(l, c, f(d))h#(f(c), f(c))g#(f(l), U111(e, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))g#(d, x, x)h#(e, e)
h#(f(c), f(c))g#(e, e, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), U111(d, d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(l, U111(c, c), f(k))h#(f(c), f(c))g#(c, U111(e, c), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), f(c), U111(k, k))
h#(f(c), f(c))g#(f(l), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(e, f(l), f(d))
h#(U111(e, c), U111(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, f(e), U111(k, k))
h#(f(c), f(c))g#(l, l, f(d))h#(f(c), f(c))g#(e, f(l), U111(k, k))
h#(f(c), f(c))g#(l, e, f(k))h#(f(c), f(c))g#(U111(c, c), f(e), f(k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(c), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), c, U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(d))h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(c), f(e), f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(c, c), e, f(l))
h#(f(c), f(c))g#(f(e), f(c), f(d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, l))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))h#(f(c), f(c))g#(f(c), f(c), f(d))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(c), f(e), U111(k, k))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(f(c), e, f(k))
h#(f(c), f(c))g#(f(c), l, f(d))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))
h#(f(c), f(c))g#(l, l, f(l))h#(U111(e, c), U111(e, c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(e, e), f(e), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, l, f(d))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
A#h#(f(d), f(d))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))A#g#(c, c, f(k))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(c, c), U111(e, e), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(c, c), e, f(d))g#(U111(l, c), U111(e, e), f(d))
g#(U111(e, c), U111(e, e), f(d)) 
g#(U111(c, c), U111(e, e), U111(d, d)) 
Thus, the rule h#(f(c), f(c)) → g#(U111(c, c), U111(e, e), f(d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U111(c, c), e, f(d))h#(f(c), f(c)) → g#(U111(e, c), U111(e, e), f(d))
h#(f(c), f(c)) → g#(U111(c, c), U111(e, e), U111(d, d))

Problem 113: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(l, l)h#(f(c), f(c))g#(c, e, f(l))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(e, e, f(k))A#h#(f(c), f(c))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), e, f(d))
h#(f(c), f(c))g#(U111(c, c), e, f(d))h#(f(c), f(c))g#(c, e, f(d))
A#h#(f(e), f(e))h#(f(c), f(c))g#(l, e, U111(k, k))
h#(f(c), f(c))g#(f(l), f(e), f(d))h#(f(c), f(c))g#(f(l), f(e), f(k))
h#(f(c), f(c))g#(f(l), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(f(c), U111(e, e), f(d))h#(f(c), f(c))g#(f(c), e, U111(k, k))
h#(f(e), f(e))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(c), f(c))g#(f(e), e, U111(k, k))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(l))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(c), f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), c, f(d))
A#h#(U111(e, c), U111(e, c))h#(e, e)g#(e, e, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(l))
h#(f(e), f(e))g#(e, U111(e, e), f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(l))h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(l, c, f(d))h#(f(c), f(c))g#(f(l), U111(e, c), U111(l, l))
g#(d, x, x)h#(e, e)h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))
h#(f(c), f(c))g#(f(e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(e, e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(l))h#(f(e), f(e))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(l, U111(c, c), f(k))h#(f(c), f(c))g#(c, U111(e, c), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), f(c), U111(k, k))
h#(f(c), f(c))g#(f(l), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(k))h#(f(c), f(c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(l, f(e), f(d))h#(f(c), f(c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(e, f(l), f(d))
h#(U111(e, c), U111(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, f(e), U111(k, k))
h#(f(c), f(c))g#(l, l, f(d))h#(f(c), f(c))g#(e, f(l), U111(k, k))
h#(f(c), f(c))g#(l, e, f(k))h#(f(c), f(c))g#(U111(c, c), f(e), f(k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(c), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), c, U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(d))h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(c), f(e), f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(c, c), e, f(l))
h#(f(c), f(c))g#(f(e), f(c), f(d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, l))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))h#(f(c), f(c))g#(f(c), f(c), f(d))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(c), f(e), U111(k, k))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(f(c), e, f(k))
h#(f(c), f(c))g#(f(c), l, f(d))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(e, e), f(e), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
A#g#(c, c, f(k))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(c, e, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, e, f(l))g#(c, e, U111(l, l))
g#(l, e, f(l)) 
Thus, the rule h#(f(c), f(c)) → g#(c, e, f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, e, f(l))h#(f(c), f(c)) → g#(l, e, f(l))

Problem 114: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(f(l), U111(e, e), U111(d, d))A#h#(l, l)
A#h#(U111(e, e), U111(e, e))A#h#(f(c), f(c))
h#(f(c), f(c))g#(U111(e, e), e, f(d))h#(f(c), f(c))g#(U111(c, c), e, f(d))
h#(f(c), f(c))g#(c, e, f(d))A#h#(f(e), f(e))
h#(f(c), f(c))g#(f(c), e, U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))
h#(f(e), f(e))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(c), f(c))g#(f(e), e, U111(k, k))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(l))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), f(c), f(l))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), c, f(d))
h#(e, e)g#(e, e, f(l))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))h#(f(e), f(e))g#(e, U111(e, e), f(d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(l))h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(l, c, f(d))h#(f(c), f(c))g#(f(l), U111(e, c), U111(l, l))
g#(d, x, x)h#(e, e)h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))
h#(f(c), f(c))g#(f(e), U111(e, e), U111(d, d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(l))h#(f(c), f(c))g#(e, e, U111(k, k))
h#(f(c), f(c))g#(l, U111(c, c), f(k))h#(f(c), f(c))g#(c, U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), f(c), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(l), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(k))h#(f(c), f(c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(l, f(e), f(d))h#(f(c), f(c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(e, f(l), f(d))
h#(U111(e, c), U111(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, f(e), U111(k, k))
h#(f(c), f(c))g#(l, l, f(d))h#(f(c), f(c))g#(e, f(l), U111(k, k))
h#(f(c), f(c))g#(l, e, f(k))h#(f(c), f(c))g#(U111(c, c), f(e), f(k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(c), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), c, U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(d))h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(c), f(e), f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(c, c), e, f(l))
h#(f(c), f(c))g#(f(e), f(c), f(d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, l))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))h#(f(c), f(c))g#(f(c), f(c), f(d))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(f(c), f(e), U111(k, k))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(f(c), e, f(k))
h#(f(c), f(c))g#(f(c), l, f(d))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(e, e), f(e), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
A#g#(c, c, f(k))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(l), U111(e, e), U111(d, d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(l, l), U111(e, e), U111(d, d))g#(f(l), e, U111(d, d))
Thus, the rule h#(f(c), f(c)) → g#(f(l), U111(e, e), U111(d, d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U111(l, l), U111(e, e), U111(d, d))

Problem 115: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(U111(e, c), l, U111(k, k))A#h#(l, l)
A#h#(U111(e, e), U111(e, e))A#h#(f(c), f(c))
A#h#(f(e), f(e))h#(f(c), f(c))g#(U111(e, e), f(c), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), c, f(d))A#h#(U111(e, c), U111(e, c))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))
h#(f(e), f(e))g#(e, U111(e, e), f(d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, c, f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, e, f(l))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(l, c, f(d))
h#(f(c), f(c))g#(f(l), U111(e, c), U111(l, l))g#(d, x, x)h#(e, e)
h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))h#(f(c), f(c))g#(f(e), U111(e, e), U111(d, d))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(l, l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(l))
h#(f(c), f(c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(l, U111(c, c), f(k))
h#(f(c), f(c))g#(c, U111(e, c), f(k))h#(f(c), f(c))g#(f(e), f(c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(l), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))
h#(f(c), f(c))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(k))
h#(f(c), f(c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(l, f(e), f(d))
h#(f(c), f(c))g#(e, f(l), f(d))h#(f(c), f(c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(U111(e, c), U111(e, c))g#(e, l, f(l))
h#(f(c), f(c))g#(l, f(e), U111(k, k))h#(f(c), f(c))g#(l, l, f(d))
h#(f(c), f(c))g#(e, f(l), U111(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(U111(c, c), f(e), f(k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(c), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(d))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(c), f(e), f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(c, c), e, f(l))h#(f(c), f(c))g#(f(e), f(c), f(d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, l))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))
h#(f(c), f(c))g#(f(c), f(e), U111(k, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))
h#(f(c), f(c))g#(f(c), l, f(d))h#(f(c), f(c))g#(f(c), e, f(k))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))h#(f(c), f(c))g#(l, l, f(l))
h#(U111(e, c), U111(e, c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), f(e), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, l, f(d))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
A#h#(f(d), f(d))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
A#g#(c, c, f(k))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, c), l, U111(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(c, l, U111(k, k))g#(U111(e, c), l, U111(d, k))
g#(U111(e, c), l, U111(l, k)) 
Thus, the rule h#(f(c), f(c)) → g#(U111(e, c), l, U111(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U111(e, c), l, U111(l, k))h#(f(c), f(c)) → g#(c, l, U111(k, k))

Problem 116: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(l, l)h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(c), f(c))g#(e, U111(e, c), U111(l, l))A#h#(U111(e, e), U111(e, e))
A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U111(e, c), c, f(l))h#(f(c), f(c))g#(l, U111(e, c), f(l))
A#h#(U111(e, c), U111(e, c))h#(f(e), f(e))g#(e, U111(e, e), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(d, d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), U111(e, c), f(d))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, e, f(l))h#(f(c), f(c))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), e, f(l))h#(f(c), f(c))g#(l, c, f(d))
h#(f(c), f(c))g#(f(l), U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))
g#(d, x, x)h#(e, e)h#(f(c), f(c))g#(e, e, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(f(e), U111(e, e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(l))h#(f(c), f(c))g#(l, U111(c, c), f(k))
h#(f(c), f(c))g#(c, U111(e, c), f(k))h#(f(c), f(c))g#(f(e), f(c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(l), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))
h#(f(c), f(c))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(k))
h#(f(c), f(c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(e, f(l), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(l, f(e), f(d))
h#(f(c), f(c))g#(l, e, f(d))h#(U111(e, c), U111(e, c))g#(e, l, f(l))
h#(f(c), f(c))g#(l, f(e), U111(k, k))h#(f(c), f(c))g#(e, f(l), U111(k, k))
h#(f(c), f(c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(c, c), f(e), f(k))
h#(f(c), f(c))g#(l, e, f(k))h#(f(c), f(c))g#(f(c), c, f(d))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(d))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(c), f(e), f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(c, c), e, f(l))h#(f(c), f(c))g#(f(e), f(c), f(d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, l))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))
h#(f(c), f(c))g#(f(c), f(e), U111(k, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))
h#(f(c), f(c))g#(f(c), l, f(d))h#(f(c), f(c))g#(f(c), e, f(k))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, l, f(l))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(e), f(k))h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(U111(e, c), U111(e, c))g#(l, l, f(d))
h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
A#h#(f(d), f(d))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
A#g#(c, c, f(k))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, c), U111(e, c), U111(l, l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(e, c), c, U111(l, l)) 
g#(c, U111(e, c), U111(l, l)) 
Thus, the rule h#(f(c), f(c)) → g#(U111(e, c), U111(e, c), U111(l, l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(c, U111(e, c), U111(l, l))h#(f(c), f(c)) → g#(U111(e, c), c, U111(l, l))

Problem 117: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(l, l)h#(U111(c, c), U111(c, c))g#(e, e, f(d))
h#(U111(e, c), U111(e, c))g#(c, U111(e, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, U111(e, c), f(d))
h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(e, l, f(d))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(c, c, U111(k, k))A#h#(f(c), f(c))
h#(f(c), f(c))g#(e, U111(e, c), U111(l, k))A#h#(f(e), f(e))
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(l, c, f(d))
h#(f(c), f(c))g#(f(l), U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(c, e, U111(k, k))
g#(d, x, x)h#(e, e)h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), U111(d, d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(l, U111(c, c), f(k))
h#(f(c), f(c))g#(c, U111(e, c), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), f(c), U111(k, k))h#(f(c), f(c))g#(f(l), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(k))h#(f(c), f(c))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(l, e, f(d))
h#(f(c), f(c))g#(l, f(e), f(d))h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))
h#(f(c), f(c))g#(e, f(l), f(d))h#(U111(e, c), U111(e, c))g#(e, l, f(l))
h#(f(c), f(c))g#(l, f(e), U111(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(U111(c, c), f(e), f(k))h#(f(c), f(c))g#(e, f(l), U111(k, k))
h#(f(c), f(c))g#(l, l, f(d))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(c), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(e, f(e), f(d))h#(f(c), f(c))g#(f(l), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), e, U111(d, d))h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(c), f(e), f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), e, f(l))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))
h#(f(c), f(c))g#(f(e), f(c), f(d))h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))h#(f(c), f(c))g#(f(c), f(c), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(c), f(e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(f(c), e, f(k))
h#(f(c), f(c))g#(f(c), l, f(d))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(e), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(f(c), f(c))g#(c, c, f(l))A#h#(d, d)
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(f(e), l, U111(k, k))
A#g#(c, c, f(k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(e), f(e))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(l, l)g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(c, c), U111(c, c)) → g#(e, e, f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U111(d, d))
Thus, the rule h#(U111(c, c), U111(c, c)) → g#(e, e, f(d)) is deleted.

Problem 118: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(c, c, f(k))h#(f(c), f(c))g#(e, U111(e, c), f(k))
A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(c, U111(e, c), f(l))A#h#(l, l)
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(f(e), f(c), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(l), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(k))
h#(f(c), f(c))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(l, f(e), f(d))h#(f(c), f(c))g#(e, f(l), f(d))
h#(f(c), f(c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))
h#(U111(e, c), U111(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(U111(c, c), f(e), f(k))
h#(f(c), f(c))g#(l, l, f(d))h#(f(c), f(c))g#(e, f(l), U111(k, k))
h#(f(c), f(c))g#(l, f(e), U111(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(f(c), c, f(d))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))
h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(e, f(e), f(d))
h#(f(c), f(c))g#(f(l), c, U111(k, k))h#(f(c), f(c))g#(l, U111(c, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), e, U111(d, d))h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(c), f(e), f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), e, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, l))h#(f(c), f(c))g#(f(e), f(c), f(d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(f(c), f(e), U111(k, k))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))h#(f(c), f(c))g#(f(c), l, f(d))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))
h#(f(c), f(c))g#(l, l, f(l))h#(U111(e, c), U111(e, c))g#(e, e, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, l, f(l))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(e), f(k))h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(f(c), f(c))g#(c, U111(e, c), f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(f(c), f(c))g#(l, U111(e, c), f(k))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
A#g#(c, c, f(k))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(f(c), f(c))g#(e, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(c, c, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(c, e, f(k)) 
g#(l, c, f(k)) 
g#(e, c, f(k)) 
g#(c, c, f(l)) 
g#(c, l, f(k)) 
g#(c, c, f(d)) 
g#(c, c, U111(k, k)) 
Thus, the rule h#(f(c), f(c)) → g#(c, c, f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(l, c, f(k))h#(f(c), f(c)) → g#(c, e, f(k))
h#(f(c), f(c)) → g#(e, c, f(k))h#(f(c), f(c)) → g#(c, c, f(l))
h#(f(c), f(c)) → g#(c, c, U111(k, k))h#(f(c), f(c)) → g#(c, c, f(d))
h#(f(c), f(c)) → g#(c, l, f(k))

Problem 119: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(e, f(e), U111(k, k))A#h#(l, l)
h#(f(c), f(c))g#(e, U111(e, c), U111(l, l))h#(f(c), f(c))g#(l, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(e, e, f(d))
h#(f(c), f(c))g#(c, U111(e, c), f(d))h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))h#(f(c), f(c))g#(e, l, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(f(c), f(c))g#(c, e, f(l))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(k, k))A#h#(f(c), f(c))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), U111(k, k))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(f(e), e, U111(k, k))
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(f(l), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(l, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(k))h#(f(c), f(c))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(e, f(l), f(d))
h#(f(c), f(c))g#(l, f(e), f(d))h#(U111(e, c), U111(e, c))g#(e, l, f(l))
h#(f(c), f(c))g#(l, f(e), U111(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(U111(c, c), f(e), f(k))h#(f(c), f(c))g#(l, l, f(d))
h#(f(c), f(c))g#(e, f(l), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(c), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), e, U111(d, d))h#(f(c), f(c))g#(f(c), f(e), f(l))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(c, c), e, f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, l))
h#(f(c), f(c))g#(f(e), f(c), f(d))h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))h#(f(c), f(c))g#(f(c), f(c), f(d))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(c), f(e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(f(c), e, f(k))
h#(f(c), f(c))g#(f(c), l, f(d))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(e), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, l, f(d))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(f(c), f(c))g#(c, c, f(l))A#h#(d, d)
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(f(e), l, U111(k, k))
A#g#(c, c, f(k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(e), f(e))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(l, l)g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, f(e), U111(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, U111(e, e), U111(k, k))g#(e, f(e), U111(d, k))
 g#(e, f(e), U111(l, k))
Thus, the rule h#(f(c), f(c)) → g#(e, f(e), U111(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, U111(e, e), U111(k, k))

Problem 120: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(U111(e, e), U111(e, c), U111(l, k))h#(f(c), f(c))g#(e, e, f(k))
A#h#(f(c), f(c))h#(f(c), f(c))g#(c, e, f(d))
A#h#(f(e), f(e))h#(f(c), f(c))g#(l, e, U111(k, k))
h#(f(c), f(c))g#(l, e, f(l))h#(f(c), f(c))g#(l, U111(e, e), U111(k, k))
A#h#(l, l)A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(e, f(l), f(d))
h#(f(c), f(c))g#(l, e, f(d))h#(f(c), f(c))g#(l, f(e), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(U111(e, c), U111(e, c))g#(e, l, f(l))
h#(f(c), f(c))g#(l, e, f(k))h#(f(c), f(c))g#(U111(c, c), f(e), f(k))
h#(f(c), f(c))g#(l, f(e), U111(k, k))h#(f(c), f(c))g#(e, f(l), U111(k, k))
h#(f(c), f(c))g#(l, l, f(d))h#(f(c), f(c))g#(f(c), c, f(d))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), e, U111(d, d))h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))
h#(f(c), f(c))g#(f(c), f(e), f(l))h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), e, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))
h#(f(c), f(c))g#(f(e), f(c), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))h#(f(c), f(c))g#(f(c), f(c), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(c), f(e), U111(k, k))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(f(c), e, f(k))
h#(f(c), f(c))g#(f(c), l, f(d))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(e), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))h#(U111(e, c), U111(e, c))g#(l, l, f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(f(c), f(c))g#(c, U111(e, c), f(d))
h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(e, l, f(l))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), e, f(l))h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(f(c), f(c))g#(c, c, f(l))
A#h#(d, d)h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(f(e), l, U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))A#g#(c, c, f(k))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(c, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(l, l)g#(l, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(e, e, f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(c, U111(e, c), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(c, U111(e, c), U111(d, d)) 
g#(l, U111(e, c), f(d)) 
g#(c, c, f(d)) 
g#(e, U111(e, c), f(d)) 
Thus, the rule h#(f(c), f(c)) → g#(c, U111(e, c), f(d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, U111(e, c), f(d))h#(f(c), f(c)) → g#(c, U111(e, c), U111(d, d))
h#(f(c), f(c)) → g#(c, c, f(d))h#(f(c), f(c)) → g#(l, U111(e, c), f(d))

Problem 121: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(l, e, f(l))A#h#(l, l)
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(l, l))
h#(f(c), f(c))g#(e, U111(e, c), U111(l, l))h#(f(c), f(c))g#(l, e, f(d))
h#(f(c), f(c))g#(l, f(e), f(d))h#(U111(e, c), U111(e, c))g#(e, l, f(l))
h#(f(c), f(c))g#(l, l, f(d))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(e, f(l), U111(k, k))h#(f(c), f(c))g#(U111(c, c), f(e), f(k))
h#(f(c), f(c))g#(l, f(e), U111(k, k))h#(f(c), f(c))g#(f(c), c, f(d))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(e, f(e), f(d))h#(f(c), f(c))g#(f(l), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), e, U111(d, d))h#(f(c), f(c))g#(f(c), f(e), f(l))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), e, f(l))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(f(e), f(c), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))h#(f(c), f(c))g#(f(c), f(c), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(c), f(e), U111(k, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(f(c), e, f(k))
h#(f(c), f(c))g#(f(c), l, f(d))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, l, f(l))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, e), f(e), f(k))
h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), e, f(l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(c, c, f(l))
A#h#(d, d)h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
A#g#(c, c, f(k))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, e, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(l, e, U111(l, l))
Thus, the rule h#(f(c), f(c)) → g#(l, e, f(l)) is deleted.

Problem 122: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(U111(e, c), l, f(d))A#h#(f(c), f(c))
A#h#(f(e), f(e))h#(f(c), f(c))g#(U111(c, c), l, U111(d, d))
A#h#(l, l)h#(f(c), f(c))g#(U111(e, c), c, f(d))
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(l, l))h#(f(e), f(e))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), e, U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))h#(f(c), f(c))g#(f(c), f(e), f(l))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), e, f(l))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, l))h#(f(c), f(c))g#(f(e), f(c), f(d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))
h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))h#(f(c), f(c))g#(f(c), f(c), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(c), f(e), U111(k, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(f(c), e, f(k))
h#(f(c), f(c))g#(f(c), l, f(d))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(d))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(f(l), e, f(d))h#(U111(e, c), U111(e, c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, e), f(e), f(k))
h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), e, f(l))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))A#h#(d, d)
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(f(c), f(c))g#(c, c, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
A#g#(c, c, f(k))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))h#(f(c), f(c))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(f(c), f(c))g#(c, e, f(l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(f(c), f(c))g#(e, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, c), l, f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(e, c), l, U111(d, d)) 
g#(c, l, f(d)) 
Thus, the rule h#(f(c), f(c)) → g#(U111(e, c), l, f(d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(c, l, f(d))h#(f(c), f(c)) → g#(U111(e, c), l, U111(d, d))

Problem 123: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(c, U111(e, e), f(d))h#(f(c), f(c))g#(c, e, f(k))
A#h#(l, l)h#(f(c), f(c))g#(l, U111(e, e), f(k))
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(e, e, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, e), U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), f(d))
h#(f(c), f(c))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(l, e, f(d))
h#(f(c), f(c))g#(l, e, f(k))h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))
h#(f(c), f(c))g#(f(c), f(e), f(l))h#(f(c), f(c))g#(f(c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(c, c), e, f(l))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))h#(f(c), f(c))g#(f(e), f(c), f(d))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))h#(f(c), f(c))g#(l, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(c), f(c), f(d))h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(c), f(e), U111(k, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(f(c), e, f(k))
h#(f(c), f(c))g#(f(c), l, f(d))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(d))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))
h#(f(c), f(c))g#(f(l), e, f(d))h#(U111(e, c), U111(e, c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), f(e), f(k))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(d, d))h#(f(c), f(c))g#(U111(e, c), e, f(l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))A#h#(d, d)
h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))h#(f(c), f(c))g#(c, c, f(l))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(f(c), f(c))g#(e, U111(c, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))A#g#(c, c, f(k))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(d))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(c, U111(e, e), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(c, U111(e, e), U111(d, d)) 
g#(c, e, f(d)) 
g#(l, U111(e, e), f(d)) 
g#(e, U111(e, e), f(d)) 
Thus, the rule h#(f(c), f(c)) → g#(c, U111(e, e), f(d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(l, U111(e, e), f(d))h#(f(c), f(c)) → g#(c, e, f(d))
h#(f(c), f(c)) → g#(e, U111(e, e), f(d))h#(f(c), f(c)) → g#(c, U111(e, e), U111(d, d))

Problem 124: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(l, l)A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(c, c), e, f(l))
h#(f(c), f(c))g#(f(e), f(c), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))
h#(f(c), f(c))g#(f(c), e, f(l))h#(U111(e, c), U111(e, c))g#(c, e, U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(l, U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(c), f(c), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))
h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(c), f(e), U111(k, k))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(f(c), l, f(d))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(d))h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(l), e, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(e, e), f(e), f(k))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(f(e), f(e), f(l))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(d, d))h#(f(c), f(c))g#(U111(e, c), e, f(l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(f(c), f(c))g#(c, c, f(l))h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
A#h#(d, d)h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(f(c), f(c))g#(e, U111(c, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))A#g#(c, c, f(k))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(d))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, U111(e, e), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, e, f(l)) 
g#(e, U111(e, e), U111(l, l)) 
Thus, the rule h#(f(c), f(c)) → g#(e, U111(e, e), f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, U111(e, e), U111(l, l))h#(f(c), f(c)) → g#(e, e, f(l))

Problem 125: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(l, l)A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(f(c), e, f(l))h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))h#(f(c), f(c))g#(f(c), f(c), f(d))
h#(f(c), f(c))g#(l, U111(e, e), U111(l, l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))
h#(f(c), f(c))g#(f(c), f(e), U111(k, k))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(f(c), l, f(d))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(d))h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(l), e, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(e, e), f(e), f(k))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(e), f(e), f(l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(d, d))h#(f(c), f(c))g#(U111(e, c), e, f(l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(c, c, f(l))
h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))A#h#(d, d)
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))A#g#(c, c, f(k))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(d))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), f(d))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(f(c), f(c))g#(c, e, f(l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(c), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(f(c), f(c))g#(e, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(e, f(c), f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(c), e, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(f(e), e, f(l))g#(f(c), e, U111(l, l))
g#(U111(c, c), e, f(l)) 
g#(f(l), e, f(l)) 
Thus, the rule h#(f(c), f(c)) → g#(f(c), e, f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(f(e), e, f(l))h#(f(c), f(c)) → g#(f(l), e, f(l))
h#(f(c), f(c)) → g#(U111(c, c), e, f(l))

Problem 126: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U111(e, e), c, U111(d, d))A#h#(l, l)
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(U111(e, e), c, f(d))
h#(f(c), f(c))g#(f(c), f(e), f(d))h#(f(c), f(c))g#(f(c), c, f(d))
h#(f(c), f(c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(f(e), f(c), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))
h#(f(c), f(c))g#(f(c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))
h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(c), f(e), U111(k, k))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(f(c), l, f(d))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(d))h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(l), e, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(e, e), f(e), f(k))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(f(e), f(e), f(l))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, l, f(d))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(c, U111(e, c), f(d))h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(l), U111(e, e), f(d))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(f(c), f(l), f(d))h#(f(c), f(c))g#(U111(e, c), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(d, d))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(e, c), f(e), f(k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(c, c, f(l))
h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))A#h#(d, d)
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(f(e), l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
A#g#(c, c, f(k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), f(d))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(c, l, f(k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))h#(f(e), f(e))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(f(c), f(c))g#(U111(e, e), f(c), U111(d, d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(l, l)g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(f(c), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, e), c, U111(d, d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(e, e), e, U111(d, d))g#(e, c, U111(d, d))
g#(U111(e, e), l, U111(d, d)) 
Thus, the rule h#(f(c), f(c)) → g#(U111(e, e), c, U111(d, d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U111(e, e), e, U111(d, d))h#(f(c), f(c)) → g#(U111(e, e), l, U111(d, d))

Problem 127: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(f(c), U111(e, e), U111(d, d))A#h#(f(c), f(c))
A#h#(f(e), f(e))h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(d))
h#(f(c), f(c))g#(f(e), U111(e, e), f(d))h#(f(c), f(c))g#(f(c), e, f(d))
h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))A#h#(l, l)
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(d))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(f(e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(f(e), f(c), f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(l))
h#(f(c), f(c))g#(f(c), U111(e, e), U111(l, l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(c), f(e), U111(k, k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))h#(f(c), f(c))g#(f(c), e, f(k))
h#(f(c), f(c))g#(f(c), l, f(d))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(f(l), e, f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(e, e), f(e), f(k))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))h#(f(c), f(c))g#(f(e), f(e), f(l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, l, f(d))
h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(c, U111(e, c), f(d))
h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(l), U111(e, e), f(d))
A#h#(f(d), f(d))h#(f(c), f(c))g#(U111(c, c), f(e), U111(d, d))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(f(c), f(l), f(d))h#(f(c), f(c))g#(U111(e, c), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(d, d))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(e, c), f(e), f(k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(c, c, f(l))
h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))A#h#(d, d)
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(f(e), l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
A#g#(c, c, f(k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), f(d))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(c, l, f(k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))h#(f(e), f(e))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(f(c), f(c))g#(U111(e, e), f(c), U111(d, d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(l, l)g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(f(c), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(c), U111(e, e), U111(d, d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(f(l), U111(e, e), U111(d, d))g#(f(c), e, U111(d, d))
g#(f(e), U111(e, e), U111(d, d)) 
g#(U111(c, c), U111(e, e), U111(d, d)) 
Thus, the rule h#(f(c), f(c)) → g#(f(c), U111(e, e), U111(d, d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(f(e), U111(e, e), U111(d, d))h#(f(c), f(c)) → g#(f(l), U111(e, e), U111(d, d))
h#(f(c), f(c)) → g#(U111(c, c), U111(e, e), U111(d, d))

Problem 128: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))A#h#(l, l)
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(U111(e, e), c, f(d))
h#(f(c), f(c))g#(e, f(l), f(d))h#(f(c), f(c))g#(U111(e, e), U111(l, l), f(d))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, U111(k, k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(l))
h#(f(c), f(c))g#(f(c), U111(e, e), U111(l, l))h#(U111(c, c), U111(c, c))g#(U111(e, c), U111(e, c), U111(l, l))
h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(c), f(e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))h#(f(c), f(c))g#(f(c), e, f(k))
h#(f(c), f(c))g#(f(c), l, f(d))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(d))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(f(l), e, f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(e, e), f(e), f(k))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))h#(f(c), f(c))g#(f(e), f(e), f(l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(f(c), f(c))g#(c, U111(e, c), f(d))
h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(l), U111(e, e), f(d))
A#h#(f(d), f(d))h#(f(c), f(c))g#(U111(c, c), f(e), U111(d, d))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(f(c), f(l), f(d))h#(f(c), f(c))g#(U111(e, c), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(d, d))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(e, c), f(e), f(k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(c, c, f(l))
h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))A#h#(d, d)
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
A#g#(c, c, f(k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), f(d))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(c, l, f(k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))h#(f(e), f(e))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(f(c), f(c))g#(U111(e, e), f(c), U111(d, d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(l, l)g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(f(c), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, e), e, U111(d, d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U111(d, d))
Thus, the rule h#(f(c), f(c)) → g#(U111(e, e), e, U111(d, d)) is deleted.

Problem 129: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(l, l))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(l, l)
A#h#(U111(e, c), U111(e, c))h#(f(e), f(e))g#(U111(e, e), e, U111(d, d))
h#(f(c), f(c))g#(f(c), f(e), U111(k, k))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(k))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), f(l))
h#(f(c), f(c))g#(f(c), l, f(d))h#(f(c), f(c))g#(f(c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(l, k))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(d))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))
h#(f(c), f(c))g#(f(l), e, f(d))h#(U111(e, c), U111(e, c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), f(k))h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))h#(f(c), f(c))g#(f(e), f(e), f(l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(c, U111(e, c), f(d))
h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))h#(f(c), f(c))g#(f(l), U111(e, e), f(d))
A#h#(f(d), f(d))h#(f(c), f(c))g#(U111(c, c), f(e), U111(d, d))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(f(c), f(l), f(d))h#(f(c), f(c))g#(U111(e, c), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(d, d))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(e, c), f(e), f(k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(c, c, f(l))
h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))A#h#(d, d)
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), U111(l, l))
A#g#(c, c, f(k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), f(d))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(c, l, f(k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))h#(f(e), f(e))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(f(c), f(c))g#(U111(e, e), f(c), U111(d, d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(l, l)g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(f(c), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(c, c), U111(c, c)) → g#(U111(e, c), l, U111(l, l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(c, l, U111(l, l))
Thus, the rule h#(U111(c, c), U111(c, c)) → g#(U111(e, c), l, U111(l, l)) is deleted.

Problem 130: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(U111(c, c), U111(c, c))g#(e, l, U111(k, k))A#h#(f(c), f(c))
h#(U111(c, c), U111(c, c))g#(e, e, U111(k, k))A#h#(f(e), f(e))
h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), f(l))
A#h#(l, l)h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, U111(e, c), f(k))A#h#(U111(e, c), U111(e, c))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), f(d))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(c, c, f(k))
h#(f(c), f(c))g#(f(c), l, f(d))h#(f(c), f(c))g#(f(c), e, f(k))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(l, k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(l), e, f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(k))h#(U111(e, c), U111(e, c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(e), f(k))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(f(e), f(e), f(l))h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(f(c), f(c))g#(c, U111(e, c), f(d))
h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), f(d))
A#h#(f(d), f(d))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(l))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(U111(c, c), f(e), U111(d, d))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(c, c, f(l))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(f(c), f(l), f(d))
h#(f(c), f(c))g#(U111(e, c), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(d, d))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(e, c), f(e), f(k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(c, c, f(l))h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
A#h#(d, d)h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(e, U111(c, c), f(l))
h#(f(c), f(c))g#(l, U111(e, c), f(k))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(f(e), l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))A#g#(c, c, f(k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))h#(f(c), f(c))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(d))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), f(d))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(c, l, f(k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(c, c, f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))
h#(f(e), f(e))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(f(l), f(e), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(f(c), f(c))g#(U111(e, e), f(c), U111(d, d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(l, l)g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(f(c), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(c, c), U111(c, c)) → g#(e, l, U111(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, l, U111(d, k))
 g#(e, l, U111(l, k))
Thus, the rule h#(U111(c, c), U111(c, c)) → g#(e, l, U111(k, k)) is deleted.

Problem 131: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(e, c, f(k))
A#h#(l, l)A#h#(U111(e, c), U111(e, c))
h#(U111(c, c), U111(c, c))g#(e, c, f(d))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(l))
h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(f(c), l, f(d))
h#(U111(c, c), U111(c, c))g#(c, c, f(k))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(l, k))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(d))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(f(l), e, f(d))h#(U111(e, c), U111(e, c))g#(l, l, f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), f(k))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))h#(f(c), f(c))g#(f(e), f(e), f(l))
h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, l, f(d))
h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(f(c), f(c))g#(c, U111(e, c), f(d))h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), f(d))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))A#h#(f(d), f(d))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(l))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), f(e), U111(d, d))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, c, f(l))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(f(c), f(l), f(d))h#(U111(c, c), U111(c, c))g#(e, l, f(d))
h#(U111(c, c), U111(c, c))g#(e, e, f(k))h#(f(c), f(c))g#(U111(e, c), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(d, d))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(e, c), f(e), f(k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(c, c, f(l))
h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))A#h#(d, d)
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(d))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(f(e), l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))A#g#(c, c, f(k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))h#(f(c), f(c))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(d))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), f(d))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(c, l, f(k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(c, c, f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))
h#(f(e), f(e))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(f(l), f(e), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(f(c), f(c))g#(U111(e, e), f(c), U111(d, d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(l, l)g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(f(c), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(c, c), U111(c, c)) → g#(e, U111(e, c), U111(l, l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, c, U111(l, l))
Thus, the rule h#(U111(c, c), U111(c, c)) → g#(e, U111(e, c), U111(l, l)) is deleted.

Problem 132: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(l, l)A#h#(U111(e, c), U111(e, c))
h#(U111(c, c), U111(c, c))g#(l, c, f(k))h#(U111(c, c), U111(c, c))g#(c, e, f(k))
h#(U111(c, c), U111(c, c))g#(c, l, f(d))h#(f(c), f(c))g#(f(c), e, f(k))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))h#(f(c), f(c))g#(f(l), e, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, l, f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(k))h#(f(c), f(c))g#(U111(e, e), f(e), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))h#(f(c), f(c))g#(f(e), f(e), f(l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(f(c), f(c))g#(c, U111(e, c), f(d))
h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(l), U111(e, e), f(d))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
A#h#(f(d), f(d))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(l))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(c, c), f(e), U111(d, d))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(c, c, f(l))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(f(c), f(l), f(d))
h#(U111(c, c), U111(c, c))g#(e, l, f(d))h#(U111(c, c), U111(c, c))g#(e, e, f(k))
h#(f(c), f(c))g#(U111(e, c), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(d, d))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(e, c), f(e), f(k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(c, c, f(l))h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
A#h#(d, d)h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, l, f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(d))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
A#g#(c, c, f(k))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))h#(f(c), f(c))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(d))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), f(d))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(c, l, f(k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(c, c, f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))
h#(f(e), f(e))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(f(l), f(e), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(f(c), f(c))g#(U111(e, e), f(c), U111(d, d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(l, l)g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(f(c), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(c, c), U111(c, c)) → g#(l, c, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, l, f(k)) 
g#(l, c, f(l)) 
g#(l, c, f(d)) 
g#(l, e, f(k)) 
g#(l, c, U111(k, k)) 
Thus, the rule h#(U111(c, c), U111(c, c)) → g#(l, c, f(k)) is replaced by the following rules:
h#(U111(c, c), U111(c, c)) → g#(l, c, U111(k, k))h#(U111(c, c), U111(c, c)) → g#(l, e, f(k))
h#(U111(c, c), U111(c, c)) → g#(l, l, f(k))h#(U111(c, c), U111(c, c)) → g#(l, c, f(d))
h#(U111(c, c), U111(c, c)) → g#(l, c, f(l))

Problem 133: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(l, l)A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(f(l), e, U111(k, k))
h#(f(c), f(c))g#(l, e, f(d))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(U111(c, c), e, f(l))h#(f(c), f(c))g#(f(c), e, f(l))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(l, k))
h#(U111(e, c), U111(e, c))g#(e, U111(e, c), U111(l, l))h#(U111(e, c), U111(e, c))g#(U111(e, c), l, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(d))h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(l), e, f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(k))h#(U111(e, c), U111(e, c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(e), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(e), f(k))h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(f(e), f(e), f(l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(f(c), f(c))g#(U111(c, c), f(c), f(k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(f(c), f(c))g#(c, U111(e, c), f(d))
h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), f(d))
A#h#(f(d), f(d))h#(f(c), f(c))g#(U111(c, c), f(e), U111(d, d))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(c, c, f(l))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(f(c), f(l), f(d))
h#(U111(c, c), U111(c, c))g#(e, l, f(d))h#(U111(c, c), U111(c, c))g#(e, e, f(k))
h#(f(c), f(c))g#(U111(e, c), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(d, d))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(e, c), f(e), f(k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(c, c, f(l))h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
A#h#(d, d)h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, l, f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(d))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), U111(l, l))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))A#g#(c, c, f(k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))h#(f(c), f(c))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(d))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), f(d))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(c, l, f(k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(c, c, f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))
h#(f(e), f(e))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(f(l), f(e), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(f(c), f(c))g#(U111(e, e), f(c), U111(d, d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(l, l)g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(f(c), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, e, U111(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U111(d, k))
 g#(e, e, U111(l, k))
Thus, the rule h#(f(c), f(c)) → g#(e, e, U111(k, k)) is deleted.

Problem 134: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U111(e, e), e, U111(k, k))A#h#(l, l)
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(U111(e, e), f(e), f(l))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))h#(f(c), f(c))g#(f(e), f(e), f(l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(k))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(c, U111(e, c), f(d))
h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, l, f(l))
h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), f(d))A#h#(f(d), f(d))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(l))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(U111(c, c), f(e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(c, c, f(l))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(f(c), f(l), f(d))h#(f(c), f(c))g#(U111(e, c), e, f(l))
h#(U111(c, c), U111(c, c))g#(e, e, f(k))h#(U111(c, c), U111(c, c))g#(e, l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(d, d))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), f(e), f(k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(c, c, f(l))h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
A#h#(d, d)h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, l, f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(d))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
A#g#(c, c, f(k))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))h#(f(c), f(c))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(d))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), f(d))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(c, l, f(k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(c, c, f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))
h#(f(e), f(e))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(f(l), f(e), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(f(c), f(c))g#(U111(e, e), f(c), U111(d, d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(l, l)g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(f(c), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, e), e, U111(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, e, U111(k, k))g#(U111(e, e), e, U111(l, k))
 g#(U111(e, e), e, U111(d, k))
Thus, the rule h#(f(c), f(c)) → g#(U111(e, e), e, U111(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, e, U111(k, k))

Problem 135: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(k))
A#h#(l, l)h#(f(c), f(c))g#(c, U111(c, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(e), U111(l, k))
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))
h#(f(c), f(c))g#(U111(c, c), f(e), f(k))h#(f(c), f(c))g#(l, f(e), U111(k, k))
h#(f(c), f(c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(c, c), f(c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(f(c), f(c))g#(U111(e, c), f(l), f(k))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, l, f(d))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(c, U111(e, c), f(d))h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(l), U111(e, e), f(d))h#(f(c), f(c))g#(e, l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(c), f(k))A#h#(f(d), f(d))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(l))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(U111(c, c), f(e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(c, c, f(l))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(f(c), f(l), f(d))h#(U111(c, c), U111(c, c))g#(e, l, f(d))
h#(f(c), f(c))g#(U111(e, c), e, f(l))h#(U111(c, c), U111(c, c))g#(e, e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(d, d))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(c, U111(c, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(k))h#(f(c), f(c))g#(c, c, f(l))
h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))A#h#(d, d)
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, l, f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(e, U111(c, c), f(l))
h#(f(c), f(c))g#(l, U111(e, c), f(k))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(d))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))h#(f(c), f(c))g#(U111(c, c), f(l), f(d))
h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(f(e), l, U111(k, k))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
A#g#(c, c, f(k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(d))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), f(d))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(d))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(c, l, f(k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(c, c, f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))
h#(f(e), f(e))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(f(l), f(e), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(f(c), f(c))g#(U111(e, e), f(c), U111(d, d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(l, l)g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(f(c), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, c), U111(c, c), U111(l, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(e, c), U111(l, c), U111(l, k))g#(c, U111(c, c), U111(l, k))
g#(U111(e, c), U111(e, c), U111(l, k)) 
Thus, the rule h#(f(c), f(c)) → g#(U111(e, c), U111(c, c), U111(l, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c)) → g#(U111(e, c), U111(l, c), U111(l, k))

Problem 136: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(l, e, f(l))A#h#(l, l)
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(c, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(c, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))
h#(f(c), f(c))g#(l, f(e), U111(k, k))h#(f(c), f(c))g#(U111(c, c), f(e), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(l, k))h#(f(c), f(c))g#(l, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(c, c), f(c), f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(k))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(c, U111(e, c), f(d))
h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, l, f(l))
h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(l), U111(e, e), f(d))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(e, c), f(c), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), f(l))h#(f(c), f(c))g#(U111(c, c), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(U111(c, c), U111(c, c))g#(c, c, f(l))
h#(f(c), f(c))g#(f(c), f(l), f(d))h#(U111(c, c), U111(c, c))g#(e, l, f(d))
h#(U111(c, c), U111(c, c))g#(e, e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), e, f(l))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(d))h#(f(c), f(c))g#(c, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(c, c, f(l))
h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))A#h#(d, d)
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(U111(c, c), U111(c, c))g#(l, l, f(k))h#(f(c), f(c))g#(e, U111(c, c), f(l))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(f(c), f(c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(d))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))h#(f(c), f(c))g#(U111(c, c), f(l), f(d))
h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
A#g#(c, c, f(k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), f(d))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), f(c), f(d))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(c, l, f(k))h#(U111(c, c), U111(c, c))g#(c, c, f(d))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))
h#(f(e), f(e))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(c), f(c))g#(f(l), f(e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(f(c), f(c))g#(U111(e, e), f(c), U111(d, d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(l, l)g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(f(c), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, e, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(l, e, U111(l, l))
Thus, the rule h#(f(c), f(c)) → g#(l, e, f(l)) is deleted.

Problem 137: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(l, l)h#(U111(c, c), U111(c, c))g#(e, l, f(d))
h#(U111(c, c), U111(c, c))g#(e, e, f(k))h#(f(c), f(c))g#(c, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(e, e), U111(c, c), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))h#(U111(c, c), U111(c, c))g#(l, l, f(k))
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))
h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), f(l), f(d))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), f(d))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(c, e, f(l))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(c, l, f(k))
h#(U111(c, c), U111(c, c))g#(c, c, f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))
h#(f(c), f(c))g#(f(l), f(e), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(f(c), f(c))g#(U111(e, e), f(c), U111(d, d))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(f(c), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), c, f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(c), f(c))g#(c, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, l, f(l))h#(f(c), f(c))g#(e, e, f(k))
h#(f(c), f(c))g#(e, l, f(d))h#(f(c), f(c))g#(e, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), e, f(k))A#h#(f(c), f(c))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), e, f(d))
h#(f(c), f(c))g#(e, U111(e, c), U111(l, k))h#(f(c), f(c))g#(c, e, f(d))
A#h#(f(e), f(e))h#(f(c), f(c))g#(U111(c, c), l, f(k))
h#(f(c), f(c))g#(l, e, U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, f(d))
h#(f(c), f(c))g#(c, c, f(d))h#(f(c), f(c))g#(l, U111(e, c), f(l))
h#(f(c), f(c))g#(l, U111(e, e), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, l))
h#(f(c), f(c))g#(l, c, f(k))h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))
h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))h#(f(c), f(c))g#(l, c, f(d))
h#(f(c), f(c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(U111(c, c), f(e), f(k))
h#(f(c), f(c))g#(l, f(e), U111(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), f(c), f(l))h#(f(c), f(c))g#(U111(c, c), e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(e, c), f(c), f(k))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(f(c), f(l), f(d))h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(e), f(k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))A#h#(d, d)
h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))h#(f(c), f(c))g#(c, c, f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(f(c), f(c))g#(f(e), l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
A#g#(c, c, f(k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), f(c), f(d))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(e), f(e))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(l, l)g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(c, c), U111(c, c)) → g#(e, l, f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, l, U111(d, d))
Thus, the rule h#(U111(c, c), U111(c, c)) → g#(e, l, f(d)) is deleted.

Problem 138: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(l, l))A#h#(l, l)
h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), f(d))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(c, e, f(l))
h#(f(c), f(c))g#(c, l, f(k))A#h#(U111(e, e), U111(e, e))
h#(U111(c, c), U111(c, c))g#(c, c, f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))
h#(f(c), f(c))g#(f(l), f(e), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(f(c), f(c))g#(U111(e, e), f(c), U111(d, d))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(f(c), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), c, f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(d, d))h#(f(c), f(c))g#(c, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, l, f(l))h#(f(c), f(c))g#(e, e, f(k))
h#(f(c), f(c))g#(e, l, f(d))h#(f(c), f(c))g#(e, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), e, f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(d))
A#h#(f(c), f(c))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, f(d))
h#(f(c), f(c))g#(U111(c, c), e, f(d))h#(f(c), f(c))g#(e, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(c, e, f(d))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U111(c, c), l, f(k))h#(f(c), f(c))g#(l, e, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), c, f(d))h#(f(c), f(c))g#(c, c, f(d))
h#(f(c), f(c))g#(l, U111(e, c), f(l))h#(f(c), f(c))g#(l, U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, l))
h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(l, c, f(k))h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))
h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, f(d))
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))
h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))h#(f(c), f(c))g#(l, c, f(d))
h#(f(c), f(c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(U111(c, c), f(e), f(k))
h#(f(c), f(c))g#(l, f(e), U111(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), f(c), f(l))h#(f(c), f(c))g#(U111(c, c), e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(f(c), f(c))g#(U111(e, c), f(l), f(d))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(e, c), f(c), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(f(c), f(l), f(d))
h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(e), f(k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
A#h#(d, d)h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))
h#(f(c), f(c))g#(c, c, f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))A#g#(c, c, f(k))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(l, l)g#(l, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(e, e, f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(c, c), U111(c, c)) → g#(e, U111(e, c), U111(l, l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, c, U111(l, l))
Thus, the rule h#(U111(c, c), U111(c, c)) → g#(e, U111(e, c), U111(l, l)) is deleted.

Problem 139: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(l, l)h#(f(c), f(c))g#(c, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(l, U111(e, c), f(d))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(l), f(e), U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(l))h#(f(c), f(c))g#(U111(e, e), f(c), U111(d, d))
h#(f(c), f(c))g#(e, f(c), f(d))h#(f(c), f(c))g#(c, f(e), f(d))
h#(f(c), f(c))g#(f(c), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(c, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(d, d))h#(f(c), f(c))g#(c, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, l, f(l))h#(f(c), f(c))g#(e, e, f(k))
h#(f(c), f(c))g#(e, l, f(d))h#(f(c), f(c))g#(e, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), e, f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(l, e, U111(k, k))A#h#(f(c), f(c))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, f(d))
h#(f(c), f(c))g#(U111(c, c), e, f(d))h#(f(c), f(c))g#(e, f(e), f(l))
h#(f(c), f(c))g#(c, e, f(d))h#(f(c), f(c))g#(e, U111(e, c), U111(l, k))
A#h#(f(e), f(e))h#(f(c), f(c))g#(U111(c, c), l, f(k))
h#(f(c), f(c))g#(l, e, U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, f(d))
h#(f(c), f(c))g#(c, l, f(l))h#(f(c), f(c))g#(c, c, f(d))
h#(f(c), f(c))g#(l, e, f(l))h#(f(c), f(c))g#(l, U111(e, c), f(l))
h#(f(c), f(c))g#(l, U111(e, e), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(l, c, f(k))
h#(f(c), f(c))g#(U111(c, c), c, U111(d, d))h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, f(d))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))h#(f(c), f(c))g#(l, c, f(d))
h#(f(c), f(c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))
h#(f(c), f(c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(c, c), f(e), f(k))
h#(f(c), f(c))g#(l, f(e), U111(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, l, f(d))h#(f(c), f(c))g#(e, f(e), f(d))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), f(c), f(l))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(c, c), e, f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(f(c), f(c))g#(U111(e, c), f(l), f(d))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))h#(U111(e, c), U111(e, c))g#(l, l, f(d))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(e, c), f(c), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(f(c), f(l), f(d))
h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(e), f(k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
A#h#(d, d)h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))
h#(f(c), f(c))g#(c, c, f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))A#g#(c, c, f(k))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(l, l)g#(l, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(e, e, f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(c, U111(e, c), U111(d, d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, U111(e, c), U111(d, d))g#(c, c, U111(d, d))
g#(l, U111(e, c), U111(d, d)) 
Thus, the rule h#(f(c), f(c)) → g#(c, U111(e, c), U111(d, d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(l, U111(e, c), U111(d, d))h#(f(c), f(c)) → g#(e, U111(e, c), U111(d, d))

Problem 140: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(l, l)h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(l, l))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(c), f(c))g#(U111(c, c), f(l), U111(d, d))
h#(f(c), f(c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(U111(e, e), U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(c, l, f(l))h#(f(c), f(c))g#(e, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(e, e, f(k))h#(f(c), f(c))g#(e, l, f(d))
h#(f(c), f(c))g#(U111(e, c), e, f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(d))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), U111(k, k))A#h#(f(c), f(c))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, e, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), e, f(d))h#(f(c), f(c))g#(U111(c, c), e, f(d))
h#(f(c), f(c))g#(e, f(e), f(l))h#(f(c), f(c))g#(c, e, f(d))
h#(f(c), f(c))g#(e, U111(e, c), U111(l, k))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U111(c, c), l, f(k))h#(f(c), f(c))g#(l, e, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, f(l))h#(f(c), f(c))g#(U111(c, c), l, f(l))
h#(f(c), f(c))g#(U111(c, c), c, f(d))h#(f(c), f(c))g#(c, l, f(l))
h#(f(c), f(c))g#(c, c, f(d))h#(f(c), f(c))g#(l, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), f(l))h#(f(c), f(c))g#(l, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(l), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(l, c, f(k))
h#(f(c), f(c))g#(U111(c, c), c, U111(d, d))h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, f(d))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))h#(f(c), f(c))g#(l, c, f(d))
h#(f(c), f(c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(l, f(e), f(d))
h#(f(c), f(c))g#(e, f(l), f(d))h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))
h#(f(c), f(c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(c, c), f(e), f(k))
h#(f(c), f(c))g#(l, f(e), U111(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, l, f(d))h#(f(c), f(c))g#(e, f(e), f(d))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), f(c), f(l))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(c, c), e, f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(f(c), f(c))g#(U111(e, c), f(l), f(d))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, l, f(d))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(e, c), f(c), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(f(c), f(l), f(d))
h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(e), f(k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
A#h#(d, d)h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))
h#(f(c), f(c))g#(c, c, f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))A#g#(c, c, f(k))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(l, l)g#(l, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(e, e, f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(l, c), U111(e, c), U111(l, l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(U111(l, c), c, U111(l, l))
Thus, the rule h#(f(c), f(c)) → g#(U111(l, c), U111(e, c), U111(l, l)) is deleted.

Problem 141: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(c, l, f(l))h#(U111(c, c), U111(c, c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(l, e, f(l))h#(f(c), f(c))g#(U111(c, c), e, U111(d, d))
h#(f(c), f(c))g#(l, U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(e, l, f(l))
h#(f(c), f(c))g#(l, U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(l), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), l, f(k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(e, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(l, c, f(k))
h#(f(c), f(c))g#(c, l, f(d))h#(f(c), f(c))g#(U111(c, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))A#h#(l, l)
h#(f(c), f(c))g#(U111(e, c), c, U111(l, l))h#(f(c), f(c))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(c, c), l, f(d))
h#(f(c), f(c))g#(U111(e, c), c, f(d))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))h#(f(c), f(c))g#(l, c, f(d))
h#(f(c), f(c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(e, f(l), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(l, e, f(d))
h#(f(c), f(c))g#(l, f(e), f(d))h#(f(c), f(c))g#(U111(c, c), f(e), f(k))
h#(f(c), f(c))g#(l, f(e), U111(k, k))h#(f(c), f(c))g#(l, l, f(d))
h#(f(c), f(c))g#(l, e, f(k))h#(f(c), f(c))g#(e, f(e), f(d))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(c), f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), e, f(l))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(d))h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(k))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))h#(U111(e, c), U111(e, c))g#(l, l, f(d))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(c), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(f(c), f(l), f(d))
h#(f(c), f(c))g#(U111(e, c), e, f(l))h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(e), f(k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(c, c, f(l))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))A#h#(d, d)
h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(f(e), l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
A#g#(c, c, f(k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(f(c), f(c))g#(e, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(c, l, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, l, f(l))g#(c, l, U111(l, l))
g#(e, l, f(l)) 
Thus, the rule h#(f(c), f(c)) → g#(c, l, f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, l, f(l))h#(f(c), f(c)) → g#(l, l, f(l))

Problem 142: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(U111(e, c), l, f(d))A#h#(f(c), f(c))
A#h#(f(e), f(e))h#(f(c), f(c))g#(c, c, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))A#h#(l, l)
h#(f(c), f(c))g#(U111(c, c), l, f(d))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))h#(f(c), f(c))g#(l, c, f(d))
h#(f(c), f(c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(e, U111(e, e), f(d))
h#(f(c), f(c))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(l, e, f(d))h#(f(c), f(c))g#(l, f(e), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(e, f(l), f(d))
h#(f(c), f(c))g#(l, e, f(k))h#(f(c), f(c))g#(l, f(e), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), f(e), f(k))h#(f(c), f(c))g#(l, l, f(d))
h#(f(c), f(c))g#(e, f(e), f(d))h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(c, c), e, f(l))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(f(c), f(c))g#(U111(e, c), f(l), f(d))
h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), l, U111(l, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, l, f(d))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(e, l, f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(c), f(k))
A#h#(f(d), f(d))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(f(c), f(l), f(d))h#(f(c), f(c))g#(U111(e, c), e, f(l))
h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(e), f(k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))
h#(f(c), f(c))g#(c, c, f(l))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
A#h#(d, d)h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))A#g#(c, c, f(k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(f(c), f(c))g#(c, e, f(l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(f(c), f(c))g#(e, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, c), l, f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(e, c), l, U111(d, d)) 
g#(c, l, f(d)) 
Thus, the rule h#(f(c), f(c)) → g#(U111(e, c), l, f(d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(c, l, f(d))h#(f(c), f(c)) → g#(U111(e, c), l, U111(d, d))

Problem 143: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(e, l, f(d))A#h#(f(c), f(c))
h#(f(c), f(c))g#(e, l, U111(k, k))A#h#(f(e), f(e))
h#(f(c), f(c))g#(l, c, f(k))h#(f(c), f(c))g#(c, l, f(d))
h#(f(c), f(c))g#(c, e, f(k))A#h#(l, l)
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(l, c, f(d))h#(f(c), f(c))g#(e, e, U111(k, k))
h#(f(c), f(c))g#(e, U111(e, c), U111(l, l))h#(U111(c, c), U111(c, c))g#(e, e, f(d))
h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(e, U111(e, e), f(d))
h#(f(c), f(c))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(l, f(e), f(d))h#(f(c), f(c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(e, f(l), f(d))
h#(f(c), f(c))g#(l, e, f(k))h#(f(c), f(c))g#(U111(c, c), f(e), f(k))
h#(f(c), f(c))g#(l, l, f(d))h#(f(c), f(c))g#(l, f(e), U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(d))h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), f(c), f(l))
h#(f(c), f(c))g#(U111(c, c), e, f(l))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(f(c), f(c))g#(U111(e, c), f(l), f(d))
h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), l, U111(l, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, l, f(d))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(f(c), f(c))g#(c, U111(e, c), f(d))h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))h#(f(c), f(c))g#(e, l, f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(c), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(f(c), f(l), f(d))
h#(U111(c, c), U111(c, c))g#(e, l, f(d))h#(f(c), f(c))g#(U111(e, c), e, f(l))
h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(e), f(k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))
h#(f(c), f(c))g#(c, c, f(l))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
A#h#(d, d)h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(f(e), l, U111(k, k))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
A#g#(c, c, f(k))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(f(c), f(c))g#(c, e, f(l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(f(c), f(c))g#(e, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, l, f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, l, U111(d, d))
Thus, the rule h#(f(c), f(c)) → g#(e, l, f(d)) is deleted.

Problem 144: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(l, l)A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(l, l))
h#(f(c), f(c))g#(e, U111(e, c), U111(l, l))h#(f(c), f(c))g#(l, f(e), f(d))
h#(f(c), f(c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(c, c), f(e), f(k))
h#(f(c), f(c))g#(l, l, f(d))h#(f(c), f(c))g#(l, f(e), U111(k, k))
h#(f(c), f(c))g#(l, e, f(k))h#(f(c), f(c))g#(e, f(e), f(d))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(c), f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), e, f(l))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(d))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(f(c), f(c))g#(c, U111(e, c), f(d))
h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))h#(f(c), f(c))g#(e, l, f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(c), f(k))
A#h#(f(d), f(d))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(f(c), f(l), f(d))h#(U111(c, c), U111(c, c))g#(e, l, f(d))
h#(f(c), f(c))g#(U111(e, c), e, f(l))h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(e), f(k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))h#(f(c), f(c))g#(c, c, f(l))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))A#h#(d, d)
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
A#g#(c, c, f(k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(f(c), f(c))g#(c, e, f(l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(f(c), f(c))g#(e, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, U111(c, c), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, U111(e, c), f(l))g#(l, U111(c, c), U111(l, l))
 g#(l, U111(l, c), f(l))
Thus, the rule h#(f(c), f(c)) → g#(l, U111(c, c), f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(l, U111(e, c), f(l))

Problem 145: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(c, e, U111(k, k))A#h#(f(c), f(c))
h#(f(c), f(c))g#(e, e, f(l))h#(f(c), f(c))g#(c, e, f(d))
A#h#(f(e), f(e))A#h#(l, l)
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(e, e, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(l))h#(f(c), f(c))g#(U111(c, c), f(c), f(l))
h#(f(c), f(c))g#(U111(c, c), e, f(l))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(d))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, k))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, l, f(d))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(f(c), f(c))g#(c, U111(e, c), f(d))h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(e, l, f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(c), f(k))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(f(c), f(l), f(d))h#(U111(c, c), U111(c, c))g#(e, l, f(d))
h#(f(c), f(c))g#(U111(e, c), e, f(l))h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(e), f(k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))h#(f(c), f(c))g#(c, c, f(l))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))A#h#(d, d)
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
A#g#(c, c, f(k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(c, e, U111(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, e, U111(k, k))g#(c, e, U111(l, k))
g#(e, e, U111(k, k))g#(c, e, U111(d, k))
Thus, the rule h#(f(c), f(c)) → g#(c, e, U111(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(l, e, U111(k, k))h#(f(c), f(c)) → g#(e, e, U111(k, k))

Problem 146: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(l, l))A#h#(l, l)
h#(f(c), f(c))g#(U111(e, c), f(e), U111(l, l))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(U111(c, c), e, U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(c, c), e, f(l))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(l, U111(e, e), U111(l, l))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(f(c), f(c))g#(U111(e, c), f(l), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(d))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, k))h#(f(c), f(c))g#(U111(e, c), f(l), f(k))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(f(c), f(c))g#(c, U111(e, c), f(d))
h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, l, f(l))
h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(c), f(k))
A#h#(f(d), f(d))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(f(c), f(l), f(d))h#(U111(c, c), U111(c, c))g#(e, l, f(d))
h#(f(c), f(c))g#(U111(e, c), e, f(l))h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(e), f(k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))h#(f(c), f(c))g#(c, c, f(l))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))A#h#(d, d)
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(e), l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
A#g#(c, c, f(k))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(f(c), f(c))g#(c, e, f(l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(f(c), f(c))g#(e, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(c, c), U111(c, c), U111(l, l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(c, c), U111(e, c), U111(l, l))g#(U111(l, c), U111(c, c), U111(l, l))
g#(U111(e, c), U111(c, c), U111(l, l))g#(U111(c, c), U111(l, c), U111(l, l))
Thus, the rule h#(f(c), f(c)) → g#(U111(c, c), U111(c, c), U111(l, l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U111(c, c), U111(e, c), U111(l, l))h#(f(c), f(c)) → g#(U111(e, c), U111(c, c), U111(l, l))

Problem 147: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(l, l)A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(l, l))h#(f(c), f(c))g#(e, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(e, f(l), f(l))h#(f(c), f(c))g#(l, f(e), f(l))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(c, c), e, f(l))h#(f(c), f(c))g#(U111(l, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), f(l))h#(f(c), f(c))g#(l, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(f(c), f(c))g#(U111(e, c), f(l), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(d))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, U111(l, k))
h#(f(c), f(c))g#(U111(e, c), f(l), f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))h#(U111(e, c), U111(e, c))g#(e, l, f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(f(c), f(c))g#(c, U111(e, c), f(d))
h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, l, f(l))h#(f(c), f(c))g#(U111(e, c), f(c), f(k))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(f(c), f(l), f(d))h#(U111(c, c), U111(c, c))g#(e, l, f(d))
h#(f(c), f(c))g#(U111(e, c), e, f(l))h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(e), f(k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))h#(f(c), f(c))g#(c, c, f(l))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))A#h#(d, d)
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(e), l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))A#g#(c, c, f(k))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, c), U111(l, c), U111(l, l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(c, U111(l, c), U111(l, l))
Thus, the rule h#(f(c), f(c)) → g#(U111(e, c), U111(l, c), U111(l, l)) is deleted.

Problem 148: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(l, l)A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))h#(f(c), f(c))g#(f(c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(k))h#(U111(e, c), U111(e, c))g#(l, l, f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(f(e), f(l), f(d))h#(f(c), f(c))g#(c, U111(e, c), f(d))
h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, l, f(l))h#(f(c), f(c))g#(U111(e, c), f(c), f(k))
A#h#(f(d), f(d))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(f(c), f(l), f(d))h#(f(c), f(c))g#(U111(e, c), e, f(l))
h#(U111(c, c), U111(c, c))g#(e, l, f(d))h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), f(k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))h#(f(c), f(c))g#(c, c, f(l))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))A#h#(d, d)
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(e), l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))A#g#(c, c, f(k))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(d))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(f(c), f(c))g#(c, f(l), f(d))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(f(c), f(c))g#(e, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, l, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(l, l, U111(l, l))
Thus, the rule h#(f(c), f(c)) → g#(l, l, f(l)) is deleted.

Problem 149: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(l, l)A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(U111(e, e), l, U111(k, k))h#(f(c), f(c))g#(e, e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, e, f(k))
h#(U111(e, c), U111(e, c))g#(l, l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(l, l))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))
h#(U111(e, c), U111(e, c))g#(e, l, f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(f(e), f(l), f(d))
h#(f(c), f(c))g#(c, U111(e, c), f(d))h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))h#(f(c), f(c))g#(e, l, f(l))
h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(e, c), f(c), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(f(c), f(l), f(d))
h#(f(c), f(c))g#(U111(e, c), e, f(l))h#(U111(c, c), U111(c, c))g#(e, l, f(d))
h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))h#(f(c), f(c))g#(c, c, f(l))
A#h#(d, d)h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(f(c), f(c))g#(e, U111(c, c), f(l))
h#(f(c), f(c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
A#g#(c, c, f(k))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(d))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(c, e, f(l))
h#(f(c), f(c))g#(e, f(e), f(k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(c, l, f(k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(f(c), f(c))g#(c, f(l), f(d))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, e), l, U111(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, l, U111(k, k))g#(U111(e, e), l, U111(d, k))
 g#(U111(e, e), l, U111(l, k))
Thus, the rule h#(f(c), f(c)) → g#(U111(e, e), l, U111(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, l, U111(k, k))

Problem 150: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(l, l)A#h#(U111(e, c), U111(e, c))
A#h#(U111(c, c), U111(c, c))h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(c), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(f(c), f(l), f(d))
h#(U111(c, c), U111(c, c))g#(e, l, f(d))h#(f(c), f(c))g#(U111(e, c), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(d, d))h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(e), f(k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(f(c), f(c))g#(c, c, f(l))A#h#(d, d)
h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))A#g#(c, c, f(k))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(d))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(c, e, f(l))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(c, l, f(k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(e), f(e))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(U111(e, c), U111(e, c))g#(l, e, f(l))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(f(c), f(c))g#(c, f(l), f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(l, l)g#(l, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(l, f(l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, l, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, l, U111(l, l))
Thus, the rule h#(f(c), f(c)) → g#(e, l, f(l)) is deleted.

Problem 151: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(k))h#(f(c), f(c))g#(c, f(c), f(k))
A#h#(l, l)h#(f(c), f(c))g#(c, U111(c, c), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(d, d))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))
h#(f(c), f(c))g#(c, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(l, k))
h#(f(c), f(c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(k))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(c, U111(e, c), f(d))A#h#(f(d), f(d))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(f(c), f(l), f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(d, d))h#(f(c), f(c))g#(U111(e, c), e, f(l))
h#(U111(c, c), U111(c, c))g#(e, l, f(d))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(c, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(e, c), f(e), f(k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(f(c), f(c))g#(c, c, f(l))A#h#(d, d)
h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))h#(f(e), f(e))g#(e, U111(e, e), f(k))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))h#(f(c), f(c))g#(e, U111(c, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
A#g#(c, c, f(k))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(d))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(c, e, f(l))
h#(f(c), f(c))g#(e, f(e), f(k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(c, l, f(k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(e), f(e))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(l))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(c, f(l), f(d))
h#(f(c), f(c))g#(e, c, f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), f(c), f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(l, f(l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, c), U111(e, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(e, c), U111(e, c), U111(k, k)) 
g#(U111(e, c), U111(e, c), f(l)) 
g#(c, U111(e, c), f(k)) 
g#(U111(e, c), c, f(k)) 
g#(U111(e, c), U111(e, c), f(d)) 
Thus, the rule h#(f(c), f(c)) → g#(U111(e, c), U111(e, c), f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U111(e, c), U111(e, c), U111(k, k))h#(f(c), f(c)) → g#(U111(e, c), c, f(k))
h#(f(c), f(c)) → g#(c, U111(e, c), f(k))h#(f(c), f(c)) → g#(U111(e, c), U111(e, c), f(d))
h#(f(c), f(c)) → g#(U111(e, c), U111(e, c), f(l))

Problem 152: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))h#(f(c), f(c))g#(e, l, U111(k, k))
A#h#(f(e), f(e))h#(f(c), f(c))g#(l, U111(e, e), f(d))
h#(f(c), f(c))g#(c, e, f(k))A#h#(l, l)
h#(f(c), f(c))g#(c, U111(c, c), f(k))h#(f(c), f(c))g#(l, U111(e, e), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(d, d))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(l))h#(f(c), f(c))g#(c, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(e, e, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), f(k))h#(f(c), f(c))g#(l, U111(c, c), f(k))
h#(f(c), f(c))g#(c, U111(e, e), U111(l, l))h#(f(c), f(c))g#(e, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(e, U111(e, e), f(d))
h#(f(c), f(c))g#(c, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(c), f(l))
h#(f(c), f(c))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(e, f(l), f(l))
h#(f(c), f(c))g#(l, f(e), f(l))h#(f(c), f(c))g#(e, f(l), U111(k, k))
h#(f(c), f(c))g#(l, f(e), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(l, k))
h#(f(c), f(c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(l, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(k))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(c, U111(e, c), f(d))
h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, l, f(l))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))A#h#(f(d), f(d))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(f(c), f(l), f(d))
h#(f(c), f(c))g#(U111(e, c), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, l, f(d))h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(c, U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), f(k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(c, c, f(l))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))A#h#(d, d)
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))h#(f(e), f(e))g#(e, U111(e, e), f(k))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(c, f(c), f(d))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
A#g#(c, c, f(k))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(f(c), f(c))g#(l, f(c), U111(k, k))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(d))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(d))h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(c, l, f(k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(c, f(l), f(d))h#(f(c), f(c))g#(l, f(c), f(d))
h#(f(c), f(c))g#(e, c, f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(c, f(e), f(d))
h#(f(c), f(c))g#(e, f(c), f(d))h#(f(c), f(c))g#(U111(e, c), f(c), f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(l, f(l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, l, U111(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, l, U111(d, k))
 g#(e, l, U111(l, k))
Thus, the rule h#(f(c), f(c)) → g#(e, l, U111(k, k)) is deleted.

Problem 153: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(l, e, U111(k, k))A#h#(l, l)
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(k))h#(f(c), f(c))g#(e, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(c, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))
h#(f(c), f(c))g#(e, U111(e, e), f(d))h#(f(c), f(c))g#(c, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(c), f(l))h#(f(c), f(c))g#(e, U111(e, e), f(l))
h#(f(c), f(c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))h#(f(c), f(c))g#(e, f(l), f(l))
h#(f(c), f(c))g#(l, f(e), f(l))h#(f(c), f(c))g#(e, f(l), U111(k, k))
h#(f(c), f(c))g#(l, e, f(k))h#(f(c), f(c))g#(l, f(e), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))
h#(f(c), f(c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(l, U111(e, e), U111(l, l))h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), f(k))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(c, U111(e, c), f(d))h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, l, f(l))
h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))
A#h#(f(d), f(d))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(f(e), c, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(f(c), f(l), f(d))h#(U111(c, c), U111(c, c))g#(e, l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(d, d))h#(f(c), f(c))g#(U111(e, c), e, f(l))
h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(c, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(f(c), f(c))g#(c, c, f(l))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
A#h#(d, d)h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(f(e), f(e))g#(e, U111(e, e), f(k))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(f(c), f(c))g#(e, U111(c, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(c, f(c), f(d))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(f(e), l, U111(k, k))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))A#g#(c, c, f(k))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(f(c), f(c))g#(l, f(c), U111(k, k))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(f(c), f(c))g#(c, e, f(l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(c, l, f(k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(e), f(e))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(l))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(c, f(l), f(d))
h#(f(c), f(c))g#(l, f(c), f(d))h#(f(c), f(c))g#(e, c, f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(e, e, f(d))
h#(f(c), f(c))g#(c, f(e), f(d))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(U111(e, c), f(c), f(d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, e, U111(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(l, e, U111(d, k))
 g#(l, e, U111(l, k))
Thus, the rule h#(f(c), f(c)) → g#(l, e, U111(k, k)) is deleted.

Problem 154: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(l, l)A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(l, c, f(d))h#(f(c), f(c))g#(e, e, U111(k, k))
h#(f(c), f(c))g#(e, U111(e, c), U111(l, l))h#(f(c), f(c))g#(c, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(e, U111(e, e), f(d))
h#(f(c), f(c))g#(c, U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(c), f(l))
h#(f(c), f(c))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(l))
h#(f(c), f(c))g#(e, f(l), f(l))h#(f(c), f(c))g#(l, f(e), f(l))
h#(f(c), f(c))g#(l, l, f(d))h#(f(c), f(c))g#(e, f(l), U111(k, k))
h#(f(c), f(c))g#(l, e, f(k))h#(f(c), f(c))g#(l, f(e), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(l, k))h#(f(c), f(c))g#(l, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))h#(f(c), f(c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(l, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(k))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(c, U111(e, c), f(d))
h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, l, f(l))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))A#h#(f(d), f(d))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(f(c), f(l), f(d))
h#(U111(c, c), U111(c, c))g#(e, l, f(d))h#(f(c), f(c))g#(U111(e, c), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(d, d))h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(c, U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), f(k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(c, c, f(l))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))A#h#(d, d)
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))h#(f(e), f(e))g#(e, U111(e, e), f(k))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(c, f(c), f(d))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
A#g#(c, c, f(k))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(f(c), f(c))g#(l, f(c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))h#(f(c), f(c))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(d))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(d))h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(c, l, f(k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(c, f(l), f(d))h#(f(c), f(c))g#(l, f(c), f(d))
h#(f(c), f(c))g#(e, c, f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(c, f(e), f(d))
h#(f(c), f(c))g#(e, f(c), f(d))h#(f(c), f(c))g#(U111(e, c), f(c), f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(l, f(l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, c, f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, e, f(d))g#(l, c, U111(d, d))
g#(l, l, f(d)) 
Thus, the rule h#(f(c), f(c)) → g#(l, c, f(d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(l, e, f(d))h#(f(c), f(c)) → g#(l, l, f(d))

Problem 155: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(l, U111(e, c), f(l))A#h#(l, l)
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(l, l))
h#(f(c), f(c))g#(e, U111(e, c), U111(l, l))h#(f(c), f(c))g#(e, f(l), f(l))
h#(f(c), f(c))g#(l, f(e), f(l))h#(f(c), f(c))g#(l, l, f(d))
h#(f(c), f(c))g#(l, e, f(k))h#(f(c), f(c))g#(l, f(e), U111(k, k))
h#(f(c), f(c))g#(e, f(l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(l, k))
h#(f(c), f(c))g#(l, U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(l, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), f(k))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(c, U111(e, c), f(d))
h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, l, f(l))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))A#h#(f(d), f(d))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))h#(f(c), f(c))g#(f(c), f(l), f(d))
h#(U111(c, c), U111(c, c))g#(e, l, f(d))h#(f(c), f(c))g#(U111(e, c), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(d, d))h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))
h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))
h#(f(c), f(c))g#(c, U111(c, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), f(k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(c, c, f(l))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))A#h#(d, d)
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))h#(f(e), f(e))g#(e, U111(e, e), f(k))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(c, f(c), f(d))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
A#g#(c, c, f(k))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(f(c), f(c))g#(l, f(c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))h#(f(c), f(c))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(d))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(d))h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(c, l, f(k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(c, f(l), f(d))h#(f(c), f(c))g#(l, f(c), f(d))
h#(f(c), f(c))g#(e, c, f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(c, f(e), f(d))
h#(f(c), f(c))g#(e, f(c), f(d))h#(f(c), f(c))g#(U111(e, c), f(c), f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(l, f(l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, U111(e, c), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, c, f(l)) 
g#(l, U111(e, c), U111(l, l)) 
Thus, the rule h#(f(c), f(c)) → g#(l, U111(e, c), f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(l, U111(e, c), U111(l, l))h#(f(c), f(c)) → g#(l, c, f(l))

Problem 156: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(l, l)A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, l))
h#(f(c), f(c))g#(l, U111(c, c), U111(l, l))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(c, U111(e, c), f(d))h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(e, l, f(l))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), c, U111(k, k))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(e), U111(l, l))
h#(f(c), f(c))g#(f(c), f(l), f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, l, f(d))h#(f(c), f(c))g#(U111(e, c), e, f(l))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))
h#(f(c), f(c))g#(c, U111(c, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), f(k))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))h#(f(e), f(e))g#(e, U111(e, e), f(k))
h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(c, f(c), f(d))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(f(e), l, U111(k, k))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))A#g#(c, c, f(k))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(f(c), f(c))g#(l, f(c), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(l))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(c, f(l), f(d))
h#(f(c), f(c))g#(l, f(c), f(d))h#(f(c), f(c))g#(e, c, f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(e, e, f(d))
h#(f(c), f(c))g#(c, f(e), f(d))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(U111(e, c), f(c), f(d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, U111(e, e), U111(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, e, U111(k, k))g#(e, U111(e, e), U111(d, k))
 g#(e, U111(e, e), U111(l, k))
Thus, the rule h#(f(c), f(c)) → g#(e, U111(e, e), U111(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, e, U111(k, k))

Problem 157: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(U111(e, e), U111(e, e), U111(l, l))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(l, l)
A#h#(U111(e, c), U111(e, c))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(f(c), f(l), f(d))h#(f(c), f(c))g#(U111(e, c), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, U111(d, d))h#(U111(c, c), U111(c, c))g#(e, l, f(d))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(l, l))h#(f(e), f(e))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))h#(f(c), f(c))g#(c, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(f(c), f(c))g#(c, c, f(l))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))A#h#(d, d)
h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))h#(f(e), f(e))g#(e, U111(e, e), f(k))
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(c, f(c), f(d))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(f(e), l, U111(k, k))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))A#g#(c, c, f(k))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(f(c), f(c))g#(l, f(c), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(c, f(l), f(d))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(l, f(c), f(d))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(c, f(e), f(d))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(U111(e, c), f(c), f(d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, e), U111(e, e), U111(l, l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, U111(e, e), U111(l, l)) 
g#(U111(e, e), e, U111(l, l)) 
Thus, the rule h#(f(c), f(c)) → g#(U111(e, e), U111(e, e), U111(l, l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, U111(e, e), U111(l, l))h#(f(c), f(c)) → g#(U111(e, e), e, U111(l, l))

Problem 158: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(l, e, U111(k, k))A#h#(l, l)
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(e, e, U111(k, k))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))h#(f(c), f(c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(k))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(f(e), f(e))g#(e, U111(e, e), f(k))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
h#(f(c), f(c))g#(c, c, f(l))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))A#h#(d, d)
h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(e, U111(c, c), f(l))
h#(f(c), f(c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(c, f(c), f(d))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(c, c), f(l), f(d))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))A#g#(c, c, f(k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(f(c), f(c))g#(l, f(c), U111(k, k))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(c, f(l), f(d))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(l, f(c), f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(f(c), f(c))g#(e, c, f(d))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(c, f(e), f(d))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))
h#(f(c), f(c))g#(e, f(c), f(d))h#(f(c), f(c))g#(U111(e, c), f(c), f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(l, f(l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, e, U111(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(l, e, U111(d, k))
 g#(l, e, U111(l, k))
Thus, the rule h#(f(c), f(c)) → g#(l, e, U111(k, k)) is deleted.

Problem 159: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(l, l)A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(l, U111(c, c), U111(k, k))h#(f(c), f(c))g#(l, U111(e, c), U111(l, k))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), f(k))
h#(f(e), f(e))g#(e, U111(e, e), f(k))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
A#h#(d, d)h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
h#(f(c), f(c))g#(c, c, f(l))h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(f(c), f(c))g#(l, U111(e, c), f(k))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(c, f(c), f(d))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))h#(f(c), f(c))g#(U111(c, c), f(l), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))A#g#(c, c, f(k))
h#(f(c), f(c))g#(l, f(c), U111(k, k))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))h#(f(c), f(c))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(d))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), f(c), f(d))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(c, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(c, f(l), f(d))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(f(c), f(c))g#(l, f(c), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(f(c), f(c))g#(e, c, f(d))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(e, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))
h#(f(c), f(c))g#(e, f(c), f(d))h#(f(c), f(c))g#(c, f(e), f(d))
h#(f(c), f(c))g#(U111(e, c), f(c), f(d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, U111(c, c), U111(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, U111(e, c), U111(k, k))g#(l, U111(c, c), U111(d, k))
 g#(l, U111(c, c), U111(l, k))
 g#(l, U111(l, c), U111(k, k))
Thus, the rule h#(f(c), f(c)) → g#(l, U111(c, c), U111(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(l, U111(e, c), U111(k, k))

Problem 160: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(c, U111(e, c), U111(l, k))h#(f(c), f(c))g#(c, e, U111(k, k))
A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(l, l)A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), l, U111(l, k))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))h#(f(c), f(c))g#(c, U111(c, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(e), f(k))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(e), f(e))g#(e, U111(e, e), f(k))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))A#h#(d, d)
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))h#(f(c), f(c))g#(c, c, f(l))
h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))h#(f(c), f(c))g#(e, U111(c, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(f(c), f(c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(c, f(c), f(d))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(c, c), f(l), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), l, U111(k, k))A#g#(c, c, f(k))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(f(c), f(c))g#(l, f(c), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(c, f(l), f(d))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(l, f(c), f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(f(c), f(c))g#(e, c, f(d))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(c, f(e), f(d))h#(f(c), f(c))g#(U111(e, c), f(c), f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(c, U111(e, c), U111(l, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, U111(e, c), U111(l, k))g#(c, c, U111(l, k))
g#(l, U111(e, c), U111(l, k)) 
Thus, the rule h#(f(c), f(c)) → g#(c, U111(e, c), U111(l, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, U111(e, c), U111(l, k))h#(f(c), f(c)) → g#(l, U111(e, c), U111(l, k))

Problem 161: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(c, e, f(k))A#h#(l, l)
h#(f(c), f(c))g#(l, U111(e, e), f(k))h#(f(c), f(c))g#(U111(e, c), f(e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(e), U111(l, k))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(c, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), f(d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(k))
h#(f(c), f(c))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(l, e, f(d))
h#(f(c), f(c))g#(l, f(e), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(l))
h#(f(c), f(c))g#(l, U111(e, e), U111(l, l))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(f(c), f(c))g#(c, c, f(l))h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))A#h#(d, d)
h#(f(e), f(e))g#(e, U111(e, e), f(k))h#(f(c), f(c))g#(e, U111(c, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(U111(e, e), U111(e, e))g#(e, e, f(k))
h#(f(c), f(c))g#(c, f(c), f(d))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(c, c), f(l), f(d))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
A#g#(c, c, f(k))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(f(c), f(c))g#(l, f(c), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(c, f(l), f(d))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(l, f(c), f(d))h#(f(c), f(c))g#(e, c, f(d))
h#(l, l)g#(l, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(c, f(e), f(d))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), f(c), f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(c, e, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(c, e, f(d)) 
g#(l, e, f(k)) 
g#(c, e, U111(k, k)) 
g#(c, e, f(l)) 
g#(e, e, f(k)) 
Thus, the rule h#(f(c), f(c)) → g#(c, e, f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(c, e, U111(k, k))h#(f(c), f(c)) → g#(l, e, f(k))
h#(f(c), f(c)) → g#(c, e, f(d))h#(f(c), f(c)) → g#(c, e, f(l))
h#(f(c), f(c)) → g#(e, e, f(k))

Problem 162: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(l, l)A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(l, e, f(d))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, f(e), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(l))
h#(f(c), f(c))g#(l, U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(e, c), e, U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, e), U111(k, k))h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), e, f(l))h#(f(c), f(c))g#(U111(c, c), e, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, c, f(l))A#h#(d, d)
h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))h#(f(e), f(e))g#(e, U111(e, e), f(k))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(f(c), f(c))g#(c, c, f(l))
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(c, f(c), f(d))
h#(f(c), f(c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), f(l), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))A#g#(c, c, f(k))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(f(c), f(c))g#(l, f(c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(d))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), f(c), f(d))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(c, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(c, f(l), f(d))
h#(f(c), f(c))g#(l, f(c), f(d))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), f(c), f(d))
h#(f(c), f(c))g#(e, f(c), f(d))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))
h#(f(c), f(c))g#(c, f(e), f(d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(l, f(l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, e, f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(l, e, U111(d, d))
Thus, the rule h#(f(c), f(c)) → g#(l, e, f(d)) is deleted.

Problem 163: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(l, l)A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(e, e, U111(k, k))A#h#(U111(c, c), U111(c, c))
h#(U111(e, c), U111(e, c))g#(e, l, U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, U111(l, l))
h#(f(c), f(c))g#(c, c, f(l))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(f(e), f(e))g#(e, U111(e, e), f(k))
A#h#(d, d)h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
h#(f(c), f(c))g#(e, U111(c, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(k))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), f(k))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(c, f(c), f(d))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(f(c), f(c))g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, c, f(l))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), f(l), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))A#g#(c, c, f(k))
h#(f(c), f(c))g#(l, f(c), U111(k, k))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))h#(f(c), f(c))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(d))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), f(c), f(d))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(c, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(c, f(l), f(d))
h#(f(c), f(c))g#(l, f(c), f(d))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), f(c), f(d))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(c, f(e), f(d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(l, f(l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, e, U111(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U111(d, k))
 g#(e, e, U111(l, k))
Thus, the rule h#(f(c), f(c)) → g#(e, e, U111(k, k)) is deleted.

Problem 164: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(l, l)A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(c, f(c), f(d))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(U111(e, e), U111(e, e))g#(e, e, f(k))h#(f(c), f(c))g#(l, U111(e, c), f(k))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), f(l), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(e), l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
A#g#(c, c, f(k))h#(f(c), f(c))g#(l, f(c), U111(k, k))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(c, f(l), f(d))h#(f(c), f(c))g#(l, f(c), f(d))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(e, e, f(d))
h#(f(c), f(c))g#(U111(e, c), f(c), f(d))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))
h#(f(c), f(c))g#(e, f(c), f(d))h#(f(c), f(c))g#(c, f(e), f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, c), U111(l, c), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(e, c), U111(l, c), U111(d, d))g#(c, U111(l, c), f(d))
Thus, the rule h#(f(c), f(c)) → g#(U111(e, c), U111(l, c), f(d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U111(e, c), U111(l, c), U111(d, d))

Problem 165: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(l, l)A#h#(U111(e, c), U111(e, c))
h#(U111(e, e), U111(e, e))g#(e, e, f(d))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), f(l), f(d))h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))
h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
A#g#(c, c, f(k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))h#(f(c), f(c))g#(l, f(c), U111(k, k))
h#(f(c), f(c))g#(c, f(l), U111(k, k))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(l, U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), f(c), f(d))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(c, f(l), f(d))
h#(f(c), f(c))g#(l, f(c), f(d))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), f(c), f(d))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(c, f(e), f(d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(l, f(l), U111(k, k))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(e, e), U111(e, e)) → g#(e, e, f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U111(d, d))
Thus, the rule h#(U111(e, e), U111(e, e)) → g#(e, e, f(d)) is deleted.

Problem 166: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(U111(c, c), U111(c, c))g#(c, l, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(l, l))
A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(l, l)A#h#(U111(e, c), U111(e, c))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(k))
h#(f(c), f(c))g#(e, U111(c, c), U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(c, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))A#g#(c, c, f(k))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(f(c), f(c))g#(l, f(c), U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(e), f(d))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(l, U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(d))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(f(c), f(c))g#(c, l, f(k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(l))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(c, f(l), f(d))h#(f(c), f(c))g#(l, f(c), f(d))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(e, e, f(d))
h#(f(c), f(c))g#(U111(e, c), f(c), f(d))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))
h#(f(c), f(c))g#(e, f(c), f(d))h#(f(c), f(c))g#(c, f(e), f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(c, c), c, f(l))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(l, f(l), U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(c, c), U111(c, c)) → g#(c, l, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, l, f(l))g#(c, l, U111(l, l))
g#(e, l, f(l)) 
Thus, the rule h#(U111(c, c), U111(c, c)) → g#(c, l, f(l)) is replaced by the following rules:
h#(U111(c, c), U111(c, c)) → g#(e, l, f(l))h#(U111(c, c), U111(c, c)) → g#(l, l, f(l))

Problem 167: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#g#(l, e, f(k))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(l, l)
A#h#(U111(e, c), U111(e, c))A#g#(l, c, U111(k, k))
A#g#(c, c, f(d))A#g#(l, c, f(d))
A#g#(e, c, f(l))A#g#(e, e, U111(k, k))
A#g#(c, e, f(k))A#g#(c, l, f(d))
A#h#(U111(c, c), U111(c, c))A#g#(c, l, U111(k, k))
A#g#(e, e, f(d))A#g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(f(c), f(c))g#(l, f(c), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, c, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(l, l))h#(f(e), f(e))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))h#(f(c), f(c))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(U111(e, c), f(e), f(d))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(l, U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(d))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(f(c), f(c))g#(c, l, f(k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(e), f(e))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(l, f(c), f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(c, f(l), f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(e, e, f(d))
A#g#(l, l, f(k))h#(f(c), f(c))g#(U111(e, c), f(c), f(d))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(c, f(e), f(d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))A#g#(l, c, f(l))
A#g#(e, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(c, c), c, f(l))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))A#g#(c, l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
A#g#(e, l, U111(k, k))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → g#(l, e, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, e, U111(k, k)) 
g#(l, e, f(d)) 
g#(l, e, f(l)) 
Thus, the rule A# → g#(l, e, f(k)) is replaced by the following rules:
A# → g#(l, e, U111(k, k))A# → g#(l, e, f(l))
A# → g#(l, e, f(d))

Problem 168: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))h#(U111(e, c), U111(e, c))g#(l, c, f(l))
A#h#(f(e), f(e))h#(U111(e, c), U111(e, c))g#(e, e, f(l))
A#h#(l, l)A#h#(U111(e, c), U111(e, c))
h#(U111(e, c), U111(e, c))g#(e, l, f(l))h#(U111(e, c), U111(e, c))g#(l, l, f(l))
A#h#(U111(c, c), U111(c, c))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(l, l))
h#(f(e), f(e))g#(U111(e, e), e, f(l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(e), U111(e, c), f(k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(l, U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), f(c), f(d))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(c, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(e), f(e))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(U111(e, c), U111(e, c))g#(l, e, f(l))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(l, f(c), f(d))h#(f(c), f(c))g#(c, f(l), f(d))
h#(f(c), f(c))g#(e, c, f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(e, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))A#g#(l, l, f(k))
h#(f(c), f(c))g#(U111(e, c), f(c), f(d))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))
h#(f(c), f(c))g#(e, f(c), f(d))h#(f(c), f(c))g#(c, f(e), f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
A#g#(l, c, f(l))A#g#(e, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(c, c), c, f(l))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
A#g#(c, l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))A#g#(e, l, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(e, c), U111(e, c)) → g#(l, c, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, l, f(l))g#(l, c, U111(l, l))
g#(l, e, f(l)) 
Thus, the rule h#(U111(e, c), U111(e, c)) → g#(l, c, f(l)) is replaced by the following rules:
h#(U111(e, c), U111(e, c)) → g#(l, e, f(l))h#(U111(e, c), U111(e, c)) → g#(l, l, f(l))

Problem 169: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))h#(f(c), f(c))g#(e, e, f(l))
h#(f(c), f(c))g#(U111(e, e), e, f(d))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U111(e, e), e, U111(k, k))A#h#(l, l)
h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, e), U111(e, e), f(d))
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(e, e, U111(k, k))h#(f(c), f(c))g#(e, U111(e, e), f(d))
h#(f(c), f(c))g#(e, U111(e, e), f(l))h#(f(c), f(c))g#(e, U111(e, e), U111(k, k))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), f(k))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(l, U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(c, c), f(c), f(d))h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(c, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(e), f(e))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(U111(e, c), U111(e, c))g#(l, e, f(l))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(f(c), f(c))g#(c, f(l), f(d))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(l, f(c), f(d))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), f(c), f(d))
h#(f(c), f(c))g#(c, f(e), f(d))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))
A#g#(l, l, f(k))h#(f(c), f(c))g#(e, f(c), f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
A#g#(l, c, f(l))A#g#(e, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(c, c), c, f(l))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
A#g#(c, l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))A#g#(e, l, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, e, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U111(l, l))
Thus, the rule h#(f(c), f(c)) → g#(e, e, f(l)) is deleted.

Problem 170: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(l, l)A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(e, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, e), c, f(k))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), f(l))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(e, l, f(l))h#(f(c), f(c))g#(f(e), U111(e, c), f(l))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(f(c), f(c))g#(l, U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))
h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), f(c), f(d))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))
h#(f(c), f(c))g#(c, e, f(l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(f(e), f(e))g#(e, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(l))h#(f(c), f(c))g#(c, f(l), f(d))
h#(f(c), f(c))g#(l, f(c), f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(f(c), f(c))g#(f(e), c, f(k))h#(f(c), f(c))g#(e, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))A#g#(l, l, f(k))
h#(f(c), f(c))g#(U111(e, c), f(c), f(d))h#(f(c), f(c))g#(c, f(e), f(d))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))h#(f(c), f(c))g#(e, f(c), f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))A#g#(e, c, U111(k, k))
A#g#(l, c, f(l))h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), c, f(l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))A#g#(c, l, f(l))
A#g#(e, l, U111(k, k))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(l, f(l), U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, U111(e, c), U111(l, l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, c, U111(l, l))
Thus, the rule h#(f(c), f(c)) → g#(e, U111(e, c), U111(l, l)) is deleted.

Problem 171: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(e, U111(e, c), f(l))A#h#(f(c), f(c))
A#h#(f(e), f(e))h#(f(c), f(c))g#(U111(e, e), c, f(l))
h#(f(c), f(c))g#(U111(e, e), U111(e, c), U111(l, l))A#h#(l, l)
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(e, U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))h#(f(c), f(c))g#(e, l, f(l))
h#(f(c), f(c))g#(f(e), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(c, l, U111(k, k))
h#(f(c), f(c))g#(l, U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), f(c), f(d))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(e), f(e))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(l, f(c), f(d))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(f(c), f(c))g#(c, f(l), f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(f(c), f(c))g#(f(e), c, f(k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
A#g#(l, l, f(k))h#(f(c), f(c))g#(U111(e, c), f(c), f(d))
h#(f(c), f(c))g#(c, f(e), f(d))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))
h#(f(c), f(c))g#(e, f(c), f(d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
A#g#(e, c, U111(k, k))A#g#(l, c, f(l))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
A#g#(c, l, f(l))A#g#(e, l, U111(k, k))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, U111(e, c), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, c, f(l)) 
g#(e, U111(e, c), U111(l, l)) 
Thus, the rule h#(f(c), f(c)) → g#(e, U111(e, c), f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, U111(e, c), U111(l, l))h#(f(c), f(c)) → g#(e, c, f(l))

Problem 172: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(l, U111(e, e), f(d))A#h#(l, l)
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(e, U111(e, e), f(d))
h#(f(c), f(c))g#(l, e, f(d))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(c, U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(e, c), U111(k, k))h#(f(c), f(c))g#(l, U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, e, f(l))h#(f(c), f(c))g#(f(e), c, f(l))
h#(f(c), f(c))g#(l, U111(e, c), U111(k, k))h#(U111(e, e), U111(e, e))g#(e, U111(e, e), U111(k, k))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(U111(c, c), f(c), f(d))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))
h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(c, e, f(l))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(e), f(e))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(l, f(c), f(d))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(f(c), f(c))g#(c, f(l), f(d))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(f(c), f(c))g#(f(e), c, f(k))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(e, e, f(d))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))A#g#(l, l, f(k))
h#(f(c), f(c))g#(c, f(e), f(d))h#(f(c), f(c))g#(U111(e, c), f(c), f(d))
h#(f(c), f(c))g#(e, f(c), f(d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
A#g#(e, c, U111(k, k))A#g#(l, c, f(l))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
A#g#(c, l, f(l))A#g#(e, l, U111(k, k))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, U111(e, e), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, e, f(d)) 
g#(l, U111(e, e), U111(d, d)) 
Thus, the rule h#(f(c), f(c)) → g#(l, U111(e, e), f(d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(l, e, f(d))h#(f(c), f(c)) → g#(l, U111(e, e), U111(d, d))

Problem 173: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(l, l)A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(U111(c, c), f(c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), e, f(l))
h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))h#(f(c), f(c))g#(c, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(e, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), f(d))h#(f(c), f(c))g#(U111(e, c), f(l), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, e), U111(d, d))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(c, U111(e, c), f(d))h#(f(c), f(c))g#(e, l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
h#(f(c), f(c))g#(l, U111(c, c), f(d))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(f(c), f(c))g#(U111(e, c), f(e), f(d))h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(c, l, f(k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(e), f(e))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(f(c), f(c))g#(c, f(l), f(d))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(f(c), f(c))g#(l, f(c), f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(f(c), f(c))g#(e, c, f(d))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(f(e), c, f(k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))A#g#(l, l, f(k))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))h#(f(c), f(c))g#(c, f(e), f(d))
h#(f(c), f(c))g#(U111(e, c), f(c), f(d))h#(f(c), f(c))g#(e, f(c), f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))A#g#(l, c, f(l))
A#g#(e, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(c, c), c, f(l))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))A#g#(c, l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
A#g#(e, l, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(l, f(l), U111(k, k))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(c, c), f(c), U111(d, d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(e, c), f(c), U111(d, d))g#(U111(c, c), f(l), U111(d, d))
 g#(U111(c, c), U111(c, c), U111(d, d))
 g#(U111(c, c), f(e), U111(d, d))
 g#(U111(l, c), f(c), U111(d, d))
Thus, the rule h#(f(c), f(c)) → g#(U111(c, c), f(c), U111(d, d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U111(e, c), f(c), U111(d, d))

Problem 174: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(l, l)h#(f(c), f(c))g#(U111(e, c), c, f(d))
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(U111(e, c), l, U111(d, d))
h#(f(c), f(c))g#(c, U111(e, c), U111(d, d))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(c, U111(e, c), f(d))h#(f(c), f(c))g#(U111(e, e), c, U111(l, l))
h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))h#(f(c), f(c))g#(l, U111(c, c), f(d))
h#(f(c), f(c))g#(U111(e, c), e, f(d))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(e), f(d))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(c, e, f(l))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))h#(f(c), f(c))g#(c, l, f(k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(e), f(e))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(f(c), f(c))g#(c, f(l), f(d))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(f(c), f(c))g#(l, f(c), f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(f(c), f(c))g#(f(e), c, f(k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(e, f(c), f(d))
A#g#(l, l, f(k))h#(f(c), f(c))g#(c, f(e), f(d))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), f(c), f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))A#g#(l, c, f(l))
A#g#(e, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(c, c), c, f(l))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))A#g#(c, l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
A#g#(e, l, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(l, f(l), U111(k, k))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, c), c, f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(e, c), e, f(d)) 
g#(U111(e, c), c, U111(d, d)) 
g#(c, c, f(d)) 
g#(U111(e, c), l, f(d)) 
Thus, the rule h#(f(c), f(c)) → g#(U111(e, c), c, f(d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U111(e, c), l, f(d))h#(f(c), f(c)) → g#(c, c, f(d))
h#(f(c), f(c)) → g#(U111(e, c), e, f(d))h#(f(c), f(c)) → g#(U111(e, c), c, U111(d, d))

Problem 175: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(l, U111(e, c), U111(d, d))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(c, U111(e, e), f(d))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(d))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, l))h#(f(c), f(c))g#(e, U111(c, c), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(l, l))h#(f(c), f(c))g#(c, e, f(l))
h#(U111(e, c), U111(e, c))g#(c, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(c, l, f(k))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(e), f(e))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(f(c), f(c))g#(c, f(l), f(d))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(f(c), f(c))g#(l, f(c), f(d))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(f(c), f(c))g#(f(e), c, f(k))
h#(l, l)g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))A#h#(l, l)
A#g#(l, l, f(k))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))h#(f(c), f(c))g#(c, f(e), f(d))
h#(f(c), f(c))g#(U111(e, c), f(c), f(d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))
A#g#(l, c, f(l))A#g#(e, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(c, c), c, f(l))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
A#g#(c, l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))A#g#(e, l, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, U111(e, c), U111(d, d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(l, c, U111(d, d))
Thus, the rule h#(f(c), f(c)) → g#(l, U111(e, c), U111(d, d)) is deleted.

Problem 176: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))h#(f(c), f(c))g#(e, e, f(l))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(l, e, f(l))h#(U111(c, c), U111(c, c))g#(U111(l, c), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))A#h#(U111(e, e), U111(e, e))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(U111(c, c), U111(e, c), f(d))
h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))h#(f(c), f(c))g#(l, U111(e, e), f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))h#(f(c), f(c))g#(c, f(l), f(d))
h#(f(c), f(c))g#(l, f(c), f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(f(c), f(c))g#(f(e), c, f(k))
h#(l, l)g#(l, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(e, e, f(d))
A#h#(l, l)A#g#(l, l, f(k))
h#(f(c), f(c))g#(e, f(c), f(d))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))
h#(f(c), f(c))g#(c, f(e), f(d))h#(f(c), f(c))g#(U111(e, c), f(c), f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))A#g#(e, c, U111(k, k))
A#g#(l, c, f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), c, f(l))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))A#g#(c, l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
A#g#(e, l, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(l, f(l), U111(k, k))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(e), c, f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, e, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U111(l, l))
Thus, the rule h#(f(c), f(c)) → g#(e, e, f(l)) is deleted.

Problem 177: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(c, U111(e, c), U111(d, d))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), f(d))h#(f(c), f(c))g#(U111(c, c), c, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))A#h#(U111(e, e), U111(e, e))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, U111(e, e), f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(f(c), f(c))g#(c, l, f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(f(c), f(c))g#(c, f(l), f(d))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(l, f(c), f(d))h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(l, l)g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(f(c), f(c))g#(f(e), c, f(k))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(e, e, f(d))
h#(f(c), f(c))g#(e, f(c), f(d))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))
A#h#(l, l)A#g#(l, l, f(k))
h#(f(c), f(c))g#(c, f(e), f(d))h#(f(c), f(c))g#(U111(e, c), f(c), f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))A#g#(l, c, f(l))
A#g#(e, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(c, c), c, f(l))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))A#g#(c, l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
A#g#(e, l, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(l, f(l), U111(k, k))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(e), c, f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(c, U111(e, c), U111(d, d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, U111(e, c), U111(d, d))g#(c, c, U111(d, d))
g#(l, U111(e, c), U111(d, d)) 
Thus, the rule h#(f(c), f(c)) → g#(c, U111(e, c), U111(d, d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(l, U111(e, c), U111(d, d))h#(f(c), f(c)) → g#(e, U111(e, c), U111(d, d))

Problem 178: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(U111(c, c), U111(c, c))g#(e, e, f(d))A#h#(f(c), f(c))
h#(U111(c, c), U111(c, c))g#(e, e, U111(k, k))A#h#(U111(c, c), U111(c, c))
A#h#(f(e), f(e))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
A#h#(U111(e, e), U111(e, e))h#(f(c), f(c))g#(U111(l, l), U111(c, c), f(d))
h#(f(c), f(c))g#(l, U111(e, e), f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(l))
h#(f(c), f(c))g#(c, l, f(d))h#(f(c), f(c))g#(l, c, U111(k, k))
h#(U111(e, e), U111(e, e))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(c, f(l), f(d))
h#(f(c), f(c))g#(l, f(c), f(d))h#(f(c), f(c))g#(f(l), U111(e, e), U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(d))h#(f(c), f(c))g#(f(e), c, f(k))
h#(f(c), f(c))g#(e, c, f(d))h#(l, l)g#(l, l, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(e, f(c), f(d))
A#h#(l, l)h#(f(c), f(c))g#(c, f(e), f(d))
A#g#(l, l, f(k))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), f(c), f(d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
A#g#(e, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
A#g#(l, c, f(l))h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(c, c), c, f(l))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
A#g#(c, l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))A#g#(e, l, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(c, c), l, f(d))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), c, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(c, c), U111(c, c)) → g#(e, e, f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U111(d, d))
Thus, the rule h#(U111(c, c), U111(c, c)) → g#(e, e, f(d)) is deleted.

Problem 179: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))h#(f(c), f(c))g#(U111(e, e), c, U111(k, k))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(f(c), f(c))g#(f(e), e, f(k))h#(f(c), f(c))g#(f(e), c, f(l))
h#(f(c), f(c))g#(e, c, f(k))h#(f(c), f(c))g#(U111(e, e), c, f(l))
h#(f(c), f(c))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(U111(e, e), e, f(k))
h#(f(c), f(c))g#(U111(e, e), l, f(k))h#(l, l)g#(l, l, U111(k, k))
h#(f(c), f(c))g#(e, c, f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(e, e, f(d))
h#(f(c), f(c))g#(f(e), l, f(k))h#(f(c), f(c))g#(c, f(e), f(d))
h#(f(c), f(c))g#(e, f(c), f(d))A#g#(l, l, f(k))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), f(c), f(d))
A#h#(l, l)h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(c), f(c))g#(f(e), e, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
A#h#(U111(e, e), e)h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
A#g#(e, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
A#g#(l, c, f(l))h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(c, c), c, f(l))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
A#g#(c, l, f(l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))A#g#(e, l, U111(k, k))
h#(f(c), f(c))g#(l, f(l), U111(k, k))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(d, d))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(U111(c, c), l, f(d))
h#(f(c), f(c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(e), c, f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(U111(e, e), c, f(d))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, e), c, U111(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(e, e), e, U111(k, k))g#(U111(e, e), c, U111(d, k))
g#(e, c, U111(k, k))g#(U111(e, e), c, U111(l, k))
g#(U111(e, e), l, U111(k, k)) 
Thus, the rule h#(f(c), f(c)) → g#(U111(e, e), c, U111(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U111(e, e), e, U111(k, k))h#(f(c), f(c)) → g#(U111(e, e), l, U111(k, k))
h#(f(c), f(c)) → g#(e, c, U111(k, k))

Problem 180: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(U111(c, c), U111(c, c))
A#h#(f(e), f(e))h#(f(c), f(c))g#(U111(e, e), e, U111(l, l))
h#(f(c), f(c))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(U111(e, e), l, U111(l, l))
h#(f(c), f(c))g#(U111(e, e), l, f(k))h#(f(c), f(c))g#(e, c, f(d))
h#(l, l)g#(l, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(k))
h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(e, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(f(e), l, f(k))
h#(f(c), f(c))g#(c, f(e), f(d))h#(f(c), f(c))g#(e, f(c), f(d))
A#g#(l, l, f(k))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), f(c), f(d))A#h#(l, l)
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(e), e, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))A#h#(U111(e, e), e)
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))A#g#(e, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))A#g#(l, c, f(l))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(c, c), c, f(l))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
A#g#(c, l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
A#g#(e, l, U111(k, k))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(c, c), l, f(d))h#(f(c), f(c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), c, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(U111(e, e), c, f(d))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, e), e, U111(l, l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U111(l, l))
Thus, the rule h#(f(c), f(c)) → g#(U111(e, e), e, U111(l, l)) is deleted.

Problem 181: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(U111(c, c), U111(c, c))g#(c, l, f(l))h#(U111(c, c), U111(c, c))g#(e, l, f(k))
h#(U111(c, c), U111(c, c))g#(c, c, f(k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(l, k))
A#h#(f(c), f(c))A#h#(U111(c, c), U111(c, c))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(d, d))A#h#(f(e), f(e))
h#(U111(c, c), U111(c, c))g#(e, l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(l))h#(U111(c, c), U111(c, c))g#(l, l, f(k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(c, c), e, f(d))
h#(U111(c, c), U111(c, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(U111(c, c), U111(c, c))g#(e, l, f(l))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(l))h#(U111(c, c), U111(c, c))g#(c, c, f(d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(d))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(U111(e, c), f(c), f(d))A#g#(l, l, f(k))
A#h#(l, l)h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))
h#(f(c), f(c))g#(f(e), l, f(k))h#(f(c), f(c))g#(c, f(e), f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, l, f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(e), e, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
A#h#(U111(e, e), e)h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
A#g#(l, c, f(l))h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
A#g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), c, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
A#g#(c, l, f(l))A#g#(e, l, U111(k, k))
h#(f(c), f(c))g#(l, f(l), U111(k, k))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(d, d))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), l, f(d))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), c, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(U111(e, e), c, f(d))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(c, c), U111(c, c)) → g#(c, l, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, l, f(l))g#(c, l, U111(l, l))
g#(e, l, f(l)) 
Thus, the rule h#(U111(c, c), U111(c, c)) → g#(c, l, f(l)) is replaced by the following rules:
h#(U111(c, c), U111(c, c)) → g#(e, l, f(l))h#(U111(c, c), U111(c, c)) → g#(l, l, f(l))

Problem 182: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(U111(c, c), U111(c, c))g#(e, e, f(d))A#h#(f(c), f(c))
h#(U111(c, c), U111(c, c))g#(e, e, U111(k, k))A#h#(U111(c, c), U111(c, c))
A#h#(f(e), f(e))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, U111(l, k))h#(U111(c, c), U111(c, c))g#(e, c, f(l))
h#(U111(c, c), U111(c, c))g#(l, l, f(k))h#(U111(c, c), U111(c, c))g#(l, c, f(l))
h#(U111(c, c), U111(c, c))g#(c, l, U111(k, k))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(l))
h#(U111(c, c), U111(c, c))g#(e, l, f(l))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(U111(e, c), c, f(l))h#(U111(c, c), U111(c, c))g#(e, c, f(k))
h#(U111(c, c), U111(c, c))g#(c, c, f(d))h#(U111(c, c), U111(c, c))g#(U111(c, c), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(d))h#(f(c), f(c))g#(e, e, f(d))
h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))
A#h#(l, l)h#(f(c), f(c))g#(f(e), l, f(k))
h#(f(c), f(c))g#(e, f(c), f(d))h#(f(c), f(c))g#(U111(e, c), f(c), f(d))
h#(f(c), f(c))g#(c, f(e), f(d))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))
A#g#(l, l, f(k))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, l, f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(f(e), e, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
A#h#(U111(e, e), e)h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))A#g#(e, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))
A#g#(l, c, f(l))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(c, c), c, f(l))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))A#g#(c, l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
A#g#(e, l, U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(l, f(l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(c, c), l, f(d))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
A#h#(U111(e, c), U111(e, c))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(e, e), c, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(c, c), U111(c, c)) → g#(e, e, f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U111(d, d))
Thus, the rule h#(U111(c, c), U111(c, c)) → g#(e, e, f(d)) is deleted.

Problem 183: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(l, l))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
h#(U111(c, c), U111(c, c))g#(e, l, f(l))h#(U111(c, c), U111(c, c))g#(e, e, f(l))
h#(U111(c, c), U111(c, c))g#(e, c, f(k))h#(U111(c, c), U111(c, c))g#(U111(c, c), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(c, c, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(k))
h#(U111(c, c), U111(c, c))g#(U111(e, c), l, f(d))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(d))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))A#g#(l, l, f(k))
h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))A#h#(l, l)
h#(f(c), f(c))g#(U111(e, c), f(c), f(d))h#(f(c), f(c))g#(e, f(c), f(d))
h#(f(c), f(c))g#(f(e), l, f(k))h#(f(c), f(c))g#(c, f(e), f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, l, f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(f(e), e, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))A#h#(U111(e, e), e)
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))A#g#(e, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))
A#g#(l, c, f(l))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), c, f(l))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
A#g#(c, l, f(l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))A#g#(e, l, U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(d, d))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(c, c), l, f(d))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))A#h#(U111(e, c), U111(e, c))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(e, e), c, f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(c, c), U111(c, c)) → g#(U111(e, c), l, U111(l, l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(c, l, U111(l, l))
Thus, the rule h#(U111(c, c), U111(c, c)) → g#(U111(e, c), l, U111(l, l)) is deleted.

Problem 184: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(U111(c, c), U111(c, c))
A#h#(f(e), f(e))h#(U111(c, c), U111(c, c))g#(U111(e, c), e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, k))h#(f(c), f(c))g#(U111(e, e), e, U111(d, d))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), f(c), U111(l, k))
h#(f(c), f(c))g#(c, f(e), f(d))h#(f(c), f(c))g#(e, f(c), f(d))
A#g#(l, l, f(k))h#(f(c), f(c))g#(U111(e, c), f(c), f(d))
h#(f(c), f(c))g#(f(e), l, f(k))A#h#(l, l)
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U111(c, c), U111(c, c))g#(l, l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(c), f(c))g#(f(e), e, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))A#h#(U111(e, e), e)
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))A#g#(e, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))
A#g#(l, c, f(l))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), c, f(l))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
A#g#(c, l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))A#g#(e, l, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(c, c), l, f(d))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))A#h#(U111(e, c), U111(e, c))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(e, e), c, f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, f(l), f(k))
h#(U111(c, c), U111(c, c))g#(e, c, f(d))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(c, c), U111(c, c)) → g#(U111(e, c), e, f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(c, e, f(d)) 
g#(U111(e, c), e, U111(d, d)) 
Thus, the rule h#(U111(c, c), U111(c, c)) → g#(U111(e, c), e, f(d)) is replaced by the following rules:
h#(U111(c, c), U111(c, c)) → g#(U111(e, c), e, U111(d, d))h#(U111(c, c), U111(c, c)) → g#(c, e, f(d))

Problem 185: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(U111(c, c), U111(c, c))
A#h#(f(e), f(e))h#(f(c), f(c))g#(U111(e, c), U111(c, c), U111(l, k))
h#(f(c), f(c))g#(e, f(c), f(d))h#(f(c), f(c))g#(U111(e, c), f(c), f(d))
A#g#(l, l, f(k))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, l, f(l))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(c), f(c))g#(f(e), e, U111(k, k))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))A#h#(U111(e, e), e)
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))A#g#(e, c, U111(k, k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))A#g#(l, c, f(l))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), c, f(l))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))A#g#(c, l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
A#g#(e, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), U111(l, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(c, c), l, f(d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(e, e), c, f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, f(l), f(k))
h#(U111(c, c), U111(c, c))g#(e, c, f(d))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, c), U111(c, c), U111(l, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(e, c), U111(l, c), U111(l, k))g#(c, U111(c, c), U111(l, k))
g#(U111(e, c), U111(e, c), U111(l, k)) 
Thus, the rule h#(f(c), f(c)) → g#(U111(e, c), U111(c, c), U111(l, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c)) → g#(U111(e, c), U111(l, c), U111(l, k))

Problem 186: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(U111(c, c), U111(c, c))
A#h#(f(e), f(e))h#(f(c), f(c))g#(U111(e, c), f(e), f(d))
h#(f(c), f(c))g#(U111(e, c), U111(c, c), f(d))h#(f(c), f(c))g#(l, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(e, U111(e, c), f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))
h#(f(c), f(c))g#(c, l, f(d))h#(f(c), f(c))g#(l, f(c), f(d))
h#(f(c), f(c))g#(c, f(l), f(d))h#(f(c), f(c))g#(e, c, f(d))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(e, f(c), f(d))
A#g#(l, l, f(k))h#(f(c), f(c))g#(c, f(e), f(d))
h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, l, f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(f(e), e, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
A#h#(U111(e, e), e)h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))A#g#(l, c, f(l))
A#g#(e, c, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), c, f(l))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))A#g#(c, l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
A#g#(e, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), U111(l, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(l, f(l), U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), l, f(d))h#(f(c), f(c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(e, e), c, f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, f(l), f(k))
h#(U111(c, c), U111(c, c))g#(e, c, f(d))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, c), f(e), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(e, c), f(e), U111(d, d)) 
g#(U111(e, c), U111(e, e), f(d)) 
g#(c, f(e), f(d)) 
Thus, the rule h#(f(c), f(c)) → g#(U111(e, c), f(e), f(d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U111(e, c), f(e), U111(d, d))h#(f(c), f(c)) → g#(c, f(e), f(d))
h#(f(c), f(c)) → g#(U111(e, c), U111(e, e), f(d))

Problem 187: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(l, c, f(d))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(c, e, f(d))
A#h#(f(e), f(e))h#(f(c), f(c))g#(l, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(e, e), f(d))h#(f(c), f(c))g#(e, U111(e, c), f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(c, l, f(d))
h#(f(c), f(c))g#(l, f(c), f(d))h#(f(c), f(c))g#(c, f(l), f(d))
h#(f(c), f(c))g#(e, c, f(d))h#(f(c), f(c))g#(e, e, f(d))
h#(f(c), f(c))g#(e, f(c), f(d))A#g#(l, l, f(k))
h#(f(c), f(c))g#(c, f(e), f(d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(U111(c, c), U111(c, c))g#(l, l, f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(f(e), e, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))A#h#(U111(e, e), e)
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
A#g#(l, c, f(l))A#g#(e, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), c, f(l))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
A#g#(c, l, f(l))A#g#(e, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(e), U111(l, k))h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(c, c), l, f(d))
h#(f(c), f(c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(e, e), c, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, f(l), f(k))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, c, f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, e, f(d))g#(l, c, U111(d, d))
g#(l, l, f(d)) 
Thus, the rule h#(f(c), f(c)) → g#(l, c, f(d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(l, e, f(d))h#(f(c), f(c)) → g#(l, l, f(d))

Problem 188: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(e, f(e), f(d))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(c, U111(e, e), f(d))h#(f(c), f(c))g#(l, U111(e, e), f(d))
h#(f(c), f(c))g#(e, f(c), f(d))h#(U111(c, c), U111(c, c))g#(c, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, l, f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(U111(c, c), U111(c, c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, f(k))
h#(f(c), f(c))g#(f(e), e, U111(k, k))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))
A#h#(U111(e, e), e)h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(d, d))A#g#(e, c, U111(k, k))
A#g#(l, c, f(l))h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), c, f(l))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
A#g#(c, l, f(l))A#g#(e, l, U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(d, d))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(U111(e, c), f(e), U111(l, k))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(c, c), l, f(d))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))A#g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(e, e), c, f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, f(l), f(k))
h#(U111(c, c), U111(c, c))g#(e, c, f(d))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, f(e), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, U111(e, e), f(d))g#(e, f(e), U111(d, d))
Thus, the rule h#(f(c), f(c)) → g#(e, f(e), f(d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, U111(e, e), f(d))

Problem 189: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))h#(f(c), f(c))g#(l, f(l), f(l))
h#(f(c), f(c))g#(U111(c, c), f(l), U111(k, k))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(f(c), f(l), f(l))A#h#(f(e), f(e))
h#(f(c), f(c))g#(f(c), f(l), f(d))h#(f(c), f(c))g#(U111(c, c), f(l), f(d))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(k, k))h#(f(c), f(c))g#(c, f(l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(k, k))
h#(f(c), f(c))g#(c, f(l), f(d))h#(f(c), f(c))g#(f(l), f(l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), f(l))h#(U111(c, c), U111(c, c))g#(l, l, f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))
h#(f(c), f(c))g#(f(l), U111(e, c), f(l))h#(f(c), f(c))g#(f(e), e, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))
A#h#(U111(e, e), e)h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))A#g#(l, c, f(l))
A#g#(e, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), c, f(l))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
A#g#(c, l, f(l))A#g#(e, l, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(e), U111(l, k))h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(l, f(l), U111(k, k))h#(f(c), f(c))g#(U111(c, c), l, f(d))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(f(e), f(l), f(k))
h#(f(c), f(c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))
A#h#(U111(e, c), U111(e, c))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))A#g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(e, e), c, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, f(l), f(k))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, f(l), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(l, U111(l, l), f(l))
 g#(l, f(l), U111(l, l))
Thus, the rule h#(f(c), f(c)) → g#(l, f(l), f(l)) is deleted.

Problem 190: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(l, l))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(l, l))h#(f(c), f(c))g#(f(l), U111(e, c), f(l))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(e), f(e))g#(U111(e, e), f(e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), c, f(k))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(c), f(c))g#(f(e), e, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))A#h#(U111(e, e), e)
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(d, d))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
A#g#(l, c, f(l))h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))A#g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))A#g#(c, l, f(l))
A#g#(e, l, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(e), U111(l, k))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))h#(f(c), f(c))g#(U111(c, c), l, f(d))
h#(f(c), f(c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(f(e), f(l), f(k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
A#g#(l, l, U111(k, k))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(l, l))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(e, e), c, f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, f(l), f(k))
h#(U111(c, c), U111(c, c))g#(e, c, f(d))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, e), U111(l, l), U111(l, l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, U111(l, l), U111(l, l))
Thus, the rule h#(f(c), f(c)) → g#(U111(e, e), U111(l, l), U111(l, l)) is deleted.

Problem 191: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(c, e, f(d))A#h#(f(e), f(e))
h#(f(c), f(c))g#(l, e, f(l))h#(f(c), f(c))g#(U111(e, c), e, f(d))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(k))
h#(f(c), f(c))g#(e, c, f(k))h#(f(c), f(c))g#(c, e, f(l))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(l, c, f(k))
h#(f(c), f(c))g#(c, l, f(d))h#(f(c), f(c))g#(c, e, f(k))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(f(c), f(c))g#(U111(e, c), c, U111(l, l))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(c), f(c))g#(f(e), e, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))
h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))
A#h#(U111(e, e), e)h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(d, d))A#g#(l, c, f(l))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))A#g#(e, c, U111(k, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(c, c), c, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))
A#g#(c, l, f(l))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
A#g#(e, l, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(e), U111(l, k))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(f(e), f(l), f(k))h#(f(c), f(c))g#(U111(c, c), l, f(d))
h#(f(c), f(c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
A#g#(l, l, U111(k, k))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(l, l))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(U111(e, e), c, f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, f(l), f(k))
h#(U111(c, c), U111(c, c))g#(e, c, f(d))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(c, e, f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, e, f(d))g#(c, e, U111(d, d))
g#(e, e, f(d)) 
Thus, the rule h#(f(c), f(c)) → g#(c, e, f(d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(l, e, f(d))h#(f(c), f(c)) → g#(e, e, f(d))

Problem 192: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(l, e, f(d))A#h#(f(c), f(c))
h#(f(c), f(c))g#(l, c, f(l))A#h#(U111(c, c), U111(c, c))
A#h#(f(e), f(e))h#(f(c), f(c))g#(l, e, U111(k, k))
h#(f(c), f(c))g#(l, e, f(l))h#(f(c), f(c))g#(l, l, f(k))
h#(f(c), f(c))g#(c, e, f(k))h#(f(c), f(c))g#(c, l, f(d))
h#(f(c), f(c))g#(l, c, U111(k, k))h#(f(c), f(c))g#(e, c, f(d))
h#(f(c), f(c))g#(e, e, f(d))h#(f(c), f(c))g#(U111(e, c), c, U111(l, l))
h#(f(c), f(c))g#(f(e), e, U111(k, k))h#(U111(c, c), U111(c, c))g#(l, e, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))A#h#(U111(e, e), e)
h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))A#g#(l, c, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(d, d))A#g#(e, c, U111(k, k))
h#(U111(e, c), U111(e, c))g#(l, e, f(d))h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(c, c), c, f(l))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))A#g#(c, l, f(l))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), l, f(l))A#g#(e, l, U111(k, k))
h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(e), U111(l, k))
h#(f(c), f(c))g#(l, f(l), U111(k, k))h#(f(c), f(c))g#(f(e), f(l), f(k))
h#(f(c), f(c))g#(U111(c, c), l, f(d))h#(f(c), f(c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))A#h#(U111(e, c), U111(e, c))
A#g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(l, l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(e, e), c, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, f(l), f(k))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, e, f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(l, e, U111(d, d))
Thus, the rule h#(f(c), f(c)) → g#(l, e, f(d)) is deleted.

Problem 193: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(U111(c, c), U111(c, c))
A#h#(f(e), f(e))h#(f(c), f(c))g#(e, U111(e, e), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, c), U111(d, d))
A#g#(e, c, U111(k, k))h#(f(c), f(c))g#(U111(e, c), c, U111(k, k))
h#(f(c), f(c))g#(f(e), U111(e, c), U111(k, k))h#(U111(e, c), U111(e, c))g#(l, e, f(d))
h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))A#g#(l, c, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(c, c), c, f(l))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))A#g#(c, l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
A#g#(e, l, U111(k, k))h#(f(c), f(c))g#(f(l), f(c), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(d, d))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(e), U111(l, k))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(f(e), f(l), f(k))h#(f(c), f(c))g#(U111(c, c), l, f(d))
h#(f(c), f(c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))
A#g#(l, l, U111(k, k))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(l, l))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(c), f(c))g#(U111(e, e), c, f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, f(l), f(k))
h#(U111(c, c), U111(c, c))g#(e, c, f(d))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, U111(e, e), U111(d, d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U111(d, d))
Thus, the rule h#(f(c), f(c)) → g#(e, U111(e, e), U111(d, d)) is deleted.

Problem 194: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(e, e, U111(k, k))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))h#(f(c), f(c))g#(e, l, U111(k, k))
A#h#(f(e), f(e))h#(f(c), f(c))g#(f(e), l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), e, U111(k, k))h#(f(c), f(c))g#(f(e), U111(e, c), U111(l, k))
h#(f(c), f(c))g#(f(e), e, U111(k, k))h#(U111(e, c), U111(e, c))g#(U111(e, c), c, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(c, c), c, f(l))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
A#g#(c, l, f(l))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))
A#g#(e, l, U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(U111(e, c), f(e), U111(l, k))
h#(f(c), f(c))g#(l, f(l), U111(k, k))h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), f(l), f(k))h#(f(c), f(c))g#(U111(c, c), l, f(d))
h#(f(c), f(c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
A#g#(l, l, U111(k, k))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(l, l))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(d, d))
h#(U111(c, c), U111(c, c))g#(e, c, f(d))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(l, f(e), f(k))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(U111(e, e), c, f(d))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, e, U111(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U111(d, k))
 g#(e, e, U111(l, k))
Thus, the rule h#(f(c), f(c)) → g#(e, e, U111(k, k)) is deleted.

Problem 195: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(l, e, f(l))h#(f(c), f(c))g#(U111(e, c), c, U111(l, l))
A#h#(f(c), f(c))h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, c), l, f(l))
h#(f(c), f(c))g#(U111(e, c), U111(e, c), U111(l, k))h#(f(c), f(c))g#(U111(e, c), f(l), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(k, k))A#g#(c, l, f(l))
A#h#(U111(c, c), U111(c, c))A#g#(e, l, U111(k, k))
h#(f(c), f(c))g#(f(l), f(c), U111(k, k))h#(f(c), f(c))g#(c, U111(e, c), U111(l, l))
h#(f(c), f(c))g#(U111(e, c), f(e), U111(l, k))h#(f(c), f(c))g#(l, f(l), U111(k, k))
h#(f(c), f(c))g#(U111(l, l), U111(e, c), U111(d, d))h#(f(c), f(c))g#(U111(c, c), l, f(d))
h#(f(c), f(c))g#(f(e), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
h#(f(c), f(c))g#(U111(e, c), c, f(d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
A#h#(U111(e, c), U111(e, c))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))A#g#(l, l, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, e), f(l))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(l, l))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(U111(c, c), U111(c, c))g#(e, c, f(d))h#(f(c), f(c))g#(U111(e, e), c, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, e, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(l, e, U111(l, l))
Thus, the rule h#(f(c), f(c)) → g#(l, e, f(l)) is deleted.

Problem 196: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(U111(e, c), c, U111(d, d))h#(f(c), f(c))g#(U111(e, c), l, f(d))
h#(f(c), f(c))g#(c, l, f(d))h#(f(c), f(c))g#(e, c, f(d))
A#h#(f(c), f(c))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(f(e), f(l), f(k))h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(l, k))
h#(f(c), f(c))g#(U111(c, c), l, f(d))h#(f(c), f(c))g#(U111(e, c), e, U111(l, l))
A#h#(U111(e, c), U111(e, c))h#(f(c), f(c))g#(U111(c, c), U111(l, l), f(l))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
A#g#(l, l, U111(k, k))h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(c, e, f(d))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))h#(f(c), f(c))g#(U111(e, c), f(l), f(l))
h#(f(c), f(c))g#(e, U111(e, c), U111(l, k))A#h#(f(e), f(e))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))h#(f(c), f(c))g#(e, l, f(l))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(l, l))h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(f(e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(U111(c, c), U111(c, c))g#(e, c, f(d))h#(f(c), f(c))g#(U111(e, e), c, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))A#g#(e, l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, c), c, U111(d, d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(e, c), l, U111(d, d))g#(c, c, U111(d, d))
g#(U111(e, c), e, U111(d, d)) 
Thus, the rule h#(f(c), f(c)) → g#(U111(e, c), c, U111(d, d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U111(e, c), e, U111(d, d))h#(f(c), f(c)) → g#(U111(e, c), l, U111(d, d))

Problem 197: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(U111(e, e), U111(l, l), U111(d, d))A#h#(f(c), f(c))
h#(f(c), f(c))g#(U111(e, e), f(l), U111(d, d))A#h#(U111(c, c), U111(c, c))
h#(f(c), f(c))g#(U111(e, c), U111(l, l), U111(d, d))h#(U111(e, c), U111(e, c))g#(l, U111(e, c), U111(l, k))
A#g#(l, l, U111(k, k))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(f(e), U111(e, e), f(l))h#(f(c), f(c))g#(c, e, f(d))
h#(f(c), f(c))g#(f(c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(f(c), f(c))g#(c, U111(c, c), U111(d, d))
h#(f(c), f(c))g#(U111(e, c), f(l), f(l))h#(f(c), f(c))g#(e, U111(e, c), U111(l, k))
h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(l, l))h#(f(c), f(c))g#(e, l, f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(d, d))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(f(c), f(c))g#(U111(e, e), c, f(d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(U111(c, c), l, U111(d, d))A#g#(e, l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(e, e), U111(l, l), U111(d, d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, U111(l, l), U111(d, d))
Thus, the rule h#(f(c), f(c)) → g#(U111(e, e), U111(l, l), U111(d, d)) is deleted.

Problem 198: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(U111(c, c), U111(e, c), U111(d, d))h#(f(c), f(c))g#(f(e), U111(e, c), U111(d, d))
h#(f(c), f(c))g#(f(l), U111(e, c), U111(d, d))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))A#h#(U111(e, c), U111(e, c))
h#(f(c), f(c))g#(U111(e, e), l, U111(d, d))h#(U111(c, c), U111(c, c))g#(U111(c, c), c, f(d))
A#h#(f(e), f(e))h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(l, l))
h#(f(c), f(c))g#(e, l, f(l))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(d, d))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(U111(e, e), c, f(d))
h#(f(c), f(c))g#(U111(c, c), l, U111(d, d))A#g#(e, l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(c, c), U111(e, c), U111(d, d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(e, c), U111(e, c), U111(d, d)) 
g#(U111(c, c), c, U111(d, d)) 
g#(U111(l, c), U111(e, c), U111(d, d)) 
Thus, the rule h#(f(c), f(c)) → g#(U111(c, c), U111(e, c), U111(d, d)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U111(c, c), c, U111(d, d))h#(f(c), f(c)) → g#(U111(l, c), U111(e, c), U111(d, d))
h#(f(c), f(c)) → g#(U111(e, c), U111(e, c), U111(d, d))

Problem 199: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))h#(U111(c, c), U111(c, c))g#(U111(e, c), l, U111(d, d))
A#h#(U111(c, c), U111(c, c))A#h#(U111(e, c), U111(e, c))
A#h#(f(e), f(e))h#(f(c), f(c))g#(e, U111(e, c), U111(d, d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(l, l))h#(f(c), f(c))g#(e, l, f(l))
h#(U111(c, c), U111(c, c))g#(l, U111(c, c), f(l))h#(f(e), f(e))g#(f(e), U111(e, e), f(k))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(U111(c, c), U111(c, c))g#(e, c, f(d))h#(f(c), f(c))g#(U111(e, e), c, f(d))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(U111(c, c), l, U111(d, d))h#(f(c), f(c))g#(e, c, f(l))
A#g#(e, l, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U111(c, c), U111(c, c)) → g#(U111(e, c), l, U111(d, d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(c, l, U111(d, d))
Thus, the rule h#(U111(c, c), U111(c, c)) → g#(U111(e, c), l, U111(d, d)) is deleted.

Problem 200: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(d, d))A#h#(f(c), f(c))
A#h#(U111(c, c), U111(c, c))h#(f(e), f(e))g#(f(e), U111(e, e), U111(k, k))
A#h#(U111(e, c), U111(e, c))h#(f(e), f(e))g#(U111(e, e), e, f(k))
A#h#(f(e), f(e))h#(f(e), f(e))g#(e, U111(e, e), f(d))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), f(k))h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(d, d))
h#(f(c), f(c))g#(f(e), c, f(d))h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(l, f(e), f(k))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(f(c), f(c))g#(U111(e, e), c, f(d))h#(f(c), f(c))g#(U111(c, c), l, U111(d, d))
A#g#(e, l, f(l))h#(f(e), f(e))g#(e, e, U111(k, k))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(e), f(e)) → g#(U111(e, e), U111(e, e), U111(d, d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, U111(e, e), U111(d, d)) 
g#(U111(e, e), e, U111(d, d)) 
Thus, the rule h#(f(e), f(e)) → g#(U111(e, e), U111(e, e), U111(d, d)) is replaced by the following rules:
h#(f(e), f(e)) → g#(U111(e, e), e, U111(d, d))h#(f(e), f(e)) → g#(e, U111(e, e), U111(d, d))

Problem 201: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))h#(f(e), f(e))g#(U111(e, e), e, f(l))
A#h#(U111(c, c), U111(c, c))A#h#(U111(e, c), U111(e, c))
A#h#(f(e), f(e))h#(f(e), f(e))g#(e, U111(e, e), f(d))
h#(f(c), f(c))g#(U111(c, c), U111(l, l), U111(d, d))h#(f(c), f(c))g#(f(e), c, f(d))
h#(f(e), f(e))g#(U111(e, e), U111(e, e), U111(k, k))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(U111(c, c), l, U111(d, d))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
h#(f(c), f(c))g#(U111(e, e), c, f(d))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(e, c, f(l))
h#(f(e), f(e))g#(e, e, U111(k, k))A#g#(e, l, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(e), f(e)) → g#(U111(e, e), e, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, e, f(l)) 
g#(U111(e, e), e, U111(l, l)) 
Thus, the rule h#(f(e), f(e)) → g#(U111(e, e), e, f(l)) is replaced by the following rules:
h#(f(e), f(e)) → g#(e, e, f(l))h#(f(e), f(e)) → g#(U111(e, e), e, U111(l, l))

Problem 202: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(U111(l, l), U111(e, e), f(l))h#(f(c), f(c))g#(f(l), U111(e, e), U111(l, l))
A#h#(f(c), f(c))A#h#(U111(c, c), U111(c, c))
A#h#(U111(e, c), U111(e, c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(l, f(e), f(k))
h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))h#(U111(c, c), U111(c, c))g#(e, c, f(d))
h#(f(c), f(c))g#(U111(e, e), c, f(d))A#g#(e, l, f(l))
h#(f(c), f(c))g#(e, c, f(l))h#(f(e), f(e))g#(e, e, U111(k, k))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U111(l, l), U111(e, e), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U111(l, l), U111(e, e), U111(l, l))g#(U111(l, l), e, f(l))
Thus, the rule h#(f(c), f(c)) → g#(U111(l, l), U111(e, e), f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U111(l, l), U111(e, e), U111(l, l))

Problem 203: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(c, U111(c, c))A#h#(U111(e, c), e)
A#h#(f(c), f(c))A#h#(U111(c, c), l)
A#h#(U111(e, c), c)A#h#(U111(e, c), U111(e, c))
A#h#(U111(l, c), U111(e, c))A#h#(f(e), f(e))
A#h#(U111(e, c), U111(l, c))h#(U111(e, c), U111(e, c))g#(e, c, U111(k, k))
A#g#(e, l, f(l))h#(f(c), f(c))g#(e, c, f(l))
h#(f(e), f(e))g#(e, e, U111(k, k))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(c, U111(c, c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(l, U111(c, c))h#(c, U111(l, c))
h#(e, U111(c, c)) 
h#(c, U111(e, c)) 
Thus, the rule A# → h#(c, U111(c, c)) is replaced by the following rules:
A# → h#(e, U111(c, c))A# → h#(c, U111(e, c))
A# → h#(l, U111(c, c))

Problem 204: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(e, c)A#h#(c, U111(e, c))
A#h#(c, e)A#h#(c, l)
A#h#(l, c)A#h#(f(e), f(e))
A#h#(U111(e, c), e)A#h#(f(c), f(c))
A#g#(e, l, f(l))h#(f(e), f(e))g#(e, e, U111(k, k))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, e) 
h#(e, l) 
Thus, the rule A# → h#(e, c) is replaced by the following rules:
A# → h#(e, e)A# → h#(e, l)

Problem 205: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(c, U111(c, c))A#h#(U111(e, c), e)
A#h#(U111(l, l), U111(e, c))A#h#(U111(e, e), c)
A#h#(U111(c, c), l)A#h#(U111(e, c), c)
A#h#(f(l), U111(c, c))A#h#(U111(l, c), U111(e, c))
A#h#(U111(c, c), f(e))A#h#(f(l), f(e))
A#h#(f(l), c)A#h#(U111(c, c), U111(e, c))
A#h#(e, U111(e, c))A#h#(f(c), c)
A#h#(f(e), e)A#h#(U111(c, c), f(l))
A#h#(U111(e, e), l)A#h#(U111(c, c), U111(c, c))
A#h#(f(c), U111(e, e))A#h#(U111(e, c), f(c))
A#h#(U111(e, c), U111(e, c))A#h#(U111(e, e), U111(c, c))
A#h#(f(e), f(l))A#h#(f(e), f(e))
A#h#(U111(e, c), U111(l, c))A#h#(f(e), f(c))
h#(f(e), f(e))g#(e, e, U111(k, k))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(c, U111(c, c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(l, U111(c, c))h#(c, U111(l, c))
h#(e, U111(c, c)) 
h#(c, U111(e, c)) 
Thus, the rule A# → h#(c, U111(c, c)) is replaced by the following rules:
A# → h#(e, U111(c, c))A# → h#(c, U111(e, c))
A# → h#(l, U111(c, c))

Problem 206: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U111(e, c), c)A#h#(c, l)
A#h#(U111(c, c), e)A#h#(l, l)
A#h#(c, U111(e, e))A#h#(U111(c, c), U111(e, e))
A#h#(e, U111(e, c))A#h#(e, U111(c, c))
A#h#(f(c), c)A#h#(U111(e, e), e)
A#h#(e, U111(e, e))A#h#(f(e), e)
A#h#(U111(e, e), l)A#h#(U111(c, c), f(l))
A#h#(U111(c, c), U111(c, c))A#h#(f(l), l)
A#h#(U111(e, c), U111(e, e))A#h#(f(c), U111(e, e))
A#h#(U111(e, c), f(c))A#h#(U111(e, c), U111(e, c))
A#h#(U111(e, e), U111(c, c))A#h#(f(e), f(l))
A#h#(l, c)A#h#(f(e), f(e))
A#h#(U111(e, c), U111(l, c))A#h#(e, l)
A#h#(f(e), f(c))h#(f(e), f(e))g#(e, e, U111(k, k))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U111(e, c), c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(c, c) 
h#(U111(e, c), l) 
h#(U111(e, c), e) 
Thus, the rule A# → h#(U111(e, c), c) is replaced by the following rules:
A# → h#(U111(e, c), l)A# → h#(c, c)
A# → h#(U111(e, c), e)

Problem 207: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U111(e, c), e)A#h#(c, l)
A#h#(f(l), c)A#h#(e, e)
A#h#(c, c)A#h#(U111(c, c), e)
A#h#(f(c), e)A#h#(U111(e, e), e)
A#h#(f(e), e)A#h#(e, U111(e, e))
A#h#(U111(c, c), f(l))A#h#(U111(e, e), l)
A#h#(U111(c, c), U111(c, c))A#h#(U111(e, c), U111(e, e))
A#h#(f(c), U111(e, e))A#h#(U111(e, c), f(c))
A#h#(f(l), l)A#h#(U111(e, c), U111(e, c))
A#h#(U111(e, e), U111(c, c))A#h#(l, c)
A#h#(f(e), f(l))A#h#(f(e), f(e))
A#h#(U111(e, c), U111(l, c))A#h#(e, l)
A#h#(f(e), f(c))h#(f(e), f(e))g#(e, e, U111(k, k))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U111(e, c), e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(c, e) 
Thus, the rule A# → h#(U111(e, c), e) is replaced by the following rules:
A# → h#(c, e)

Problem 208: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(e, c)A#h#(U111(c, c), l)
A#h#(U111(e, c), c)A#h#(c, U111(e, c))
A#h#(U111(e, c), f(c))A#h#(f(c), U111(e, e))
A#h#(f(l), l)A#h#(U111(e, c), U111(e, e))
A#h#(c, f(l))A#h#(U111(e, e), U111(c, c))
A#h#(l, U111(e, c))A#h#(U111(e, c), U111(e, c))
A#h#(l, c)A#h#(f(e), f(l))
A#h#(U111(l, c), U111(e, c))A#h#(f(e), f(e))
A#h#(U111(e, c), U111(l, l))A#h#(U111(e, c), U111(l, c))
A#h#(f(e), f(c))A#h#(e, l)
h#(f(e), f(e))g#(e, e, U111(k, k))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, e) 
h#(e, l) 
Thus, the rule A# → h#(e, c) is replaced by the following rules:
A# → h#(e, e)A# → h#(e, l)

Problem 209: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(e, c)A#h#(c, f(e))
A#h#(e, f(c))A#h#(c, U111(e, c))
A#h#(f(c), U111(e, e))A#h#(f(l), l)
A#h#(U111(e, c), U111(e, e))A#h#(l, f(c))
A#h#(c, f(l))A#h#(U111(e, c), U111(e, c))
A#h#(l, U111(e, e))A#h#(U111(e, e), U111(c, c))
A#h#(l, U111(e, c))A#h#(c, l)
A#h#(U111(l, c), U111(e, c))A#h#(f(e), f(l))
A#h#(l, c)A#h#(f(e), f(e))
A#h#(U111(e, c), U111(l, l))A#h#(U111(e, c), U111(l, c))
A#h#(f(e), f(c))A#h#(e, l)
h#(f(e), f(e))g#(e, e, U111(k, k))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, e) 
h#(e, l) 
Thus, the rule A# → h#(e, c) is replaced by the following rules:
A# → h#(e, e)A# → h#(e, l)

Problem 210: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), l)A#h#(U111(e, c), U111(e, e))
A#h#(l, f(c))A#h#(c, f(l))
A#h#(U111(e, e), U111(c, c))A#h#(l, U111(e, c))
A#h#(U111(e, c), U111(e, c))A#h#(l, U111(e, e))
A#h#(U111(l, c), U111(e, c))A#h#(l, c)
A#h#(c, l)A#h#(f(e), f(l))
A#h#(f(e), f(e))A#h#(U111(e, c), U111(l, l))
A#h#(U111(e, c), U111(l, c))A#h#(f(e), f(c))
A#h#(e, l)h#(f(e), f(e))g#(e, e, U111(k, k))
A#h#(U111(e, e), U111(e, e))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(l), l) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 h#(U111(l, l), l)
Thus, the rule A# → h#(f(l), l) is deleted.

Problem 211: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(e, c)A#h#(c, e)
A#h#(e, U111(e, c))A#h#(l, U111(e, c))
A#h#(l, U111(e, e))A#h#(f(e), f(l))
A#h#(U111(l, c), U111(e, c))A#h#(l, c)
A#h#(c, l)A#h#(U111(e, c), U111(l, l))
A#h#(f(e), f(e))A#h#(U111(e, c), U111(l, c))
A#h#(e, l)A#h#(f(e), f(c))
h#(f(e), f(e))g#(e, e, U111(k, k))A#h#(U111(e, e), U111(e, e))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, e) 
h#(e, l) 
Thus, the rule A# → h#(e, c) is replaced by the following rules:
A# → h#(e, e)A# → h#(e, l)

Problem 212: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U111(e, e), c)A#h#(f(e), l)
A#h#(f(e), e)A#h#(U111(e, e), U111(c, c))
A#h#(U111(e, e), U111(e, c))A#h#(f(e), f(e))
A#h#(e, U111(e, c))A#h#(e, l)
A#h#(U111(e, e), U111(e, e))h#(f(e), f(e))g#(e, e, U111(k, k))

Rewrite Rules

acbc
adbd
cecl
klkd
Ah(f(a), f(b))h(x, x)g(x, x, f(k))
g(d, x, x)Af(x)U111(x, x)
U111(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U111) = μ(U111#) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U111(e, e), c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U111(e, e), l) 
h#(U111(e, e), e) 
h#(e, c) 
Thus, the rule A# → h#(U111(e, e), c) is replaced by the following rules:
A# → h#(e, c)A# → h#(U111(e, e), e)
A# → h#(U111(e, e), l)