YES

The TRS could be proven terminating. The proof took 3624 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (51ms).
 | – Problem 2 was processed with processor ForwardNarrowing (4ms).
 |    | – Problem 3 was processed with processor ForwardNarrowing (4ms).
 |    |    | – Problem 4 was processed with processor ForwardNarrowing (4ms).
 |    |    |    | – Problem 5 was processed with processor ForwardNarrowing (36ms).
 |    |    |    |    | – Problem 6 was processed with processor ForwardNarrowing (16ms).
 |    |    |    |    |    | – Problem 7 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    | – Problem 8 was processed with processor ForwardNarrowing (7ms).
 |    |    |    |    |    |    |    | – Problem 9 was processed with processor ForwardNarrowing (3ms).
 |    |    |    |    |    |    |    |    | – Problem 10 was processed with processor ForwardNarrowing (3ms).
 |    |    |    |    |    |    |    |    |    | – Problem 11 was processed with processor ForwardNarrowing (4ms).
 |    |    |    |    |    |    |    |    |    |    | – Problem 12 was processed with processor ForwardNarrowing (23ms).
 |    |    |    |    |    |    |    |    |    |    |    | – Problem 13 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 14 was processed with processor ForwardNarrowing (4ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 15 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 16 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 17 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 18 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 19 was processed with processor ForwardNarrowing (3ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 20 was processed with processor ForwardNarrowing (3ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 21 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 22 was processed with processor ForwardNarrowing (57ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 23 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 24 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 25 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 26 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 27 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 28 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 29 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 30 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 31 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 32 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 33 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 34 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 35 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 36 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 37 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 38 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 39 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 40 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 41 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 42 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 43 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 44 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 45 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 46 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 47 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 48 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 49 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 50 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 51 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 52 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 53 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 54 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 55 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 56 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 57 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 58 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 59 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 60 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 61 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 62 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 63 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 64 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 65 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 66 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 67 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 68 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 69 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 70 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 71 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 72 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 73 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 74 was processed with processor BackwardInstantiation (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 75 was processed with processor Propagation (4ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 76 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 77 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 78 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 79 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 80 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 81 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 82 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 83 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 84 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 85 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 86 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 87 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 88 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 89 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 90 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 91 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 92 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 93 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 94 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 95 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 96 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 97 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 98 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 99 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 100 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 101 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 102 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 103 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 104 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 105 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 106 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 107 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 108 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 109 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 110 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 111 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 112 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 113 was processed with processor ForwardNarrowing (0ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#b#
a#c#A#f#(a)
U101#(e, x)T(x)a#d#
A#a#b#c#
A#h#(f(a), f(b))A#f#(b)
h#(x, x)f#(k)f#(x)U101#(x, x)
g#(d, x, x)A#b#d#

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The following SCCs where found

h#(x, x) → g#(x, x, f(k))A# → h#(f(a), f(b))
g#(d, x, x) → A#

Problem 2: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(a), f(b))
g#(d, x, x)A#

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(a), f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U101(a, a), f(b)) 
h#(f(c), f(b)) 
h#(f(a), U101(b, b)) 
h#(f(a), f(d)) 
h#(f(d), f(b)) 
h#(f(a), f(c)) 
Thus, the rule A# → h#(f(a), f(b)) is replaced by the following rules:
A# → h#(f(c), f(b))A# → h#(f(d), f(b))
A# → h#(U101(a, a), f(b))A# → h#(f(a), f(d))
A# → h#(f(a), f(c))A# → h#(f(a), U101(b, b))

Problem 3: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(c), f(b))
A#h#(f(d), f(b))A#h#(U101(a, a), f(b))
A#h#(f(a), f(d))A#h#(f(a), f(c))
g#(d, x, x)A#A#h#(f(a), U101(b, b))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(c), f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(k), f(b)) 
h#(U101(c, c), f(b)) 
h#(f(e), f(b)) 
h#(f(c), f(c)) 
h#(f(c), f(d)) 
h#(f(c), U101(b, b)) 
Thus, the rule A# → h#(f(c), f(b)) is replaced by the following rules:
A# → h#(f(e), f(b))A# → h#(f(c), f(d))
A# → h#(f(c), U101(b, b))A# → h#(U101(c, c), f(b))
A# → h#(f(k), f(b))A# → h#(f(c), f(c))

Problem 4: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(d), f(b))
A#h#(f(e), f(b))A#h#(f(c), U101(b, b))
A#h#(f(a), f(d))A#h#(f(a), f(c))
A#h#(U101(c, c), f(b))A#h#(f(k), f(b))
A#h#(f(c), f(c))A#h#(U101(a, a), f(b))
A#h#(f(c), f(d))A#h#(f(a), U101(b, b))
g#(d, x, x)A#

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(d), f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(d), f(c))h#(U101(d, d), f(b))
h#(f(d), U101(b, b)) 
h#(f(k), f(b)) 
h#(f(d), f(d)) 
Thus, the rule A# → h#(f(d), f(b)) is replaced by the following rules:
A# → h#(f(d), U101(b, b))A# → h#(f(k), f(b))
A# → h#(f(d), f(d))A# → h#(f(d), f(c))

Problem 5: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(d), U101(b, b))
A#h#(f(e), f(b))A#h#(f(c), U101(b, b))
A#h#(f(a), f(d))A#h#(f(a), f(c))
A#h#(U101(c, c), f(b))A#h#(f(k), f(b))
A#h#(f(d), f(c))A#h#(f(c), f(c))
A#h#(U101(a, a), f(b))A#h#(f(c), f(d))
g#(d, x, x)A#A#h#(f(a), U101(b, b))
A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(d), U101(b, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(k), U101(b, b))h#(U101(d, d), U101(b, b))
h#(f(d), U101(c, b))h#(f(d), U101(d, b))
Thus, the rule A# → h#(f(d), U101(b, b)) is replaced by the following rules:
A# → h#(f(k), U101(b, b))A# → h#(f(d), U101(c, b))

Problem 6: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(k), U101(b, b))h#(x, x)g#(x, x, f(k))
A#h#(f(e), f(b))A#h#(f(c), U101(b, b))
A#h#(f(a), f(d))A#h#(f(a), f(c))
A#h#(U101(c, c), f(b))A#h#(f(k), f(b))
A#h#(f(d), f(c))A#h#(f(c), f(c))
A#h#(f(d), U101(c, b))A#h#(U101(a, a), f(b))
A#h#(f(c), f(d))A#h#(f(a), U101(b, b))
g#(d, x, x)A#A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(k), U101(b, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(k), U101(c, b))h#(U101(k, k), U101(b, b))
 h#(f(k), U101(d, b))
Thus, the rule A# → h#(f(k), U101(b, b)) is replaced by the following rules:
A# → h#(f(k), U101(c, b))

Problem 7: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(e), f(b))
A#h#(f(c), U101(b, b))A#h#(f(a), f(d))
A#h#(f(a), f(c))A#h#(U101(c, c), f(b))
A#h#(f(k), f(b))A#h#(f(d), f(c))
A#h#(f(c), f(c))A#h#(f(d), U101(c, b))
A#h#(U101(a, a), f(b))A#h#(f(c), f(d))
g#(d, x, x)A#A#h#(f(a), U101(b, b))
A#h#(f(k), U101(c, b))A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(e), f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(e), f(d)) 
h#(f(e), f(c)) 
h#(U101(e, e), f(b)) 
h#(f(e), U101(b, b)) 
Thus, the rule A# → h#(f(e), f(b)) is replaced by the following rules:
A# → h#(f(e), U101(b, b))A# → h#(f(e), f(d))
A# → h#(U101(e, e), f(b))A# → h#(f(e), f(c))

Problem 8: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(c), U101(b, b))
A#h#(f(a), f(d))A#h#(f(a), f(c))
A#h#(U101(c, c), f(b))A#h#(U101(e, e), f(b))
A#h#(f(k), f(b))A#h#(f(d), f(c))
A#h#(f(c), f(c))A#h#(f(e), U101(b, b))
A#h#(f(d), U101(c, b))A#h#(U101(a, a), f(b))
A#h#(f(c), f(d))A#h#(f(e), f(d))
A#h#(f(k), U101(c, b))A#h#(f(a), U101(b, b))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(f(e), f(c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(c), U101(b, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(c), U101(c, b))h#(f(c), U101(d, b))
h#(U101(c, c), U101(b, b)) 
h#(f(k), U101(b, b)) 
h#(f(e), U101(b, b)) 
Thus, the rule A# → h#(f(c), U101(b, b)) is replaced by the following rules:
A# → h#(f(k), U101(b, b))A# → h#(f(e), U101(b, b))
A# → h#(U101(c, c), U101(b, b))A# → h#(f(c), U101(c, b))

Problem 9: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(k), U101(b, b))h#(x, x)g#(x, x, f(k))
A#h#(f(c), U101(c, b))A#h#(f(a), f(d))
A#h#(f(a), f(c))A#h#(U101(c, c), f(b))
A#h#(U101(e, e), f(b))A#h#(f(k), f(b))
A#h#(f(d), f(c))A#h#(f(c), f(c))
A#h#(f(e), U101(b, b))A#h#(f(d), U101(c, b))
A#h#(U101(c, c), U101(b, b))A#h#(U101(a, a), f(b))
A#h#(f(e), f(d))A#h#(f(c), f(d))
g#(d, x, x)A#A#h#(f(a), U101(b, b))
A#h#(f(k), U101(c, b))A#h#(f(e), f(c))
A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(k), U101(b, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(k), U101(c, b))h#(U101(k, k), U101(b, b))
 h#(f(k), U101(d, b))
Thus, the rule A# → h#(f(k), U101(b, b)) is replaced by the following rules:
A# → h#(f(k), U101(c, b))

Problem 10: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(c), U101(c, b))
A#h#(f(a), f(d))A#h#(f(a), f(c))
A#h#(U101(c, c), f(b))A#h#(U101(e, e), f(b))
A#h#(f(k), f(b))A#h#(f(d), f(c))
A#h#(f(c), f(c))A#h#(f(e), U101(b, b))
A#h#(f(d), U101(c, b))A#h#(U101(c, c), U101(b, b))
A#h#(U101(a, a), f(b))A#h#(f(c), f(d))
A#h#(f(e), f(d))A#h#(f(k), U101(c, b))
A#h#(f(a), U101(b, b))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(f(e), f(c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(c), U101(c, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(k), U101(c, b))h#(f(c), U101(k, b))
h#(U101(c, c), U101(c, b)) 
h#(f(e), U101(c, b)) 
h#(f(c), U101(e, b)) 
Thus, the rule A# → h#(f(c), U101(c, b)) is replaced by the following rules:
A# → h#(f(e), U101(c, b))A# → h#(f(c), U101(e, b))
A# → h#(U101(c, c), U101(c, b))A# → h#(f(k), U101(c, b))

Problem 11: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(c), U101(e, b))
A#h#(f(e), U101(c, b))A#h#(f(a), f(d))
A#h#(f(a), f(c))A#h#(U101(c, c), f(b))
A#h#(U101(e, e), f(b))A#h#(f(k), f(b))
A#h#(U101(c, c), U101(c, b))A#h#(f(d), f(c))
A#h#(f(c), f(c))A#h#(f(e), U101(b, b))
A#h#(f(d), U101(c, b))A#h#(U101(c, c), U101(b, b))
A#h#(U101(a, a), f(b))A#h#(f(e), f(d))
A#h#(f(c), f(d))g#(d, x, x)A#
A#h#(f(a), U101(b, b))A#h#(f(k), U101(c, b))
A#h#(f(e), f(c))A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(c), U101(e, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U101(c, c), U101(e, b)) 
h#(f(e), U101(e, b)) 
h#(f(k), U101(e, b)) 
h#(f(c), b) 
Thus, the rule A# → h#(f(c), U101(e, b)) is replaced by the following rules:
A# → h#(f(e), U101(e, b))A# → h#(f(k), U101(e, b))
A# → h#(f(c), b)A# → h#(U101(c, c), U101(e, b))

Problem 12: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(e), U101(c, b))
A#h#(f(c), b)A#h#(f(k), U101(e, b))
A#h#(f(a), f(d))A#h#(f(a), f(c))
A#h#(U101(e, e), f(b))A#h#(f(d), f(c))
A#h#(f(e), U101(b, b))A#h#(f(d), U101(c, b))
A#h#(U101(c, c), U101(b, b))A#h#(f(e), f(d))
A#h#(f(c), f(d))A#h#(U101(c, c), U101(e, b))
A#h#(f(k), U101(c, b))A#h#(f(a), U101(b, b))
A#h#(f(e), U101(e, b))A#h#(U101(c, c), f(b))
A#h#(f(k), f(b))A#h#(U101(c, c), U101(c, b))
A#h#(f(c), f(c))A#h#(U101(a, a), f(b))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(f(e), f(c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(e), U101(c, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U101(e, e), U101(c, b))h#(f(e), U101(k, b))
h#(f(e), U101(e, b)) 
Thus, the rule A# → h#(f(e), U101(c, b)) is replaced by the following rules:
A# → h#(U101(e, e), U101(c, b))A# → h#(f(e), U101(e, b))

Problem 13: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(k), U101(e, b))
A#h#(f(c), b)A#h#(f(a), f(d))
A#h#(f(a), f(c))A#h#(U101(e, e), f(b))
A#h#(f(d), f(c))A#h#(U101(e, e), U101(c, b))
A#h#(f(d), U101(c, b))A#h#(f(e), U101(b, b))
A#h#(U101(c, c), U101(b, b))A#h#(f(c), f(d))
A#h#(f(e), f(d))A#h#(U101(c, c), U101(e, b))
A#h#(f(k), U101(c, b))A#h#(f(a), U101(b, b))
A#h#(f(e), U101(e, b))A#h#(U101(c, c), f(b))
A#h#(f(k), f(b))A#h#(U101(c, c), U101(c, b))
A#h#(f(c), f(c))A#h#(U101(a, a), f(b))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(f(e), f(c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(c), b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(e), b) 
h#(f(c), c) 
h#(U101(c, c), b) 
h#(f(c), d) 
h#(f(k), b) 
Thus, the rule A# → h#(f(c), b) is replaced by the following rules:
A# → h#(f(c), c)A# → h#(U101(c, c), b)
A# → h#(f(c), d)A# → h#(f(e), b)
A# → h#(f(k), b)

Problem 14: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U101(c, c), b)
A#h#(f(k), U101(e, b))A#h#(f(c), d)
A#h#(f(a), f(d))A#h#(f(a), f(c))
A#h#(U101(e, e), f(b))A#h#(f(d), f(c))
A#h#(U101(e, e), U101(c, b))A#h#(f(e), U101(b, b))
A#h#(f(d), U101(c, b))A#h#(U101(c, c), U101(b, b))
A#h#(f(c), f(d))A#h#(f(e), f(d))
A#h#(U101(c, c), U101(e, b))A#h#(f(k), b)
A#h#(f(k), U101(c, b))A#h#(f(a), U101(b, b))
A#h#(f(e), U101(e, b))A#h#(U101(c, c), f(b))
A#h#(f(k), f(b))A#h#(U101(c, c), U101(c, b))
A#h#(f(c), f(c))A#h#(f(c), c)
A#h#(U101(a, a), f(b))A#h#(f(e), b)
g#(d, x, x)A#A#h#(f(e), f(c))
A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U101(c, c), b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U101(e, c), b)h#(U101(k, c), b)
h#(U101(c, c), d) 
h#(U101(c, c), c) 
Thus, the rule A# → h#(U101(c, c), b) is replaced by the following rules:
A# → h#(U101(c, c), c)A# → h#(U101(c, c), d)
A# → h#(U101(e, c), b)

Problem 15: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(k), U101(e, b))
A#h#(f(c), d)A#h#(f(a), f(d))
A#h#(f(a), f(c))A#h#(U101(e, e), f(b))
A#h#(U101(e, c), b)A#h#(f(d), f(c))
A#h#(U101(e, e), U101(c, b))A#h#(f(d), U101(c, b))
A#h#(f(e), U101(b, b))A#h#(U101(c, c), U101(b, b))
A#h#(U101(c, c), c)A#h#(f(c), f(d))
A#h#(f(e), f(d))A#h#(U101(c, c), U101(e, b))
A#h#(f(k), b)A#h#(f(k), U101(c, b))
A#h#(f(a), U101(b, b))A#h#(f(e), U101(e, b))
A#h#(U101(c, c), f(b))A#h#(f(k), f(b))
A#h#(U101(c, c), U101(c, b))A#h#(f(c), f(c))
A#h#(f(c), c)A#h#(U101(a, a), f(b))
A#h#(f(e), b)A#h#(U101(c, c), d)
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(f(e), f(c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(k), U101(e, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(k), b)h#(U101(k, k), U101(e, b))
Thus, the rule A# → h#(f(k), U101(e, b)) is replaced by the following rules:
A# → h#(f(k), b)

Problem 16: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(c), d)
A#h#(f(a), f(d))A#h#(f(a), f(c))
A#h#(U101(e, e), f(b))A#h#(U101(e, c), b)
A#h#(f(d), f(c))A#h#(U101(e, e), U101(c, b))
A#h#(f(e), U101(b, b))A#h#(f(d), U101(c, b))
A#h#(U101(c, c), U101(b, b))A#h#(f(c), f(d))
A#h#(U101(c, c), c)A#h#(f(e), f(d))
A#h#(U101(c, c), U101(e, b))A#h#(f(k), b)
A#h#(f(k), U101(c, b))A#h#(f(a), U101(b, b))
A#h#(f(e), U101(e, b))A#h#(U101(c, c), f(b))
A#h#(f(k), f(b))A#h#(U101(c, c), U101(c, b))
A#h#(f(c), f(c))A#h#(f(c), c)
A#h#(U101(a, a), f(b))A#h#(f(e), b)
A#h#(U101(c, c), d)g#(d, x, x)A#
A#h#(f(e), f(c))A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(c), d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(e), d) 
h#(f(k), d) 
h#(f(c), k) 
h#(U101(c, c), d) 
Thus, the rule A# → h#(f(c), d) is replaced by the following rules:
A# → h#(f(c), k)A# → h#(f(e), d)
A# → h#(U101(c, c), d)A# → h#(f(k), d)

Problem 17: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(a), f(d))
A#h#(f(a), f(c))A#h#(U101(e, e), f(b))
A#h#(f(k), d)A#h#(U101(e, c), b)
A#h#(f(d), f(c))A#h#(U101(e, e), U101(c, b))
A#h#(f(d), U101(c, b))A#h#(f(e), U101(b, b))
A#h#(U101(c, c), U101(b, b))A#h#(U101(c, c), c)
A#h#(f(c), f(d))A#h#(f(e), f(d))
A#h#(U101(c, c), U101(e, b))A#h#(f(k), b)
A#h#(f(k), U101(c, b))A#h#(f(a), U101(b, b))
A#h#(f(e), U101(e, b))A#h#(f(e), d)
A#h#(U101(c, c), f(b))A#h#(f(k), f(b))
A#h#(U101(c, c), U101(c, b))A#h#(f(c), f(c))
A#h#(f(c), c)A#h#(U101(a, a), f(b))
A#h#(f(c), k)A#h#(f(e), b)
A#h#(U101(c, c), d)g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(f(e), f(c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(a), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(a), f(k))h#(f(a), U101(d, d))
h#(f(d), f(d)) 
h#(f(c), f(d)) 
h#(U101(a, a), f(d)) 
Thus, the rule A# → h#(f(a), f(d)) is replaced by the following rules:
A# → h#(U101(a, a), f(d))A# → h#(f(a), f(k))
A# → h#(f(c), f(d))A# → h#(f(d), f(d))

Problem 18: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(a), f(c))
A#h#(f(k), d)A#h#(U101(e, e), f(b))
A#h#(U101(e, c), b)A#h#(f(d), f(c))
A#h#(U101(e, e), U101(c, b))A#h#(U101(a, a), f(d))
A#h#(f(e), U101(b, b))A#h#(f(d), U101(c, b))
A#h#(U101(c, c), U101(b, b))A#h#(f(a), f(k))
A#h#(U101(c, c), c)A#h#(f(c), f(d))
A#h#(f(e), f(d))A#h#(U101(c, c), U101(e, b))
A#h#(f(k), b)A#h#(f(k), U101(c, b))
A#h#(f(a), U101(b, b))A#h#(f(e), U101(e, b))
A#h#(f(e), d)A#h#(U101(c, c), f(b))
A#h#(f(k), f(b))A#h#(U101(c, c), U101(c, b))
A#h#(f(c), f(c))A#h#(f(c), c)
A#h#(U101(a, a), f(b))A#h#(f(c), k)
A#h#(f(e), b)A#h#(U101(c, c), d)
g#(d, x, x)A#A#h#(f(e), f(c))
A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(a), f(c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(d), f(c)) 
h#(f(a), f(k)) 
h#(f(a), U101(c, c)) 
h#(f(a), f(e)) 
h#(f(c), f(c)) 
h#(U101(a, a), f(c)) 
Thus, the rule A# → h#(f(a), f(c)) is replaced by the following rules:
A# → h#(f(a), f(e))A# → h#(f(a), U101(c, c))
A# → h#(f(a), f(k))A# → h#(U101(a, a), f(c))
A# → h#(f(d), f(c))A# → h#(f(c), f(c))

Problem 19: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U101(a, a), f(c))
A#h#(U101(e, e), f(b))A#h#(f(k), d)
A#h#(U101(e, c), b)A#h#(f(d), f(c))
A#h#(U101(e, e), U101(c, b))A#h#(U101(a, a), f(d))
A#h#(f(a), f(e))A#h#(f(d), U101(c, b))
A#h#(f(e), U101(b, b))A#h#(U101(c, c), U101(b, b))
A#h#(f(a), f(k))A#h#(U101(c, c), c)
A#h#(f(c), f(d))A#h#(f(e), f(d))
A#h#(U101(c, c), U101(e, b))A#h#(f(k), b)
A#h#(f(k), U101(c, b))A#h#(f(a), U101(b, b))
A#h#(f(e), U101(e, b))A#h#(f(a), U101(c, c))
A#h#(f(e), d)A#h#(U101(c, c), f(b))
A#h#(f(k), f(b))A#h#(U101(c, c), U101(c, b))
A#h#(f(c), f(c))A#h#(f(c), c)
A#h#(U101(a, a), f(b))A#h#(f(c), k)
A#h#(f(e), b)A#h#(U101(c, c), d)
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(f(e), f(c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U101(a, a), f(c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U101(c, a), f(c))h#(U101(d, a), f(c))
h#(U101(a, a), f(k)) 
h#(U101(a, a), f(e)) 
h#(U101(a, a), U101(c, c)) 
Thus, the rule A# → h#(U101(a, a), f(c)) is replaced by the following rules:
A# → h#(U101(a, a), f(e))A# → h#(U101(c, a), f(c))
A# → h#(U101(a, a), U101(c, c))A# → h#(U101(a, a), f(k))

Problem 20: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U101(a, a), U101(c, c))
A#h#(f(k), d)A#h#(U101(e, e), f(b))
A#h#(U101(e, c), b)A#h#(f(d), f(c))
A#h#(U101(e, e), U101(c, b))A#h#(U101(a, a), f(d))
A#h#(f(a), f(e))A#h#(U101(a, a), f(e))
A#h#(f(e), U101(b, b))A#h#(f(d), U101(c, b))
A#h#(U101(c, c), U101(b, b))A#h#(f(a), f(k))
A#h#(U101(c, c), c)A#h#(f(c), f(d))
A#h#(f(e), f(d))A#h#(U101(c, c), U101(e, b))
A#h#(f(k), b)A#h#(f(k), U101(c, b))
A#h#(f(a), U101(b, b))A#h#(U101(a, a), f(k))
A#h#(f(e), U101(e, b))A#h#(U101(c, a), f(c))
A#h#(f(a), U101(c, c))A#h#(f(e), d)
A#h#(U101(c, c), f(b))A#h#(f(k), f(b))
A#h#(U101(c, c), U101(c, b))A#h#(f(c), f(c))
A#h#(f(c), c)A#h#(U101(a, a), f(b))
A#h#(f(c), k)A#h#(f(e), b)
A#h#(U101(c, c), d)g#(d, x, x)A#
A#h#(f(e), f(c))A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U101(a, a), U101(c, c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U101(a, a), U101(e, c))h#(U101(d, a), U101(c, c))
h#(U101(c, a), U101(c, c))h#(U101(a, a), U101(k, c))
Thus, the rule A# → h#(U101(a, a), U101(c, c)) is replaced by the following rules:
A# → h#(U101(a, a), U101(e, c))A# → h#(U101(c, a), U101(c, c))

Problem 21: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U101(e, e), f(b))
A#h#(f(k), d)A#h#(U101(e, c), b)
A#h#(f(d), f(c))A#h#(U101(e, e), U101(c, b))
A#h#(U101(a, a), f(d))A#h#(U101(a, a), f(e))
A#h#(f(a), f(e))A#h#(f(d), U101(c, b))
A#h#(f(e), U101(b, b))A#h#(U101(c, c), U101(b, b))
A#h#(f(a), f(k))A#h#(U101(c, c), c)
A#h#(f(c), f(d))A#h#(f(e), f(d))
A#h#(U101(c, c), U101(e, b))A#h#(f(k), b)
A#h#(f(k), U101(c, b))A#h#(f(a), U101(b, b))
A#h#(U101(a, a), f(k))A#h#(f(e), U101(e, b))
A#h#(U101(c, a), f(c))A#h#(f(a), U101(c, c))
A#h#(f(e), d)A#h#(U101(c, c), f(b))
A#h#(f(k), f(b))A#h#(U101(c, c), U101(c, b))
A#h#(f(c), f(c))A#h#(f(c), c)
A#h#(U101(a, a), f(b))A#h#(f(c), k)
A#h#(f(e), b)A#h#(U101(c, c), d)
g#(d, x, x)A#A#h#(U101(a, a), U101(e, c))
A#h#(f(d), f(d))A#h#(f(e), f(c))
A#h#(U101(c, a), U101(c, c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(k), d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(k), k)h#(U101(k, k), d)
Thus, the rule A# → h#(f(k), d) is replaced by the following rules:
A# → h#(f(k), k)

Problem 22: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(k), b)
A#h#(U101(e, e), c)A#h#(e, U101(c, c))
A#h#(f(e), U101(e, e))A#h#(f(k), f(b))
A#h#(f(c), f(c))A#h#(U101(e, c), c)
A#h#(U101(c, a), f(d))A#h#(U101(e, c), U101(e, e))
A#h#(U101(c, a), e)A#h#(k, b)
A#h#(f(d), e)A#h#(U101(c, c), d)
A#h#(U101(e, c), d)A#h#(e, f(d))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U101(c, a), U101(e, e))A#h#(e, c)
A#h#(f(d), f(k))A#h#(U101(e, e), f(e))
A#h#(f(e), U101(c, b))A#h#(f(k), U101(e, b))
A#h#(U101(e, c), U101(b, b))A#h#(f(c), U101(c, b))
A#h#(f(a), U101(e, b))A#h#(f(d), U101(b, b))
A#h#(f(c), U101(b, b))A#h#(f(c), f(e))
A#h#(e, f(k))A#h#(f(c), f(k))
A#h#(f(d), f(c))A#h#(U101(e, e), U101(c, b))
A#h#(c, d)A#h#(U101(a, a), f(e))
A#h#(e, f(c))A#h#(e, f(b))
A#h#(f(e), f(d))A#h#(f(c), f(d))
A#h#(U101(c, c), c)A#h#(f(k), f(e))
A#h#(U101(c, c), U101(e, b))A#h#(f(k), U101(c, b))
A#h#(U101(a, a), f(k))A#h#(U101(a, a), U101(c, b))
A#h#(f(e), U101(e, b))A#h#(U101(a, a), U101(b, b))
A#h#(c, c)A#h#(f(a), U101(c, c))
A#h#(U101(c, a), f(c))A#h#(f(e), d)
A#h#(U101(c, c), f(b))A#h#(U101(c, c), U101(c, b))
A#h#(f(c), e)A#h#(f(c), c)
A#h#(U101(c, c), e)A#h#(f(k), U101(e, e))
A#h#(f(k), k)A#h#(e, d)
A#h#(U101(a, a), f(b))A#h#(f(c), k)
A#h#(f(d), b)A#h#(f(e), b)
A#h#(U101(e, e), U101(b, b))A#h#(U101(a, a), U101(e, c))
A#h#(e, U101(e, c))A#h#(f(e), f(c))
A#h#(U101(c, a), U101(c, c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(k), b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(k), c)h#(U101(k, k), b)
h#(f(k), d) 
Thus, the rule A# → h#(f(k), b) is replaced by the following rules:
A# → h#(f(k), c)A# → h#(f(k), d)

Problem 23: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(c), f(c))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U101(e, e), U101(e, e))
A#h#(f(d), U101(b, b))A#h#(f(c), U101(c, b))
A#h#(f(a), U101(e, b))A#h#(f(c), f(e))
A#h#(f(c), U101(b, b))A#h#(f(k), c)
A#h#(c, e)A#h#(e, f(k))
A#h#(a, f(k))A#h#(f(c), f(k))
A#h#(f(d), f(c))A#h#(U101(e, e), U101(c, b))
A#h#(k, d)A#h#(c, d)
A#h#(f(k), U101(c, c))A#h#(U101(a, a), f(e))
A#h#(d, f(d))A#h#(e, f(c))
A#h#(k, k)A#h#(c, f(d))
A#h#(e, f(b))A#h#(f(k), e)
A#h#(f(e), f(d))A#h#(f(c), f(d))
A#h#(U101(c, c), c)A#h#(f(k), f(e))
A#h#(U101(c, c), U101(e, b))A#h#(f(k), f(k))
A#h#(f(k), U101(c, b))A#h#(U101(c, a), f(k))
A#h#(U101(a, a), f(k))A#h#(U101(a, a), U101(c, b))
A#h#(f(e), U101(e, b))A#h#(U101(a, a), U101(b, b))
A#h#(c, c)A#h#(U101(c, a), f(c))
A#h#(f(a), U101(c, c))A#h#(U101(e, c), k)
A#h#(f(e), d)A#h#(a, U101(e, e))
A#h#(U101(c, c), f(b))A#h#(U101(c, c), U101(c, b))
A#h#(U101(e, e), e)A#h#(f(c), e)
A#h#(f(c), c)A#h#(U101(c, c), e)
A#h#(U101(e, c), U101(c, b))A#h#(f(e), e)
A#h#(f(k), U101(e, e))A#h#(f(k), k)
A#h#(e, d)A#h#(c, U101(b, b))
A#h#(U101(a, a), f(b))A#h#(f(c), k)
A#h#(f(d), b)A#h#(f(e), b)
A#h#(U101(e, e), U101(b, b))A#h#(U101(a, a), U101(e, c))
A#h#(e, U101(e, c))A#h#(f(e), f(c))
A#h#(U101(c, a), U101(c, c))A#h#(c, U101(e, e))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(d), U101(b, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(k), U101(b, b))h#(U101(d, d), U101(b, b))
h#(f(d), U101(c, b))h#(f(d), U101(d, b))
Thus, the rule A# → h#(f(d), U101(b, b)) is replaced by the following rules:
A# → h#(f(k), U101(b, b))A# → h#(f(d), U101(c, b))

Problem 24: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(a), e)
A#h#(U101(a, a), c)A#h#(e, e)
A#h#(f(c), f(c))A#h#(d, b)
A#h#(a, k)A#h#(U101(c, a), e)
A#h#(k, b)A#h#(U101(e, a), c)
A#h#(a, e)g#(d, x, x)A#
A#h#(U101(a, a), k)A#h#(f(d), f(d))
A#h#(U101(e, e), U101(e, e))A#h#(f(c), U101(e, b))
A#h#(f(c), b)A#h#(f(k), U101(e, b))
A#h#(f(c), d)A#h#(f(c), U101(b, b))
A#h#(f(c), f(e))A#h#(f(k), c)
A#h#(c, e)A#h#(U101(c, a), c)
A#h#(e, f(k))A#h#(U101(e, c), b)
A#h#(f(c), f(k))A#h#(a, f(k))
A#h#(e, b)A#h#(f(d), f(c))
A#h#(k, d)A#h#(U101(e, e), U101(c, b))
A#h#(f(k), U101(c, c))A#h#(U101(a, a), f(e))
A#h#(c, d)A#h#(d, f(d))
A#h#(e, f(c))A#h#(c, f(d))
A#h#(k, k)A#h#(e, f(b))
A#h#(f(d), c)A#h#(f(k), e)
A#h#(f(e), f(d))A#h#(f(c), f(d))
A#h#(U101(c, c), c)A#h#(f(k), f(e))
A#h#(U101(c, c), U101(e, b))A#h#(f(k), f(k))
A#h#(f(k), U101(c, b))A#h#(U101(c, a), f(k))
A#h#(U101(a, a), f(k))A#h#(U101(a, a), U101(c, b))
A#h#(a, d)A#h#(f(d), k)
A#h#(f(e), U101(e, b))A#h#(U101(a, a), U101(b, b))
A#h#(c, c)A#h#(f(a), U101(c, c))
A#h#(U101(c, a), f(c))A#h#(U101(e, c), k)
A#h#(f(e), d)A#h#(a, U101(e, e))
A#h#(f(a), k)A#h#(U101(c, c), f(b))
A#h#(U101(c, c), U101(c, b))A#h#(f(c), e)
A#h#(U101(e, e), e)A#h#(f(c), c)
A#h#(U101(c, c), e)A#h#(U101(e, c), U101(c, b))
A#h#(f(e), e)A#h#(f(k), U101(e, e))
A#h#(f(k), k)A#h#(e, d)
A#h#(c, U101(b, b))A#h#(U101(a, a), f(b))
A#h#(f(c), k)A#h#(U101(a, a), U101(e, b))
A#h#(f(d), b)A#h#(f(e), b)
A#h#(U101(e, e), U101(b, b))A#h#(U101(a, a), U101(e, c))
A#h#(e, U101(e, c))A#h#(f(e), f(c))
A#h#(U101(c, a), U101(c, c))A#h#(c, U101(e, e))
A#h#(U101(e, a), d)

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(a), e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U101(a, a), e) 
h#(f(d), e) 
h#(f(c), e) 
Thus, the rule A# → h#(f(a), e) is replaced by the following rules:
A# → h#(f(c), e)A# → h#(f(d), e)
A# → h#(U101(a, a), e)

Problem 25: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(c), f(c))A#h#(U101(e, c), d)
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U101(e, e), U101(e, e))A#h#(f(k), U101(e, b))
A#h#(f(c), d)A#h#(f(c), U101(b, b))
A#h#(f(c), f(e))A#h#(c, e)
A#h#(d, d)A#h#(f(k), c)
A#h#(U101(c, a), c)A#h#(e, f(k))
A#h#(U101(e, c), b)A#h#(f(c), f(k))
A#h#(a, f(k))A#h#(e, b)
A#h#(f(d), f(c))A#h#(k, d)
A#h#(U101(e, e), U101(c, b))A#h#(f(k), U101(c, c))
A#h#(U101(a, a), f(e))A#h#(c, d)
A#h#(d, f(d))A#h#(e, f(c))
A#h#(c, f(d))A#h#(k, k)
A#h#(e, f(b))A#h#(f(d), c)
A#h#(f(k), e)A#h#(f(e), f(d))
A#h#(f(c), f(d))A#h#(U101(c, c), c)
A#h#(f(k), f(e))A#h#(U101(c, c), U101(e, b))
A#h#(f(k), f(k))A#h#(f(k), U101(c, b))
A#h#(U101(c, a), f(k))A#h#(U101(a, a), f(k))
A#h#(U101(a, a), U101(c, b))A#h#(a, d)
A#h#(f(d), k)A#h#(f(e), U101(e, b))
A#h#(U101(a, a), U101(b, b))A#h#(c, c)
A#h#(f(a), U101(c, c))A#h#(U101(c, a), f(c))
A#h#(U101(e, c), k)A#h#(f(e), d)
A#h#(a, U101(e, e))A#h#(f(a), k)
A#h#(U101(c, c), f(b))A#h#(U101(c, c), U101(c, b))
A#h#(f(c), e)A#h#(U101(e, e), e)
A#h#(f(c), c)A#h#(U101(c, c), e)
A#h#(U101(e, c), U101(c, b))A#h#(f(e), e)
A#h#(f(k), U101(e, e))A#h#(f(k), k)
A#h#(e, d)A#h#(c, U101(b, b))
A#h#(U101(a, a), f(b))A#h#(f(c), k)
A#h#(U101(a, a), U101(e, b))A#h#(f(d), b)
A#h#(f(e), b)A#h#(U101(e, e), U101(b, b))
A#h#(U101(a, a), U101(e, c))A#h#(e, U101(e, c))
A#h#(f(e), f(c))A#h#(U101(c, a), U101(c, c))
A#h#(c, U101(e, e))A#h#(U101(e, a), d)

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U101(e, c), d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U101(e, c), k) 
h#(c, d) 
Thus, the rule A# → h#(U101(e, c), d) is replaced by the following rules:
A# → h#(c, d)A# → h#(U101(e, c), k)

Problem 26: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(c), f(c))A#h#(a, k)
A#h#(U101(c, a), e)A#h#(f(e), f(e))
A#h#(U101(e, a), c)g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U101(e, e), U101(e, e))
A#h#(d, d)A#h#(e, f(k))
A#h#(U101(e, c), b)A#h#(a, f(k))
A#h#(f(c), f(k))A#h#(e, b)
A#h#(f(d), f(c))A#h#(k, d)
A#h#(U101(e, e), U101(c, b))A#h#(f(k), U101(c, c))
A#h#(U101(a, a), f(e))A#h#(c, d)
A#h#(e, f(c))A#h#(d, f(d))
A#h#(c, f(e))A#h#(k, k)
A#h#(c, f(d))A#h#(e, f(b))
A#h#(f(d), c)A#h#(f(k), e)
A#h#(f(e), f(d))A#h#(f(c), f(d))
A#h#(U101(c, c), c)A#h#(f(k), f(e))
A#h#(U101(c, c), U101(e, b))A#h#(f(k), f(k))
A#h#(f(k), U101(c, b))A#h#(U101(c, a), f(k))
A#h#(U101(a, a), f(k))A#h#(U101(a, a), U101(c, b))
A#h#(a, d)A#h#(f(d), k)
A#h#(f(e), U101(e, b))A#h#(U101(a, a), U101(b, b))
A#h#(c, c)A#h#(f(a), U101(c, c))
A#h#(U101(c, a), f(c))A#h#(U101(e, c), k)
A#h#(f(e), d)A#h#(a, U101(e, e))
A#h#(f(a), k)A#h#(U101(c, c), f(b))
A#h#(U101(c, c), U101(c, b))A#h#(f(c), e)
A#h#(U101(e, e), e)A#h#(f(c), c)
A#h#(U101(c, c), e)A#h#(U101(e, c), U101(c, b))
A#h#(f(e), e)A#h#(f(k), U101(e, e))
A#h#(f(k), k)A#h#(e, d)
A#h#(c, U101(b, b))A#h#(U101(a, a), f(b))
A#h#(f(c), k)A#h#(U101(a, a), U101(e, b))
A#h#(f(d), b)A#h#(f(e), b)
A#h#(U101(e, e), U101(b, b))A#h#(U101(a, a), U101(e, c))
A#h#(e, U101(e, c))A#h#(f(e), f(c))
A#h#(U101(c, a), U101(c, c))A#h#(c, U101(e, e))
A#h#(U101(e, a), d)

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(a, k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(d, k) 
h#(c, k) 
Thus, the rule A# → h#(a, k) is replaced by the following rules:
A# → h#(d, k)A# → h#(c, k)

Problem 27: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(c), f(c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U101(e, e), U101(e, e))A#h#(d, d)
A#h#(e, b)A#h#(U101(e, e), U101(c, b))
A#h#(k, d)A#h#(f(k), U101(c, c))
A#h#(c, d)A#h#(U101(a, a), f(e))
A#h#(c, f(e))A#h#(d, f(d))
A#h#(e, f(c))A#h#(e, f(b))
A#h#(k, k)A#h#(c, f(d))
A#h#(c, f(k))A#h#(f(d), c)
A#h#(f(k), e)A#h#(f(c), f(d))
A#h#(f(e), f(d))A#h#(U101(c, c), c)
A#h#(f(k), f(e))A#h#(U101(c, c), U101(e, b))
A#h#(f(k), f(k))A#h#(f(k), U101(c, b))
A#h#(U101(c, a), f(k))A#h#(U101(a, a), f(k))
A#h#(U101(a, a), U101(c, b))A#h#(a, d)
A#h#(f(d), k)A#h#(f(e), U101(e, b))
A#h#(U101(a, a), U101(b, b))A#h#(c, c)
A#h#(f(a), U101(c, c))A#h#(U101(c, a), f(c))
A#h#(U101(e, c), k)A#h#(f(e), d)
A#h#(a, U101(e, e))A#h#(U101(c, c), f(b))
A#h#(f(a), k)A#h#(U101(c, c), U101(c, b))
A#h#(U101(e, e), e)A#h#(f(c), e)
A#h#(f(c), c)A#h#(U101(c, c), e)
A#h#(U101(e, c), U101(c, b))A#h#(f(e), e)
A#h#(f(k), U101(e, e))A#h#(f(k), k)
A#h#(e, d)A#h#(c, U101(b, b))
A#h#(U101(a, a), f(b))A#h#(f(c), k)
A#h#(U101(a, a), U101(e, b))A#h#(f(d), b)
A#h#(f(e), b)A#h#(f(d), U101(c, c))
A#h#(U101(e, e), U101(b, b))A#h#(U101(a, a), U101(e, c))
A#h#(e, U101(e, c))A#h#(f(e), f(c))
A#h#(U101(c, a), U101(c, c))A#h#(c, U101(e, e))
A#h#(U101(e, a), d)

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, d) 
h#(e, c) 
Thus, the rule A# → h#(e, b) is replaced by the following rules:
A# → h#(e, c)A# → h#(e, d)

Problem 28: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(c), f(c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U101(e, e), U101(e, e))A#h#(d, d)
A#h#(d, f(d))A#h#(c, f(e))
A#h#(e, f(c))A#h#(e, f(b))
A#h#(k, k)A#h#(c, f(k))
A#h#(c, f(d))A#h#(f(d), c)
A#h#(e, U101(e, b))A#h#(f(k), e)
A#h#(f(e), f(d))A#h#(U101(c, c), c)
A#h#(f(c), f(d))A#h#(f(k), f(e))
A#h#(k, U101(e, e))A#h#(U101(c, c), U101(e, b))
A#h#(f(k), f(k))A#h#(f(k), U101(c, b))
A#h#(U101(c, a), f(k))A#h#(U101(a, a), f(k))
A#h#(U101(a, a), U101(c, b))A#h#(a, d)
A#h#(f(d), k)A#h#(f(e), U101(e, b))
A#h#(U101(a, a), U101(b, b))A#h#(c, c)
A#h#(f(a), U101(c, c))A#h#(U101(c, a), f(c))
A#h#(U101(e, c), k)A#h#(f(e), d)
A#h#(a, U101(e, e))A#h#(U101(c, c), f(b))
A#h#(f(a), k)A#h#(U101(c, c), U101(c, b))
A#h#(U101(e, e), e)A#h#(f(c), e)
A#h#(f(c), c)A#h#(U101(e, c), U101(c, b))
A#h#(U101(c, c), e)A#h#(f(e), e)
A#h#(f(k), U101(e, e))A#h#(f(k), k)
A#h#(e, d)A#h#(c, U101(b, b))
A#h#(U101(a, a), f(b))A#h#(f(c), k)
A#h#(U101(a, a), U101(e, b))A#h#(f(d), b)
A#h#(f(e), b)A#h#(f(d), U101(c, c))
A#h#(U101(e, e), U101(b, b))A#h#(U101(a, a), U101(e, c))
A#h#(e, U101(e, c))A#h#(f(e), f(c))
A#h#(U101(c, a), U101(c, c))A#h#(c, U101(e, e))
A#h#(U101(e, a), d)

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(d, f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(k, f(d))h#(d, U101(d, d))
h#(d, f(k)) 
Thus, the rule A# → h#(d, f(d)) is replaced by the following rules:
A# → h#(k, f(d))A# → h#(d, f(k))

Problem 29: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(c), f(c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U101(e, e), U101(e, e))A#h#(d, d)
A#h#(k, k)A#h#(U101(c, c), c)
A#h#(f(c), f(d))A#h#(k, U101(e, e))
A#h#(f(k), f(e))A#h#(U101(c, c), U101(e, b))
A#h#(f(k), f(k))A#h#(f(k), U101(c, b))
A#h#(U101(a, a), f(k))A#h#(U101(c, a), f(k))
A#h#(a, d)A#h#(U101(a, a), U101(c, b))
A#h#(f(d), k)A#h#(f(e), U101(e, b))
A#h#(U101(a, a), U101(b, b))A#h#(c, c)
A#h#(f(a), U101(c, c))A#h#(U101(c, a), f(c))
A#h#(U101(e, c), k)A#h#(f(e), d)
A#h#(a, U101(e, e))A#h#(U101(c, c), f(b))
A#h#(f(a), k)A#h#(U101(c, c), U101(c, b))
A#h#(U101(e, e), e)A#h#(f(c), e)
A#h#(f(c), c)A#h#(U101(e, c), U101(c, b))
A#h#(U101(c, c), e)A#h#(f(e), e)
A#h#(f(k), U101(e, e))A#h#(f(k), k)
A#h#(c, U101(b, b))A#h#(e, d)
A#h#(U101(a, a), f(b))A#h#(U101(a, a), U101(e, b))
A#h#(f(c), k)A#h#(f(d), b)
A#h#(f(e), b)A#h#(f(d), U101(c, c))
A#h#(U101(e, e), U101(b, b))A#h#(U101(a, a), U101(e, c))
A#h#(e, U101(e, c))A#h#(f(e), f(c))
A#h#(U101(c, a), U101(c, c))A#h#(c, U101(e, e))
A#h#(U101(e, a), d)

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U101(c, c), c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U101(c, c), e)h#(U101(k, c), c)
h#(U101(c, c), k) 
h#(U101(e, c), c) 
Thus, the rule A# → h#(U101(c, c), c) is replaced by the following rules:
A# → h#(U101(e, c), c)A# → h#(U101(c, c), k)
A# → h#(U101(c, c), e)

Problem 30: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(c), f(c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U101(e, e), U101(e, e))A#h#(c, e)
A#h#(d, d)A#h#(e, b)
A#h#(k, d)A#h#(U101(e, c), U101(e, b))
A#h#(c, d)A#h#(k, k)
A#h#(U101(c, c), c)A#h#(f(k), f(k))
A#h#(f(k), U101(c, b))A#h#(U101(a, a), f(k))
A#h#(U101(c, a), f(k))A#h#(a, d)
A#h#(U101(a, a), U101(c, b))A#h#(f(d), k)
A#h#(f(e), U101(e, b))A#h#(U101(a, a), U101(b, b))
A#h#(c, c)A#h#(U101(c, a), f(c))
A#h#(f(a), U101(c, c))A#h#(U101(e, c), k)
A#h#(f(e), d)A#h#(a, U101(e, e))
A#h#(U101(c, c), f(b))A#h#(f(a), k)
A#h#(U101(c, c), U101(c, b))A#h#(U101(e, e), e)
A#h#(f(c), e)A#h#(f(c), c)
A#h#(U101(e, c), U101(c, b))A#h#(U101(c, c), e)
A#h#(f(e), e)A#h#(f(k), U101(e, e))
A#h#(f(k), k)A#h#(c, U101(b, b))
A#h#(e, d)A#h#(U101(a, a), f(b))
A#h#(U101(a, a), U101(e, b))A#h#(f(c), k)
A#h#(f(d), b)A#h#(f(e), b)
A#h#(f(d), U101(c, c))A#h#(U101(a, a), U101(e, c))
A#h#(U101(e, e), U101(b, b))A#h#(U101(c, a), U101(c, c))
A#h#(f(e), f(c))A#h#(e, U101(e, c))
A#h#(c, U101(e, e))A#h#(U101(e, a), d)

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(c, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(k, e) 
h#(e, e) 
Thus, the rule A# → h#(c, e) is replaced by the following rules:
A# → h#(e, e)A# → h#(k, e)

Problem 31: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(c), f(c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U101(e, e), U101(e, e))A#h#(d, d)
A#h#(k, d)A#h#(c, d)
A#h#(k, k)A#h#(e, U101(e, b))
A#h#(f(k), f(k))A#h#(U101(c, a), f(k))
A#h#(a, d)A#h#(U101(a, a), U101(c, b))
A#h#(f(d), k)A#h#(f(e), U101(e, b))
A#h#(U101(a, a), U101(b, b))A#h#(c, c)
A#h#(U101(c, a), f(c))A#h#(f(a), U101(c, c))
A#h#(U101(e, c), k)A#h#(f(e), d)
A#h#(a, U101(e, e))A#h#(f(a), k)
A#h#(U101(c, c), f(b))A#h#(U101(c, c), U101(c, b))
A#h#(U101(e, e), e)A#h#(f(c), e)
A#h#(f(c), c)A#h#(U101(e, c), U101(c, b))
A#h#(U101(c, c), e)A#h#(f(e), e)
A#h#(f(k), U101(e, e))A#h#(f(k), k)
A#h#(c, U101(b, b))A#h#(e, d)
A#h#(U101(a, a), f(b))A#h#(U101(a, a), U101(e, b))
A#h#(f(c), k)A#h#(f(d), b)
A#h#(f(e), b)A#h#(f(d), U101(c, c))
A#h#(U101(a, a), U101(e, c))A#h#(U101(e, e), U101(b, b))
A#h#(U101(c, a), U101(c, c))A#h#(e, U101(e, c))
A#h#(c, U101(e, e))A#h#(f(e), f(c))
A#h#(U101(e, a), d)

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(k, d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(k, k) 
Thus, the rule A# → h#(k, d) is replaced by the following rules:
A# → h#(k, k)

Problem 32: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(k, c)
A#h#(e, e)A#h#(f(c), f(c))
A#h#(e, k)A#h#(f(e), f(e))
A#h#(a, e)g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U101(e, e), U101(e, e))
A#h#(d, d)A#h#(e, U101(c, b))
A#h#(e, b)A#h#(k, d)
A#h#(c, d)A#h#(k, k)
A#h#(d, U101(c, b))A#h#(f(k), f(k))
A#h#(c, U101(e, b))A#h#(a, d)
A#h#(f(d), k)A#h#(f(e), U101(e, b))
A#h#(k, U101(c, b))A#h#(U101(a, a), U101(b, b))
A#h#(c, c)A#h#(f(a), U101(c, c))
A#h#(U101(c, a), f(c))A#h#(U101(e, c), k)
A#h#(f(e), d)A#h#(a, U101(e, e))
A#h#(d, U101(e, b))A#h#(U101(c, c), f(b))
A#h#(f(a), k)A#h#(U101(c, c), U101(c, b))
A#h#(U101(c, a), U101(e, b))A#h#(U101(e, e), e)
A#h#(f(c), e)A#h#(f(c), c)
A#h#(U101(e, c), U101(c, b))A#h#(U101(c, c), e)
A#h#(U101(e, a), U101(e, b))A#h#(f(e), e)
A#h#(f(k), U101(e, e))A#h#(f(k), k)
A#h#(c, U101(b, b))A#h#(e, d)
A#h#(U101(a, a), f(b))A#h#(f(c), k)
A#h#(U101(a, a), U101(e, b))A#h#(f(d), b)
A#h#(f(e), b)A#h#(f(d), U101(c, c))
A#h#(U101(e, e), U101(b, b))A#h#(U101(a, a), U101(e, c))
A#h#(c, U101(e, e))A#h#(f(e), f(c))
A#h#(U101(e, a), d)A#h#(e, U101(e, c))
A#h#(U101(c, a), U101(c, c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(k, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(k, k) 
h#(k, e) 
Thus, the rule A# → h#(k, c) is replaced by the following rules:
A# → h#(k, k)A# → h#(k, e)

Problem 33: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(c), f(c))A#h#(e, k)
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U101(e, e), U101(e, e))
A#h#(d, d)A#h#(k, d)
A#h#(k, k)A#h#(f(k), f(k))
A#h#(f(d), k)A#h#(f(e), U101(e, b))
A#h#(k, U101(c, b))A#h#(U101(a, a), U101(b, b))
A#h#(c, c)A#h#(f(a), U101(c, c))
A#h#(U101(c, a), f(c))A#h#(U101(e, c), k)
A#h#(f(e), d)A#h#(a, U101(e, e))
A#h#(d, U101(e, b))A#h#(U101(c, c), f(b))
A#h#(f(a), k)A#h#(U101(c, c), U101(c, b))
A#h#(U101(c, a), U101(e, b))A#h#(U101(e, e), e)
A#h#(f(c), e)A#h#(f(c), c)
A#h#(U101(e, c), U101(c, b))A#h#(U101(c, c), e)
A#h#(U101(e, a), U101(e, b))A#h#(f(e), e)
A#h#(f(k), U101(e, e))A#h#(f(k), k)
A#h#(c, U101(b, b))A#h#(e, d)
A#h#(U101(a, a), f(b))A#h#(f(c), k)
A#h#(U101(a, a), U101(e, b))A#h#(f(d), b)
A#h#(f(e), b)A#h#(f(d), U101(c, c))
A#h#(U101(a, a), U101(e, c))A#h#(U101(e, e), U101(b, b))
A#h#(e, U101(e, c))A#h#(U101(c, a), U101(c, c))
A#h#(U101(e, a), d)A#h#(c, U101(e, e))
A#h#(f(e), f(c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(e, k) is deleted.

Problem 34: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(c, k)A#h#(f(c), f(c))
A#h#(k, b)A#h#(e, k)
A#h#(f(e), f(e))A#h#(a, e)
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U101(e, e), U101(e, e))A#h#(U101(e, a), U101(c, b))
A#h#(d, d)A#h#(U101(e, a), U101(b, b))
A#h#(e, U101(c, b))A#h#(e, b)
A#h#(c, d)A#h#(k, k)
A#h#(d, U101(c, b))A#h#(f(k), f(k))
A#h#(c, U101(e, b))A#h#(a, d)
A#h#(k, U101(c, b))A#h#(c, c)
A#h#(f(a), U101(c, c))A#h#(U101(c, a), f(c))
A#h#(U101(e, c), k)A#h#(f(e), d)
A#h#(a, U101(e, e))A#h#(d, U101(e, b))
A#h#(U101(c, c), f(b))A#h#(f(a), k)
A#h#(U101(c, a), U101(e, b))A#h#(U101(c, c), U101(c, b))
A#h#(U101(e, e), e)A#h#(f(c), e)
A#h#(f(c), c)A#h#(U101(e, a), U101(e, b))
A#h#(U101(e, c), U101(c, b))A#h#(U101(c, c), e)
A#h#(f(e), e)A#h#(f(k), U101(e, e))
A#h#(f(k), k)A#h#(e, d)
A#h#(c, U101(b, b))A#h#(U101(a, a), f(b))
A#h#(f(c), k)A#h#(U101(a, a), U101(e, b))
A#h#(f(d), b)A#h#(f(e), b)
A#h#(f(d), U101(c, c))A#h#(U101(a, a), U101(e, c))
A#h#(U101(e, e), U101(b, b))A#h#(U101(e, a), d)
A#h#(e, U101(e, c))A#h#(f(e), f(c))
A#h#(U101(c, a), U101(c, c))A#h#(c, U101(e, e))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(c, k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(k, k) 
h#(e, k) 
Thus, the rule A# → h#(c, k) is replaced by the following rules:
A# → h#(k, k)A# → h#(e, k)

Problem 35: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(d, k)
A#h#(e, e)A#h#(k, e)
A#h#(f(c), f(c))A#h#(d, b)
A#h#(c, U101(c, b))A#h#(a, k)
A#h#(k, b)A#h#(f(e), f(e))
A#h#(a, e)g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U101(e, e), U101(e, e))
A#h#(d, d)A#h#(e, U101(c, b))
A#h#(e, b)A#h#(k, d)
A#h#(c, d)A#h#(k, k)
A#h#(d, U101(c, b))A#h#(f(k), f(k))
A#h#(c, U101(e, b))A#h#(a, U101(b, b))
A#h#(a, d)A#h#(k, U101(c, b))
A#h#(c, c)A#h#(f(a), U101(c, c))
A#h#(U101(c, a), f(c))A#h#(U101(e, c), k)
A#h#(f(e), d)A#h#(a, U101(e, e))
A#h#(d, U101(e, b))A#h#(U101(c, c), f(b))
A#h#(f(a), k)A#h#(U101(c, a), U101(e, b))
A#h#(U101(c, c), U101(c, b))A#h#(U101(e, e), e)
A#h#(f(c), e)A#h#(f(c), c)
A#h#(U101(e, a), U101(e, b))A#h#(U101(e, c), U101(c, b))
A#h#(U101(c, c), e)A#h#(f(e), e)
A#h#(f(k), U101(e, e))A#h#(f(k), k)
A#h#(e, d)A#h#(c, U101(b, b))
A#h#(U101(a, a), f(b))A#h#(U101(a, a), U101(e, b))
A#h#(f(c), k)A#h#(f(d), b)
A#h#(f(e), b)A#h#(f(d), U101(c, c))
A#h#(U101(e, e), U101(b, b))A#h#(U101(a, a), U101(e, c))
A#h#(U101(e, a), d)A#h#(e, U101(e, c))
A#h#(f(e), f(c))A#h#(U101(c, a), U101(c, c))
A#h#(c, U101(e, e))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(d, k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(k, k) 
Thus, the rule A# → h#(d, k) is replaced by the following rules:
A# → h#(k, k)

Problem 36: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(c), f(c))A#h#(e, k)
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U101(e, e), U101(e, e))
A#h#(d, d)A#h#(k, d)
A#h#(k, k)A#h#(e, U101(e, b))
A#h#(f(k), f(k))A#h#(a, U101(b, b))
A#h#(a, d)A#h#(k, U101(c, b))
A#h#(c, c)A#h#(U101(c, a), f(c))
A#h#(f(a), U101(c, c))A#h#(U101(e, c), k)
A#h#(f(e), d)A#h#(a, U101(e, e))
A#h#(d, U101(e, b))A#h#(f(a), k)
A#h#(U101(c, c), f(b))A#h#(U101(c, c), U101(c, b))
A#h#(U101(c, a), U101(e, b))A#h#(U101(e, e), e)
A#h#(f(c), e)A#h#(f(c), c)
A#h#(U101(e, a), U101(e, b))A#h#(U101(e, c), U101(c, b))
A#h#(U101(c, c), e)A#h#(f(e), e)
A#h#(f(k), U101(e, e))A#h#(f(k), k)
A#h#(e, d)A#h#(c, U101(b, b))
A#h#(U101(a, a), f(b))A#h#(U101(a, a), U101(e, b))
A#h#(f(c), k)A#h#(f(d), b)
A#h#(f(e), b)A#h#(f(d), U101(c, c))
A#h#(U101(e, e), U101(b, b))A#h#(U101(a, a), U101(e, c))
A#h#(e, U101(e, c))A#h#(c, U101(e, e))
A#h#(U101(e, a), d)A#h#(U101(c, a), U101(c, c))
A#h#(f(e), f(c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(e, k) is deleted.

Problem 37: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(c), f(c))A#h#(e, k)
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U101(e, e), U101(e, e))
A#h#(d, d)A#h#(k, k)
A#h#(d, U101(c, b))A#h#(f(k), f(k))
A#h#(c, U101(e, b))A#h#(a, d)
A#h#(k, U101(c, b))A#h#(c, c)
A#h#(f(a), U101(c, c))A#h#(U101(c, a), f(c))
A#h#(U101(e, c), k)A#h#(f(e), d)
A#h#(d, U101(e, b))A#h#(a, U101(e, e))
A#h#(U101(c, c), f(b))A#h#(f(a), k)
A#h#(U101(c, a), U101(e, b))A#h#(U101(c, c), U101(c, b))
A#h#(U101(e, e), e)A#h#(f(c), e)
A#h#(f(c), c)A#h#(U101(e, a), U101(e, b))
A#h#(U101(e, c), U101(c, b))A#h#(U101(c, c), e)
A#h#(f(e), e)A#h#(f(k), U101(e, e))
A#h#(f(k), k)A#h#(e, d)
A#h#(c, U101(b, b))A#h#(U101(a, a), f(b))
A#h#(U101(a, a), U101(e, b))A#h#(f(c), k)
A#h#(f(d), b)A#h#(f(e), b)
A#h#(f(d), U101(c, c))A#h#(U101(e, e), U101(b, b))
A#h#(U101(a, a), U101(e, c))A#h#(U101(e, a), d)
A#h#(c, U101(e, e))A#h#(e, U101(e, c))
A#h#(f(e), f(c))A#h#(U101(c, a), U101(c, c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(e, k) is deleted.

Problem 38: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(c), f(c))A#h#(U101(c, c), U101(c, c))
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U101(a, a), k)
A#h#(f(d), U101(e, c))A#h#(U101(e, e), U101(e, e))
A#h#(U101(a, a), U101(c, c))A#h#(c, e)
A#h#(d, d)A#h#(U101(c, a), c)
A#h#(k, d)A#h#(f(k), U101(c, c))
A#h#(k, k)A#h#(f(c), U101(e, c))
A#h#(f(e), U101(c, c))A#h#(f(d), c)
A#h#(f(k), e)A#h#(f(k), f(k))
A#h#(c, c)A#h#(U101(c, a), f(c))
A#h#(U101(e, c), k)A#h#(f(e), d)
A#h#(a, U101(e, e))A#h#(d, U101(e, b))
A#h#(f(a), k)A#h#(U101(c, c), f(b))
A#h#(U101(c, c), U101(c, b))A#h#(U101(c, a), U101(e, b))
A#h#(U101(e, e), e)A#h#(f(c), e)
A#h#(f(c), c)A#h#(U101(e, a), U101(e, b))
A#h#(U101(c, c), e)A#h#(U101(e, c), U101(c, b))
A#h#(f(e), e)A#h#(f(k), U101(e, e))
A#h#(f(k), k)A#h#(c, U101(b, b))
A#h#(e, d)A#h#(U101(a, a), f(b))
A#h#(f(c), k)A#h#(U101(a, a), U101(e, b))
A#h#(f(d), b)A#h#(f(e), b)
A#h#(f(d), U101(c, c))A#h#(U101(e, e), U101(b, b))
A#h#(U101(a, a), U101(e, c))A#h#(e, U101(e, c))
A#h#(U101(e, a), d)A#h#(f(e), f(c))
A#h#(c, U101(e, e))A#h#(U101(c, a), U101(c, c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U101(a, a), k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U101(c, a), k)h#(U101(d, a), k)
Thus, the rule A# → h#(U101(a, a), k) is replaced by the following rules:
A# → h#(U101(c, a), k)

Problem 39: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U101(e, c), U101(e, c))
A#h#(e, e)A#h#(f(c), f(c))
A#h#(U101(c, c), U101(c, c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U101(e, e), U101(e, e))A#h#(f(e), U101(e, c))
A#h#(f(k), c)A#h#(d, d)
A#h#(k, k)A#h#(f(d), c)
A#h#(f(e), U101(c, c))A#h#(f(k), e)
A#h#(U101(c, c), c)A#h#(f(k), f(k))
A#h#(c, c)A#h#(U101(c, a), f(c))
A#h#(U101(e, c), k)A#h#(f(e), d)
A#h#(d, U101(e, b))A#h#(a, U101(e, e))
A#h#(f(a), k)A#h#(U101(c, c), f(b))
A#h#(U101(c, a), U101(e, b))A#h#(U101(c, c), U101(c, b))
A#h#(U101(e, e), e)A#h#(f(c), e)
A#h#(f(c), c)A#h#(U101(e, a), U101(e, b))
A#h#(U101(c, c), e)A#h#(U101(e, c), U101(c, b))
A#h#(f(e), e)A#h#(f(k), U101(e, e))
A#h#(f(k), k)A#h#(c, U101(b, b))
A#h#(e, d)A#h#(U101(a, a), f(b))
A#h#(f(c), k)A#h#(U101(a, a), U101(e, b))
A#h#(f(d), b)A#h#(f(e), b)
A#h#(f(d), U101(c, c))A#h#(U101(a, a), U101(e, c))
A#h#(U101(e, e), U101(b, b))A#h#(c, U101(e, e))
A#h#(e, U101(e, c))A#h#(U101(c, a), U101(c, c))
A#h#(f(e), f(c))A#h#(U101(e, a), d)

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(e), U101(e, c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U101(e, e), U101(e, c)) 
h#(f(e), c) 
Thus, the rule A# → h#(f(e), U101(e, c)) is replaced by the following rules:
A# → h#(f(e), c)A# → h#(U101(e, e), U101(e, c))

Problem 40: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(d, e)h#(x, x)g#(x, x, f(k))
A#h#(U101(e, c), U101(e, c))A#h#(e, e)
A#h#(f(c), f(c))A#h#(U101(c, c), U101(c, c))
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U101(c, a), U101(e, e))
A#h#(U101(e, e), U101(e, e))A#h#(c, e)
A#h#(d, d)A#h#(k, f(e))
A#h#(c, f(e))A#h#(k, k)
A#h#(U101(e, a), f(c))A#h#(k, U101(e, e))
A#h#(f(k), f(k))A#h#(U101(c, a), f(k))
A#h#(c, c)A#h#(U101(e, c), k)
A#h#(f(e), d)A#h#(d, U101(e, b))
A#h#(a, U101(e, e))A#h#(U101(c, c), f(b))
A#h#(f(a), k)A#h#(U101(c, a), U101(e, b))
A#h#(U101(c, c), U101(c, b))A#h#(U101(e, e), e)
A#h#(f(c), e)A#h#(f(c), c)
A#h#(U101(c, c), e)A#h#(U101(e, a), U101(e, b))
A#h#(U101(e, c), U101(c, b))A#h#(f(e), e)
A#h#(f(k), U101(e, e))A#h#(f(k), k)
A#h#(c, U101(b, b))A#h#(e, d)
A#h#(U101(a, a), f(b))A#h#(f(c), k)
A#h#(U101(a, a), U101(e, b))A#h#(f(d), b)
A#h#(f(e), b)A#h#(f(d), U101(c, c))
A#h#(U101(a, a), U101(e, c))A#h#(U101(e, e), U101(b, b))
A#h#(U101(e, a), d)A#h#(c, U101(e, e))
A#h#(e, U101(e, c))A#h#(f(e), f(c))
A#h#(U101(c, a), U101(c, c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(d, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(k, e) 
Thus, the rule A# → h#(d, e) is replaced by the following rules:
A# → h#(k, e)

Problem 41: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U101(e, c), U101(e, c))
A#h#(e, e)A#h#(f(c), f(c))
A#h#(U101(c, c), U101(c, c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U101(e, e), U101(e, e))A#h#(d, d)
A#h#(a, U101(c, c))A#h#(a, f(k))
A#h#(e, f(c))A#h#(c, f(e))
A#h#(k, f(c))A#h#(c, f(k))
A#h#(d, f(c))A#h#(k, k)
A#h#(c, U101(c, c))A#h#(k, U101(e, e))
A#h#(f(k), f(k))A#h#(U101(e, a), U101(c, c))
A#h#(U101(c, a), f(k))A#h#(c, c)
A#h#(U101(e, c), k)A#h#(f(e), d)
A#h#(d, U101(e, b))A#h#(a, U101(e, e))
A#h#(f(a), k)A#h#(U101(c, c), f(b))
A#h#(U101(c, a), U101(e, b))A#h#(U101(c, c), U101(c, b))
A#h#(U101(e, e), e)A#h#(f(c), e)
A#h#(f(c), c)A#h#(U101(c, c), e)
A#h#(U101(e, a), U101(e, b))A#h#(U101(e, c), U101(c, b))
A#h#(f(e), e)A#h#(f(k), U101(e, e))
A#h#(f(k), k)A#h#(c, U101(b, b))
A#h#(e, d)A#h#(U101(a, a), f(b))
A#h#(f(c), k)A#h#(U101(a, a), U101(e, b))
A#h#(f(d), b)A#h#(f(e), b)
A#h#(f(d), U101(c, c))A#h#(U101(a, a), U101(e, c))
A#h#(U101(e, e), U101(b, b))A#h#(e, U101(e, c))
A#h#(f(e), f(c))A#h#(c, U101(e, e))
A#h#(U101(c, a), U101(c, c))A#h#(U101(e, a), d)

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(a, U101(c, c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(c, U101(c, c))h#(a, U101(k, c))
h#(a, U101(e, c)) 
h#(d, U101(c, c)) 
Thus, the rule A# → h#(a, U101(c, c)) is replaced by the following rules:
A# → h#(a, U101(e, c))A# → h#(c, U101(c, c))
A# → h#(d, U101(c, c))

Problem 42: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U101(e, c), U101(e, c))
A#h#(e, e)A#h#(a, c)
A#h#(f(c), f(c))A#h#(U101(c, c), U101(c, c))
A#h#(a, k)A#h#(U101(e, a), e)
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U101(e, e), U101(e, e))
A#h#(d, d)A#h#(a, U101(c, c))
A#h#(k, k)A#h#(f(k), f(k))
A#h#(U101(c, a), f(k))A#h#(a, U101(e, c))
A#h#(c, c)A#h#(U101(e, c), k)
A#h#(f(e), d)A#h#(c, U101(e, c))
A#h#(a, U101(e, e))A#h#(d, U101(e, b))
A#h#(U101(c, c), f(b))A#h#(f(a), k)
A#h#(U101(c, c), U101(c, b))A#h#(U101(c, a), U101(e, b))
A#h#(U101(e, e), e)A#h#(f(c), e)
A#h#(f(c), c)A#h#(U101(c, c), e)
A#h#(U101(e, a), U101(e, b))A#h#(U101(e, c), U101(c, b))
A#h#(f(e), e)A#h#(f(k), U101(e, e))
A#h#(f(k), k)A#h#(c, U101(b, b))
A#h#(e, d)A#h#(U101(a, a), f(b))
A#h#(f(c), k)A#h#(U101(a, a), U101(e, b))
A#h#(f(d), b)A#h#(f(e), b)
A#h#(f(d), U101(c, c))A#h#(U101(e, e), U101(b, b))
A#h#(U101(a, a), U101(e, c))A#h#(f(e), f(c))
A#h#(U101(c, a), U101(c, c))A#h#(U101(e, a), d)
A#h#(e, U101(e, c))A#h#(c, U101(e, e))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(a, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(d, c) 
h#(c, c) 
h#(a, e) 
h#(a, k) 
Thus, the rule A# → h#(a, c) is replaced by the following rules:
A# → h#(a, k)A# → h#(c, c)
A# → h#(d, c)A# → h#(a, e)

Problem 43: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(d, k)
A#h#(U101(e, c), U101(e, c))A#h#(e, e)
A#h#(k, e)A#h#(f(c), f(c))
A#h#(U101(c, c), U101(c, c))A#h#(a, k)
A#h#(f(e), f(e))A#h#(a, e)
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U101(e, e), U101(e, e))A#h#(d, d)
A#h#(k, k)A#h#(f(k), f(k))
A#h#(k, U101(e, c))A#h#(c, c)
A#h#(U101(e, c), k)A#h#(f(e), d)
A#h#(a, U101(e, e))A#h#(c, U101(e, c))
A#h#(d, U101(e, b))A#h#(U101(c, c), f(b))
A#h#(f(a), k)A#h#(U101(c, a), U101(e, b))
A#h#(U101(c, c), U101(c, b))A#h#(U101(e, e), e)
A#h#(f(c), e)A#h#(f(c), c)
A#h#(U101(c, c), e)A#h#(U101(e, c), U101(c, b))
A#h#(U101(e, a), U101(e, b))A#h#(f(e), e)
A#h#(f(k), U101(e, e))A#h#(f(k), k)
A#h#(c, U101(b, b))A#h#(e, d)
A#h#(U101(a, a), f(b))A#h#(f(c), k)
A#h#(U101(a, a), U101(e, b))A#h#(f(d), b)
A#h#(f(e), b)A#h#(f(d), U101(c, c))
A#h#(U101(e, e), U101(b, b))A#h#(U101(a, a), U101(e, c))
A#h#(c, U101(e, e))A#h#(f(e), f(c))
A#h#(e, U101(e, c))A#h#(U101(e, a), d)
A#h#(U101(c, a), U101(c, c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(d, k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(k, k) 
Thus, the rule A# → h#(d, k) is replaced by the following rules:
A# → h#(k, k)

Problem 44: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U101(e, c), U101(e, c))
A#h#(e, e)A#h#(f(c), f(c))
A#h#(U101(c, c), U101(c, c))A#h#(U101(e, e), k)
A#h#(k, U101(e, b))A#h#(U101(c, c), f(d))
A#h#(k, b)A#h#(e, k)
A#h#(U101(e, c), f(d))A#h#(f(e), f(e))
A#h#(a, e)g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U101(a, a), k)
A#h#(U101(e, e), U101(e, e))A#h#(U101(e, c), U101(b, b))
A#h#(c, e)A#h#(k, f(b))
A#h#(d, d)A#h#(c, f(e))
A#h#(e, f(c))A#h#(k, k)
A#h#(k, f(c))A#h#(c, f(k))
A#h#(e, f(b))A#h#(c, f(d))
A#h#(c, U101(c, c))A#h#(f(k), f(k))
A#h#(U101(e, c), f(c))A#h#(c, c)
A#h#(U101(c, c), U101(c, b))A#h#(U101(c, a), U101(e, b))
A#h#(U101(e, e), e)A#h#(f(c), e)
A#h#(f(c), c)A#h#(U101(c, c), e)
A#h#(U101(e, a), U101(e, b))A#h#(U101(e, c), U101(c, b))
A#h#(f(e), e)A#h#(f(k), U101(e, e))
A#h#(f(k), k)A#h#(e, d)
A#h#(c, U101(b, b))A#h#(U101(a, a), f(b))
A#h#(U101(a, a), U101(e, b))A#h#(f(c), k)
A#h#(f(d), b)A#h#(f(e), b)
A#h#(f(d), U101(c, c))A#h#(U101(e, e), U101(b, b))
A#h#(U101(a, a), U101(e, c))A#h#(U101(e, a), d)
A#h#(U101(c, a), U101(c, c))A#h#(e, U101(e, c))
A#h#(f(e), f(c))A#h#(c, U101(e, e))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U101(e, e), k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, k) 
Thus, the rule A# → h#(U101(e, e), k) is replaced by the following rules:
A# → h#(e, k)

Problem 45: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U101(e, e), U101(e, e))h#(x, x)g#(x, x, f(k))
A#h#(d, d)A#h#(k, f(e))
A#h#(c, f(d))A#h#(U101(e, c), U101(e, c))
A#h#(c, f(k))A#h#(k, k)
A#h#(e, U101(e, b))A#h#(c, U101(c, c))
A#h#(k, U101(e, e))A#h#(f(k), f(k))
A#h#(e, e)A#h#(k, U101(c, b))
A#h#(U101(e, c), f(c))A#h#(k, U101(c, c))
A#h#(c, c)A#h#(U101(c, c), U101(c, b))
A#h#(U101(c, a), U101(e, b))A#h#(f(c), f(c))
A#h#(f(c), e)A#h#(U101(e, e), e)
A#h#(f(c), c)A#h#(U101(c, c), U101(c, c))
A#h#(U101(c, c), e)A#h#(U101(e, c), U101(c, b))
A#h#(U101(e, a), U101(e, b))A#h#(f(e), e)
A#h#(f(k), U101(e, e))A#h#(f(k), k)
A#h#(e, d)A#h#(c, U101(b, b))
A#h#(U101(a, a), f(b))A#h#(U101(a, a), U101(e, b))
A#h#(f(c), k)A#h#(f(d), b)
A#h#(f(e), b)A#h#(f(e), f(e))
A#h#(f(d), U101(c, c))A#h#(U101(e, e), U101(b, b))
A#h#(U101(a, a), U101(e, c))g#(d, x, x)A#
A#h#(c, U101(e, e))A#h#(U101(c, a), U101(c, c))
A#h#(U101(e, a), d)A#h#(e, U101(e, c))
A#h#(f(e), f(c))A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(k, U101(c, c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(k, U101(e, c))h#(k, U101(k, c))
Thus, the rule A# → h#(k, U101(c, c)) is replaced by the following rules:
A# → h#(k, U101(e, c))

Problem 46: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(k, c)
A#h#(U101(e, c), U101(e, c))A#h#(e, e)
A#h#(f(c), f(c))A#h#(U101(c, c), U101(c, c))
A#h#(k, U101(e, b))A#h#(e, k)
A#h#(f(e), f(e))A#h#(U101(e, c), U101(c, c))
A#h#(U101(e, c), d)A#h#(U101(c, c), d)
A#h#(e, f(d))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U101(e, e), U101(e, e))
A#h#(d, d)A#h#(c, e)
A#h#(e, b)A#h#(U101(e, c), U101(e, b))
A#h#(k, d)A#h#(c, d)
A#h#(e, f(c))A#h#(c, f(e))
A#h#(k, f(c))A#h#(c, f(k))
A#h#(k, k)A#h#(c, U101(c, c))
A#h#(U101(c, c), c)A#h#(f(k), f(k))
A#h#(c, c)A#h#(U101(e, c), k)
A#h#(U101(c, a), U101(e, b))A#h#(U101(e, e), e)
A#h#(f(c), e)A#h#(f(c), c)
A#h#(U101(c, c), e)A#h#(U101(e, a), U101(e, b))
A#h#(U101(e, c), U101(c, b))A#h#(f(e), e)
A#h#(f(k), U101(e, e))A#h#(f(k), k)
A#h#(c, U101(b, b))A#h#(e, d)
A#h#(U101(a, a), f(b))A#h#(f(c), k)
A#h#(U101(a, a), U101(e, b))A#h#(f(d), b)
A#h#(f(e), b)A#h#(f(d), U101(c, c))
A#h#(U101(a, a), U101(e, c))A#h#(U101(e, e), U101(b, b))
A#h#(c, U101(e, e))A#h#(f(e), f(c))
A#h#(e, U101(e, c))A#h#(U101(c, a), U101(c, c))
A#h#(U101(e, a), d)

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(k, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(k, k) 
h#(k, e) 
Thus, the rule A# → h#(k, c) is replaced by the following rules:
A# → h#(k, k)A# → h#(k, e)

Problem 47: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U101(e, e), U101(e, e))h#(x, x)g#(x, x, f(k))
A#h#(d, d)A#h#(U101(e, c), U101(e, c))
A#h#(k, k)A#h#(c, U101(c, c))
A#h#(U101(c, c), c)A#h#(k, f(k))
A#h#(k, U101(e, e))A#h#(f(k), f(k))
A#h#(c, U101(e, b))A#h#(e, e)
A#h#(k, U101(c, c))A#h#(c, c)
A#h#(U101(e, c), k)A#h#(U101(c, a), U101(e, b))
A#h#(c, k)A#h#(f(c), f(c))
A#h#(f(c), e)A#h#(U101(e, e), e)
A#h#(f(c), c)A#h#(U101(c, c), U101(c, c))
A#h#(U101(c, c), e)A#h#(U101(e, a), U101(e, b))
A#h#(U101(e, c), U101(c, b))A#h#(f(e), e)
A#h#(f(k), U101(e, e))A#h#(f(k), k)
A#h#(c, U101(b, b))A#h#(e, d)
A#h#(U101(a, a), f(b))A#h#(f(c), k)
A#h#(U101(a, a), U101(e, b))A#h#(f(d), b)
A#h#(f(e), b)A#h#(f(e), f(e))
A#h#(f(d), U101(c, c))A#h#(U101(a, a), U101(e, c))
A#h#(U101(e, e), U101(b, b))g#(d, x, x)A#
A#h#(U101(c, a), U101(c, c))A#h#(U101(e, a), d)
A#h#(c, U101(e, e))A#h#(e, U101(e, c))
A#h#(f(e), f(c))A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U101(c, c), c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U101(c, c), e)h#(U101(k, c), c)
h#(U101(c, c), k) 
h#(U101(e, c), c) 
Thus, the rule A# → h#(U101(c, c), c) is replaced by the following rules:
A# → h#(U101(e, c), c)A# → h#(U101(c, c), k)
A# → h#(U101(c, c), e)

Problem 48: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U101(e, c), U101(e, c))
A#h#(e, e)A#h#(f(c), f(c))
A#h#(U101(c, c), U101(c, c))A#h#(a, k)
A#h#(U101(c, a), e)A#h#(k, b)
A#h#(k, U101(e, b))A#h#(e, k)
A#h#(f(e), f(e))A#h#(U101(e, a), c)
g#(d, x, x)A#A#h#(a, e)
A#h#(f(d), f(d))A#h#(U101(e, e), U101(e, e))
A#h#(d, d)A#h#(c, e)
A#h#(e, b)A#h#(c, d)
A#h#(k, k)A#h#(f(k), f(k))
A#h#(a, d)A#h#(c, c)
A#h#(U101(e, c), k)A#h#(U101(e, e), e)
A#h#(f(c), e)A#h#(f(c), c)
A#h#(U101(e, c), U101(c, b))A#h#(U101(e, a), U101(e, b))
A#h#(U101(c, c), e)A#h#(f(e), e)
A#h#(f(k), U101(e, e))A#h#(f(k), k)
A#h#(c, U101(b, b))A#h#(e, d)
A#h#(U101(a, a), f(b))A#h#(f(c), k)
A#h#(U101(a, a), U101(e, b))A#h#(f(d), b)
A#h#(f(e), b)A#h#(f(d), U101(c, c))
A#h#(U101(a, a), U101(e, c))A#h#(U101(e, e), U101(b, b))
A#h#(c, U101(e, e))A#h#(U101(c, a), U101(c, c))
A#h#(e, U101(e, c))A#h#(U101(e, a), d)
A#h#(f(e), f(c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(a, k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(d, k) 
h#(c, k) 
Thus, the rule A# → h#(a, k) is replaced by the following rules:
A# → h#(d, k)A# → h#(c, k)

Problem 49: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U101(e, e), U101(e, e))A#h#(e, c)
h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(c, d)A#h#(U101(e, c), U101(e, c))
A#h#(k, k)A#h#(f(k), f(k))
A#h#(a, b)A#h#(c, U101(e, b))
A#h#(a, d)A#h#(e, e)
A#h#(c, c)A#h#(d, U101(e, b))
A#h#(f(c), f(c))A#h#(d, b)
A#h#(U101(c, c), U101(c, c))A#h#(U101(e, c), U101(c, b))
A#h#(U101(c, c), e)A#h#(f(e), e)
A#h#(a, k)A#h#(f(k), U101(e, e))
A#h#(U101(e, e), k)A#h#(k, U101(e, b))
A#h#(f(k), k)A#h#(k, b)
A#h#(U101(e, a), e)A#h#(c, U101(b, b))
A#h#(e, d)A#h#(e, k)
A#h#(U101(a, a), f(b))A#h#(U101(a, a), U101(e, b))
A#h#(f(c), k)A#h#(f(d), b)
A#h#(f(e), b)A#h#(f(e), f(e))
A#h#(f(d), U101(c, c))A#h#(U101(e, a), c)
A#h#(U101(e, e), U101(b, b))A#h#(U101(a, a), U101(e, c))
g#(d, x, x)A#A#h#(a, e)
A#h#(e, U101(e, c))A#h#(U101(e, a), d)
A#h#(c, U101(e, e))A#h#(U101(c, a), U101(c, c))
A#h#(f(e), f(c))A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, k) 
h#(e, e) 
Thus, the rule A# → h#(e, c) is replaced by the following rules:
A# → h#(e, e)A# → h#(e, k)

Problem 50: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U101(e, e), U101(e, e))h#(x, x)g#(x, x, f(k))
A#h#(d, d)A#h#(e, b)
A#h#(c, d)A#h#(k, k)
A#h#(U101(e, c), U101(e, c))A#h#(e, U101(e, b))
A#h#(f(k), f(k))A#h#(e, e)
A#h#(c, c)A#h#(c, k)
A#h#(f(c), f(c))A#h#(U101(e, c), c)
A#h#(c, U101(c, b))A#h#(U101(c, c), U101(c, c))
A#h#(a, k)A#h#(f(e), e)
A#h#(f(k), U101(e, e))A#h#(U101(e, e), k)
A#h#(U101(e, a), e)A#h#(k, b)
A#h#(k, U101(e, b))A#h#(f(k), k)
A#h#(e, d)A#h#(c, U101(b, b))
A#h#(e, k)A#h#(U101(a, a), f(b))
A#h#(U101(a, a), U101(e, b))A#h#(f(c), k)
A#h#(f(d), b)A#h#(f(e), b)
A#h#(U101(e, c), d)A#h#(f(e), f(e))
A#h#(U101(e, a), c)A#h#(f(d), U101(c, c))
g#(d, x, x)A#A#h#(a, e)
A#h#(U101(a, a), U101(e, c))A#h#(U101(e, e), U101(b, b))
A#h#(f(d), f(d))A#h#(f(e), f(c))
A#h#(c, U101(e, e))A#h#(U101(c, a), U101(c, c))
A#h#(e, U101(e, c))A#h#(U101(e, a), d)

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, d) 
h#(e, c) 
Thus, the rule A# → h#(e, b) is replaced by the following rules:
A# → h#(e, c)A# → h#(e, d)

Problem 51: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U101(e, e), U101(e, e))h#(x, x)g#(x, x, f(k))
A#h#(d, d)A#h#(k, k)
A#h#(U101(e, c), U101(e, c))A#h#(f(k), f(k))
A#h#(e, e)A#h#(c, c)
A#h#(f(c), f(c))A#h#(U101(c, c), U101(c, c))
A#h#(c, U101(b, b))A#h#(e, k)
A#h#(U101(a, a), f(b))A#h#(f(c), k)
A#h#(U101(a, a), U101(e, b))A#h#(f(d), b)
A#h#(f(e), b)A#h#(U101(e, c), d)
A#h#(f(e), f(e))A#h#(f(d), U101(c, c))
A#h#(U101(e, a), c)A#h#(U101(e, e), U101(b, b))
A#h#(a, e)g#(d, x, x)A#
A#h#(U101(a, a), U101(e, c))A#h#(f(d), f(d))
A#h#(f(e), f(c))A#h#(c, U101(e, e))
A#h#(U101(c, a), U101(c, c))A#h#(e, U101(e, c))
A#h#(U101(e, a), d)

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(e, k) is deleted.

Problem 52: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U101(e, e), U101(e, e))h#(x, x)g#(x, x, f(k))
A#h#(d, d)A#h#(a, f(k))
A#h#(k, k)A#h#(U101(e, c), U101(e, c))
A#h#(f(k), f(k))A#h#(U101(c, a), U101(b, b))
A#h#(e, e)A#h#(U101(a, a), U101(b, b))
A#h#(c, c)A#h#(U101(c, a), f(c))
A#h#(a, U101(e, e))A#h#(U101(e, a), f(b))
A#h#(f(c), f(c))A#h#(U101(c, a), f(d))
A#h#(U101(c, c), U101(c, c))A#h#(U101(c, a), e)
A#h#(a, f(e))A#h#(U101(e, a), e)
A#h#(U101(a, a), U101(e, b))A#h#(f(c), k)
A#h#(f(d), b)A#h#(f(e), b)
A#h#(U101(e, c), d)A#h#(f(e), f(e))
A#h#(U101(e, a), c)A#h#(f(d), U101(c, c))
A#h#(U101(a, a), U101(e, c))A#h#(a, e)
A#h#(U101(e, e), U101(b, b))g#(d, x, x)A#
A#h#(f(e), f(c))A#h#(f(d), f(d))
A#h#(c, U101(e, e))A#h#(U101(c, a), U101(c, c))
A#h#(e, U101(e, c))A#h#(U101(e, a), d)

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(a, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(d, f(k))h#(a, U101(k, k))
h#(c, f(k)) 
Thus, the rule A# → h#(a, f(k)) is replaced by the following rules:
A# → h#(c, f(k))A# → h#(d, f(k))

Problem 53: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(k, c)
A#h#(d, k)A#h#(U101(e, c), U101(e, c))
A#h#(e, e)A#h#(k, e)
A#h#(f(c), f(c))A#h#(d, b)
A#h#(c, U101(c, b))A#h#(U101(c, c), U101(c, c))
A#h#(U101(c, a), f(d))A#h#(a, k)
A#h#(U101(c, a), e)A#h#(a, f(e))
A#h#(c, f(c))A#h#(k, b)
A#h#(k, U101(e, b))A#h#(U101(e, a), e)
A#h#(d, f(k))A#h#(f(e), f(e))
A#h#(U101(e, c), d)A#h#(U101(e, a), c)
g#(d, x, x)A#A#h#(a, e)
A#h#(f(d), f(d))A#h#(U101(c, a), U101(e, e))
A#h#(U101(e, e), U101(e, e))A#h#(d, d)
A#h#(a, U101(c, c))A#h#(a, f(k))
A#h#(e, b)A#h#(c, d)
A#h#(k, k)A#h#(d, f(c))
A#h#(d, U101(c, b))A#h#(f(k), f(k))
A#h#(U101(e, a), U101(c, c))A#h#(c, U101(e, b))
A#h#(U101(c, a), f(k))A#h#(a, d)
A#h#(k, U101(c, b))A#h#(c, c)
A#h#(a, U101(e, e))A#h#(d, U101(e, b))
A#h#(U101(c, a), U101(e, b))A#h#(U101(e, a), f(b))
A#h#(U101(e, a), U101(e, b))A#h#(c, U101(b, b))
A#h#(f(c), k)A#h#(U101(a, a), U101(e, b))
A#h#(f(d), b)A#h#(f(e), b)
A#h#(f(d), U101(c, c))A#h#(U101(a, a), U101(e, c))
A#h#(U101(e, e), U101(b, b))A#h#(e, U101(e, c))
A#h#(U101(c, a), U101(c, c))A#h#(c, U101(e, e))
A#h#(f(e), f(c))A#h#(U101(e, a), d)

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(k, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(k, k) 
h#(k, e) 
Thus, the rule A# → h#(k, c) is replaced by the following rules:
A# → h#(k, k)A# → h#(k, e)

Problem 54: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U101(e, c), U101(e, c))
A#h#(U101(e, a), U101(e, e))A#h#(e, e)
A#h#(f(c), f(c))A#h#(U101(c, c), U101(c, c))
A#h#(U101(c, a), e)A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U101(e, e), U101(e, e))A#h#(c, e)
A#h#(d, d)A#h#(k, f(e))
A#h#(e, U101(c, b))A#h#(a, U101(c, c))
A#h#(a, f(k))A#h#(e, b)
A#h#(k, d)A#h#(c, d)
A#h#(c, f(e))A#h#(d, f(d))
A#h#(e, f(c))A#h#(k, f(c))
A#h#(c, f(d))A#h#(c, f(k))
A#h#(k, k)A#h#(d, f(c))
A#h#(c, U101(c, c))A#h#(d, U101(c, b))
A#h#(k, U101(e, e))A#h#(f(k), f(k))
A#h#(U101(e, a), U101(c, c))A#h#(c, U101(e, b))
A#h#(U101(c, a), f(k))A#h#(a, d)
A#h#(k, U101(c, b))A#h#(c, c)
A#h#(U101(e, c), k)A#h#(a, U101(e, e))
A#h#(d, U101(e, b))A#h#(U101(c, a), U101(e, b))
A#h#(U101(e, a), f(b))A#h#(U101(e, a), U101(e, b))
A#h#(c, U101(b, b))A#h#(f(c), k)
A#h#(U101(a, a), U101(e, b))A#h#(f(d), b)
A#h#(f(e), b)A#h#(f(d), U101(c, c))
A#h#(U101(a, a), U101(e, c))A#h#(U101(e, e), U101(b, b))
A#h#(e, U101(e, c))A#h#(U101(c, a), U101(c, c))
A#h#(c, U101(e, e))A#h#(f(e), f(c))
A#h#(U101(e, a), d)

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U101(e, a), U101(e, e)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U101(e, a), e) 
h#(a, U101(e, e)) 
Thus, the rule A# → h#(U101(e, a), U101(e, e)) is replaced by the following rules:
A# → h#(U101(e, a), e)A# → h#(a, U101(e, e))

Problem 55: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U101(e, c), U101(e, c))
A#h#(e, e)A#h#(f(c), f(c))
A#h#(U101(c, c), U101(c, c))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U101(e, e), U101(e, e))A#h#(d, d)
A#h#(k, f(e))A#h#(d, U101(c, c))
A#h#(c, f(k))A#h#(k, k)
A#h#(k, f(c))A#h#(e, U101(e, b))
A#h#(d, U101(e, c))A#h#(d, U101(c, b))
A#h#(c, U101(c, c))A#h#(k, U101(e, e))
A#h#(f(k), f(k))A#h#(k, U101(e, c))
A#h#(U101(e, a), U101(c, c))A#h#(c, U101(e, b))
A#h#(U101(c, a), f(k))A#h#(a, U101(e, c))
A#h#(a, d)A#h#(k, U101(c, b))
A#h#(c, c)A#h#(U101(e, c), k)
A#h#(a, U101(e, e))A#h#(d, U101(e, b))
A#h#(U101(c, a), U101(e, b))A#h#(U101(e, a), f(b))
A#h#(U101(e, a), U101(e, b))A#h#(e, d)
A#h#(c, U101(b, b))A#h#(f(c), k)
A#h#(U101(a, a), U101(e, b))A#h#(f(d), b)
A#h#(f(e), b)A#h#(f(d), U101(c, c))
A#h#(U101(e, e), U101(b, b))A#h#(U101(a, a), U101(e, c))
A#h#(e, U101(e, c))A#h#(U101(c, a), U101(c, c))
A#h#(c, U101(e, e))A#h#(f(e), f(c))
A#h#(U101(e, a), d)

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(k, f(e)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(k, U101(e, e)) 
Thus, the rule A# → h#(k, f(e)) is replaced by the following rules:
A# → h#(k, U101(e, e))

Problem 56: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U101(e, e), U101(e, e))h#(x, x)g#(x, x, f(k))
A#h#(d, d)A#h#(k, d)
A#h#(U101(e, c), U101(e, c))A#h#(k, k)
A#h#(f(k), f(k))A#h#(a, U101(e, c))
A#h#(k, U101(c, b))A#h#(e, e)
A#h#(k, U101(c, c))A#h#(c, c)
A#h#(e, U101(c, c))A#h#(U101(e, c), k)
A#h#(k, e)A#h#(c, U101(e, c))
A#h#(d, U101(e, b))A#h#(a, U101(e, e))
A#h#(U101(c, a), U101(e, b))A#h#(U101(e, a), f(b))
A#h#(c, k)A#h#(f(c), f(c))
A#h#(U101(c, c), U101(c, c))A#h#(U101(e, a), U101(e, b))
A#h#(a, k)A#h#(k, b)
A#h#(k, U101(e, b))A#h#(c, U101(b, b))
A#h#(e, d)A#h#(e, k)
A#h#(U101(a, a), U101(e, b))A#h#(f(c), k)
A#h#(d, f(k))A#h#(f(d), b)
A#h#(f(e), b)A#h#(f(e), f(e))
A#h#(U101(e, a), U101(e, c))A#h#(f(d), U101(c, c))
A#h#(U101(a, a), U101(e, c))A#h#(U101(e, e), U101(b, b))
g#(d, x, x)A#A#h#(U101(e, a), d)
A#h#(f(e), f(c))A#h#(c, U101(e, e))
A#h#(U101(c, a), U101(c, c))A#h#(e, U101(e, c))
A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(k, d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(k, k) 
Thus, the rule A# → h#(k, d) is replaced by the following rules:
A# → h#(k, k)

Problem 57: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U101(e, e), U101(e, e))h#(x, x)g#(x, x, f(k))
A#h#(d, d)A#h#(U101(e, c), U101(e, c))
A#h#(k, k)A#h#(f(k), f(k))
A#h#(e, e)A#h#(c, c)
A#h#(U101(e, a), f(b))A#h#(d, U101(e, e))
A#h#(f(c), f(c))A#h#(c, k)
A#h#(d, b)A#h#(U101(c, c), U101(c, c))
A#h#(U101(e, a), U101(e, b))A#h#(U101(c, a), e)
A#h#(a, k)A#h#(k, U101(e, b))
A#h#(k, b)A#h#(c, U101(b, b))
A#h#(e, d)A#h#(e, k)
A#h#(U101(a, a), U101(e, b))A#h#(f(c), k)
A#h#(d, f(k))A#h#(f(d), b)
A#h#(f(e), b)A#h#(f(e), f(e))
A#h#(U101(e, a), U101(e, c))A#h#(U101(e, a), c)
A#h#(f(d), U101(c, c))A#h#(a, e)
A#h#(U101(e, e), U101(b, b))A#h#(U101(a, a), U101(e, c))
g#(d, x, x)A#A#h#(U101(c, a), U101(c, c))
A#h#(c, U101(e, e))A#h#(f(e), f(c))
A#h#(U101(e, a), d)A#h#(e, U101(e, c))
A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(d, U101(e, e)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(d, e) 
h#(k, U101(e, e)) 
Thus, the rule A# → h#(d, U101(e, e)) is replaced by the following rules:
A# → h#(d, e)A# → h#(k, U101(e, e))

Problem 58: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U101(e, c), U101(e, c))
A#h#(e, e)A#h#(f(c), f(c))
A#h#(U101(c, c), U101(c, c))A#h#(U101(e, a), U101(e, c))
A#h#(f(e), f(e))A#h#(U101(e, a), c)
A#h#(a, e)g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U101(e, e), U101(e, e))
A#h#(k, f(b))A#h#(d, d)
A#h#(e, U101(c, b))A#h#(a, f(k))
A#h#(e, b)A#h#(k, d)
A#h#(c, d)A#h#(e, f(c))
A#h#(c, f(e))A#h#(d, f(d))
A#h#(e, f(b))A#h#(k, f(c))
A#h#(d, f(c))A#h#(c, f(k))
A#h#(k, k)A#h#(c, f(d))
A#h#(U101(e, a), f(c))A#h#(c, U101(c, c))
A#h#(d, U101(c, b))A#h#(a, f(c))
A#h#(f(k), f(k))A#h#(c, U101(e, b))
A#h#(a, U101(b, b))A#h#(a, d)
A#h#(k, U101(c, b))A#h#(c, c)
A#h#(d, U101(e, b))A#h#(U101(e, a), U101(e, b))
A#h#(c, U101(b, b))A#h#(e, d)
A#h#(U101(a, a), U101(e, b))A#h#(f(c), k)
A#h#(f(d), b)A#h#(f(e), b)
A#h#(f(d), U101(c, c))A#h#(U101(a, a), U101(e, c))
A#h#(U101(e, e), U101(b, b))A#h#(U101(c, a), U101(c, c))
A#h#(c, U101(e, e))A#h#(f(e), f(c))
A#h#(U101(e, a), d)A#h#(e, U101(e, c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U101(e, a), U101(e, c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U101(e, a), c) 
h#(a, U101(e, c)) 
Thus, the rule A# → h#(U101(e, a), U101(e, c)) is replaced by the following rules:
A# → h#(a, U101(e, c))A# → h#(U101(e, a), c)

Problem 59: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U101(e, c), U101(e, c))
A#h#(k, f(k))A#h#(e, e)
A#h#(f(c), f(c))A#h#(U101(c, c), U101(c, c))
A#h#(d, f(k))A#h#(f(e), f(e))
A#h#(d, f(e))g#(d, x, x)A#
A#h#(e, f(d))A#h#(f(d), f(d))
A#h#(U101(e, e), U101(e, e))A#h#(d, d)
A#h#(k, f(c))A#h#(c, f(k))
A#h#(e, f(b))A#h#(k, k)
A#h#(d, U101(e, c))A#h#(U101(e, a), f(c))
A#h#(e, U101(e, b))A#h#(d, U101(c, b))
A#h#(c, U101(c, c))A#h#(a, f(c))
A#h#(k, U101(e, e))A#h#(f(k), f(k))
A#h#(k, U101(e, c))A#h#(c, U101(e, b))
A#h#(a, U101(b, b))A#h#(a, U101(e, c))
A#h#(a, d)A#h#(k, U101(c, b))
A#h#(c, c)A#h#(d, U101(e, b))
A#h#(U101(e, a), U101(e, b))A#h#(c, U101(b, b))
A#h#(e, d)A#h#(U101(a, a), U101(e, b))
A#h#(f(c), k)A#h#(f(d), b)
A#h#(f(e), b)A#h#(f(d), U101(c, c))
A#h#(U101(e, e), U101(b, b))A#h#(U101(a, a), U101(e, c))
A#h#(U101(c, a), U101(c, c))A#h#(e, U101(e, c))
A#h#(f(e), f(c))A#h#(U101(e, a), d)
A#h#(c, U101(e, e))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(k, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 h#(k, U101(k, k))
Thus, the rule A# → h#(k, f(k)) is deleted.

Problem 60: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U101(e, c), U101(e, c))
A#h#(e, e)A#h#(f(c), f(c))
A#h#(U101(c, c), U101(c, c))A#h#(f(e), f(e))
A#h#(a, e)g#(d, x, x)A#
A#h#(d, f(e))A#h#(e, f(d))
A#h#(f(d), f(d))A#h#(U101(e, e), U101(e, e))
A#h#(d, d)A#h#(a, f(k))
A#h#(a, U101(c, c))A#h#(e, f(c))
A#h#(c, f(e))A#h#(d, f(c))
A#h#(k, k)A#h#(k, f(c))
A#h#(c, f(k))A#h#(d, U101(c, b))
A#h#(c, U101(c, c))A#h#(k, U101(e, e))
A#h#(f(k), f(k))A#h#(k, U101(e, c))
A#h#(U101(e, a), U101(c, c))A#h#(c, U101(e, b))
A#h#(a, U101(b, b))A#h#(a, U101(e, c))
A#h#(a, d)A#h#(k, U101(c, b))
A#h#(c, c)A#h#(a, U101(e, e))
A#h#(d, U101(e, b))A#h#(U101(e, a), U101(e, b))
A#h#(e, d)A#h#(c, U101(b, b))
A#h#(f(c), k)A#h#(U101(a, a), U101(e, b))
A#h#(f(d), b)A#h#(f(e), b)
A#h#(f(d), U101(c, c))A#h#(U101(a, a), U101(e, c))
A#h#(U101(e, e), U101(b, b))A#h#(U101(e, a), d)
A#h#(f(e), f(c))A#h#(c, U101(e, e))
A#h#(e, U101(e, c))A#h#(U101(c, a), U101(c, c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(a, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(d, e) 
h#(c, e) 
Thus, the rule A# → h#(a, e) is replaced by the following rules:
A# → h#(d, e)A# → h#(c, e)

Problem 61: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U101(e, e), U101(e, e))h#(x, x)g#(x, x, f(k))
A#h#(d, d)A#h#(U101(e, c), U101(e, c))
A#h#(k, k)A#h#(f(k), f(k))
A#h#(k, U101(e, c))A#h#(c, U101(e, b))
A#h#(a, U101(b, b))A#h#(a, U101(e, c))
A#h#(a, d)A#h#(e, e)
A#h#(k, U101(c, b))A#h#(k, U101(c, c))
A#h#(c, c)A#h#(e, U101(c, c))
A#h#(k, e)A#h#(c, U101(e, c))
A#h#(a, U101(e, e))A#h#(d, U101(e, b))
A#h#(f(c), f(c))A#h#(U101(c, c), U101(c, c))
A#h#(U101(e, a), U101(e, b))A#h#(e, d)
A#h#(c, U101(b, b))A#h#(U101(a, a), U101(e, b))
A#h#(f(c), k)A#h#(d, f(k))
A#h#(f(d), b)A#h#(f(e), b)
A#h#(f(e), f(e))A#h#(U101(e, a), U101(e, c))
A#h#(f(d), U101(c, c))A#h#(d, f(e))
A#h#(U101(e, e), U101(b, b))A#h#(U101(a, a), U101(e, c))
g#(d, x, x)A#A#h#(U101(c, a), U101(c, c))
A#h#(U101(e, a), d)A#h#(e, U101(e, c))
A#h#(c, U101(e, e))A#h#(f(e), f(c))
A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(k, U101(e, c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(k, c) 
Thus, the rule A# → h#(k, U101(e, c)) is replaced by the following rules:
A# → h#(k, c)

Problem 62: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U101(e, e), U101(e, e))A#h#(e, c)
h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(c, d)A#h#(k, k)
A#h#(U101(e, c), U101(e, c))A#h#(f(k), f(k))
A#h#(c, U101(e, b))A#h#(a, d)
A#h#(k, U101(c, b))A#h#(e, e)
A#h#(c, c)A#h#(a, c)
A#h#(d, U101(e, b))A#h#(d, U101(e, e))
A#h#(f(c), f(c))A#h#(c, k)
A#h#(c, U101(c, b))A#h#(d, b)
A#h#(U101(c, c), U101(c, c))A#h#(U101(e, a), U101(e, b))
A#h#(a, k)A#h#(k, U101(e, b))
A#h#(k, b)A#h#(c, U101(b, b))
A#h#(e, k)A#h#(e, d)
A#h#(f(c), k)A#h#(d, f(k))
A#h#(U101(a, a), U101(e, b))A#h#(f(d), b)
A#h#(f(e), b)A#h#(f(e), f(e))
A#h#(U101(e, a), U101(e, c))A#h#(f(d), U101(c, c))
A#h#(a, e)A#h#(U101(a, a), U101(e, c))
A#h#(U101(e, e), U101(b, b))A#h#(d, f(e))
g#(d, x, x)A#A#h#(c, U101(e, e))
A#h#(e, U101(e, c))A#h#(U101(e, a), d)
A#h#(U101(c, a), U101(c, c))A#h#(f(e), f(c))
A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, k) 
h#(e, e) 
Thus, the rule A# → h#(e, c) is replaced by the following rules:
A# → h#(e, e)A# → h#(e, k)

Problem 63: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U101(e, e), U101(e, e))h#(x, x)g#(x, x, f(k))
A#h#(d, d)A#h#(k, k)
A#h#(U101(e, c), U101(e, c))A#h#(f(k), f(k))
A#h#(e, e)A#h#(c, c)
A#h#(f(c), f(c))A#h#(U101(c, c), U101(c, c))
A#h#(U101(e, a), U101(e, b))A#h#(a, k)
A#h#(k, U101(e, b))A#h#(k, b)
A#h#(e, k)A#h#(c, U101(b, b))
A#h#(e, d)A#h#(d, f(k))
A#h#(U101(a, a), U101(e, b))A#h#(f(c), k)
A#h#(f(d), b)A#h#(f(e), b)
A#h#(U101(e, a), U101(e, c))A#h#(f(e), f(e))
A#h#(f(d), U101(c, c))A#h#(a, e)
A#h#(U101(a, a), U101(e, c))A#h#(U101(e, e), U101(b, b))
A#h#(d, f(e))g#(d, x, x)A#
A#h#(c, U101(e, e))A#h#(e, U101(e, c))
A#h#(U101(e, a), d)A#h#(U101(c, a), U101(c, c))
A#h#(f(e), f(c))A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U101(e, a), U101(e, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U101(e, a), b) 
h#(a, U101(e, b)) 
Thus, the rule A# → h#(U101(e, a), U101(e, b)) is replaced by the following rules:
A# → h#(a, U101(e, b))A# → h#(U101(e, a), b)

Problem 64: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U101(e, e), U101(e, e))h#(x, x)g#(x, x, f(k))
A#h#(d, d)A#h#(k, k)
A#h#(U101(e, c), U101(e, c))A#h#(f(k), f(k))
A#h#(e, e)A#h#(c, c)
A#h#(f(c), f(c))A#h#(U101(c, c), U101(c, c))
A#h#(a, k)A#h#(k, b)
A#h#(k, U101(e, b))A#h#(e, k)
A#h#(c, U101(b, b))A#h#(e, d)
A#h#(d, f(k))A#h#(U101(a, a), U101(e, b))
A#h#(f(c), k)A#h#(f(d), b)
A#h#(f(e), b)A#h#(f(e), f(e))
A#h#(U101(e, a), U101(e, c))A#h#(U101(e, a), c)
A#h#(f(d), U101(c, c))A#h#(a, e)
A#h#(U101(a, a), U101(e, c))A#h#(U101(e, e), U101(b, b))
A#h#(d, f(e))g#(d, x, x)A#
A#h#(c, U101(e, e))A#h#(e, U101(e, c))
A#h#(U101(e, a), d)A#h#(U101(c, a), U101(c, c))
A#h#(f(e), f(c))A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(a, k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(d, k) 
h#(c, k) 
Thus, the rule A# → h#(a, k) is replaced by the following rules:
A# → h#(d, k)A# → h#(c, k)

Problem 65: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U101(e, e), U101(e, e))h#(x, x)g#(x, x, f(k))
A#h#(d, d)A#h#(k, k)
A#h#(U101(e, c), U101(e, c))A#h#(f(k), f(k))
A#h#(U101(a, a), c)A#h#(e, e)
A#h#(c, c)A#h#(U101(c, a), k)
A#h#(U101(e, a), b)A#h#(U101(c, a), U101(e, b))
A#h#(f(c), f(c))A#h#(U101(c, c), U101(c, c))
A#h#(U101(c, a), e)A#h#(f(c), k)
A#h#(d, f(k))A#h#(f(d), b)
A#h#(f(e), b)A#h#(f(e), f(e))
A#h#(U101(e, a), U101(e, c))A#h#(U101(e, a), c)
A#h#(f(d), U101(c, c))g#(d, x, x)A#
A#h#(U101(e, e), U101(b, b))A#h#(d, f(e))
A#h#(a, e)A#h#(U101(a, a), U101(e, c))
A#h#(U101(a, a), k)A#h#(c, U101(e, e))
A#h#(e, U101(e, c))A#h#(U101(e, a), d)
A#h#(U101(c, a), U101(c, c))A#h#(f(e), f(c))
A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U101(a, a), c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U101(a, a), e)h#(U101(d, a), c)
h#(U101(a, a), k) 
h#(U101(c, a), c) 
Thus, the rule A# → h#(U101(a, a), c) is replaced by the following rules:
A# → h#(U101(c, a), c)A# → h#(U101(a, a), e)
A# → h#(U101(a, a), k)

Problem 66: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U101(e, e), U101(e, e))h#(x, x)g#(x, x, f(k))
A#h#(d, d)A#h#(k, k)
A#h#(U101(e, c), U101(e, c))A#h#(f(k), f(k))
A#h#(e, e)A#h#(c, c)
A#h#(f(c), f(c))A#h#(U101(c, c), U101(c, c))
A#h#(U101(e, a), U101(e, b))A#h#(U101(c, a), e)
A#h#(a, k)A#h#(k, b)
A#h#(e, k)A#h#(e, d)
A#h#(f(c), k)A#h#(d, f(k))
A#h#(f(d), b)A#h#(f(e), b)
A#h#(U101(e, a), U101(e, c))A#h#(f(e), f(e))
A#h#(f(d), U101(c, c))A#h#(U101(e, a), c)
A#h#(a, e)A#h#(U101(e, e), U101(b, b))
g#(d, x, x)A#A#h#(U101(a, a), U101(e, c))
A#h#(d, f(e))A#h#(U101(a, a), k)
A#h#(c, U101(e, e))A#h#(e, U101(e, c))
A#h#(U101(e, a), d)A#h#(U101(c, a), U101(c, c))
A#h#(f(e), f(c))A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U101(e, a), U101(e, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U101(e, a), b) 
h#(a, U101(e, b)) 
Thus, the rule A# → h#(U101(e, a), U101(e, b)) is replaced by the following rules:
A# → h#(a, U101(e, b))A# → h#(U101(e, a), b)

Problem 67: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U101(e, e), U101(e, e))h#(x, x)g#(x, x, f(k))
A#h#(d, d)A#h#(k, k)
A#h#(U101(e, c), U101(e, c))A#h#(f(k), f(k))
A#h#(e, e)A#h#(c, c)
A#h#(f(c), f(c))A#h#(U101(c, c), U101(c, c))
A#h#(U101(c, a), e)A#h#(a, k)
A#h#(k, U101(e, b))A#h#(k, b)
A#h#(e, k)A#h#(e, d)
A#h#(d, f(k))A#h#(f(c), k)
A#h#(f(d), b)A#h#(f(e), b)
A#h#(f(e), f(e))A#h#(U101(e, a), U101(e, c))
A#h#(U101(e, a), c)A#h#(f(d), U101(c, c))
A#h#(a, e)A#h#(U101(e, e), U101(b, b))
g#(d, x, x)A#A#h#(U101(a, a), U101(e, c))
A#h#(d, f(e))A#h#(U101(a, a), k)
A#h#(c, U101(e, e))A#h#(e, U101(e, c))
A#h#(U101(e, a), d)A#h#(U101(c, a), U101(c, c))
A#h#(f(e), f(c))A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(a, k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(d, k) 
h#(c, k) 
Thus, the rule A# → h#(a, k) is replaced by the following rules:
A# → h#(d, k)A# → h#(c, k)

Problem 68: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U101(e, e), U101(e, e))h#(x, x)g#(x, x, f(k))
A#h#(d, d)A#h#(k, k)
A#h#(U101(e, c), U101(e, c))A#h#(f(k), f(k))
A#h#(e, e)A#h#(c, c)
A#h#(f(c), f(c))A#h#(U101(e, e), e)
A#h#(U101(c, c), U101(c, c))A#h#(U101(e, e), k)
A#h#(e, k)A#h#(e, d)
A#h#(U101(e, a), U101(e, c))A#h#(f(e), f(e))
A#h#(U101(e, a), c)A#h#(f(d), U101(c, c))
A#h#(d, f(e))g#(d, x, x)A#
A#h#(U101(e, e), U101(b, b))A#h#(a, e)
A#h#(U101(a, a), U101(e, c))A#h#(f(e), f(c))
A#h#(U101(c, a), U101(c, c))A#h#(U101(e, a), d)
A#h#(e, U101(e, c))A#h#(c, U101(e, e))
A#h#(U101(a, a), k)A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U101(e, e), e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, e) 
Thus, the rule A# → h#(U101(e, e), e) is replaced by the following rules:
A# → h#(e, e)

Problem 69: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U101(e, e), U101(e, e))h#(x, x)g#(x, x, f(k))
A#h#(d, d)A#h#(k, k)
A#h#(U101(e, c), U101(e, c))A#h#(f(k), f(k))
A#h#(e, e)A#h#(c, c)
A#h#(k, e)A#h#(d, U101(e, e))
A#h#(f(c), f(c))A#h#(U101(c, c), U101(c, c))
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(U101(e, e), U101(b, b))A#h#(a, e)
A#h#(U101(a, a), U101(e, c))A#h#(f(d), U101(e, c))
A#h#(U101(e, a), d)A#h#(e, U101(e, c))
A#h#(f(d), f(d))A#h#(f(e), f(c))
A#h#(U101(c, a), U101(c, c))A#h#(c, U101(e, e))
A#h#(U101(a, a), k)

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(k, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(k, e) is deleted.

Problem 70: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U101(e, e), U101(e, e))A#h#(d, e)
h#(x, x)g#(x, x, f(k))A#h#(k, c)
A#h#(d, k)A#h#(d, d)
A#h#(k, k)A#h#(U101(e, c), U101(e, c))
A#h#(f(k), f(k))A#h#(e, e)
A#h#(c, c)A#h#(f(c), f(c))
A#h#(U101(c, c), U101(c, c))A#h#(a, k)
A#h#(U101(e, a), e)A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(U101(e, e), U101(b, b))
A#h#(a, e)A#h#(f(d), U101(e, c))
A#h#(f(d), f(d))A#h#(U101(e, a), d)
A#h#(e, U101(e, c))A#h#(c, U101(e, e))
A#h#(f(e), f(c))A#h#(U101(a, a), k)
A#h#(U101(c, a), U101(c, c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(d, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(k, e) 
Thus, the rule A# → h#(d, e) is replaced by the following rules:
A# → h#(k, e)

Problem 71: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U101(e, e), U101(e, e))h#(x, x)g#(x, x, f(k))
A#h#(e, e)A#h#(f(e), k)
A#h#(c, c)A#h#(e, U101(c, c))
A#h#(d, d)A#h#(f(c), f(c))
A#h#(U101(c, c), U101(c, c))A#h#(f(e), e)
A#h#(k, k)A#h#(U101(e, c), U101(e, c))
A#h#(U101(e, e), f(k))A#h#(f(e), f(e))
A#h#(f(k), f(k))g#(d, x, x)A#
A#h#(U101(c, a), U101(c, c))A#h#(c, U101(e, e))
A#h#(U101(a, a), k)A#h#(f(d), U101(e, c))
A#h#(f(d), f(d))A#h#(e, U101(e, c))
A#h#(U101(e, a), d)A#h#(U101(e, e), c)

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U101(e, e), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, f(k))h#(U101(e, e), U101(k, k))
Thus, the rule A# → h#(U101(e, e), f(k)) is replaced by the following rules:
A# → h#(e, f(k))

Problem 72: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U101(e, e), U101(e, e))h#(x, x)g#(x, x, f(k))
A#h#(k, c)A#h#(d, d)
A#h#(U101(e, c), U101(e, c))A#h#(k, k)
A#h#(f(k), f(k))A#h#(e, e)
A#h#(c, c)A#h#(e, U101(c, c))
A#h#(a, c)A#h#(k, e)
A#h#(c, U101(e, c))A#h#(f(c), f(c))
A#h#(U101(c, c), U101(c, c))A#h#(a, k)
A#h#(U101(e, a), U101(e, c))A#h#(f(e), f(e))
A#h#(U101(e, a), c)A#h#(a, e)
g#(d, x, x)A#A#h#(U101(e, a), d)
A#h#(U101(a, a), k)A#h#(f(d), U101(e, c))
A#h#(c, U101(e, e))A#h#(f(d), f(d))
A#h#(e, U101(e, c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(k, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(k, k) 
h#(k, e) 
Thus, the rule A# → h#(k, c) is replaced by the following rules:
A# → h#(k, k)A# → h#(k, e)

Problem 73: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(d, e)A#h#(U101(e, e), U101(e, e))
h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(c, c)A#h#(c, e)
A#h#(d, d)A#h#(f(c), f(c))
A#h#(U101(c, c), U101(c, c))A#h#(U101(e, c), U101(e, c))
A#h#(k, k)A#h#(f(e), f(e))
A#h#(f(k), f(k))g#(d, x, x)A#
A#h#(c, U101(e, e))A#h#(f(d), f(d))
A#h#(e, U101(e, c))A#h#(U101(e, a), d)
A#h#(U101(a, a), k)A#h#(f(d), U101(e, c))
A#h#(U101(e, a), k)

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(d, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(k, e) 
Thus, the rule A# → h#(d, e) is replaced by the following rules:
A# → h#(k, e)

Problem 74: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

A#h#(U101(e, e), U101(e, e))h#(x, x)g#(x, x, f(k))
A#h#(e, e)A#h#(c, c)
A#h#(d, d)A#h#(f(c), f(c))
A#h#(U101(c, c), U101(c, c))A#h#(U101(e, c), U101(e, c))
A#h#(k, k)A#h#(f(k), f(k))
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


Instantiation

For all potential predecessors l → r of the rule h#(x, x) → g#(x, x, f(k)) on dependency pair chains it holds that: Thus, h#(x, x) → g#(x, x, f(k)) is replaced by instances determined through the above matching. These instances are:
h#(f(d), f(d)) → g#(f(d), f(d), f(k))h#(f(e), f(e)) → g#(f(e), f(e), f(k))
h#(c, c) → g#(c, c, f(k))h#(U101(c, c), U101(c, c)) → g#(U101(c, c), U101(c, c), f(k))
h#(e, e) → g#(e, e, f(k))h#(U101(e, c), U101(e, c)) → g#(U101(e, c), U101(e, c), f(k))
h#(k, k) → g#(k, k, f(k))h#(f(k), f(k)) → g#(f(k), f(k), f(k))
h#(U101(e, e), U101(e, e)) → g#(U101(e, e), U101(e, e), f(k))h#(f(c), f(c)) → g#(f(c), f(c), f(k))
h#(d, d) → g#(d, d, f(k))

Problem 75: Propagation



Dependency Pair Problem

Dependency Pairs

h#(c, c)g#(c, c, f(k))h#(f(e), f(e))g#(f(e), f(e), f(k))
A#h#(U101(e, e), U101(e, e))A#h#(e, e)
h#(U101(c, c), U101(c, c))g#(U101(c, c), U101(c, c), f(k))h#(e, e)g#(e, e, f(k))
A#h#(c, c)A#h#(d, d)
h#(f(c), f(c))g#(f(c), f(c), f(k))h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))h#(f(d), f(d))g#(f(d), f(d), f(k))
A#h#(U101(c, c), U101(c, c))A#h#(k, k)
A#h#(U101(e, c), U101(e, c))h#(U101(e, c), U101(e, c))g#(U101(e, c), U101(e, c), f(k))
h#(k, k)g#(k, k, f(k))h#(f(k), f(k))g#(f(k), f(k), f(k))
h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))A#h#(f(e), f(e))
A#h#(f(k), f(k))g#(d, x, x)A#
A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The dependency pairs A# → h#(c, c) and h#(c, c) → g#(c, c, f(k)) are consolidated into the rule A# → g#(c, c, f(k)) .

This is possible as

The dependency pairs g#(d, x, x) → A# and A# → h#(U101(e, e), U101(e, e)) are consolidated into the rule g#(d, x, x) → h#(U101(e, e), U101(e, e)) .

This is possible as

The dependency pairs g#(d, x, x) → A# and A# → h#(U101(e, e), U101(e, e)) are consolidated into the rule g#(d, x, x) → h#(U101(e, e), U101(e, e)) .

This is possible as

The dependency pairs g#(d, x, x) → A# and A# → h#(U101(e, e), U101(e, e)) are consolidated into the rule g#(d, x, x) → h#(U101(e, e), U101(e, e)) .

This is possible as


Summary

Removed Dependency PairsAdded Dependency Pairs
A# → h#(U101(e, e), U101(e, e))A# → g#(c, c, f(k))
h#(c, c) → g#(c, c, f(k))g#(d, x, x) → h#(U101(e, e), U101(e, e))
A# → h#(c, c) 
g#(d, x, x) → A# 

Problem 76: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(e), f(e))g#(f(e), f(e), f(k))g#(d, x, x)h#(U101(e, e), U101(e, e))
A#h#(e, e)h#(U101(c, c), U101(c, c))g#(U101(c, c), U101(c, c), f(k))
h#(e, e)g#(e, e, f(k))A#h#(d, d)
h#(f(c), f(c))g#(f(c), f(c), f(k))h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))A#g#(c, c, f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))A#h#(U101(c, c), U101(c, c))
h#(k, k)g#(k, k, f(k))h#(U101(e, c), U101(e, c))g#(U101(e, c), U101(e, c), f(k))
A#h#(U101(e, c), U101(e, c))A#h#(k, k)
h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))h#(f(k), f(k))g#(f(k), f(k), f(k))
A#h#(f(k), f(k))A#h#(f(e), f(e))
A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(e), f(e)) → g#(f(e), f(e), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(f(e), U101(e, e), f(k))g#(f(e), f(e), U101(k, k))
g#(U101(e, e), f(e), f(k)) 
Thus, the rule h#(f(e), f(e)) → g#(f(e), f(e), f(k)) is replaced by the following rules:
h#(f(e), f(e)) → g#(f(e), U101(e, e), f(k))h#(f(e), f(e)) → g#(U101(e, e), f(e), f(k))

Problem 77: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(U101(e, e), U101(e, e))A#h#(e, e)
h#(U101(c, c), U101(c, c))g#(U101(c, c), U101(c, c), f(k))h#(e, e)g#(e, e, f(k))
h#(f(e), f(e))g#(U101(e, e), f(e), f(k))A#h#(d, d)
h#(f(c), f(c))g#(f(c), f(c), f(k))h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))h#(f(e), f(e))g#(f(e), U101(e, e), f(k))
A#g#(c, c, f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
A#h#(U101(c, c), U101(c, c))A#h#(k, k)
A#h#(U101(e, c), U101(e, c))h#(U101(e, c), U101(e, c))g#(U101(e, c), U101(e, c), f(k))
h#(k, k)g#(k, k, f(k))h#(f(k), f(k))g#(f(k), f(k), f(k))
h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))A#h#(f(e), f(e))
A#h#(f(k), f(k))A#h#(f(d), f(d))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U101(c, c), U101(c, c)) → g#(U101(c, c), U101(c, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U101(e, c), U101(c, c), f(k))g#(U101(c, c), U101(c, c), U101(k, k))
g#(U101(c, c), U101(e, c), f(k))g#(U101(c, c), U101(k, c), f(k))
 g#(U101(k, c), U101(c, c), f(k))
Thus, the rule h#(U101(c, c), U101(c, c)) → g#(U101(c, c), U101(c, c), f(k)) is replaced by the following rules:
h#(U101(c, c), U101(c, c)) → g#(U101(e, c), U101(c, c), f(k))h#(U101(c, c), U101(c, c)) → g#(U101(c, c), U101(e, c), f(k))

Problem 78: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(U101(e, e), U101(e, e))A#h#(e, e)
h#(e, e)g#(e, e, f(k))h#(f(e), f(e))g#(U101(e, e), f(e), f(k))
A#h#(d, d)h#(f(c), f(c))g#(f(c), f(c), f(k))
h#(d, d)g#(d, d, f(k))A#h#(f(c), f(c))
h#(f(e), f(e))g#(f(e), U101(e, e), f(k))A#g#(c, c, f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))A#h#(U101(c, c), U101(c, c))
h#(k, k)g#(k, k, f(k))h#(U101(e, c), U101(e, c))g#(U101(e, c), U101(e, c), f(k))
A#h#(U101(e, c), U101(e, c))A#h#(k, k)
h#(U101(c, c), U101(c, c))g#(U101(e, c), U101(c, c), f(k))h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))
h#(f(k), f(k))g#(f(k), f(k), f(k))A#h#(f(k), f(k))
A#h#(f(e), f(e))A#h#(f(d), f(d))
h#(U101(c, c), U101(c, c))g#(U101(c, c), U101(e, c), f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(e, e) → g#(e, e, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U101(k, k))
Thus, the rule h#(e, e) → g#(e, e, f(k)) is deleted.

Problem 79: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(U101(e, e), U101(e, e))A#h#(e, e)
h#(f(e), f(e))g#(U101(e, e), f(e), f(k))A#h#(d, d)
h#(f(c), f(c))g#(f(c), f(c), f(k))h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))h#(f(e), f(e))g#(f(e), U101(e, e), f(k))
A#g#(c, c, f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
A#h#(U101(c, c), U101(c, c))h#(U101(c, c), U101(c, c))g#(U101(e, c), U101(c, c), f(k))
A#h#(k, k)A#h#(U101(e, c), U101(e, c))
h#(k, k)g#(k, k, f(k))h#(U101(e, c), U101(e, c))g#(U101(e, c), U101(e, c), f(k))
h#(f(k), f(k))g#(f(k), f(k), f(k))h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))
A#h#(f(e), f(e))A#h#(f(k), f(k))
A#h#(f(d), f(d))h#(U101(c, c), U101(c, c))g#(U101(c, c), U101(e, c), f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(e, e) is deleted.

Problem 80: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(U101(e, e), U101(e, e))h#(f(e), f(e))g#(U101(e, e), f(e), f(k))
A#h#(d, d)h#(f(c), f(c))g#(f(c), f(c), f(k))
h#(d, d)g#(d, d, f(k))A#h#(f(c), f(c))
h#(f(e), f(e))g#(f(e), U101(e, e), f(k))A#g#(c, c, f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))A#h#(U101(c, c), U101(c, c))
h#(U101(e, c), U101(e, c))g#(U101(e, c), U101(e, c), f(k))h#(k, k)g#(k, k, f(k))
h#(U101(c, c), U101(c, c))g#(U101(e, c), U101(c, c), f(k))A#h#(k, k)
A#h#(U101(e, c), U101(e, c))h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))
h#(f(k), f(k))g#(f(k), f(k), f(k))A#h#(f(k), f(k))
A#h#(f(e), f(e))A#h#(f(d), f(d))
h#(U101(c, c), U101(c, c))g#(U101(c, c), U101(e, c), f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(e), f(e)) → g#(U101(e, e), f(e), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U101(e, e), U101(e, e), f(k))g#(U101(e, e), f(e), U101(k, k))
g#(e, f(e), f(k)) 
Thus, the rule h#(f(e), f(e)) → g#(U101(e, e), f(e), f(k)) is replaced by the following rules:
h#(f(e), f(e)) → g#(e, f(e), f(k))h#(f(e), f(e)) → g#(U101(e, e), U101(e, e), f(k))

Problem 81: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(U101(e, e), U101(e, e))h#(f(e), f(e))g#(e, f(e), f(k))
A#h#(d, d)h#(f(c), f(c))g#(f(c), f(c), f(k))
h#(d, d)g#(d, d, f(k))A#h#(f(c), f(c))
h#(f(e), f(e))g#(f(e), U101(e, e), f(k))A#g#(c, c, f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))A#h#(U101(c, c), U101(c, c))
A#h#(U101(e, c), U101(e, c))A#h#(k, k)
h#(U101(e, c), U101(e, c))g#(U101(e, c), U101(e, c), f(k))h#(k, k)g#(k, k, f(k))
h#(U101(c, c), U101(c, c))g#(U101(e, c), U101(c, c), f(k))h#(f(k), f(k))g#(f(k), f(k), f(k))
h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))A#h#(f(e), f(e))
A#h#(f(k), f(k))h#(f(e), f(e))g#(U101(e, e), U101(e, e), f(k))
A#h#(f(d), f(d))h#(U101(c, c), U101(c, c))g#(U101(c, c), U101(e, c), f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(e), f(e)) → g#(e, f(e), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, U101(e, e), f(k))g#(e, f(e), U101(k, k))
Thus, the rule h#(f(e), f(e)) → g#(e, f(e), f(k)) is replaced by the following rules:
h#(f(e), f(e)) → g#(e, U101(e, e), f(k))

Problem 82: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(U101(e, e), U101(e, e))A#h#(d, d)
h#(f(e), f(e))g#(e, U101(e, e), f(k))h#(f(c), f(c))g#(f(c), f(c), f(k))
h#(d, d)g#(d, d, f(k))A#h#(f(c), f(c))
h#(f(e), f(e))g#(f(e), U101(e, e), f(k))A#g#(c, c, f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))A#h#(U101(c, c), U101(c, c))
h#(U101(c, c), U101(c, c))g#(U101(e, c), U101(c, c), f(k))h#(k, k)g#(k, k, f(k))
A#h#(U101(e, c), U101(e, c))A#h#(k, k)
h#(U101(e, c), U101(e, c))g#(U101(e, c), U101(e, c), f(k))h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))
h#(f(k), f(k))g#(f(k), f(k), f(k))h#(f(e), f(e))g#(U101(e, e), U101(e, e), f(k))
A#h#(f(k), f(k))A#h#(f(e), f(e))
A#h#(f(d), f(d))h#(U101(c, c), U101(c, c))g#(U101(c, c), U101(e, c), f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(e), f(e)) → g#(e, U101(e, e), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, e, f(k))g#(e, U101(e, e), U101(k, k))
Thus, the rule h#(f(e), f(e)) → g#(e, U101(e, e), f(k)) is replaced by the following rules:
h#(f(e), f(e)) → g#(e, e, f(k))

Problem 83: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(U101(e, e), U101(e, e))A#h#(d, d)
h#(f(e), f(e))g#(e, e, f(k))h#(f(c), f(c))g#(f(c), f(c), f(k))
h#(d, d)g#(d, d, f(k))A#h#(f(c), f(c))
h#(f(e), f(e))g#(f(e), U101(e, e), f(k))A#g#(c, c, f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))A#h#(U101(c, c), U101(c, c))
h#(U101(e, c), U101(e, c))g#(U101(e, c), U101(e, c), f(k))A#h#(k, k)
h#(U101(c, c), U101(c, c))g#(U101(e, c), U101(c, c), f(k))h#(k, k)g#(k, k, f(k))
A#h#(U101(e, c), U101(e, c))h#(f(k), f(k))g#(f(k), f(k), f(k))
h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))A#h#(f(e), f(e))
A#h#(f(k), f(k))h#(f(e), f(e))g#(U101(e, e), U101(e, e), f(k))
A#h#(f(d), f(d))h#(U101(c, c), U101(c, c))g#(U101(c, c), U101(e, c), f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(e), f(e)) → g#(e, e, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U101(k, k))
Thus, the rule h#(f(e), f(e)) → g#(e, e, f(k)) is deleted.

Problem 84: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(U101(e, e), U101(e, e))A#h#(d, d)
h#(f(c), f(c))g#(f(c), f(c), f(k))h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))h#(f(e), f(e))g#(f(e), U101(e, e), f(k))
A#g#(c, c, f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
A#h#(U101(c, c), U101(c, c))A#h#(U101(e, c), U101(e, c))
h#(U101(e, c), U101(e, c))g#(U101(e, c), U101(e, c), f(k))A#h#(k, k)
h#(U101(c, c), U101(c, c))g#(U101(e, c), U101(c, c), f(k))h#(k, k)g#(k, k, f(k))
h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))h#(f(k), f(k))g#(f(k), f(k), f(k))
h#(f(e), f(e))g#(U101(e, e), U101(e, e), f(k))A#h#(f(k), f(k))
A#h#(f(e), f(e))A#h#(f(d), f(d))
h#(U101(c, c), U101(c, c))g#(U101(c, c), U101(e, c), f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(c), f(c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(f(c), f(k), f(k))g#(f(c), f(c), U101(k, k))
g#(f(c), f(e), f(k)) 
g#(f(k), f(c), f(k)) 
g#(f(c), U101(c, c), f(k)) 
g#(U101(c, c), f(c), f(k)) 
g#(f(e), f(c), f(k)) 
Thus, the rule h#(f(c), f(c)) → g#(f(c), f(c), f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(f(e), f(c), f(k))h#(f(c), f(c)) → g#(f(c), U101(c, c), f(k))
h#(f(c), f(c)) → g#(f(c), f(e), f(k))h#(f(c), f(c)) → g#(f(k), f(c), f(k))
h#(f(c), f(c)) → g#(U101(c, c), f(c), f(k))h#(f(c), f(c)) → g#(f(c), f(k), f(k))

Problem 85: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(d, d)h#(f(c), f(c))g#(f(k), f(c), f(k))
A#g#(c, c, f(k))A#h#(U101(e, c), U101(e, c))
h#(U101(e, c), U101(e, c))g#(U101(e, c), U101(e, c), f(k))A#h#(k, k)
h#(f(k), f(k))g#(f(k), f(k), f(k))h#(f(e), f(e))g#(U101(e, e), U101(e, e), f(k))
A#h#(f(k), f(k))h#(U101(c, c), U101(c, c))g#(U101(c, c), U101(e, c), f(k))
g#(d, x, x)h#(U101(e, e), U101(e, e))h#(f(c), f(c))g#(f(e), f(c), f(k))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(d, d)g#(d, d, f(k))
h#(f(c), f(c))g#(f(c), f(k), f(k))A#h#(f(c), f(c))
h#(f(e), f(e))g#(f(e), U101(e, e), f(k))A#h#(U101(c, c), U101(c, c))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(k, k)g#(k, k, f(k))
h#(U101(c, c), U101(c, c))g#(U101(e, c), U101(c, c), f(k))h#(f(c), f(c))g#(f(c), U101(c, c), f(k))
h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))A#h#(f(e), f(e))
A#h#(f(d), f(d))h#(f(c), f(c))g#(U101(c, c), f(c), f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(k), f(c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(f(k), f(k), f(k))g#(f(k), f(c), U101(k, k))
g#(f(k), f(e), f(k))g#(U101(k, k), f(c), f(k))
g#(f(k), U101(c, c), f(k)) 
Thus, the rule h#(f(c), f(c)) → g#(f(k), f(c), f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(f(k), U101(c, c), f(k))h#(f(c), f(c)) → g#(f(k), f(e), f(k))
h#(f(c), f(c)) → g#(f(k), f(k), f(k))

Problem 86: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(d, d)A#g#(c, c, f(k))
A#h#(k, k)h#(U101(e, c), U101(e, c))g#(U101(e, c), U101(e, c), f(k))
A#h#(U101(e, c), U101(e, c))h#(f(c), f(c))g#(f(k), U101(c, c), f(k))
h#(f(k), f(k))g#(f(k), f(k), f(k))A#h#(f(k), f(k))
h#(f(e), f(e))g#(U101(e, e), U101(e, e), f(k))h#(f(c), f(c))g#(f(k), f(k), f(k))
h#(U101(c, c), U101(c, c))g#(U101(c, c), U101(e, c), f(k))g#(d, x, x)h#(U101(e, e), U101(e, e))
h#(f(c), f(c))g#(f(e), f(c), f(k))h#(f(c), f(c))g#(f(k), f(e), f(k))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(d, d)g#(d, d, f(k))
h#(f(c), f(c))g#(f(c), f(k), f(k))A#h#(f(c), f(c))
h#(f(e), f(e))g#(f(e), U101(e, e), f(k))A#h#(U101(c, c), U101(c, c))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(k, k)g#(k, k, f(k))
h#(U101(c, c), U101(c, c))g#(U101(e, c), U101(c, c), f(k))h#(f(c), f(c))g#(f(c), U101(c, c), f(k))
h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))A#h#(f(e), f(e))
A#h#(f(d), f(d))h#(f(c), f(c))g#(U101(c, c), f(c), f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → g#(c, c, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(k, c, f(k))g#(c, c, U101(k, k))
g#(c, e, f(k)) 
g#(e, c, f(k)) 
g#(c, k, f(k)) 
Thus, the rule A# → g#(c, c, f(k)) is replaced by the following rules:
A# → g#(e, c, f(k))A# → g#(k, c, f(k))
A# → g#(c, k, f(k))A# → g#(c, e, f(k))

Problem 87: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#g#(e, c, f(k))A#h#(d, d)
h#(f(c), f(c))g#(f(k), U101(c, c), f(k))A#h#(U101(e, c), U101(e, c))
h#(U101(e, c), U101(e, c))g#(U101(e, c), U101(e, c), f(k))A#h#(k, k)
h#(f(k), f(k))g#(f(k), f(k), f(k))h#(f(e), f(e))g#(U101(e, e), U101(e, e), f(k))
A#h#(f(k), f(k))h#(f(c), f(c))g#(f(k), f(k), f(k))
h#(U101(c, c), U101(c, c))g#(U101(c, c), U101(e, c), f(k))g#(d, x, x)h#(U101(e, e), U101(e, e))
h#(f(c), f(c))g#(f(e), f(c), f(k))h#(f(c), f(c))g#(f(k), f(e), f(k))
A#g#(c, k, f(k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(d, d)g#(d, d, f(k))A#g#(c, e, f(k))
h#(f(c), f(c))g#(f(c), f(k), f(k))A#h#(f(c), f(c))
h#(f(e), f(e))g#(f(e), U101(e, e), f(k))A#h#(U101(c, c), U101(c, c))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(k, k)g#(k, k, f(k))
h#(U101(c, c), U101(c, c))g#(U101(e, c), U101(c, c), f(k))A#g#(k, c, f(k))
h#(f(c), f(c))g#(f(c), U101(c, c), f(k))h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))
A#h#(f(e), f(e))A#h#(f(d), f(d))
h#(f(c), f(c))g#(U101(c, c), f(c), f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → g#(e, c, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, k, f(k))g#(e, c, U101(k, k))
g#(e, e, f(k)) 
Thus, the rule A# → g#(e, c, f(k)) is replaced by the following rules:
A# → g#(e, e, f(k))A# → g#(e, k, f(k))

Problem 88: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#g#(e, e, f(k))A#h#(d, d)
A#g#(e, k, f(k))A#h#(k, k)
h#(U101(e, c), U101(e, c))g#(U101(e, c), U101(e, c), f(k))A#h#(U101(e, c), U101(e, c))
h#(f(c), f(c))g#(f(k), U101(c, c), f(k))h#(f(k), f(k))g#(f(k), f(k), f(k))
A#h#(f(k), f(k))h#(f(e), f(e))g#(U101(e, e), U101(e, e), f(k))
h#(f(c), f(c))g#(f(k), f(k), f(k))h#(U101(c, c), U101(c, c))g#(U101(c, c), U101(e, c), f(k))
g#(d, x, x)h#(U101(e, e), U101(e, e))h#(f(c), f(c))g#(f(e), f(c), f(k))
h#(f(c), f(c))g#(f(k), f(e), f(k))A#g#(c, k, f(k))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(d, d)g#(d, d, f(k))
A#g#(c, e, f(k))h#(f(c), f(c))g#(f(c), f(k), f(k))
A#h#(f(c), f(c))h#(f(e), f(e))g#(f(e), U101(e, e), f(k))
A#h#(U101(c, c), U101(c, c))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(U101(c, c), U101(c, c))g#(U101(e, c), U101(c, c), f(k))h#(k, k)g#(k, k, f(k))
A#g#(k, c, f(k))h#(f(c), f(c))g#(f(c), U101(c, c), f(k))
h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))A#h#(f(e), f(e))
A#h#(f(d), f(d))h#(f(c), f(c))g#(U101(c, c), f(c), f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → g#(e, e, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U101(k, k))
Thus, the rule A# → g#(e, e, f(k)) is deleted.

Problem 89: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(d, d)A#g#(e, k, f(k))
h#(f(c), f(c))g#(f(k), U101(c, c), f(k))A#h#(U101(e, c), U101(e, c))
h#(U101(e, c), U101(e, c))g#(U101(e, c), U101(e, c), f(k))A#h#(k, k)
h#(f(k), f(k))g#(f(k), f(k), f(k))h#(f(e), f(e))g#(U101(e, e), U101(e, e), f(k))
A#h#(f(k), f(k))h#(f(c), f(c))g#(f(k), f(k), f(k))
h#(U101(c, c), U101(c, c))g#(U101(c, c), U101(e, c), f(k))g#(d, x, x)h#(U101(e, e), U101(e, e))
h#(f(c), f(c))g#(f(e), f(c), f(k))h#(f(c), f(c))g#(f(k), f(e), f(k))
A#g#(c, k, f(k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(d, d)g#(d, d, f(k))A#g#(c, e, f(k))
h#(f(c), f(c))g#(f(c), f(k), f(k))A#h#(f(c), f(c))
h#(f(e), f(e))g#(f(e), U101(e, e), f(k))A#h#(U101(c, c), U101(c, c))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(U101(c, c), U101(c, c))g#(U101(e, c), U101(c, c), f(k))
h#(k, k)g#(k, k, f(k))A#g#(k, c, f(k))
h#(f(c), f(c))g#(f(c), U101(c, c), f(k))h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))
A#h#(f(e), f(e))A#h#(f(d), f(d))
h#(f(c), f(c))g#(U101(c, c), f(c), f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → g#(e, k, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, k, U101(k, k))
Thus, the rule A# → g#(e, k, f(k)) is deleted.

Problem 90: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(d, d)A#h#(k, k)
h#(U101(e, c), U101(e, c))g#(U101(e, c), U101(e, c), f(k))A#h#(U101(e, c), U101(e, c))
h#(f(c), f(c))g#(f(k), U101(c, c), f(k))h#(f(k), f(k))g#(f(k), f(k), f(k))
A#h#(f(k), f(k))h#(f(e), f(e))g#(U101(e, e), U101(e, e), f(k))
h#(f(c), f(c))g#(f(k), f(k), f(k))h#(U101(c, c), U101(c, c))g#(U101(c, c), U101(e, c), f(k))
g#(d, x, x)h#(U101(e, e), U101(e, e))h#(f(c), f(c))g#(f(e), f(c), f(k))
h#(f(c), f(c))g#(f(k), f(e), f(k))A#g#(c, k, f(k))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(d, d)g#(d, d, f(k))
A#g#(c, e, f(k))h#(f(c), f(c))g#(f(c), f(k), f(k))
A#h#(f(c), f(c))h#(f(e), f(e))g#(f(e), U101(e, e), f(k))
A#h#(U101(c, c), U101(c, c))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(U101(c, c), U101(c, c))g#(U101(e, c), U101(c, c), f(k))h#(k, k)g#(k, k, f(k))
A#g#(k, c, f(k))h#(f(c), f(c))g#(f(c), U101(c, c), f(k))
h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))A#h#(f(e), f(e))
A#h#(f(d), f(d))h#(f(c), f(c))g#(U101(c, c), f(c), f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(k), U101(c, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(f(k), U101(e, c), f(k))g#(U101(k, k), U101(c, c), f(k))
 g#(f(k), U101(k, c), f(k))
 g#(f(k), U101(c, c), U101(k, k))
Thus, the rule h#(f(c), f(c)) → g#(f(k), U101(c, c), f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(f(k), U101(e, c), f(k))

Problem 91: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(d, d)A#h#(U101(e, c), U101(e, c))
h#(U101(e, c), U101(e, c))g#(U101(e, c), U101(e, c), f(k))A#h#(k, k)
h#(f(c), f(c))g#(f(k), U101(e, c), f(k))h#(f(k), f(k))g#(f(k), f(k), f(k))
h#(f(e), f(e))g#(U101(e, e), U101(e, e), f(k))A#h#(f(k), f(k))
h#(f(c), f(c))g#(f(k), f(k), f(k))h#(U101(c, c), U101(c, c))g#(U101(c, c), U101(e, c), f(k))
g#(d, x, x)h#(U101(e, e), U101(e, e))h#(f(c), f(c))g#(f(e), f(c), f(k))
h#(f(c), f(c))g#(f(k), f(e), f(k))A#g#(c, k, f(k))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(d, d)g#(d, d, f(k))
A#g#(c, e, f(k))h#(f(c), f(c))g#(f(c), f(k), f(k))
A#h#(f(c), f(c))h#(f(e), f(e))g#(f(e), U101(e, e), f(k))
A#h#(U101(c, c), U101(c, c))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(U101(c, c), U101(c, c))g#(U101(e, c), U101(c, c), f(k))h#(k, k)g#(k, k, f(k))
A#g#(k, c, f(k))h#(f(c), f(c))g#(f(c), U101(c, c), f(k))
h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))A#h#(f(e), f(e))
A#h#(f(d), f(d))h#(f(c), f(c))g#(U101(c, c), f(c), f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U101(e, c), U101(e, c)) → g#(U101(e, c), U101(e, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U101(e, c), c, f(k))g#(U101(e, c), U101(e, c), U101(k, k))
g#(c, U101(e, c), f(k)) 
Thus, the rule h#(U101(e, c), U101(e, c)) → g#(U101(e, c), U101(e, c), f(k)) is replaced by the following rules:
h#(U101(e, c), U101(e, c)) → g#(U101(e, c), c, f(k))h#(U101(e, c), U101(e, c)) → g#(c, U101(e, c), f(k))

Problem 92: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(d, d)h#(U101(e, c), U101(e, c))g#(c, U101(e, c), f(k))
A#h#(k, k)A#h#(U101(e, c), U101(e, c))
h#(U101(e, c), U101(e, c))g#(U101(e, c), c, f(k))h#(f(c), f(c))g#(f(k), U101(e, c), f(k))
h#(f(k), f(k))g#(f(k), f(k), f(k))A#h#(f(k), f(k))
h#(f(e), f(e))g#(U101(e, e), U101(e, e), f(k))h#(f(c), f(c))g#(f(k), f(k), f(k))
h#(U101(c, c), U101(c, c))g#(U101(c, c), U101(e, c), f(k))g#(d, x, x)h#(U101(e, e), U101(e, e))
h#(f(c), f(c))g#(f(e), f(c), f(k))h#(f(c), f(c))g#(f(k), f(e), f(k))
A#g#(c, k, f(k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(d, d)g#(d, d, f(k))A#g#(c, e, f(k))
h#(f(c), f(c))g#(f(c), f(k), f(k))A#h#(f(c), f(c))
h#(f(e), f(e))g#(f(e), U101(e, e), f(k))A#h#(U101(c, c), U101(c, c))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(U101(c, c), U101(c, c))g#(U101(e, c), U101(c, c), f(k))
h#(k, k)g#(k, k, f(k))A#g#(k, c, f(k))
h#(f(c), f(c))g#(f(c), U101(c, c), f(k))h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))
A#h#(f(e), f(e))A#h#(f(d), f(d))
h#(f(c), f(c))g#(U101(c, c), f(c), f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U101(e, c), U101(e, c)) → g#(c, U101(e, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, U101(e, c), f(k))g#(c, U101(e, c), U101(k, k))
g#(k, U101(e, c), f(k)) 
g#(c, c, f(k)) 
Thus, the rule h#(U101(e, c), U101(e, c)) → g#(c, U101(e, c), f(k)) is replaced by the following rules:
h#(U101(e, c), U101(e, c)) → g#(e, U101(e, c), f(k))h#(U101(e, c), U101(e, c)) → g#(c, c, f(k))
h#(U101(e, c), U101(e, c)) → g#(k, U101(e, c), f(k))

Problem 93: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(d, d)h#(U101(e, c), U101(e, c))g#(e, U101(e, c), f(k))
A#h#(U101(e, c), U101(e, c))A#h#(k, k)
h#(U101(e, c), U101(e, c))g#(U101(e, c), c, f(k))h#(f(c), f(c))g#(f(k), U101(e, c), f(k))
h#(f(k), f(k))g#(f(k), f(k), f(k))h#(f(e), f(e))g#(U101(e, e), U101(e, e), f(k))
A#h#(f(k), f(k))h#(f(c), f(c))g#(f(k), f(k), f(k))
h#(U101(c, c), U101(c, c))g#(U101(c, c), U101(e, c), f(k))g#(d, x, x)h#(U101(e, e), U101(e, e))
h#(f(c), f(c))g#(f(e), f(c), f(k))h#(f(c), f(c))g#(f(k), f(e), f(k))
A#g#(c, k, f(k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(d, d)g#(d, d, f(k))A#g#(c, e, f(k))
h#(f(c), f(c))g#(f(c), f(k), f(k))A#h#(f(c), f(c))
h#(f(e), f(e))g#(f(e), U101(e, e), f(k))A#h#(U101(c, c), U101(c, c))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(U101(c, c), U101(c, c))g#(U101(e, c), U101(c, c), f(k))
h#(k, k)g#(k, k, f(k))A#g#(k, c, f(k))
h#(f(c), f(c))g#(f(c), U101(c, c), f(k))h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))
h#(U101(e, c), U101(e, c))g#(c, c, f(k))A#h#(f(e), f(e))
h#(U101(e, c), U101(e, c))g#(k, U101(e, c), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(U101(c, c), f(c), f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U101(e, c), U101(e, c)) → g#(e, U101(e, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, c, f(k))g#(e, U101(e, c), U101(k, k))
Thus, the rule h#(U101(e, c), U101(e, c)) → g#(e, U101(e, c), f(k)) is replaced by the following rules:
h#(U101(e, c), U101(e, c)) → g#(e, c, f(k))

Problem 94: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(d, d)h#(U101(e, c), U101(e, c))g#(e, c, f(k))
A#h#(k, k)A#h#(U101(e, c), U101(e, c))
h#(U101(e, c), U101(e, c))g#(U101(e, c), c, f(k))h#(f(c), f(c))g#(f(k), U101(e, c), f(k))
h#(f(k), f(k))g#(f(k), f(k), f(k))A#h#(f(k), f(k))
h#(f(e), f(e))g#(U101(e, e), U101(e, e), f(k))h#(f(c), f(c))g#(f(k), f(k), f(k))
h#(U101(c, c), U101(c, c))g#(U101(c, c), U101(e, c), f(k))g#(d, x, x)h#(U101(e, e), U101(e, e))
h#(f(c), f(c))g#(f(e), f(c), f(k))h#(f(c), f(c))g#(f(k), f(e), f(k))
A#g#(c, k, f(k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(d, d)g#(d, d, f(k))A#g#(c, e, f(k))
h#(f(c), f(c))g#(f(c), f(k), f(k))A#h#(f(c), f(c))
h#(f(e), f(e))g#(f(e), U101(e, e), f(k))A#h#(U101(c, c), U101(c, c))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(U101(c, c), U101(c, c))g#(U101(e, c), U101(c, c), f(k))
h#(k, k)g#(k, k, f(k))A#g#(k, c, f(k))
h#(f(c), f(c))g#(f(c), U101(c, c), f(k))h#(U101(e, c), U101(e, c))g#(c, c, f(k))
h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))A#h#(f(e), f(e))
h#(U101(e, c), U101(e, c))g#(k, U101(e, c), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(U101(c, c), f(c), f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U101(e, c), U101(e, c)) → g#(e, c, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, k, f(k))g#(e, c, U101(k, k))
g#(e, e, f(k)) 
Thus, the rule h#(U101(e, c), U101(e, c)) → g#(e, c, f(k)) is replaced by the following rules:
h#(U101(e, c), U101(e, c)) → g#(e, e, f(k))h#(U101(e, c), U101(e, c)) → g#(e, k, f(k))

Problem 95: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(d, d)A#h#(U101(e, c), U101(e, c))
A#h#(k, k)g#(d, x, x)h#(U101(e, e), U101(e, e))
h#(f(c), f(c))g#(f(e), c, f(k))h#(f(c), f(c))g#(e, U101(e, c), f(k))
h#(U101(e, c), U101(e, c))g#(U101(e, c), k, f(k))h#(f(c), f(c))g#(f(k), f(e), f(k))
h#(U101(c, c), U101(c, c))g#(U101(c, c), c, f(k))h#(U101(e, c), U101(e, c))g#(e, k, f(k))
h#(f(c), f(c))g#(f(c), f(e), f(k))A#g#(c, k, f(k))
h#(f(c), f(c))g#(e, k, f(k))h#(d, d)g#(d, d, f(k))
A#g#(c, e, f(k))h#(f(c), f(c))g#(f(c), f(k), f(k))
A#h#(f(c), f(c))h#(f(e), f(e))g#(f(e), U101(e, e), f(k))
h#(f(c), f(c))g#(f(e), f(e), f(k))A#h#(U101(c, c), U101(c, c))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(e), f(k), f(k))
h#(U101(e, c), U101(e, c))g#(k, e, f(k))h#(k, k)g#(k, k, f(k))
h#(U101(c, c), U101(c, c))g#(U101(e, c), U101(c, c), f(k))A#g#(k, c, f(k))
h#(f(c), f(c))g#(f(k), e, f(k))h#(f(c), f(c))g#(f(c), U101(c, c), f(k))
h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))h#(U101(e, c), U101(e, c))g#(c, c, f(k))
h#(U101(c, c), U101(c, c))g#(k, U101(e, c), f(k))h#(U101(c, c), U101(c, c))g#(e, U101(e, c), f(k))
A#h#(f(e), f(e))h#(f(c), f(c))g#(U101(e, e), f(c), f(k))
h#(U101(e, c), U101(e, c))g#(k, U101(e, c), f(k))A#h#(f(d), f(d))
h#(U101(c, c), U101(c, c))g#(c, c, f(k))h#(U101(c, c), U101(c, c))g#(U101(e, c), c, f(k))
h#(f(c), f(c))g#(U101(c, c), f(c), f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, U101(e, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, c, f(k))g#(e, U101(e, c), U101(k, k))
Thus, the rule h#(f(c), f(c)) → g#(e, U101(e, c), f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, c, f(k))

Problem 96: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(d, d)A#h#(U101(e, c), U101(e, c))
A#h#(k, k)g#(d, x, x)h#(U101(e, e), U101(e, e))
h#(f(c), f(c))g#(f(c), f(k), f(k))A#h#(f(c), f(c))
A#g#(c, e, f(k))h#(f(e), f(e))g#(f(e), U101(e, e), f(k))
h#(f(c), f(c))g#(f(e), f(e), f(k))A#h#(U101(c, c), U101(c, c))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(e), f(k), f(k))
h#(f(c), f(c))g#(f(e), U101(e, e), f(k))h#(U101(e, c), U101(e, c))g#(k, e, f(k))
h#(k, k)g#(k, k, f(k))h#(U101(c, c), U101(c, c))g#(U101(e, c), U101(c, c), f(k))
h#(f(c), f(c))g#(U101(e, c), f(e), f(k))h#(f(c), f(c))g#(f(k), e, f(k))
A#g#(k, c, f(k))h#(f(c), f(c))g#(f(c), U101(c, c), f(k))
h#(U101(e, c), U101(e, c))g#(c, c, f(k))h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))
h#(U101(c, c), U101(c, c))g#(k, U101(e, c), f(k))h#(U101(c, c), U101(c, c))g#(e, U101(e, c), f(k))
A#h#(f(e), f(e))h#(f(c), f(c))g#(U101(e, e), f(c), f(k))
h#(U101(e, c), U101(e, c))g#(k, U101(e, c), f(k))h#(U101(c, c), U101(c, c))g#(k, k, f(k))
h#(f(c), f(c))g#(U101(c, c), U101(e, e), f(k))A#h#(f(d), f(d))
h#(U101(c, c), U101(c, c))g#(c, c, f(k))h#(U101(c, c), U101(c, c))g#(c, e, f(k))
h#(U101(c, c), U101(c, c))g#(U101(e, c), c, f(k))h#(f(c), f(c))g#(U101(c, c), f(c), f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(d, d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(k, d) 
h#(d, k) 
Thus, the rule A# → h#(d, d) is replaced by the following rules:
A# → h#(k, d)A# → h#(d, k)

Problem 97: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U101(e, c), U101(e, c))g#(d, x, x)h#(U101(e, e), U101(e, e))
A#h#(f(c), f(c))h#(U101(c, c), U101(c, c))g#(k, U101(c, c), f(k))
A#h#(U101(c, c), U101(c, c))h#(f(c), f(c))g#(U101(e, c), f(e), f(k))
h#(f(c), f(c))g#(f(k), e, f(k))A#g#(k, c, f(k))
h#(f(d), f(d))g#(f(d), f(k), f(k))h#(f(c), f(c))g#(f(c), U101(c, c), f(k))
h#(U101(c, c), U101(c, c))g#(k, U101(e, c), f(k))h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))
h#(U101(e, c), U101(e, c))g#(c, c, f(k))h#(U101(c, c), U101(c, c))g#(e, U101(e, c), f(k))
A#h#(f(e), f(e))h#(f(c), f(c))g#(U101(e, e), f(c), f(k))
h#(U101(e, c), U101(e, c))g#(k, U101(e, c), f(k))h#(U101(c, c), U101(c, c))g#(k, k, f(k))
h#(U101(c, c), U101(c, c))g#(c, c, f(k))h#(f(c), f(c))g#(U101(c, c), U101(e, e), f(k))
A#h#(f(d), f(d))h#(f(c), f(c))g#(e, U101(e, e), f(k))
h#(U101(c, c), U101(c, c))g#(c, e, f(k))h#(f(c), f(c))g#(U101(c, c), f(c), f(k))
h#(U101(c, c), U101(c, c))g#(U101(e, c), c, f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U101(c, c), U101(c, c)) → g#(k, U101(c, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(k, U101(e, c), f(k))g#(k, U101(c, c), U101(k, k))
 g#(k, U101(k, c), f(k))
Thus, the rule h#(U101(c, c), U101(c, c)) → g#(k, U101(c, c), f(k)) is replaced by the following rules:
h#(U101(c, c), U101(c, c)) → g#(k, U101(e, c), f(k))

Problem 98: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(c, c, f(k))h#(f(c), f(c))g#(U101(c, c), e, f(k))
A#h#(U101(e, c), U101(e, c))h#(f(c), f(c))g#(f(k), U101(e, c), f(k))
h#(f(c), f(c))g#(c, U101(e, c), f(k))h#(f(c), f(c))g#(e, c, f(k))
h#(f(c), f(c))g#(e, U101(c, c), f(k))h#(f(c), f(c))g#(f(c), U101(e, c), f(k))
h#(f(c), f(c))g#(f(e), U101(c, c), f(k))h#(f(c), f(c))g#(k, e, f(k))
g#(d, x, x)h#(U101(e, e), U101(e, e))h#(f(c), f(c))g#(c, e, f(k))
h#(f(c), f(c))g#(U101(e, c), e, f(k))h#(f(c), f(c))g#(U101(e, c), k, f(k))
h#(f(c), f(c))g#(U101(c, c), k, f(k))h#(f(c), f(c))g#(e, k, f(k))
A#h#(f(c), f(c))h#(f(c), f(c))g#(k, k, f(k))
A#h#(U101(c, c), U101(c, c))h#(U101(c, c), U101(c, c))g#(e, U101(e, c), f(k))
h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))h#(U101(e, c), U101(e, c))g#(c, c, f(k))
h#(U101(c, c), U101(c, c))g#(k, U101(e, c), f(k))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U101(e, e), f(c), f(k))h#(U101(e, c), U101(e, c))g#(k, U101(e, c), f(k))
h#(U101(c, c), U101(c, c))g#(k, k, f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(U101(c, c), U101(e, e), f(k))h#(U101(c, c), U101(c, c))g#(c, c, f(k))
h#(f(c), f(c))g#(U101(c, c), f(c), f(k))h#(U101(c, c), U101(c, c))g#(U101(e, c), c, f(k))
h#(U101(c, c), U101(c, c))g#(c, e, f(k))h#(f(c), f(c))g#(e, U101(e, e), f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(c, c, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(k, c, f(k))g#(c, c, U101(k, k))
g#(c, e, f(k)) 
g#(e, c, f(k)) 
g#(c, k, f(k)) 
Thus, the rule h#(f(c), f(c)) → g#(c, c, f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(k, c, f(k))h#(f(c), f(c)) → g#(c, e, f(k))
h#(f(c), f(c)) → g#(c, k, f(k))h#(f(c), f(c)) → g#(e, c, f(k))

Problem 99: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(k, c, f(k))A#h#(U101(e, c), U101(e, c))
h#(f(c), f(c))g#(c, k, f(k))h#(f(c), f(c))g#(U101(c, c), c, f(k))
h#(f(c), f(c))g#(c, U101(e, c), f(k))h#(f(c), f(c))g#(e, c, f(k))
g#(d, x, x)h#(U101(e, e), U101(e, e))h#(f(c), f(c))g#(c, e, f(k))
h#(f(c), f(c))g#(U101(e, e), c, f(k))h#(f(c), f(c))g#(f(e), c, f(k))
h#(f(c), f(c))g#(e, U101(e, c), f(k))h#(f(c), f(c))g#(U101(e, c), e, f(k))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(U101(e, c), k, f(k))
h#(f(c), f(c))g#(U101(c, c), k, f(k))h#(f(c), f(c))g#(e, k, f(k))
A#h#(f(c), f(c))h#(f(c), f(c))g#(k, k, f(k))
A#h#(U101(c, c), U101(c, c))h#(f(c), f(c))g#(f(k), e, f(k))
h#(U101(c, c), U101(c, c))g#(e, U101(e, c), f(k))h#(U101(c, c), U101(c, c))g#(k, U101(e, c), f(k))
h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))h#(U101(e, c), U101(e, c))g#(c, c, f(k))
A#h#(f(e), f(e))h#(f(c), f(c))g#(U101(e, e), f(c), f(k))
h#(U101(c, c), U101(c, c))g#(k, k, f(k))h#(U101(e, c), U101(e, c))g#(k, U101(e, c), f(k))
A#h#(f(d), f(d))h#(U101(c, c), U101(c, c))g#(c, c, f(k))
h#(f(c), f(c))g#(U101(c, c), U101(e, e), f(k))h#(f(c), f(c))g#(U101(c, c), f(c), f(k))
h#(U101(c, c), U101(c, c))g#(U101(e, c), c, f(k))h#(U101(c, c), U101(c, c))g#(c, e, f(k))
h#(f(c), f(c))g#(e, U101(e, e), f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(k, c, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(k, e, f(k))g#(k, c, U101(k, k))
g#(k, k, f(k)) 
Thus, the rule h#(f(c), f(c)) → g#(k, c, f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(k, k, f(k))h#(f(c), f(c)) → g#(k, e, f(k))

Problem 100: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(U101(e, e), U101(e, e))h#(f(c), f(c))g#(U101(c, c), k, f(k))
h#(f(c), f(c))g#(e, k, f(k))A#h#(f(c), f(c))
h#(f(c), f(c))g#(k, k, f(k))A#h#(U101(c, c), U101(c, c))
A#h#(U101(e, c), U101(e, c))h#(f(c), f(c))g#(c, k, f(k))
h#(f(c), f(c))g#(f(k), e, f(k))h#(U101(e, e), U101(e, e))g#(U101(e, e), U101(e, e), f(k))
h#(U101(c, c), U101(c, c))g#(e, U101(e, c), f(k))h#(U101(c, c), U101(c, c))g#(k, U101(e, c), f(k))
h#(U101(e, c), U101(e, c))g#(c, c, f(k))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U101(e, e), f(c), f(k))h#(U101(e, c), U101(e, c))g#(k, U101(e, c), f(k))
h#(U101(c, c), U101(c, c))g#(k, k, f(k))h#(f(c), f(c))g#(U101(c, c), U101(e, e), f(k))
A#h#(f(d), f(d))h#(U101(c, c), U101(c, c))g#(c, c, f(k))
h#(f(c), f(c))g#(U101(c, c), f(c), f(k))h#(U101(c, c), U101(c, c))g#(c, e, f(k))
h#(U101(c, c), U101(c, c))g#(U101(e, c), c, f(k))h#(f(c), f(c))g#(e, U101(e, e), f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U101(c, c), k, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U101(e, c), k, f(k))g#(U101(c, c), k, U101(k, k))
 g#(U101(k, c), k, f(k))
Thus, the rule h#(f(c), f(c)) → g#(U101(c, c), k, f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U101(e, c), k, f(k))

Problem 101: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(U101(e, e), f(k), f(k))A#h#(f(c), f(c))
h#(f(c), f(c))g#(U101(e, e), U101(c, c), f(k))A#h#(U101(c, c), U101(c, c))
h#(f(c), f(c))g#(U101(e, e), f(e), f(k))A#h#(U101(e, c), U101(e, c))
h#(f(c), f(c))g#(e, f(c), f(k))h#(U101(e, c), U101(e, c))g#(k, U101(e, c), f(k))
h#(U101(c, c), U101(c, c))g#(k, k, f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(U101(c, c), U101(e, e), f(k))h#(U101(c, c), U101(c, c))g#(c, c, f(k))
h#(f(c), f(c))g#(e, U101(e, e), f(k))h#(f(c), f(c))g#(U101(c, c), f(c), f(k))
h#(U101(c, c), U101(c, c))g#(U101(e, c), c, f(k))h#(U101(c, c), U101(c, c))g#(c, e, f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U101(e, e), f(k), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, f(k), f(k))g#(U101(e, e), U101(k, k), f(k))
 g#(U101(e, e), f(k), U101(k, k))
Thus, the rule h#(f(c), f(c)) → g#(U101(e, e), f(k), f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, f(k), f(k))

Problem 102: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(k, c)A#h#(f(c), f(c))
A#h#(U101(c, c), U101(c, c))h#(U101(c, c), U101(c, c))g#(k, k, f(k))
A#h#(f(d), f(d))h#(U101(c, c), U101(c, c))g#(c, c, f(k))
A#h#(e, U101(e, c))h#(f(c), f(c))g#(e, e, f(k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(U101(c, c), U101(e, e), f(k))
h#(f(c), f(c))g#(U101(c, c), f(c), f(k))h#(f(c), f(c))g#(e, U101(e, e), f(k))
h#(U101(c, c), U101(c, c))g#(U101(e, c), c, f(k))h#(U101(c, c), U101(c, c))g#(c, e, f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(k, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(k, k) 
h#(k, e) 
Thus, the rule A# → h#(k, c) is replaced by the following rules:
A# → h#(k, k)A# → h#(k, e)

Problem 103: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(k, U101(c, c), f(k))h#(f(c), f(c))g#(e, f(k), f(k))
h#(f(c), f(c))g#(k, f(k), f(k))h#(f(c), f(c))g#(k, f(e), f(k))
h#(f(c), f(c))g#(U101(e, c), U101(e, e), f(k))A#h#(f(c), f(c))
h#(f(c), f(c))g#(U101(e, c), U101(e, c), f(k))A#h#(U101(c, c), U101(c, c))
h#(f(c), f(c))g#(U101(e, c), f(k), f(k))h#(f(c), f(c))g#(U101(e, c), U101(c, c), f(k))
h#(f(c), f(c))g#(c, U101(c, c), f(k))h#(f(c), f(c))g#(U101(e, c), f(e), f(k))
h#(f(c), f(c))g#(c, f(e), f(k))h#(f(c), f(c))g#(e, f(c), f(k))
h#(f(c), f(c))g#(U101(c, c), c, f(k))h#(f(c), f(c))g#(k, e, f(k))
h#(f(c), f(c))g#(U101(c, c), U101(e, e), f(k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(f(c), f(c))g#(e, e, f(k))h#(U101(c, c), U101(c, c))g#(c, e, f(k))
h#(U101(c, c), U101(c, c))g#(U101(e, c), c, f(k))h#(f(c), f(c))g#(e, U101(e, e), f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(k, U101(c, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(k, U101(e, c), f(k))g#(k, U101(c, c), U101(k, k))
 g#(k, U101(k, c), f(k))
Thus, the rule h#(f(c), f(c)) → g#(k, U101(c, c), f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(k, U101(e, c), f(k))

Problem 104: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(c, U101(e, e), f(k))h#(f(c), f(c))g#(k, f(e), f(k))
A#h#(f(c), f(c))A#h#(U101(c, c), U101(c, c))
h#(f(c), f(c))g#(U101(c, c), c, f(k))h#(f(c), f(c))g#(e, f(c), f(k))
h#(f(c), f(c))g#(e, U101(c, c), f(k))h#(f(c), f(c))g#(e, c, f(k))
h#(f(c), f(c))g#(c, U101(e, c), f(k))h#(f(c), f(c))g#(k, e, f(k))
h#(f(c), f(c))g#(e, e, f(k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(f(c), f(c))g#(U101(c, c), U101(e, e), f(k))h#(U101(c, c), U101(c, c))g#(c, e, f(k))
h#(U101(c, c), U101(c, c))g#(U101(e, c), c, f(k))h#(f(c), f(c))g#(e, U101(e, e), f(k))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(c, U101(e, e), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(c, e, f(k))g#(c, U101(e, e), U101(k, k))
g#(e, U101(e, e), f(k)) 
g#(k, U101(e, e), f(k)) 
Thus, the rule h#(f(c), f(c)) → g#(c, U101(e, e), f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(c, e, f(k))h#(f(c), f(c)) → g#(k, U101(e, e), f(k))
h#(f(c), f(c)) → g#(e, U101(e, e), f(k))

Problem 105: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U101(c, c), U101(c, c))h#(f(c), f(c))g#(U101(e, c), e, f(k))
h#(f(c), f(c))g#(k, U101(e, e), f(k))h#(f(c), f(c))g#(k, e, f(k))
h#(f(c), f(c))g#(e, k, f(k))h#(f(c), f(c))g#(e, e, f(k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(U101(c, c), U101(c, c))g#(c, e, f(k))
h#(f(c), f(c))g#(e, U101(e, e), f(k))h#(U101(c, c), U101(c, c))g#(U101(e, c), c, f(k))
A#h#(f(c), f(c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U101(e, c), e, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(c, e, f(k))g#(U101(e, c), e, U101(k, k))
Thus, the rule h#(f(c), f(c)) → g#(U101(e, c), e, f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(c, e, f(k))

Problem 106: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(e, k)A#h#(U101(e, c), k)
A#h#(k, e)A#h#(c, U101(e, c))
A#h#(c, e)A#h#(U101(e, c), U101(c, c))
A#h#(c, k)h#(f(c), f(c))g#(e, U101(e, e), f(k))
A#h#(f(c), f(c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(e, k) is deleted.

Problem 107: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(c, k)A#h#(f(c), f(c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(c), f(c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U101(c, c), f(c)) 
h#(f(c), U101(c, c)) 
h#(f(c), f(k)) 
h#(f(e), f(c)) 
h#(f(k), f(c)) 
h#(f(c), f(e)) 
Thus, the rule A# → h#(f(c), f(c)) is replaced by the following rules:
A# → h#(U101(c, c), f(c))A# → h#(f(c), f(e))
A# → h#(f(c), U101(c, c))A# → h#(f(k), f(c))
A# → h#(f(c), f(k))A# → h#(f(e), f(c))

Problem 108: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(k, f(e))A#h#(f(k), k)
A#h#(k, k)A#h#(c, f(k))
A#h#(e, k)A#h#(f(c), U101(e, c))
A#h#(f(e), U101(c, c))A#h#(f(k), e)
A#h#(c, U101(c, c))A#h#(k, f(k))
A#h#(k, U101(e, e))A#h#(f(k), f(e))
A#h#(U101(e, e), f(k))A#h#(U101(c, c), U101(e, c))
A#h#(U101(e, c), U101(c, c))A#h#(f(c), U101(e, e))
A#h#(f(k), f(k))A#h#(f(e), f(e))
A#h#(k, U101(e, c))A#h#(e, U101(e, c))
A#h#(f(e), f(c))A#h#(c, U101(e, e))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(k, f(e)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(k, U101(e, e)) 
Thus, the rule A# → h#(k, f(e)) is replaced by the following rules:
A# → h#(k, U101(e, e))

Problem 109: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(k, c)A#h#(U101(e, c), k)
A#h#(c, e)A#h#(c, k)
A#h#(f(c), e)A#h#(U101(c, c), e)
A#h#(f(e), e)A#h#(U101(e, e), k)
A#h#(f(k), U101(e, e))A#h#(k, k)
A#h#(f(k), k)A#h#(e, k)
A#h#(f(c), k)A#h#(U101(c, c), U101(e, c))
A#h#(f(e), f(e))A#h#(U101(e, c), U101(c, c))
A#h#(f(c), U101(e, e))A#h#(k, U101(e, c))
A#h#(U101(e, e), c)A#h#(e, U101(e, c))
A#h#(c, U101(e, e))A#h#(f(e), f(c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(k, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(k, k) 
h#(k, e) 
Thus, the rule A# → h#(k, c) is replaced by the following rules:
A# → h#(k, k)A# → h#(k, e)

Problem 110: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(k, e)A#h#(c, k)
A#h#(k, k)A#h#(e, k)
A#h#(U101(c, c), c)A#h#(f(c), U101(e, e))
A#h#(f(e), f(e))A#h#(U101(e, c), U101(c, c))
A#h#(k, U101(e, c))A#h#(c, U101(e, e))
A#h#(e, U101(e, c))A#h#(U101(e, e), c)
A#h#(f(e), f(c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(k, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(k, e) is deleted.

Problem 111: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(e, e)A#h#(f(e), U101(e, e))
A#h#(U101(e, c), U101(c, c))A#h#(e, f(e))
A#h#(k, U101(e, c))A#h#(e, U101(e, e))
A#h#(U101(e, e), c)A#h#(c, U101(e, e))
A#h#(e, U101(e, c))A#h#(f(e), f(c))

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(e, e) is deleted.

Problem 112: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(e, c)A#h#(e, e)
A#h#(U101(e, e), k)A#h#(e, U101(e, e))
A#h#(e, U101(e, c))A#h#(f(e), f(c))
A#h#(c, k)

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, k) 
h#(e, e) 
Thus, the rule A# → h#(e, c) is replaced by the following rules:
A# → h#(e, e)A# → h#(e, k)

Problem 113: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(e, c)A#h#(e, e)
A#h#(U101(e, e), k)A#h#(c, k)

Rewrite Rules

acbc
adbd
ceck
dkAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U101(x, x)U101(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, k) 
h#(e, e) 
Thus, the rule A# → h#(e, c) is replaced by the following rules:
A# → h#(e, e)A# → h#(e, k)