YES
The TRS could be proven terminating. The proof took 3624 ms.
The following DP Processors were used
Problem 1 was processed with processor DependencyGraph (51ms).
| Problem 2 was processed with processor ForwardNarrowing (4ms).
| | Problem 3 was processed with processor ForwardNarrowing (4ms).
| | | Problem 4 was processed with processor ForwardNarrowing (4ms).
| | | | Problem 5 was processed with processor ForwardNarrowing (36ms).
| | | | | Problem 6 was processed with processor ForwardNarrowing (16ms).
| | | | | | Problem 7 was processed with processor ForwardNarrowing (2ms).
| | | | | | | Problem 8 was processed with processor ForwardNarrowing (7ms).
| | | | | | | | Problem 9 was processed with processor ForwardNarrowing (3ms).
| | | | | | | | | Problem 10 was processed with processor ForwardNarrowing (3ms).
| | | | | | | | | | Problem 11 was processed with processor ForwardNarrowing (4ms).
| | | | | | | | | | | Problem 12 was processed with processor ForwardNarrowing (23ms).
| | | | | | | | | | | | Problem 13 was processed with processor ForwardNarrowing (2ms).
| | | | | | | | | | | | | Problem 14 was processed with processor ForwardNarrowing (4ms).
| | | | | | | | | | | | | | Problem 15 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | Problem 16 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | Problem 17 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | Problem 18 was processed with processor ForwardNarrowing (2ms).
| | | | | | | | | | | | | | | | | | Problem 19 was processed with processor ForwardNarrowing (3ms).
| | | | | | | | | | | | | | | | | | | Problem 20 was processed with processor ForwardNarrowing (3ms).
| | | | | | | | | | | | | | | | | | | | Problem 21 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | Problem 22 was processed with processor ForwardNarrowing (57ms).
| | | | | | | | | | | | | | | | | | | | | | Problem 23 was processed with processor ForwardNarrowing (2ms).
| | | | | | | | | | | | | | | | | | | | | | | Problem 24 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | Problem 25 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | Problem 26 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | Problem 27 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 28 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 29 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 30 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 31 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 32 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 33 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 34 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 35 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 36 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 37 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 38 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 39 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 40 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 41 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 42 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 43 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 44 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 45 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 46 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 47 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 48 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 49 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 50 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 51 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 52 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 53 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 54 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 55 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 56 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 57 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 58 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 59 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 60 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 61 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 62 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 63 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 64 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 65 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 66 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 67 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 68 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 69 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 70 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 71 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 72 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 73 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 74 was processed with processor BackwardInstantiation (2ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 75 was processed with processor Propagation (4ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 76 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 77 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 78 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 79 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 80 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 81 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 82 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 83 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 84 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 85 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 86 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 87 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 88 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 89 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 90 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 91 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 92 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 93 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 94 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 95 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 96 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 97 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 98 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 99 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 100 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 101 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 102 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 103 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 104 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 105 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 106 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 107 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 108 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 109 was processed with processor ForwardNarrowing (1ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 110 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 111 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 112 was processed with processor ForwardNarrowing (0ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 113 was processed with processor ForwardNarrowing (0ms).
Problem 1: DependencyGraph
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | b# |
a# | → | c# | | A# | → | f#(a) |
U101#(e, x) | → | T(x) | | a# | → | d# |
A# | → | a# | | b# | → | c# |
A# | → | h#(f(a), f(b)) | | A# | → | f#(b) |
h#(x, x) | → | f#(k) | | f#(x) | → | U101#(x, x) |
g#(d, x, x) | → | A# | | b# | → | d# |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The following SCCs where found
h#(x, x) → g#(x, x, f(k)) | A# → h#(f(a), f(b)) |
g#(d, x, x) → A# |
Problem 2: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(f(a), f(b)) |
g#(d, x, x) | → | A# |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(f(a), f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(U101(a, a), f(b)) | |
h#(f(c), f(b)) | |
h#(f(a), U101(b, b)) | |
h#(f(a), f(d)) | |
h#(f(d), f(b)) | |
h#(f(a), f(c)) | |
Thus, the rule A
# → h
#(f(a), f(b)) is replaced by the following rules:
A# → h#(f(c), f(b)) | A# → h#(f(d), f(b)) |
A# → h#(U101(a, a), f(b)) | A# → h#(f(a), f(d)) |
A# → h#(f(a), f(c)) | A# → h#(f(a), U101(b, b)) |
Problem 3: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(f(c), f(b)) |
A# | → | h#(f(d), f(b)) | | A# | → | h#(U101(a, a), f(b)) |
A# | → | h#(f(a), f(d)) | | A# | → | h#(f(a), f(c)) |
g#(d, x, x) | → | A# | | A# | → | h#(f(a), U101(b, b)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(f(c), f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(f(k), f(b)) | |
h#(U101(c, c), f(b)) | |
h#(f(e), f(b)) | |
h#(f(c), f(c)) | |
h#(f(c), f(d)) | |
h#(f(c), U101(b, b)) | |
Thus, the rule A
# → h
#(f(c), f(b)) is replaced by the following rules:
A# → h#(f(e), f(b)) | A# → h#(f(c), f(d)) |
A# → h#(f(c), U101(b, b)) | A# → h#(U101(c, c), f(b)) |
A# → h#(f(k), f(b)) | A# → h#(f(c), f(c)) |
Problem 4: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(f(d), f(b)) |
A# | → | h#(f(e), f(b)) | | A# | → | h#(f(c), U101(b, b)) |
A# | → | h#(f(a), f(d)) | | A# | → | h#(f(a), f(c)) |
A# | → | h#(U101(c, c), f(b)) | | A# | → | h#(f(k), f(b)) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(U101(a, a), f(b)) |
A# | → | h#(f(c), f(d)) | | A# | → | h#(f(a), U101(b, b)) |
g#(d, x, x) | → | A# |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(f(d), f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(f(d), f(c)) | h#(U101(d, d), f(b)) |
h#(f(d), U101(b, b)) | |
h#(f(k), f(b)) | |
h#(f(d), f(d)) | |
Thus, the rule A
# → h
#(f(d), f(b)) is replaced by the following rules:
A# → h#(f(d), U101(b, b)) | A# → h#(f(k), f(b)) |
A# → h#(f(d), f(d)) | A# → h#(f(d), f(c)) |
Problem 5: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(f(d), U101(b, b)) |
A# | → | h#(f(e), f(b)) | | A# | → | h#(f(c), U101(b, b)) |
A# | → | h#(f(a), f(d)) | | A# | → | h#(f(a), f(c)) |
A# | → | h#(U101(c, c), f(b)) | | A# | → | h#(f(k), f(b)) |
A# | → | h#(f(d), f(c)) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(f(c), f(d)) |
g#(d, x, x) | → | A# | | A# | → | h#(f(a), U101(b, b)) |
A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(f(d),
U101(b, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(f(k), U101(b, b)) | h#(U101(d, d), U101(b, b)) |
h#(f(d), U101(c, b)) | h#(f(d), U101(d, b)) |
Thus, the rule A
# → h
#(f(d),
U101(b, b)) is replaced by the following rules:
A# → h#(f(k), U101(b, b)) | A# → h#(f(d), U101(c, b)) |
Problem 6: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(f(k), U101(b, b)) | | h#(x, x) | → | g#(x, x, f(k)) |
A# | → | h#(f(e), f(b)) | | A# | → | h#(f(c), U101(b, b)) |
A# | → | h#(f(a), f(d)) | | A# | → | h#(f(a), f(c)) |
A# | → | h#(U101(c, c), f(b)) | | A# | → | h#(f(k), f(b)) |
A# | → | h#(f(d), f(c)) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(f(d), U101(c, b)) | | A# | → | h#(U101(a, a), f(b)) |
A# | → | h#(f(c), f(d)) | | A# | → | h#(f(a), U101(b, b)) |
g#(d, x, x) | → | A# | | A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(f(k),
U101(b, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(f(k), U101(c, b)) | h#(U101(k, k), U101(b, b)) |
| h#(f(k), U101(d, b)) |
Thus, the rule A
# → h
#(f(k),
U101(b, b)) is replaced by the following rules:
A# → h#(f(k), U101(c, b)) |
Problem 7: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(f(e), f(b)) |
A# | → | h#(f(c), U101(b, b)) | | A# | → | h#(f(a), f(d)) |
A# | → | h#(f(a), f(c)) | | A# | → | h#(U101(c, c), f(b)) |
A# | → | h#(f(k), f(b)) | | A# | → | h#(f(d), f(c)) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(f(d), U101(c, b)) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(f(c), f(d)) |
g#(d, x, x) | → | A# | | A# | → | h#(f(a), U101(b, b)) |
A# | → | h#(f(k), U101(c, b)) | | A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(f(e), f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(f(e), f(d)) | |
h#(f(e), f(c)) | |
h#(U101(e, e), f(b)) | |
h#(f(e), U101(b, b)) | |
Thus, the rule A
# → h
#(f(e), f(b)) is replaced by the following rules:
A# → h#(f(e), U101(b, b)) | A# → h#(f(e), f(d)) |
A# → h#(U101(e, e), f(b)) | A# → h#(f(e), f(c)) |
Problem 8: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(f(c), U101(b, b)) |
A# | → | h#(f(a), f(d)) | | A# | → | h#(f(a), f(c)) |
A# | → | h#(U101(c, c), f(b)) | | A# | → | h#(U101(e, e), f(b)) |
A# | → | h#(f(k), f(b)) | | A# | → | h#(f(d), f(c)) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(f(e), U101(b, b)) |
A# | → | h#(f(d), U101(c, b)) | | A# | → | h#(U101(a, a), f(b)) |
A# | → | h#(f(c), f(d)) | | A# | → | h#(f(e), f(d)) |
A# | → | h#(f(k), U101(c, b)) | | A# | → | h#(f(a), U101(b, b)) |
g#(d, x, x) | → | A# | | A# | → | h#(f(d), f(d)) |
A# | → | h#(f(e), f(c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(f(c),
U101(b, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(f(c), U101(c, b)) | h#(f(c), U101(d, b)) |
h#(U101(c, c), U101(b, b)) | |
h#(f(k), U101(b, b)) | |
h#(f(e), U101(b, b)) | |
Thus, the rule A
# → h
#(f(c),
U101(b, b)) is replaced by the following rules:
A# → h#(f(k), U101(b, b)) | A# → h#(f(e), U101(b, b)) |
A# → h#(U101(c, c), U101(b, b)) | A# → h#(f(c), U101(c, b)) |
Problem 9: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(f(k), U101(b, b)) | | h#(x, x) | → | g#(x, x, f(k)) |
A# | → | h#(f(c), U101(c, b)) | | A# | → | h#(f(a), f(d)) |
A# | → | h#(f(a), f(c)) | | A# | → | h#(U101(c, c), f(b)) |
A# | → | h#(U101(e, e), f(b)) | | A# | → | h#(f(k), f(b)) |
A# | → | h#(f(d), f(c)) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(f(e), U101(b, b)) | | A# | → | h#(f(d), U101(c, b)) |
A# | → | h#(U101(c, c), U101(b, b)) | | A# | → | h#(U101(a, a), f(b)) |
A# | → | h#(f(e), f(d)) | | A# | → | h#(f(c), f(d)) |
g#(d, x, x) | → | A# | | A# | → | h#(f(a), U101(b, b)) |
A# | → | h#(f(k), U101(c, b)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(f(k),
U101(b, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(f(k), U101(c, b)) | h#(U101(k, k), U101(b, b)) |
| h#(f(k), U101(d, b)) |
Thus, the rule A
# → h
#(f(k),
U101(b, b)) is replaced by the following rules:
A# → h#(f(k), U101(c, b)) |
Problem 10: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(f(c), U101(c, b)) |
A# | → | h#(f(a), f(d)) | | A# | → | h#(f(a), f(c)) |
A# | → | h#(U101(c, c), f(b)) | | A# | → | h#(U101(e, e), f(b)) |
A# | → | h#(f(k), f(b)) | | A# | → | h#(f(d), f(c)) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(f(e), U101(b, b)) |
A# | → | h#(f(d), U101(c, b)) | | A# | → | h#(U101(c, c), U101(b, b)) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(f(c), f(d)) |
A# | → | h#(f(e), f(d)) | | A# | → | h#(f(k), U101(c, b)) |
A# | → | h#(f(a), U101(b, b)) | | g#(d, x, x) | → | A# |
A# | → | h#(f(d), f(d)) | | A# | → | h#(f(e), f(c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(f(c),
U101(c, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(f(k), U101(c, b)) | h#(f(c), U101(k, b)) |
h#(U101(c, c), U101(c, b)) | |
h#(f(e), U101(c, b)) | |
h#(f(c), U101(e, b)) | |
Thus, the rule A
# → h
#(f(c),
U101(c, b)) is replaced by the following rules:
A# → h#(f(e), U101(c, b)) | A# → h#(f(c), U101(e, b)) |
A# → h#(U101(c, c), U101(c, b)) | A# → h#(f(k), U101(c, b)) |
Problem 11: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(f(c), U101(e, b)) |
A# | → | h#(f(e), U101(c, b)) | | A# | → | h#(f(a), f(d)) |
A# | → | h#(f(a), f(c)) | | A# | → | h#(U101(c, c), f(b)) |
A# | → | h#(U101(e, e), f(b)) | | A# | → | h#(f(k), f(b)) |
A# | → | h#(U101(c, c), U101(c, b)) | | A# | → | h#(f(d), f(c)) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(f(e), U101(b, b)) |
A# | → | h#(f(d), U101(c, b)) | | A# | → | h#(U101(c, c), U101(b, b)) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(f(e), f(d)) |
A# | → | h#(f(c), f(d)) | | g#(d, x, x) | → | A# |
A# | → | h#(f(a), U101(b, b)) | | A# | → | h#(f(k), U101(c, b)) |
A# | → | h#(f(e), f(c)) | | A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(f(c),
U101(e, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(U101(c, c), U101(e, b)) | |
h#(f(e), U101(e, b)) | |
h#(f(k), U101(e, b)) | |
h#(f(c), b) | |
Thus, the rule A
# → h
#(f(c),
U101(e, b)) is replaced by the following rules:
A# → h#(f(e), U101(e, b)) | A# → h#(f(k), U101(e, b)) |
A# → h#(f(c), b) | A# → h#(U101(c, c), U101(e, b)) |
Problem 12: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(f(e), U101(c, b)) |
A# | → | h#(f(c), b) | | A# | → | h#(f(k), U101(e, b)) |
A# | → | h#(f(a), f(d)) | | A# | → | h#(f(a), f(c)) |
A# | → | h#(U101(e, e), f(b)) | | A# | → | h#(f(d), f(c)) |
A# | → | h#(f(e), U101(b, b)) | | A# | → | h#(f(d), U101(c, b)) |
A# | → | h#(U101(c, c), U101(b, b)) | | A# | → | h#(f(e), f(d)) |
A# | → | h#(f(c), f(d)) | | A# | → | h#(U101(c, c), U101(e, b)) |
A# | → | h#(f(k), U101(c, b)) | | A# | → | h#(f(a), U101(b, b)) |
A# | → | h#(f(e), U101(e, b)) | | A# | → | h#(U101(c, c), f(b)) |
A# | → | h#(f(k), f(b)) | | A# | → | h#(U101(c, c), U101(c, b)) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(U101(a, a), f(b)) |
g#(d, x, x) | → | A# | | A# | → | h#(f(d), f(d)) |
A# | → | h#(f(e), f(c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(f(e),
U101(c, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(U101(e, e), U101(c, b)) | h#(f(e), U101(k, b)) |
h#(f(e), U101(e, b)) | |
Thus, the rule A
# → h
#(f(e),
U101(c, b)) is replaced by the following rules:
A# → h#(U101(e, e), U101(c, b)) | A# → h#(f(e), U101(e, b)) |
Problem 13: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(f(k), U101(e, b)) |
A# | → | h#(f(c), b) | | A# | → | h#(f(a), f(d)) |
A# | → | h#(f(a), f(c)) | | A# | → | h#(U101(e, e), f(b)) |
A# | → | h#(f(d), f(c)) | | A# | → | h#(U101(e, e), U101(c, b)) |
A# | → | h#(f(d), U101(c, b)) | | A# | → | h#(f(e), U101(b, b)) |
A# | → | h#(U101(c, c), U101(b, b)) | | A# | → | h#(f(c), f(d)) |
A# | → | h#(f(e), f(d)) | | A# | → | h#(U101(c, c), U101(e, b)) |
A# | → | h#(f(k), U101(c, b)) | | A# | → | h#(f(a), U101(b, b)) |
A# | → | h#(f(e), U101(e, b)) | | A# | → | h#(U101(c, c), f(b)) |
A# | → | h#(f(k), f(b)) | | A# | → | h#(U101(c, c), U101(c, b)) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(U101(a, a), f(b)) |
g#(d, x, x) | → | A# | | A# | → | h#(f(d), f(d)) |
A# | → | h#(f(e), f(c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(f(c), b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(f(e), b) | |
h#(f(c), c) | |
h#(U101(c, c), b) | |
h#(f(c), d) | |
h#(f(k), b) | |
Thus, the rule A
# → h
#(f(c), b) is replaced by the following rules:
A# → h#(f(c), c) | A# → h#(U101(c, c), b) |
A# → h#(f(c), d) | A# → h#(f(e), b) |
A# → h#(f(k), b) |
Problem 14: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(U101(c, c), b) |
A# | → | h#(f(k), U101(e, b)) | | A# | → | h#(f(c), d) |
A# | → | h#(f(a), f(d)) | | A# | → | h#(f(a), f(c)) |
A# | → | h#(U101(e, e), f(b)) | | A# | → | h#(f(d), f(c)) |
A# | → | h#(U101(e, e), U101(c, b)) | | A# | → | h#(f(e), U101(b, b)) |
A# | → | h#(f(d), U101(c, b)) | | A# | → | h#(U101(c, c), U101(b, b)) |
A# | → | h#(f(c), f(d)) | | A# | → | h#(f(e), f(d)) |
A# | → | h#(U101(c, c), U101(e, b)) | | A# | → | h#(f(k), b) |
A# | → | h#(f(k), U101(c, b)) | | A# | → | h#(f(a), U101(b, b)) |
A# | → | h#(f(e), U101(e, b)) | | A# | → | h#(U101(c, c), f(b)) |
A# | → | h#(f(k), f(b)) | | A# | → | h#(U101(c, c), U101(c, b)) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(f(c), c) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(f(e), b) |
g#(d, x, x) | → | A# | | A# | → | h#(f(e), f(c)) |
A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(
U101(c, c), b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(U101(e, c), b) | h#(U101(k, c), b) |
h#(U101(c, c), d) | |
h#(U101(c, c), c) | |
Thus, the rule A
# → h
#(
U101(c, c), b) is replaced by the following rules:
A# → h#(U101(c, c), c) | A# → h#(U101(c, c), d) |
A# → h#(U101(e, c), b) |
Problem 15: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(f(k), U101(e, b)) |
A# | → | h#(f(c), d) | | A# | → | h#(f(a), f(d)) |
A# | → | h#(f(a), f(c)) | | A# | → | h#(U101(e, e), f(b)) |
A# | → | h#(U101(e, c), b) | | A# | → | h#(f(d), f(c)) |
A# | → | h#(U101(e, e), U101(c, b)) | | A# | → | h#(f(d), U101(c, b)) |
A# | → | h#(f(e), U101(b, b)) | | A# | → | h#(U101(c, c), U101(b, b)) |
A# | → | h#(U101(c, c), c) | | A# | → | h#(f(c), f(d)) |
A# | → | h#(f(e), f(d)) | | A# | → | h#(U101(c, c), U101(e, b)) |
A# | → | h#(f(k), b) | | A# | → | h#(f(k), U101(c, b)) |
A# | → | h#(f(a), U101(b, b)) | | A# | → | h#(f(e), U101(e, b)) |
A# | → | h#(U101(c, c), f(b)) | | A# | → | h#(f(k), f(b)) |
A# | → | h#(U101(c, c), U101(c, b)) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(f(c), c) | | A# | → | h#(U101(a, a), f(b)) |
A# | → | h#(f(e), b) | | A# | → | h#(U101(c, c), d) |
g#(d, x, x) | → | A# | | A# | → | h#(f(d), f(d)) |
A# | → | h#(f(e), f(c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(f(k),
U101(e, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(f(k), b) | h#(U101(k, k), U101(e, b)) |
Thus, the rule A
# → h
#(f(k),
U101(e, b)) is replaced by the following rules:
Problem 16: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(f(c), d) |
A# | → | h#(f(a), f(d)) | | A# | → | h#(f(a), f(c)) |
A# | → | h#(U101(e, e), f(b)) | | A# | → | h#(U101(e, c), b) |
A# | → | h#(f(d), f(c)) | | A# | → | h#(U101(e, e), U101(c, b)) |
A# | → | h#(f(e), U101(b, b)) | | A# | → | h#(f(d), U101(c, b)) |
A# | → | h#(U101(c, c), U101(b, b)) | | A# | → | h#(f(c), f(d)) |
A# | → | h#(U101(c, c), c) | | A# | → | h#(f(e), f(d)) |
A# | → | h#(U101(c, c), U101(e, b)) | | A# | → | h#(f(k), b) |
A# | → | h#(f(k), U101(c, b)) | | A# | → | h#(f(a), U101(b, b)) |
A# | → | h#(f(e), U101(e, b)) | | A# | → | h#(U101(c, c), f(b)) |
A# | → | h#(f(k), f(b)) | | A# | → | h#(U101(c, c), U101(c, b)) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(f(c), c) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(f(e), b) |
A# | → | h#(U101(c, c), d) | | g#(d, x, x) | → | A# |
A# | → | h#(f(e), f(c)) | | A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(f(c), d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(f(e), d) | |
h#(f(k), d) | |
h#(f(c), k) | |
h#(U101(c, c), d) | |
Thus, the rule A
# → h
#(f(c), d) is replaced by the following rules:
A# → h#(f(c), k) | A# → h#(f(e), d) |
A# → h#(U101(c, c), d) | A# → h#(f(k), d) |
Problem 17: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(f(a), f(d)) |
A# | → | h#(f(a), f(c)) | | A# | → | h#(U101(e, e), f(b)) |
A# | → | h#(f(k), d) | | A# | → | h#(U101(e, c), b) |
A# | → | h#(f(d), f(c)) | | A# | → | h#(U101(e, e), U101(c, b)) |
A# | → | h#(f(d), U101(c, b)) | | A# | → | h#(f(e), U101(b, b)) |
A# | → | h#(U101(c, c), U101(b, b)) | | A# | → | h#(U101(c, c), c) |
A# | → | h#(f(c), f(d)) | | A# | → | h#(f(e), f(d)) |
A# | → | h#(U101(c, c), U101(e, b)) | | A# | → | h#(f(k), b) |
A# | → | h#(f(k), U101(c, b)) | | A# | → | h#(f(a), U101(b, b)) |
A# | → | h#(f(e), U101(e, b)) | | A# | → | h#(f(e), d) |
A# | → | h#(U101(c, c), f(b)) | | A# | → | h#(f(k), f(b)) |
A# | → | h#(U101(c, c), U101(c, b)) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(f(c), c) | | A# | → | h#(U101(a, a), f(b)) |
A# | → | h#(f(c), k) | | A# | → | h#(f(e), b) |
A# | → | h#(U101(c, c), d) | | g#(d, x, x) | → | A# |
A# | → | h#(f(d), f(d)) | | A# | → | h#(f(e), f(c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(f(a), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(f(a), f(k)) | h#(f(a), U101(d, d)) |
h#(f(d), f(d)) | |
h#(f(c), f(d)) | |
h#(U101(a, a), f(d)) | |
Thus, the rule A
# → h
#(f(a), f(d)) is replaced by the following rules:
A# → h#(U101(a, a), f(d)) | A# → h#(f(a), f(k)) |
A# → h#(f(c), f(d)) | A# → h#(f(d), f(d)) |
Problem 18: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(f(a), f(c)) |
A# | → | h#(f(k), d) | | A# | → | h#(U101(e, e), f(b)) |
A# | → | h#(U101(e, c), b) | | A# | → | h#(f(d), f(c)) |
A# | → | h#(U101(e, e), U101(c, b)) | | A# | → | h#(U101(a, a), f(d)) |
A# | → | h#(f(e), U101(b, b)) | | A# | → | h#(f(d), U101(c, b)) |
A# | → | h#(U101(c, c), U101(b, b)) | | A# | → | h#(f(a), f(k)) |
A# | → | h#(U101(c, c), c) | | A# | → | h#(f(c), f(d)) |
A# | → | h#(f(e), f(d)) | | A# | → | h#(U101(c, c), U101(e, b)) |
A# | → | h#(f(k), b) | | A# | → | h#(f(k), U101(c, b)) |
A# | → | h#(f(a), U101(b, b)) | | A# | → | h#(f(e), U101(e, b)) |
A# | → | h#(f(e), d) | | A# | → | h#(U101(c, c), f(b)) |
A# | → | h#(f(k), f(b)) | | A# | → | h#(U101(c, c), U101(c, b)) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(f(c), c) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(f(c), k) |
A# | → | h#(f(e), b) | | A# | → | h#(U101(c, c), d) |
g#(d, x, x) | → | A# | | A# | → | h#(f(e), f(c)) |
A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(f(a), f(c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(f(d), f(c)) | |
h#(f(a), f(k)) | |
h#(f(a), U101(c, c)) | |
h#(f(a), f(e)) | |
h#(f(c), f(c)) | |
h#(U101(a, a), f(c)) | |
Thus, the rule A
# → h
#(f(a), f(c)) is replaced by the following rules:
A# → h#(f(a), f(e)) | A# → h#(f(a), U101(c, c)) |
A# → h#(f(a), f(k)) | A# → h#(U101(a, a), f(c)) |
A# → h#(f(d), f(c)) | A# → h#(f(c), f(c)) |
Problem 19: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(U101(a, a), f(c)) |
A# | → | h#(U101(e, e), f(b)) | | A# | → | h#(f(k), d) |
A# | → | h#(U101(e, c), b) | | A# | → | h#(f(d), f(c)) |
A# | → | h#(U101(e, e), U101(c, b)) | | A# | → | h#(U101(a, a), f(d)) |
A# | → | h#(f(a), f(e)) | | A# | → | h#(f(d), U101(c, b)) |
A# | → | h#(f(e), U101(b, b)) | | A# | → | h#(U101(c, c), U101(b, b)) |
A# | → | h#(f(a), f(k)) | | A# | → | h#(U101(c, c), c) |
A# | → | h#(f(c), f(d)) | | A# | → | h#(f(e), f(d)) |
A# | → | h#(U101(c, c), U101(e, b)) | | A# | → | h#(f(k), b) |
A# | → | h#(f(k), U101(c, b)) | | A# | → | h#(f(a), U101(b, b)) |
A# | → | h#(f(e), U101(e, b)) | | A# | → | h#(f(a), U101(c, c)) |
A# | → | h#(f(e), d) | | A# | → | h#(U101(c, c), f(b)) |
A# | → | h#(f(k), f(b)) | | A# | → | h#(U101(c, c), U101(c, b)) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(f(c), c) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(f(c), k) |
A# | → | h#(f(e), b) | | A# | → | h#(U101(c, c), d) |
g#(d, x, x) | → | A# | | A# | → | h#(f(d), f(d)) |
A# | → | h#(f(e), f(c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(
U101(a, a), f(c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(U101(c, a), f(c)) | h#(U101(d, a), f(c)) |
h#(U101(a, a), f(k)) | |
h#(U101(a, a), f(e)) | |
h#(U101(a, a), U101(c, c)) | |
Thus, the rule A
# → h
#(
U101(a, a), f(c)) is replaced by the following rules:
A# → h#(U101(a, a), f(e)) | A# → h#(U101(c, a), f(c)) |
A# → h#(U101(a, a), U101(c, c)) | A# → h#(U101(a, a), f(k)) |
Problem 20: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(U101(a, a), U101(c, c)) |
A# | → | h#(f(k), d) | | A# | → | h#(U101(e, e), f(b)) |
A# | → | h#(U101(e, c), b) | | A# | → | h#(f(d), f(c)) |
A# | → | h#(U101(e, e), U101(c, b)) | | A# | → | h#(U101(a, a), f(d)) |
A# | → | h#(f(a), f(e)) | | A# | → | h#(U101(a, a), f(e)) |
A# | → | h#(f(e), U101(b, b)) | | A# | → | h#(f(d), U101(c, b)) |
A# | → | h#(U101(c, c), U101(b, b)) | | A# | → | h#(f(a), f(k)) |
A# | → | h#(U101(c, c), c) | | A# | → | h#(f(c), f(d)) |
A# | → | h#(f(e), f(d)) | | A# | → | h#(U101(c, c), U101(e, b)) |
A# | → | h#(f(k), b) | | A# | → | h#(f(k), U101(c, b)) |
A# | → | h#(f(a), U101(b, b)) | | A# | → | h#(U101(a, a), f(k)) |
A# | → | h#(f(e), U101(e, b)) | | A# | → | h#(U101(c, a), f(c)) |
A# | → | h#(f(a), U101(c, c)) | | A# | → | h#(f(e), d) |
A# | → | h#(U101(c, c), f(b)) | | A# | → | h#(f(k), f(b)) |
A# | → | h#(U101(c, c), U101(c, b)) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(f(c), c) | | A# | → | h#(U101(a, a), f(b)) |
A# | → | h#(f(c), k) | | A# | → | h#(f(e), b) |
A# | → | h#(U101(c, c), d) | | g#(d, x, x) | → | A# |
A# | → | h#(f(e), f(c)) | | A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(
U101(a, a),
U101(c, c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(U101(a, a), U101(e, c)) | h#(U101(d, a), U101(c, c)) |
h#(U101(c, a), U101(c, c)) | h#(U101(a, a), U101(k, c)) |
Thus, the rule A
# → h
#(
U101(a, a),
U101(c, c)) is replaced by the following rules:
A# → h#(U101(a, a), U101(e, c)) | A# → h#(U101(c, a), U101(c, c)) |
Problem 21: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(U101(e, e), f(b)) |
A# | → | h#(f(k), d) | | A# | → | h#(U101(e, c), b) |
A# | → | h#(f(d), f(c)) | | A# | → | h#(U101(e, e), U101(c, b)) |
A# | → | h#(U101(a, a), f(d)) | | A# | → | h#(U101(a, a), f(e)) |
A# | → | h#(f(a), f(e)) | | A# | → | h#(f(d), U101(c, b)) |
A# | → | h#(f(e), U101(b, b)) | | A# | → | h#(U101(c, c), U101(b, b)) |
A# | → | h#(f(a), f(k)) | | A# | → | h#(U101(c, c), c) |
A# | → | h#(f(c), f(d)) | | A# | → | h#(f(e), f(d)) |
A# | → | h#(U101(c, c), U101(e, b)) | | A# | → | h#(f(k), b) |
A# | → | h#(f(k), U101(c, b)) | | A# | → | h#(f(a), U101(b, b)) |
A# | → | h#(U101(a, a), f(k)) | | A# | → | h#(f(e), U101(e, b)) |
A# | → | h#(U101(c, a), f(c)) | | A# | → | h#(f(a), U101(c, c)) |
A# | → | h#(f(e), d) | | A# | → | h#(U101(c, c), f(b)) |
A# | → | h#(f(k), f(b)) | | A# | → | h#(U101(c, c), U101(c, b)) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(f(c), c) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(f(c), k) |
A# | → | h#(f(e), b) | | A# | → | h#(U101(c, c), d) |
g#(d, x, x) | → | A# | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(f(d), f(d)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(U101(c, a), U101(c, c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(f(k), d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(f(k), k) | h#(U101(k, k), d) |
Thus, the rule A
# → h
#(f(k), d) is replaced by the following rules:
Problem 22: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(f(k), b) |
A# | → | h#(U101(e, e), c) | | A# | → | h#(e, U101(c, c)) |
A# | → | h#(f(e), U101(e, e)) | | A# | → | h#(f(k), f(b)) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(U101(e, c), c) |
A# | → | h#(U101(c, a), f(d)) | | A# | → | h#(U101(e, c), U101(e, e)) |
A# | → | h#(U101(c, a), e) | | A# | → | h#(k, b) |
A# | → | h#(f(d), e) | | A# | → | h#(U101(c, c), d) |
A# | → | h#(U101(e, c), d) | | A# | → | h#(e, f(d)) |
g#(d, x, x) | → | A# | | A# | → | h#(f(d), f(d)) |
A# | → | h#(U101(c, a), U101(e, e)) | | A# | → | h#(e, c) |
A# | → | h#(f(d), f(k)) | | A# | → | h#(U101(e, e), f(e)) |
A# | → | h#(f(e), U101(c, b)) | | A# | → | h#(f(k), U101(e, b)) |
A# | → | h#(U101(e, c), U101(b, b)) | | A# | → | h#(f(c), U101(c, b)) |
A# | → | h#(f(a), U101(e, b)) | | A# | → | h#(f(d), U101(b, b)) |
A# | → | h#(f(c), U101(b, b)) | | A# | → | h#(f(c), f(e)) |
A# | → | h#(e, f(k)) | | A# | → | h#(f(c), f(k)) |
A# | → | h#(f(d), f(c)) | | A# | → | h#(U101(e, e), U101(c, b)) |
A# | → | h#(c, d) | | A# | → | h#(U101(a, a), f(e)) |
A# | → | h#(e, f(c)) | | A# | → | h#(e, f(b)) |
A# | → | h#(f(e), f(d)) | | A# | → | h#(f(c), f(d)) |
A# | → | h#(U101(c, c), c) | | A# | → | h#(f(k), f(e)) |
A# | → | h#(U101(c, c), U101(e, b)) | | A# | → | h#(f(k), U101(c, b)) |
A# | → | h#(U101(a, a), f(k)) | | A# | → | h#(U101(a, a), U101(c, b)) |
A# | → | h#(f(e), U101(e, b)) | | A# | → | h#(U101(a, a), U101(b, b)) |
A# | → | h#(c, c) | | A# | → | h#(f(a), U101(c, c)) |
A# | → | h#(U101(c, a), f(c)) | | A# | → | h#(f(e), d) |
A# | → | h#(U101(c, c), f(b)) | | A# | → | h#(U101(c, c), U101(c, b)) |
A# | → | h#(f(c), e) | | A# | → | h#(f(c), c) |
A# | → | h#(U101(c, c), e) | | A# | → | h#(f(k), U101(e, e)) |
A# | → | h#(f(k), k) | | A# | → | h#(e, d) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(f(c), k) |
A# | → | h#(f(d), b) | | A# | → | h#(f(e), b) |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(U101(c, a), U101(c, c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(f(k), b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(f(k), c) | h#(U101(k, k), b) |
h#(f(k), d) | |
Thus, the rule A
# → h
#(f(k), b) is replaced by the following rules:
A# → h#(f(k), c) | A# → h#(f(k), d) |
Problem 23: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(e, e) |
A# | → | h#(f(c), f(c)) | | g#(d, x, x) | → | A# |
A# | → | h#(f(d), f(d)) | | A# | → | h#(U101(e, e), U101(e, e)) |
A# | → | h#(f(d), U101(b, b)) | | A# | → | h#(f(c), U101(c, b)) |
A# | → | h#(f(a), U101(e, b)) | | A# | → | h#(f(c), f(e)) |
A# | → | h#(f(c), U101(b, b)) | | A# | → | h#(f(k), c) |
A# | → | h#(c, e) | | A# | → | h#(e, f(k)) |
A# | → | h#(a, f(k)) | | A# | → | h#(f(c), f(k)) |
A# | → | h#(f(d), f(c)) | | A# | → | h#(U101(e, e), U101(c, b)) |
A# | → | h#(k, d) | | A# | → | h#(c, d) |
A# | → | h#(f(k), U101(c, c)) | | A# | → | h#(U101(a, a), f(e)) |
A# | → | h#(d, f(d)) | | A# | → | h#(e, f(c)) |
A# | → | h#(k, k) | | A# | → | h#(c, f(d)) |
A# | → | h#(e, f(b)) | | A# | → | h#(f(k), e) |
A# | → | h#(f(e), f(d)) | | A# | → | h#(f(c), f(d)) |
A# | → | h#(U101(c, c), c) | | A# | → | h#(f(k), f(e)) |
A# | → | h#(U101(c, c), U101(e, b)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(f(k), U101(c, b)) | | A# | → | h#(U101(c, a), f(k)) |
A# | → | h#(U101(a, a), f(k)) | | A# | → | h#(U101(a, a), U101(c, b)) |
A# | → | h#(f(e), U101(e, b)) | | A# | → | h#(U101(a, a), U101(b, b)) |
A# | → | h#(c, c) | | A# | → | h#(U101(c, a), f(c)) |
A# | → | h#(f(a), U101(c, c)) | | A# | → | h#(U101(e, c), k) |
A# | → | h#(f(e), d) | | A# | → | h#(a, U101(e, e)) |
A# | → | h#(U101(c, c), f(b)) | | A# | → | h#(U101(c, c), U101(c, b)) |
A# | → | h#(U101(e, e), e) | | A# | → | h#(f(c), e) |
A# | → | h#(f(c), c) | | A# | → | h#(U101(c, c), e) |
A# | → | h#(U101(e, c), U101(c, b)) | | A# | → | h#(f(e), e) |
A# | → | h#(f(k), U101(e, e)) | | A# | → | h#(f(k), k) |
A# | → | h#(e, d) | | A# | → | h#(c, U101(b, b)) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(f(c), k) |
A# | → | h#(f(d), b) | | A# | → | h#(f(e), b) |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(U101(c, a), U101(c, c)) | | A# | → | h#(c, U101(e, e)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(f(d),
U101(b, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(f(k), U101(b, b)) | h#(U101(d, d), U101(b, b)) |
h#(f(d), U101(c, b)) | h#(f(d), U101(d, b)) |
Thus, the rule A
# → h
#(f(d),
U101(b, b)) is replaced by the following rules:
A# → h#(f(k), U101(b, b)) | A# → h#(f(d), U101(c, b)) |
Problem 24: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(f(a), e) |
A# | → | h#(U101(a, a), c) | | A# | → | h#(e, e) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(d, b) |
A# | → | h#(a, k) | | A# | → | h#(U101(c, a), e) |
A# | → | h#(k, b) | | A# | → | h#(U101(e, a), c) |
A# | → | h#(a, e) | | g#(d, x, x) | → | A# |
A# | → | h#(U101(a, a), k) | | A# | → | h#(f(d), f(d)) |
A# | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(f(c), U101(e, b)) |
A# | → | h#(f(c), b) | | A# | → | h#(f(k), U101(e, b)) |
A# | → | h#(f(c), d) | | A# | → | h#(f(c), U101(b, b)) |
A# | → | h#(f(c), f(e)) | | A# | → | h#(f(k), c) |
A# | → | h#(c, e) | | A# | → | h#(U101(c, a), c) |
A# | → | h#(e, f(k)) | | A# | → | h#(U101(e, c), b) |
A# | → | h#(f(c), f(k)) | | A# | → | h#(a, f(k)) |
A# | → | h#(e, b) | | A# | → | h#(f(d), f(c)) |
A# | → | h#(k, d) | | A# | → | h#(U101(e, e), U101(c, b)) |
A# | → | h#(f(k), U101(c, c)) | | A# | → | h#(U101(a, a), f(e)) |
A# | → | h#(c, d) | | A# | → | h#(d, f(d)) |
A# | → | h#(e, f(c)) | | A# | → | h#(c, f(d)) |
A# | → | h#(k, k) | | A# | → | h#(e, f(b)) |
A# | → | h#(f(d), c) | | A# | → | h#(f(k), e) |
A# | → | h#(f(e), f(d)) | | A# | → | h#(f(c), f(d)) |
A# | → | h#(U101(c, c), c) | | A# | → | h#(f(k), f(e)) |
A# | → | h#(U101(c, c), U101(e, b)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(f(k), U101(c, b)) | | A# | → | h#(U101(c, a), f(k)) |
A# | → | h#(U101(a, a), f(k)) | | A# | → | h#(U101(a, a), U101(c, b)) |
A# | → | h#(a, d) | | A# | → | h#(f(d), k) |
A# | → | h#(f(e), U101(e, b)) | | A# | → | h#(U101(a, a), U101(b, b)) |
A# | → | h#(c, c) | | A# | → | h#(f(a), U101(c, c)) |
A# | → | h#(U101(c, a), f(c)) | | A# | → | h#(U101(e, c), k) |
A# | → | h#(f(e), d) | | A# | → | h#(a, U101(e, e)) |
A# | → | h#(f(a), k) | | A# | → | h#(U101(c, c), f(b)) |
A# | → | h#(U101(c, c), U101(c, b)) | | A# | → | h#(f(c), e) |
A# | → | h#(U101(e, e), e) | | A# | → | h#(f(c), c) |
A# | → | h#(U101(c, c), e) | | A# | → | h#(U101(e, c), U101(c, b)) |
A# | → | h#(f(e), e) | | A# | → | h#(f(k), U101(e, e)) |
A# | → | h#(f(k), k) | | A# | → | h#(e, d) |
A# | → | h#(c, U101(b, b)) | | A# | → | h#(U101(a, a), f(b)) |
A# | → | h#(f(c), k) | | A# | → | h#(U101(a, a), U101(e, b)) |
A# | → | h#(f(d), b) | | A# | → | h#(f(e), b) |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(U101(c, a), U101(c, c)) | | A# | → | h#(c, U101(e, e)) |
A# | → | h#(U101(e, a), d) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(f(a), e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(U101(a, a), e) | |
h#(f(d), e) | |
h#(f(c), e) | |
Thus, the rule A
# → h
#(f(a), e) is replaced by the following rules:
A# → h#(f(c), e) | A# → h#(f(d), e) |
A# → h#(U101(a, a), e) |
Problem 25: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(e, e) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(U101(e, c), d) |
g#(d, x, x) | → | A# | | A# | → | h#(f(d), f(d)) |
A# | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(f(k), U101(e, b)) |
A# | → | h#(f(c), d) | | A# | → | h#(f(c), U101(b, b)) |
A# | → | h#(f(c), f(e)) | | A# | → | h#(c, e) |
A# | → | h#(d, d) | | A# | → | h#(f(k), c) |
A# | → | h#(U101(c, a), c) | | A# | → | h#(e, f(k)) |
A# | → | h#(U101(e, c), b) | | A# | → | h#(f(c), f(k)) |
A# | → | h#(a, f(k)) | | A# | → | h#(e, b) |
A# | → | h#(f(d), f(c)) | | A# | → | h#(k, d) |
A# | → | h#(U101(e, e), U101(c, b)) | | A# | → | h#(f(k), U101(c, c)) |
A# | → | h#(U101(a, a), f(e)) | | A# | → | h#(c, d) |
A# | → | h#(d, f(d)) | | A# | → | h#(e, f(c)) |
A# | → | h#(c, f(d)) | | A# | → | h#(k, k) |
A# | → | h#(e, f(b)) | | A# | → | h#(f(d), c) |
A# | → | h#(f(k), e) | | A# | → | h#(f(e), f(d)) |
A# | → | h#(f(c), f(d)) | | A# | → | h#(U101(c, c), c) |
A# | → | h#(f(k), f(e)) | | A# | → | h#(U101(c, c), U101(e, b)) |
A# | → | h#(f(k), f(k)) | | A# | → | h#(f(k), U101(c, b)) |
A# | → | h#(U101(c, a), f(k)) | | A# | → | h#(U101(a, a), f(k)) |
A# | → | h#(U101(a, a), U101(c, b)) | | A# | → | h#(a, d) |
A# | → | h#(f(d), k) | | A# | → | h#(f(e), U101(e, b)) |
A# | → | h#(U101(a, a), U101(b, b)) | | A# | → | h#(c, c) |
A# | → | h#(f(a), U101(c, c)) | | A# | → | h#(U101(c, a), f(c)) |
A# | → | h#(U101(e, c), k) | | A# | → | h#(f(e), d) |
A# | → | h#(a, U101(e, e)) | | A# | → | h#(f(a), k) |
A# | → | h#(U101(c, c), f(b)) | | A# | → | h#(U101(c, c), U101(c, b)) |
A# | → | h#(f(c), e) | | A# | → | h#(U101(e, e), e) |
A# | → | h#(f(c), c) | | A# | → | h#(U101(c, c), e) |
A# | → | h#(U101(e, c), U101(c, b)) | | A# | → | h#(f(e), e) |
A# | → | h#(f(k), U101(e, e)) | | A# | → | h#(f(k), k) |
A# | → | h#(e, d) | | A# | → | h#(c, U101(b, b)) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(f(c), k) |
A# | → | h#(U101(a, a), U101(e, b)) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(U101(e, e), U101(b, b)) |
A# | → | h#(U101(a, a), U101(e, c)) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(f(e), f(c)) | | A# | → | h#(U101(c, a), U101(c, c)) |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(U101(e, a), d) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(
U101(e, c), d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(U101(e, c), k) | |
h#(c, d) | |
Thus, the rule A
# → h
#(
U101(e, c), d) is replaced by the following rules:
A# → h#(c, d) | A# → h#(U101(e, c), k) |
Problem 26: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(e, e) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(a, k) |
A# | → | h#(U101(c, a), e) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(U101(e, a), c) | | g#(d, x, x) | → | A# |
A# | → | h#(f(d), f(d)) | | A# | → | h#(U101(e, e), U101(e, e)) |
A# | → | h#(d, d) | | A# | → | h#(e, f(k)) |
A# | → | h#(U101(e, c), b) | | A# | → | h#(a, f(k)) |
A# | → | h#(f(c), f(k)) | | A# | → | h#(e, b) |
A# | → | h#(f(d), f(c)) | | A# | → | h#(k, d) |
A# | → | h#(U101(e, e), U101(c, b)) | | A# | → | h#(f(k), U101(c, c)) |
A# | → | h#(U101(a, a), f(e)) | | A# | → | h#(c, d) |
A# | → | h#(e, f(c)) | | A# | → | h#(d, f(d)) |
A# | → | h#(c, f(e)) | | A# | → | h#(k, k) |
A# | → | h#(c, f(d)) | | A# | → | h#(e, f(b)) |
A# | → | h#(f(d), c) | | A# | → | h#(f(k), e) |
A# | → | h#(f(e), f(d)) | | A# | → | h#(f(c), f(d)) |
A# | → | h#(U101(c, c), c) | | A# | → | h#(f(k), f(e)) |
A# | → | h#(U101(c, c), U101(e, b)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(f(k), U101(c, b)) | | A# | → | h#(U101(c, a), f(k)) |
A# | → | h#(U101(a, a), f(k)) | | A# | → | h#(U101(a, a), U101(c, b)) |
A# | → | h#(a, d) | | A# | → | h#(f(d), k) |
A# | → | h#(f(e), U101(e, b)) | | A# | → | h#(U101(a, a), U101(b, b)) |
A# | → | h#(c, c) | | A# | → | h#(f(a), U101(c, c)) |
A# | → | h#(U101(c, a), f(c)) | | A# | → | h#(U101(e, c), k) |
A# | → | h#(f(e), d) | | A# | → | h#(a, U101(e, e)) |
A# | → | h#(f(a), k) | | A# | → | h#(U101(c, c), f(b)) |
A# | → | h#(U101(c, c), U101(c, b)) | | A# | → | h#(f(c), e) |
A# | → | h#(U101(e, e), e) | | A# | → | h#(f(c), c) |
A# | → | h#(U101(c, c), e) | | A# | → | h#(U101(e, c), U101(c, b)) |
A# | → | h#(f(e), e) | | A# | → | h#(f(k), U101(e, e)) |
A# | → | h#(f(k), k) | | A# | → | h#(e, d) |
A# | → | h#(c, U101(b, b)) | | A# | → | h#(U101(a, a), f(b)) |
A# | → | h#(f(c), k) | | A# | → | h#(U101(a, a), U101(e, b)) |
A# | → | h#(f(d), b) | | A# | → | h#(f(e), b) |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(U101(c, a), U101(c, c)) | | A# | → | h#(c, U101(e, e)) |
A# | → | h#(U101(e, a), d) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(a, k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(d, k) | |
h#(c, k) | |
Thus, the rule A
# → h
#(a, k) is replaced by the following rules:
A# → h#(d, k) | A# → h#(c, k) |
Problem 27: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(e, e) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(f(e), f(e)) |
g#(d, x, x) | → | A# | | A# | → | h#(f(d), f(d)) |
A# | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(d, d) |
A# | → | h#(e, b) | | A# | → | h#(U101(e, e), U101(c, b)) |
A# | → | h#(k, d) | | A# | → | h#(f(k), U101(c, c)) |
A# | → | h#(c, d) | | A# | → | h#(U101(a, a), f(e)) |
A# | → | h#(c, f(e)) | | A# | → | h#(d, f(d)) |
A# | → | h#(e, f(c)) | | A# | → | h#(e, f(b)) |
A# | → | h#(k, k) | | A# | → | h#(c, f(d)) |
A# | → | h#(c, f(k)) | | A# | → | h#(f(d), c) |
A# | → | h#(f(k), e) | | A# | → | h#(f(c), f(d)) |
A# | → | h#(f(e), f(d)) | | A# | → | h#(U101(c, c), c) |
A# | → | h#(f(k), f(e)) | | A# | → | h#(U101(c, c), U101(e, b)) |
A# | → | h#(f(k), f(k)) | | A# | → | h#(f(k), U101(c, b)) |
A# | → | h#(U101(c, a), f(k)) | | A# | → | h#(U101(a, a), f(k)) |
A# | → | h#(U101(a, a), U101(c, b)) | | A# | → | h#(a, d) |
A# | → | h#(f(d), k) | | A# | → | h#(f(e), U101(e, b)) |
A# | → | h#(U101(a, a), U101(b, b)) | | A# | → | h#(c, c) |
A# | → | h#(f(a), U101(c, c)) | | A# | → | h#(U101(c, a), f(c)) |
A# | → | h#(U101(e, c), k) | | A# | → | h#(f(e), d) |
A# | → | h#(a, U101(e, e)) | | A# | → | h#(U101(c, c), f(b)) |
A# | → | h#(f(a), k) | | A# | → | h#(U101(c, c), U101(c, b)) |
A# | → | h#(U101(e, e), e) | | A# | → | h#(f(c), e) |
A# | → | h#(f(c), c) | | A# | → | h#(U101(c, c), e) |
A# | → | h#(U101(e, c), U101(c, b)) | | A# | → | h#(f(e), e) |
A# | → | h#(f(k), U101(e, e)) | | A# | → | h#(f(k), k) |
A# | → | h#(e, d) | | A# | → | h#(c, U101(b, b)) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(f(c), k) |
A# | → | h#(U101(a, a), U101(e, b)) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(f(d), U101(c, c)) |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(U101(c, a), U101(c, c)) | | A# | → | h#(c, U101(e, e)) |
A# | → | h#(U101(e, a), d) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(e, b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(e, d) | |
h#(e, c) | |
Thus, the rule A
# → h
#(e, b) is replaced by the following rules:
A# → h#(e, c) | A# → h#(e, d) |
Problem 28: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(e, e) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(f(e), f(e)) |
g#(d, x, x) | → | A# | | A# | → | h#(f(d), f(d)) |
A# | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(d, d) |
A# | → | h#(d, f(d)) | | A# | → | h#(c, f(e)) |
A# | → | h#(e, f(c)) | | A# | → | h#(e, f(b)) |
A# | → | h#(k, k) | | A# | → | h#(c, f(k)) |
A# | → | h#(c, f(d)) | | A# | → | h#(f(d), c) |
A# | → | h#(e, U101(e, b)) | | A# | → | h#(f(k), e) |
A# | → | h#(f(e), f(d)) | | A# | → | h#(U101(c, c), c) |
A# | → | h#(f(c), f(d)) | | A# | → | h#(f(k), f(e)) |
A# | → | h#(k, U101(e, e)) | | A# | → | h#(U101(c, c), U101(e, b)) |
A# | → | h#(f(k), f(k)) | | A# | → | h#(f(k), U101(c, b)) |
A# | → | h#(U101(c, a), f(k)) | | A# | → | h#(U101(a, a), f(k)) |
A# | → | h#(U101(a, a), U101(c, b)) | | A# | → | h#(a, d) |
A# | → | h#(f(d), k) | | A# | → | h#(f(e), U101(e, b)) |
A# | → | h#(U101(a, a), U101(b, b)) | | A# | → | h#(c, c) |
A# | → | h#(f(a), U101(c, c)) | | A# | → | h#(U101(c, a), f(c)) |
A# | → | h#(U101(e, c), k) | | A# | → | h#(f(e), d) |
A# | → | h#(a, U101(e, e)) | | A# | → | h#(U101(c, c), f(b)) |
A# | → | h#(f(a), k) | | A# | → | h#(U101(c, c), U101(c, b)) |
A# | → | h#(U101(e, e), e) | | A# | → | h#(f(c), e) |
A# | → | h#(f(c), c) | | A# | → | h#(U101(e, c), U101(c, b)) |
A# | → | h#(U101(c, c), e) | | A# | → | h#(f(e), e) |
A# | → | h#(f(k), U101(e, e)) | | A# | → | h#(f(k), k) |
A# | → | h#(e, d) | | A# | → | h#(c, U101(b, b)) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(f(c), k) |
A# | → | h#(U101(a, a), U101(e, b)) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(f(d), U101(c, c)) |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(U101(c, a), U101(c, c)) | | A# | → | h#(c, U101(e, e)) |
A# | → | h#(U101(e, a), d) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(d, f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(k, f(d)) | h#(d, U101(d, d)) |
h#(d, f(k)) | |
Thus, the rule A
# → h
#(d, f(d)) is replaced by the following rules:
A# → h#(k, f(d)) | A# → h#(d, f(k)) |
Problem 29: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(e, e) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(f(e), f(e)) |
g#(d, x, x) | → | A# | | A# | → | h#(f(d), f(d)) |
A# | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(d, d) |
A# | → | h#(k, k) | | A# | → | h#(U101(c, c), c) |
A# | → | h#(f(c), f(d)) | | A# | → | h#(k, U101(e, e)) |
A# | → | h#(f(k), f(e)) | | A# | → | h#(U101(c, c), U101(e, b)) |
A# | → | h#(f(k), f(k)) | | A# | → | h#(f(k), U101(c, b)) |
A# | → | h#(U101(a, a), f(k)) | | A# | → | h#(U101(c, a), f(k)) |
A# | → | h#(a, d) | | A# | → | h#(U101(a, a), U101(c, b)) |
A# | → | h#(f(d), k) | | A# | → | h#(f(e), U101(e, b)) |
A# | → | h#(U101(a, a), U101(b, b)) | | A# | → | h#(c, c) |
A# | → | h#(f(a), U101(c, c)) | | A# | → | h#(U101(c, a), f(c)) |
A# | → | h#(U101(e, c), k) | | A# | → | h#(f(e), d) |
A# | → | h#(a, U101(e, e)) | | A# | → | h#(U101(c, c), f(b)) |
A# | → | h#(f(a), k) | | A# | → | h#(U101(c, c), U101(c, b)) |
A# | → | h#(U101(e, e), e) | | A# | → | h#(f(c), e) |
A# | → | h#(f(c), c) | | A# | → | h#(U101(e, c), U101(c, b)) |
A# | → | h#(U101(c, c), e) | | A# | → | h#(f(e), e) |
A# | → | h#(f(k), U101(e, e)) | | A# | → | h#(f(k), k) |
A# | → | h#(c, U101(b, b)) | | A# | → | h#(e, d) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(U101(a, a), U101(e, b)) |
A# | → | h#(f(c), k) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(f(d), U101(c, c)) |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(U101(c, a), U101(c, c)) | | A# | → | h#(c, U101(e, e)) |
A# | → | h#(U101(e, a), d) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(
U101(c, c), c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(U101(c, c), e) | h#(U101(k, c), c) |
h#(U101(c, c), k) | |
h#(U101(e, c), c) | |
Thus, the rule A
# → h
#(
U101(c, c), c) is replaced by the following rules:
A# → h#(U101(e, c), c) | A# → h#(U101(c, c), k) |
A# → h#(U101(c, c), e) |
Problem 30: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(e, e) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(f(e), f(e)) |
g#(d, x, x) | → | A# | | A# | → | h#(f(d), f(d)) |
A# | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(c, e) |
A# | → | h#(d, d) | | A# | → | h#(e, b) |
A# | → | h#(k, d) | | A# | → | h#(U101(e, c), U101(e, b)) |
A# | → | h#(c, d) | | A# | → | h#(k, k) |
A# | → | h#(U101(c, c), c) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(f(k), U101(c, b)) | | A# | → | h#(U101(a, a), f(k)) |
A# | → | h#(U101(c, a), f(k)) | | A# | → | h#(a, d) |
A# | → | h#(U101(a, a), U101(c, b)) | | A# | → | h#(f(d), k) |
A# | → | h#(f(e), U101(e, b)) | | A# | → | h#(U101(a, a), U101(b, b)) |
A# | → | h#(c, c) | | A# | → | h#(U101(c, a), f(c)) |
A# | → | h#(f(a), U101(c, c)) | | A# | → | h#(U101(e, c), k) |
A# | → | h#(f(e), d) | | A# | → | h#(a, U101(e, e)) |
A# | → | h#(U101(c, c), f(b)) | | A# | → | h#(f(a), k) |
A# | → | h#(U101(c, c), U101(c, b)) | | A# | → | h#(U101(e, e), e) |
A# | → | h#(f(c), e) | | A# | → | h#(f(c), c) |
A# | → | h#(U101(e, c), U101(c, b)) | | A# | → | h#(U101(c, c), e) |
A# | → | h#(f(e), e) | | A# | → | h#(f(k), U101(e, e)) |
A# | → | h#(f(k), k) | | A# | → | h#(c, U101(b, b)) |
A# | → | h#(e, d) | | A# | → | h#(U101(a, a), f(b)) |
A# | → | h#(U101(a, a), U101(e, b)) | | A# | → | h#(f(c), k) |
A# | → | h#(f(d), b) | | A# | → | h#(f(e), b) |
A# | → | h#(f(d), U101(c, c)) | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(U101(c, a), U101(c, c)) |
A# | → | h#(f(e), f(c)) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(U101(e, a), d) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(c, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(k, e) | |
h#(e, e) | |
Thus, the rule A
# → h
#(c, e) is replaced by the following rules:
A# → h#(e, e) | A# → h#(k, e) |
Problem 31: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(e, e) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(f(e), f(e)) |
g#(d, x, x) | → | A# | | A# | → | h#(f(d), f(d)) |
A# | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(d, d) |
A# | → | h#(k, d) | | A# | → | h#(c, d) |
A# | → | h#(k, k) | | A# | → | h#(e, U101(e, b)) |
A# | → | h#(f(k), f(k)) | | A# | → | h#(U101(c, a), f(k)) |
A# | → | h#(a, d) | | A# | → | h#(U101(a, a), U101(c, b)) |
A# | → | h#(f(d), k) | | A# | → | h#(f(e), U101(e, b)) |
A# | → | h#(U101(a, a), U101(b, b)) | | A# | → | h#(c, c) |
A# | → | h#(U101(c, a), f(c)) | | A# | → | h#(f(a), U101(c, c)) |
A# | → | h#(U101(e, c), k) | | A# | → | h#(f(e), d) |
A# | → | h#(a, U101(e, e)) | | A# | → | h#(f(a), k) |
A# | → | h#(U101(c, c), f(b)) | | A# | → | h#(U101(c, c), U101(c, b)) |
A# | → | h#(U101(e, e), e) | | A# | → | h#(f(c), e) |
A# | → | h#(f(c), c) | | A# | → | h#(U101(e, c), U101(c, b)) |
A# | → | h#(U101(c, c), e) | | A# | → | h#(f(e), e) |
A# | → | h#(f(k), U101(e, e)) | | A# | → | h#(f(k), k) |
A# | → | h#(c, U101(b, b)) | | A# | → | h#(e, d) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(U101(a, a), U101(e, b)) |
A# | → | h#(f(c), k) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(f(d), U101(c, c)) |
A# | → | h#(U101(a, a), U101(e, c)) | | A# | → | h#(U101(e, e), U101(b, b)) |
A# | → | h#(U101(c, a), U101(c, c)) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(U101(e, a), d) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(k, d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(k, k) | |
Thus, the rule A
# → h
#(k, d) is replaced by the following rules:
Problem 32: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(k, c) |
A# | → | h#(e, e) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(e, k) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(a, e) | | g#(d, x, x) | → | A# |
A# | → | h#(f(d), f(d)) | | A# | → | h#(U101(e, e), U101(e, e)) |
A# | → | h#(d, d) | | A# | → | h#(e, U101(c, b)) |
A# | → | h#(e, b) | | A# | → | h#(k, d) |
A# | → | h#(c, d) | | A# | → | h#(k, k) |
A# | → | h#(d, U101(c, b)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(c, U101(e, b)) | | A# | → | h#(a, d) |
A# | → | h#(f(d), k) | | A# | → | h#(f(e), U101(e, b)) |
A# | → | h#(k, U101(c, b)) | | A# | → | h#(U101(a, a), U101(b, b)) |
A# | → | h#(c, c) | | A# | → | h#(f(a), U101(c, c)) |
A# | → | h#(U101(c, a), f(c)) | | A# | → | h#(U101(e, c), k) |
A# | → | h#(f(e), d) | | A# | → | h#(a, U101(e, e)) |
A# | → | h#(d, U101(e, b)) | | A# | → | h#(U101(c, c), f(b)) |
A# | → | h#(f(a), k) | | A# | → | h#(U101(c, c), U101(c, b)) |
A# | → | h#(U101(c, a), U101(e, b)) | | A# | → | h#(U101(e, e), e) |
A# | → | h#(f(c), e) | | A# | → | h#(f(c), c) |
A# | → | h#(U101(e, c), U101(c, b)) | | A# | → | h#(U101(c, c), e) |
A# | → | h#(U101(e, a), U101(e, b)) | | A# | → | h#(f(e), e) |
A# | → | h#(f(k), U101(e, e)) | | A# | → | h#(f(k), k) |
A# | → | h#(c, U101(b, b)) | | A# | → | h#(e, d) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(f(c), k) |
A# | → | h#(U101(a, a), U101(e, b)) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(f(d), U101(c, c)) |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(U101(e, a), d) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(U101(c, a), U101(c, c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(k, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(k, k) | |
h#(k, e) | |
Thus, the rule A
# → h
#(k, c) is replaced by the following rules:
A# → h#(k, k) | A# → h#(k, e) |
Problem 33: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(e, e) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(e, k) |
A# | → | h#(f(e), f(e)) | | g#(d, x, x) | → | A# |
A# | → | h#(f(d), f(d)) | | A# | → | h#(U101(e, e), U101(e, e)) |
A# | → | h#(d, d) | | A# | → | h#(k, d) |
A# | → | h#(k, k) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(f(d), k) | | A# | → | h#(f(e), U101(e, b)) |
A# | → | h#(k, U101(c, b)) | | A# | → | h#(U101(a, a), U101(b, b)) |
A# | → | h#(c, c) | | A# | → | h#(f(a), U101(c, c)) |
A# | → | h#(U101(c, a), f(c)) | | A# | → | h#(U101(e, c), k) |
A# | → | h#(f(e), d) | | A# | → | h#(a, U101(e, e)) |
A# | → | h#(d, U101(e, b)) | | A# | → | h#(U101(c, c), f(b)) |
A# | → | h#(f(a), k) | | A# | → | h#(U101(c, c), U101(c, b)) |
A# | → | h#(U101(c, a), U101(e, b)) | | A# | → | h#(U101(e, e), e) |
A# | → | h#(f(c), e) | | A# | → | h#(f(c), c) |
A# | → | h#(U101(e, c), U101(c, b)) | | A# | → | h#(U101(c, c), e) |
A# | → | h#(U101(e, a), U101(e, b)) | | A# | → | h#(f(e), e) |
A# | → | h#(f(k), U101(e, e)) | | A# | → | h#(f(k), k) |
A# | → | h#(c, U101(b, b)) | | A# | → | h#(e, d) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(f(c), k) |
A# | → | h#(U101(a, a), U101(e, b)) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(f(d), U101(c, c)) |
A# | → | h#(U101(a, a), U101(e, c)) | | A# | → | h#(U101(e, e), U101(b, b)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(U101(c, a), U101(c, c)) |
A# | → | h#(U101(e, a), d) | | A# | → | h#(c, U101(e, e)) |
A# | → | h#(f(e), f(c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(e, k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
Thus, the rule A
# → h
#(e, k) is deleted.
Problem 34: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(e, e) |
A# | → | h#(c, k) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(k, b) | | A# | → | h#(e, k) |
A# | → | h#(f(e), f(e)) | | A# | → | h#(a, e) |
g#(d, x, x) | → | A# | | A# | → | h#(f(d), f(d)) |
A# | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(U101(e, a), U101(c, b)) |
A# | → | h#(d, d) | | A# | → | h#(U101(e, a), U101(b, b)) |
A# | → | h#(e, U101(c, b)) | | A# | → | h#(e, b) |
A# | → | h#(c, d) | | A# | → | h#(k, k) |
A# | → | h#(d, U101(c, b)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(c, U101(e, b)) | | A# | → | h#(a, d) |
A# | → | h#(k, U101(c, b)) | | A# | → | h#(c, c) |
A# | → | h#(f(a), U101(c, c)) | | A# | → | h#(U101(c, a), f(c)) |
A# | → | h#(U101(e, c), k) | | A# | → | h#(f(e), d) |
A# | → | h#(a, U101(e, e)) | | A# | → | h#(d, U101(e, b)) |
A# | → | h#(U101(c, c), f(b)) | | A# | → | h#(f(a), k) |
A# | → | h#(U101(c, a), U101(e, b)) | | A# | → | h#(U101(c, c), U101(c, b)) |
A# | → | h#(U101(e, e), e) | | A# | → | h#(f(c), e) |
A# | → | h#(f(c), c) | | A# | → | h#(U101(e, a), U101(e, b)) |
A# | → | h#(U101(e, c), U101(c, b)) | | A# | → | h#(U101(c, c), e) |
A# | → | h#(f(e), e) | | A# | → | h#(f(k), U101(e, e)) |
A# | → | h#(f(k), k) | | A# | → | h#(e, d) |
A# | → | h#(c, U101(b, b)) | | A# | → | h#(U101(a, a), f(b)) |
A# | → | h#(f(c), k) | | A# | → | h#(U101(a, a), U101(e, b)) |
A# | → | h#(f(d), b) | | A# | → | h#(f(e), b) |
A# | → | h#(f(d), U101(c, c)) | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(U101(e, a), d) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(U101(c, a), U101(c, c)) | | A# | → | h#(c, U101(e, e)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(c, k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(k, k) | |
h#(e, k) | |
Thus, the rule A
# → h
#(c, k) is replaced by the following rules:
A# → h#(k, k) | A# → h#(e, k) |
Problem 35: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(d, k) |
A# | → | h#(e, e) | | A# | → | h#(k, e) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(d, b) |
A# | → | h#(c, U101(c, b)) | | A# | → | h#(a, k) |
A# | → | h#(k, b) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(a, e) | | g#(d, x, x) | → | A# |
A# | → | h#(f(d), f(d)) | | A# | → | h#(U101(e, e), U101(e, e)) |
A# | → | h#(d, d) | | A# | → | h#(e, U101(c, b)) |
A# | → | h#(e, b) | | A# | → | h#(k, d) |
A# | → | h#(c, d) | | A# | → | h#(k, k) |
A# | → | h#(d, U101(c, b)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(c, U101(e, b)) | | A# | → | h#(a, U101(b, b)) |
A# | → | h#(a, d) | | A# | → | h#(k, U101(c, b)) |
A# | → | h#(c, c) | | A# | → | h#(f(a), U101(c, c)) |
A# | → | h#(U101(c, a), f(c)) | | A# | → | h#(U101(e, c), k) |
A# | → | h#(f(e), d) | | A# | → | h#(a, U101(e, e)) |
A# | → | h#(d, U101(e, b)) | | A# | → | h#(U101(c, c), f(b)) |
A# | → | h#(f(a), k) | | A# | → | h#(U101(c, a), U101(e, b)) |
A# | → | h#(U101(c, c), U101(c, b)) | | A# | → | h#(U101(e, e), e) |
A# | → | h#(f(c), e) | | A# | → | h#(f(c), c) |
A# | → | h#(U101(e, a), U101(e, b)) | | A# | → | h#(U101(e, c), U101(c, b)) |
A# | → | h#(U101(c, c), e) | | A# | → | h#(f(e), e) |
A# | → | h#(f(k), U101(e, e)) | | A# | → | h#(f(k), k) |
A# | → | h#(e, d) | | A# | → | h#(c, U101(b, b)) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(U101(a, a), U101(e, b)) |
A# | → | h#(f(c), k) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(f(d), U101(c, c)) |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(U101(e, a), d) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(f(e), f(c)) | | A# | → | h#(U101(c, a), U101(c, c)) |
A# | → | h#(c, U101(e, e)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(d, k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(k, k) | |
Thus, the rule A
# → h
#(d, k) is replaced by the following rules:
Problem 36: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(e, e) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(e, k) |
A# | → | h#(f(e), f(e)) | | g#(d, x, x) | → | A# |
A# | → | h#(f(d), f(d)) | | A# | → | h#(U101(e, e), U101(e, e)) |
A# | → | h#(d, d) | | A# | → | h#(k, d) |
A# | → | h#(k, k) | | A# | → | h#(e, U101(e, b)) |
A# | → | h#(f(k), f(k)) | | A# | → | h#(a, U101(b, b)) |
A# | → | h#(a, d) | | A# | → | h#(k, U101(c, b)) |
A# | → | h#(c, c) | | A# | → | h#(U101(c, a), f(c)) |
A# | → | h#(f(a), U101(c, c)) | | A# | → | h#(U101(e, c), k) |
A# | → | h#(f(e), d) | | A# | → | h#(a, U101(e, e)) |
A# | → | h#(d, U101(e, b)) | | A# | → | h#(f(a), k) |
A# | → | h#(U101(c, c), f(b)) | | A# | → | h#(U101(c, c), U101(c, b)) |
A# | → | h#(U101(c, a), U101(e, b)) | | A# | → | h#(U101(e, e), e) |
A# | → | h#(f(c), e) | | A# | → | h#(f(c), c) |
A# | → | h#(U101(e, a), U101(e, b)) | | A# | → | h#(U101(e, c), U101(c, b)) |
A# | → | h#(U101(c, c), e) | | A# | → | h#(f(e), e) |
A# | → | h#(f(k), U101(e, e)) | | A# | → | h#(f(k), k) |
A# | → | h#(e, d) | | A# | → | h#(c, U101(b, b)) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(U101(a, a), U101(e, b)) |
A# | → | h#(f(c), k) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(f(d), U101(c, c)) |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(c, U101(e, e)) |
A# | → | h#(U101(e, a), d) | | A# | → | h#(U101(c, a), U101(c, c)) |
A# | → | h#(f(e), f(c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(e, k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
Thus, the rule A
# → h
#(e, k) is deleted.
Problem 37: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(e, e) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(e, k) |
A# | → | h#(f(e), f(e)) | | g#(d, x, x) | → | A# |
A# | → | h#(f(d), f(d)) | | A# | → | h#(U101(e, e), U101(e, e)) |
A# | → | h#(d, d) | | A# | → | h#(k, k) |
A# | → | h#(d, U101(c, b)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(c, U101(e, b)) | | A# | → | h#(a, d) |
A# | → | h#(k, U101(c, b)) | | A# | → | h#(c, c) |
A# | → | h#(f(a), U101(c, c)) | | A# | → | h#(U101(c, a), f(c)) |
A# | → | h#(U101(e, c), k) | | A# | → | h#(f(e), d) |
A# | → | h#(d, U101(e, b)) | | A# | → | h#(a, U101(e, e)) |
A# | → | h#(U101(c, c), f(b)) | | A# | → | h#(f(a), k) |
A# | → | h#(U101(c, a), U101(e, b)) | | A# | → | h#(U101(c, c), U101(c, b)) |
A# | → | h#(U101(e, e), e) | | A# | → | h#(f(c), e) |
A# | → | h#(f(c), c) | | A# | → | h#(U101(e, a), U101(e, b)) |
A# | → | h#(U101(e, c), U101(c, b)) | | A# | → | h#(U101(c, c), e) |
A# | → | h#(f(e), e) | | A# | → | h#(f(k), U101(e, e)) |
A# | → | h#(f(k), k) | | A# | → | h#(e, d) |
A# | → | h#(c, U101(b, b)) | | A# | → | h#(U101(a, a), f(b)) |
A# | → | h#(U101(a, a), U101(e, b)) | | A# | → | h#(f(c), k) |
A# | → | h#(f(d), b) | | A# | → | h#(f(e), b) |
A# | → | h#(f(d), U101(c, c)) | | A# | → | h#(U101(e, e), U101(b, b)) |
A# | → | h#(U101(a, a), U101(e, c)) | | A# | → | h#(U101(e, a), d) |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(f(e), f(c)) | | A# | → | h#(U101(c, a), U101(c, c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(e, k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
Thus, the rule A
# → h
#(e, k) is deleted.
Problem 38: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(e, e) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(U101(c, c), U101(c, c)) |
A# | → | h#(f(e), f(e)) | | g#(d, x, x) | → | A# |
A# | → | h#(f(d), f(d)) | | A# | → | h#(U101(a, a), k) |
A# | → | h#(f(d), U101(e, c)) | | A# | → | h#(U101(e, e), U101(e, e)) |
A# | → | h#(U101(a, a), U101(c, c)) | | A# | → | h#(c, e) |
A# | → | h#(d, d) | | A# | → | h#(U101(c, a), c) |
A# | → | h#(k, d) | | A# | → | h#(f(k), U101(c, c)) |
A# | → | h#(k, k) | | A# | → | h#(f(c), U101(e, c)) |
A# | → | h#(f(e), U101(c, c)) | | A# | → | h#(f(d), c) |
A# | → | h#(f(k), e) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(c, c) | | A# | → | h#(U101(c, a), f(c)) |
A# | → | h#(U101(e, c), k) | | A# | → | h#(f(e), d) |
A# | → | h#(a, U101(e, e)) | | A# | → | h#(d, U101(e, b)) |
A# | → | h#(f(a), k) | | A# | → | h#(U101(c, c), f(b)) |
A# | → | h#(U101(c, c), U101(c, b)) | | A# | → | h#(U101(c, a), U101(e, b)) |
A# | → | h#(U101(e, e), e) | | A# | → | h#(f(c), e) |
A# | → | h#(f(c), c) | | A# | → | h#(U101(e, a), U101(e, b)) |
A# | → | h#(U101(c, c), e) | | A# | → | h#(U101(e, c), U101(c, b)) |
A# | → | h#(f(e), e) | | A# | → | h#(f(k), U101(e, e)) |
A# | → | h#(f(k), k) | | A# | → | h#(c, U101(b, b)) |
A# | → | h#(e, d) | | A# | → | h#(U101(a, a), f(b)) |
A# | → | h#(f(c), k) | | A# | → | h#(U101(a, a), U101(e, b)) |
A# | → | h#(f(d), b) | | A# | → | h#(f(e), b) |
A# | → | h#(f(d), U101(c, c)) | | A# | → | h#(U101(e, e), U101(b, b)) |
A# | → | h#(U101(a, a), U101(e, c)) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(U101(e, a), d) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(U101(c, a), U101(c, c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(
U101(a, a), k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(U101(c, a), k) | h#(U101(d, a), k) |
Thus, the rule A
# → h
#(
U101(a, a), k) is replaced by the following rules:
Problem 39: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(U101(e, c), U101(e, c)) |
A# | → | h#(e, e) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(U101(c, c), U101(c, c)) | | A# | → | h#(f(e), f(e)) |
g#(d, x, x) | → | A# | | A# | → | h#(f(d), f(d)) |
A# | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(f(e), U101(e, c)) |
A# | → | h#(f(k), c) | | A# | → | h#(d, d) |
A# | → | h#(k, k) | | A# | → | h#(f(d), c) |
A# | → | h#(f(e), U101(c, c)) | | A# | → | h#(f(k), e) |
A# | → | h#(U101(c, c), c) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(c, c) | | A# | → | h#(U101(c, a), f(c)) |
A# | → | h#(U101(e, c), k) | | A# | → | h#(f(e), d) |
A# | → | h#(d, U101(e, b)) | | A# | → | h#(a, U101(e, e)) |
A# | → | h#(f(a), k) | | A# | → | h#(U101(c, c), f(b)) |
A# | → | h#(U101(c, a), U101(e, b)) | | A# | → | h#(U101(c, c), U101(c, b)) |
A# | → | h#(U101(e, e), e) | | A# | → | h#(f(c), e) |
A# | → | h#(f(c), c) | | A# | → | h#(U101(e, a), U101(e, b)) |
A# | → | h#(U101(c, c), e) | | A# | → | h#(U101(e, c), U101(c, b)) |
A# | → | h#(f(e), e) | | A# | → | h#(f(k), U101(e, e)) |
A# | → | h#(f(k), k) | | A# | → | h#(c, U101(b, b)) |
A# | → | h#(e, d) | | A# | → | h#(U101(a, a), f(b)) |
A# | → | h#(f(c), k) | | A# | → | h#(U101(a, a), U101(e, b)) |
A# | → | h#(f(d), b) | | A# | → | h#(f(e), b) |
A# | → | h#(f(d), U101(c, c)) | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(c, U101(e, e)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(U101(c, a), U101(c, c)) |
A# | → | h#(f(e), f(c)) | | A# | → | h#(U101(e, a), d) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(f(e),
U101(e, c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(U101(e, e), U101(e, c)) | |
h#(f(e), c) | |
Thus, the rule A
# → h
#(f(e),
U101(e, c)) is replaced by the following rules:
A# → h#(f(e), c) | A# → h#(U101(e, e), U101(e, c)) |
Problem 40: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(d, e) | | h#(x, x) | → | g#(x, x, f(k)) |
A# | → | h#(U101(e, c), U101(e, c)) | | A# | → | h#(e, e) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(U101(c, c), U101(c, c)) |
A# | → | h#(f(e), f(e)) | | g#(d, x, x) | → | A# |
A# | → | h#(f(d), f(d)) | | A# | → | h#(U101(c, a), U101(e, e)) |
A# | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(c, e) |
A# | → | h#(d, d) | | A# | → | h#(k, f(e)) |
A# | → | h#(c, f(e)) | | A# | → | h#(k, k) |
A# | → | h#(U101(e, a), f(c)) | | A# | → | h#(k, U101(e, e)) |
A# | → | h#(f(k), f(k)) | | A# | → | h#(U101(c, a), f(k)) |
A# | → | h#(c, c) | | A# | → | h#(U101(e, c), k) |
A# | → | h#(f(e), d) | | A# | → | h#(d, U101(e, b)) |
A# | → | h#(a, U101(e, e)) | | A# | → | h#(U101(c, c), f(b)) |
A# | → | h#(f(a), k) | | A# | → | h#(U101(c, a), U101(e, b)) |
A# | → | h#(U101(c, c), U101(c, b)) | | A# | → | h#(U101(e, e), e) |
A# | → | h#(f(c), e) | | A# | → | h#(f(c), c) |
A# | → | h#(U101(c, c), e) | | A# | → | h#(U101(e, a), U101(e, b)) |
A# | → | h#(U101(e, c), U101(c, b)) | | A# | → | h#(f(e), e) |
A# | → | h#(f(k), U101(e, e)) | | A# | → | h#(f(k), k) |
A# | → | h#(c, U101(b, b)) | | A# | → | h#(e, d) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(f(c), k) |
A# | → | h#(U101(a, a), U101(e, b)) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(f(d), U101(c, c)) |
A# | → | h#(U101(a, a), U101(e, c)) | | A# | → | h#(U101(e, e), U101(b, b)) |
A# | → | h#(U101(e, a), d) | | A# | → | h#(c, U101(e, e)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(U101(c, a), U101(c, c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(d, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(k, e) | |
Thus, the rule A
# → h
#(d, e) is replaced by the following rules:
Problem 41: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(U101(e, c), U101(e, c)) |
A# | → | h#(e, e) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(U101(c, c), U101(c, c)) | | A# | → | h#(f(e), f(e)) |
g#(d, x, x) | → | A# | | A# | → | h#(f(d), f(d)) |
A# | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(d, d) |
A# | → | h#(a, U101(c, c)) | | A# | → | h#(a, f(k)) |
A# | → | h#(e, f(c)) | | A# | → | h#(c, f(e)) |
A# | → | h#(k, f(c)) | | A# | → | h#(c, f(k)) |
A# | → | h#(d, f(c)) | | A# | → | h#(k, k) |
A# | → | h#(c, U101(c, c)) | | A# | → | h#(k, U101(e, e)) |
A# | → | h#(f(k), f(k)) | | A# | → | h#(U101(e, a), U101(c, c)) |
A# | → | h#(U101(c, a), f(k)) | | A# | → | h#(c, c) |
A# | → | h#(U101(e, c), k) | | A# | → | h#(f(e), d) |
A# | → | h#(d, U101(e, b)) | | A# | → | h#(a, U101(e, e)) |
A# | → | h#(f(a), k) | | A# | → | h#(U101(c, c), f(b)) |
A# | → | h#(U101(c, a), U101(e, b)) | | A# | → | h#(U101(c, c), U101(c, b)) |
A# | → | h#(U101(e, e), e) | | A# | → | h#(f(c), e) |
A# | → | h#(f(c), c) | | A# | → | h#(U101(c, c), e) |
A# | → | h#(U101(e, a), U101(e, b)) | | A# | → | h#(U101(e, c), U101(c, b)) |
A# | → | h#(f(e), e) | | A# | → | h#(f(k), U101(e, e)) |
A# | → | h#(f(k), k) | | A# | → | h#(c, U101(b, b)) |
A# | → | h#(e, d) | | A# | → | h#(U101(a, a), f(b)) |
A# | → | h#(f(c), k) | | A# | → | h#(U101(a, a), U101(e, b)) |
A# | → | h#(f(d), b) | | A# | → | h#(f(e), b) |
A# | → | h#(f(d), U101(c, c)) | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(f(e), f(c)) | | A# | → | h#(c, U101(e, e)) |
A# | → | h#(U101(c, a), U101(c, c)) | | A# | → | h#(U101(e, a), d) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(a,
U101(c, c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(c, U101(c, c)) | h#(a, U101(k, c)) |
h#(a, U101(e, c)) | |
h#(d, U101(c, c)) | |
Thus, the rule A
# → h
#(a,
U101(c, c)) is replaced by the following rules:
A# → h#(a, U101(e, c)) | A# → h#(c, U101(c, c)) |
A# → h#(d, U101(c, c)) |
Problem 42: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(U101(e, c), U101(e, c)) |
A# | → | h#(e, e) | | A# | → | h#(a, c) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(U101(c, c), U101(c, c)) |
A# | → | h#(a, k) | | A# | → | h#(U101(e, a), e) |
A# | → | h#(f(e), f(e)) | | g#(d, x, x) | → | A# |
A# | → | h#(f(d), f(d)) | | A# | → | h#(U101(e, e), U101(e, e)) |
A# | → | h#(d, d) | | A# | → | h#(a, U101(c, c)) |
A# | → | h#(k, k) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(U101(c, a), f(k)) | | A# | → | h#(a, U101(e, c)) |
A# | → | h#(c, c) | | A# | → | h#(U101(e, c), k) |
A# | → | h#(f(e), d) | | A# | → | h#(c, U101(e, c)) |
A# | → | h#(a, U101(e, e)) | | A# | → | h#(d, U101(e, b)) |
A# | → | h#(U101(c, c), f(b)) | | A# | → | h#(f(a), k) |
A# | → | h#(U101(c, c), U101(c, b)) | | A# | → | h#(U101(c, a), U101(e, b)) |
A# | → | h#(U101(e, e), e) | | A# | → | h#(f(c), e) |
A# | → | h#(f(c), c) | | A# | → | h#(U101(c, c), e) |
A# | → | h#(U101(e, a), U101(e, b)) | | A# | → | h#(U101(e, c), U101(c, b)) |
A# | → | h#(f(e), e) | | A# | → | h#(f(k), U101(e, e)) |
A# | → | h#(f(k), k) | | A# | → | h#(c, U101(b, b)) |
A# | → | h#(e, d) | | A# | → | h#(U101(a, a), f(b)) |
A# | → | h#(f(c), k) | | A# | → | h#(U101(a, a), U101(e, b)) |
A# | → | h#(f(d), b) | | A# | → | h#(f(e), b) |
A# | → | h#(f(d), U101(c, c)) | | A# | → | h#(U101(e, e), U101(b, b)) |
A# | → | h#(U101(a, a), U101(e, c)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(U101(c, a), U101(c, c)) | | A# | → | h#(U101(e, a), d) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(c, U101(e, e)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(a, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(d, c) | |
h#(c, c) | |
h#(a, e) | |
h#(a, k) | |
Thus, the rule A
# → h
#(a, c) is replaced by the following rules:
A# → h#(a, k) | A# → h#(c, c) |
A# → h#(d, c) | A# → h#(a, e) |
Problem 43: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(d, k) |
A# | → | h#(U101(e, c), U101(e, c)) | | A# | → | h#(e, e) |
A# | → | h#(k, e) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(U101(c, c), U101(c, c)) | | A# | → | h#(a, k) |
A# | → | h#(f(e), f(e)) | | A# | → | h#(a, e) |
g#(d, x, x) | → | A# | | A# | → | h#(f(d), f(d)) |
A# | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(d, d) |
A# | → | h#(k, k) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(k, U101(e, c)) | | A# | → | h#(c, c) |
A# | → | h#(U101(e, c), k) | | A# | → | h#(f(e), d) |
A# | → | h#(a, U101(e, e)) | | A# | → | h#(c, U101(e, c)) |
A# | → | h#(d, U101(e, b)) | | A# | → | h#(U101(c, c), f(b)) |
A# | → | h#(f(a), k) | | A# | → | h#(U101(c, a), U101(e, b)) |
A# | → | h#(U101(c, c), U101(c, b)) | | A# | → | h#(U101(e, e), e) |
A# | → | h#(f(c), e) | | A# | → | h#(f(c), c) |
A# | → | h#(U101(c, c), e) | | A# | → | h#(U101(e, c), U101(c, b)) |
A# | → | h#(U101(e, a), U101(e, b)) | | A# | → | h#(f(e), e) |
A# | → | h#(f(k), U101(e, e)) | | A# | → | h#(f(k), k) |
A# | → | h#(c, U101(b, b)) | | A# | → | h#(e, d) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(f(c), k) |
A# | → | h#(U101(a, a), U101(e, b)) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(f(d), U101(c, c)) |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(U101(e, a), d) |
A# | → | h#(U101(c, a), U101(c, c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(d, k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(k, k) | |
Thus, the rule A
# → h
#(d, k) is replaced by the following rules:
Problem 44: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(U101(e, c), U101(e, c)) |
A# | → | h#(e, e) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(U101(c, c), U101(c, c)) | | A# | → | h#(U101(e, e), k) |
A# | → | h#(k, U101(e, b)) | | A# | → | h#(U101(c, c), f(d)) |
A# | → | h#(k, b) | | A# | → | h#(e, k) |
A# | → | h#(U101(e, c), f(d)) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(a, e) | | g#(d, x, x) | → | A# |
A# | → | h#(f(d), f(d)) | | A# | → | h#(U101(a, a), k) |
A# | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(U101(e, c), U101(b, b)) |
A# | → | h#(c, e) | | A# | → | h#(k, f(b)) |
A# | → | h#(d, d) | | A# | → | h#(c, f(e)) |
A# | → | h#(e, f(c)) | | A# | → | h#(k, k) |
A# | → | h#(k, f(c)) | | A# | → | h#(c, f(k)) |
A# | → | h#(e, f(b)) | | A# | → | h#(c, f(d)) |
A# | → | h#(c, U101(c, c)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(U101(e, c), f(c)) | | A# | → | h#(c, c) |
A# | → | h#(U101(c, c), U101(c, b)) | | A# | → | h#(U101(c, a), U101(e, b)) |
A# | → | h#(U101(e, e), e) | | A# | → | h#(f(c), e) |
A# | → | h#(f(c), c) | | A# | → | h#(U101(c, c), e) |
A# | → | h#(U101(e, a), U101(e, b)) | | A# | → | h#(U101(e, c), U101(c, b)) |
A# | → | h#(f(e), e) | | A# | → | h#(f(k), U101(e, e)) |
A# | → | h#(f(k), k) | | A# | → | h#(e, d) |
A# | → | h#(c, U101(b, b)) | | A# | → | h#(U101(a, a), f(b)) |
A# | → | h#(U101(a, a), U101(e, b)) | | A# | → | h#(f(c), k) |
A# | → | h#(f(d), b) | | A# | → | h#(f(e), b) |
A# | → | h#(f(d), U101(c, c)) | | A# | → | h#(U101(e, e), U101(b, b)) |
A# | → | h#(U101(a, a), U101(e, c)) | | A# | → | h#(U101(e, a), d) |
A# | → | h#(U101(c, a), U101(c, c)) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(f(e), f(c)) | | A# | → | h#(c, U101(e, e)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(
U101(e, e), k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(e, k) | |
Thus, the rule A
# → h
#(
U101(e, e), k) is replaced by the following rules:
Problem 45: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(U101(e, e), U101(e, e)) | | h#(x, x) | → | g#(x, x, f(k)) |
A# | → | h#(d, d) | | A# | → | h#(k, f(e)) |
A# | → | h#(c, f(d)) | | A# | → | h#(U101(e, c), U101(e, c)) |
A# | → | h#(c, f(k)) | | A# | → | h#(k, k) |
A# | → | h#(e, U101(e, b)) | | A# | → | h#(c, U101(c, c)) |
A# | → | h#(k, U101(e, e)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(e, e) | | A# | → | h#(k, U101(c, b)) |
A# | → | h#(U101(e, c), f(c)) | | A# | → | h#(k, U101(c, c)) |
A# | → | h#(c, c) | | A# | → | h#(U101(c, c), U101(c, b)) |
A# | → | h#(U101(c, a), U101(e, b)) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(f(c), e) | | A# | → | h#(U101(e, e), e) |
A# | → | h#(f(c), c) | | A# | → | h#(U101(c, c), U101(c, c)) |
A# | → | h#(U101(c, c), e) | | A# | → | h#(U101(e, c), U101(c, b)) |
A# | → | h#(U101(e, a), U101(e, b)) | | A# | → | h#(f(e), e) |
A# | → | h#(f(k), U101(e, e)) | | A# | → | h#(f(k), k) |
A# | → | h#(e, d) | | A# | → | h#(c, U101(b, b)) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(U101(a, a), U101(e, b)) |
A# | → | h#(f(c), k) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(f(d), U101(c, c)) | | A# | → | h#(U101(e, e), U101(b, b)) |
A# | → | h#(U101(a, a), U101(e, c)) | | g#(d, x, x) | → | A# |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(U101(c, a), U101(c, c)) |
A# | → | h#(U101(e, a), d) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(f(e), f(c)) | | A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(k,
U101(c, c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(k, U101(e, c)) | h#(k, U101(k, c)) |
Thus, the rule A
# → h
#(k,
U101(c, c)) is replaced by the following rules:
Problem 46: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(k, c) |
A# | → | h#(U101(e, c), U101(e, c)) | | A# | → | h#(e, e) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(U101(c, c), U101(c, c)) |
A# | → | h#(k, U101(e, b)) | | A# | → | h#(e, k) |
A# | → | h#(f(e), f(e)) | | A# | → | h#(U101(e, c), U101(c, c)) |
A# | → | h#(U101(e, c), d) | | A# | → | h#(U101(c, c), d) |
A# | → | h#(e, f(d)) | | g#(d, x, x) | → | A# |
A# | → | h#(f(d), f(d)) | | A# | → | h#(U101(e, e), U101(e, e)) |
A# | → | h#(d, d) | | A# | → | h#(c, e) |
A# | → | h#(e, b) | | A# | → | h#(U101(e, c), U101(e, b)) |
A# | → | h#(k, d) | | A# | → | h#(c, d) |
A# | → | h#(e, f(c)) | | A# | → | h#(c, f(e)) |
A# | → | h#(k, f(c)) | | A# | → | h#(c, f(k)) |
A# | → | h#(k, k) | | A# | → | h#(c, U101(c, c)) |
A# | → | h#(U101(c, c), c) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(c, c) | | A# | → | h#(U101(e, c), k) |
A# | → | h#(U101(c, a), U101(e, b)) | | A# | → | h#(U101(e, e), e) |
A# | → | h#(f(c), e) | | A# | → | h#(f(c), c) |
A# | → | h#(U101(c, c), e) | | A# | → | h#(U101(e, a), U101(e, b)) |
A# | → | h#(U101(e, c), U101(c, b)) | | A# | → | h#(f(e), e) |
A# | → | h#(f(k), U101(e, e)) | | A# | → | h#(f(k), k) |
A# | → | h#(c, U101(b, b)) | | A# | → | h#(e, d) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(f(c), k) |
A# | → | h#(U101(a, a), U101(e, b)) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(f(d), U101(c, c)) |
A# | → | h#(U101(a, a), U101(e, c)) | | A# | → | h#(U101(e, e), U101(b, b)) |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(U101(c, a), U101(c, c)) |
A# | → | h#(U101(e, a), d) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(k, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(k, k) | |
h#(k, e) | |
Thus, the rule A
# → h
#(k, c) is replaced by the following rules:
A# → h#(k, k) | A# → h#(k, e) |
Problem 47: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(U101(e, e), U101(e, e)) | | h#(x, x) | → | g#(x, x, f(k)) |
A# | → | h#(d, d) | | A# | → | h#(U101(e, c), U101(e, c)) |
A# | → | h#(k, k) | | A# | → | h#(c, U101(c, c)) |
A# | → | h#(U101(c, c), c) | | A# | → | h#(k, f(k)) |
A# | → | h#(k, U101(e, e)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(c, U101(e, b)) | | A# | → | h#(e, e) |
A# | → | h#(k, U101(c, c)) | | A# | → | h#(c, c) |
A# | → | h#(U101(e, c), k) | | A# | → | h#(U101(c, a), U101(e, b)) |
A# | → | h#(c, k) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(f(c), e) | | A# | → | h#(U101(e, e), e) |
A# | → | h#(f(c), c) | | A# | → | h#(U101(c, c), U101(c, c)) |
A# | → | h#(U101(c, c), e) | | A# | → | h#(U101(e, a), U101(e, b)) |
A# | → | h#(U101(e, c), U101(c, b)) | | A# | → | h#(f(e), e) |
A# | → | h#(f(k), U101(e, e)) | | A# | → | h#(f(k), k) |
A# | → | h#(c, U101(b, b)) | | A# | → | h#(e, d) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(f(c), k) |
A# | → | h#(U101(a, a), U101(e, b)) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(f(d), U101(c, c)) | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(U101(e, e), U101(b, b)) | | g#(d, x, x) | → | A# |
A# | → | h#(U101(c, a), U101(c, c)) | | A# | → | h#(U101(e, a), d) |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(f(e), f(c)) | | A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(
U101(c, c), c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(U101(c, c), e) | h#(U101(k, c), c) |
h#(U101(c, c), k) | |
h#(U101(e, c), c) | |
Thus, the rule A
# → h
#(
U101(c, c), c) is replaced by the following rules:
A# → h#(U101(e, c), c) | A# → h#(U101(c, c), k) |
A# → h#(U101(c, c), e) |
Problem 48: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(U101(e, c), U101(e, c)) |
A# | → | h#(e, e) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(U101(c, c), U101(c, c)) | | A# | → | h#(a, k) |
A# | → | h#(U101(c, a), e) | | A# | → | h#(k, b) |
A# | → | h#(k, U101(e, b)) | | A# | → | h#(e, k) |
A# | → | h#(f(e), f(e)) | | A# | → | h#(U101(e, a), c) |
g#(d, x, x) | → | A# | | A# | → | h#(a, e) |
A# | → | h#(f(d), f(d)) | | A# | → | h#(U101(e, e), U101(e, e)) |
A# | → | h#(d, d) | | A# | → | h#(c, e) |
A# | → | h#(e, b) | | A# | → | h#(c, d) |
A# | → | h#(k, k) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(a, d) | | A# | → | h#(c, c) |
A# | → | h#(U101(e, c), k) | | A# | → | h#(U101(e, e), e) |
A# | → | h#(f(c), e) | | A# | → | h#(f(c), c) |
A# | → | h#(U101(e, c), U101(c, b)) | | A# | → | h#(U101(e, a), U101(e, b)) |
A# | → | h#(U101(c, c), e) | | A# | → | h#(f(e), e) |
A# | → | h#(f(k), U101(e, e)) | | A# | → | h#(f(k), k) |
A# | → | h#(c, U101(b, b)) | | A# | → | h#(e, d) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(f(c), k) |
A# | → | h#(U101(a, a), U101(e, b)) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(f(d), U101(c, c)) |
A# | → | h#(U101(a, a), U101(e, c)) | | A# | → | h#(U101(e, e), U101(b, b)) |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(U101(c, a), U101(c, c)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(U101(e, a), d) |
A# | → | h#(f(e), f(c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(a, k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(d, k) | |
h#(c, k) | |
Thus, the rule A
# → h
#(a, k) is replaced by the following rules:
A# → h#(d, k) | A# → h#(c, k) |
Problem 49: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(e, c) |
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(d, d) |
A# | → | h#(c, d) | | A# | → | h#(U101(e, c), U101(e, c)) |
A# | → | h#(k, k) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(a, b) | | A# | → | h#(c, U101(e, b)) |
A# | → | h#(a, d) | | A# | → | h#(e, e) |
A# | → | h#(c, c) | | A# | → | h#(d, U101(e, b)) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(d, b) |
A# | → | h#(U101(c, c), U101(c, c)) | | A# | → | h#(U101(e, c), U101(c, b)) |
A# | → | h#(U101(c, c), e) | | A# | → | h#(f(e), e) |
A# | → | h#(a, k) | | A# | → | h#(f(k), U101(e, e)) |
A# | → | h#(U101(e, e), k) | | A# | → | h#(k, U101(e, b)) |
A# | → | h#(f(k), k) | | A# | → | h#(k, b) |
A# | → | h#(U101(e, a), e) | | A# | → | h#(c, U101(b, b)) |
A# | → | h#(e, d) | | A# | → | h#(e, k) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(U101(a, a), U101(e, b)) |
A# | → | h#(f(c), k) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(f(d), U101(c, c)) | | A# | → | h#(U101(e, a), c) |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(U101(a, a), U101(e, c)) |
g#(d, x, x) | → | A# | | A# | → | h#(a, e) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(U101(e, a), d) |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(U101(c, a), U101(c, c)) |
A# | → | h#(f(e), f(c)) | | A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(e, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(e, k) | |
h#(e, e) | |
Thus, the rule A
# → h
#(e, c) is replaced by the following rules:
A# → h#(e, e) | A# → h#(e, k) |
Problem 50: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(U101(e, e), U101(e, e)) | | h#(x, x) | → | g#(x, x, f(k)) |
A# | → | h#(d, d) | | A# | → | h#(e, b) |
A# | → | h#(c, d) | | A# | → | h#(k, k) |
A# | → | h#(U101(e, c), U101(e, c)) | | A# | → | h#(e, U101(e, b)) |
A# | → | h#(f(k), f(k)) | | A# | → | h#(e, e) |
A# | → | h#(c, c) | | A# | → | h#(c, k) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(U101(e, c), c) |
A# | → | h#(c, U101(c, b)) | | A# | → | h#(U101(c, c), U101(c, c)) |
A# | → | h#(a, k) | | A# | → | h#(f(e), e) |
A# | → | h#(f(k), U101(e, e)) | | A# | → | h#(U101(e, e), k) |
A# | → | h#(U101(e, a), e) | | A# | → | h#(k, b) |
A# | → | h#(k, U101(e, b)) | | A# | → | h#(f(k), k) |
A# | → | h#(e, d) | | A# | → | h#(c, U101(b, b)) |
A# | → | h#(e, k) | | A# | → | h#(U101(a, a), f(b)) |
A# | → | h#(U101(a, a), U101(e, b)) | | A# | → | h#(f(c), k) |
A# | → | h#(f(d), b) | | A# | → | h#(f(e), b) |
A# | → | h#(U101(e, c), d) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(U101(e, a), c) | | A# | → | h#(f(d), U101(c, c)) |
g#(d, x, x) | → | A# | | A# | → | h#(a, e) |
A# | → | h#(U101(a, a), U101(e, c)) | | A# | → | h#(U101(e, e), U101(b, b)) |
A# | → | h#(f(d), f(d)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(U101(c, a), U101(c, c)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(U101(e, a), d) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(e, b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(e, d) | |
h#(e, c) | |
Thus, the rule A
# → h
#(e, b) is replaced by the following rules:
A# → h#(e, c) | A# → h#(e, d) |
Problem 51: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(U101(e, e), U101(e, e)) | | h#(x, x) | → | g#(x, x, f(k)) |
A# | → | h#(d, d) | | A# | → | h#(k, k) |
A# | → | h#(U101(e, c), U101(e, c)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(e, e) | | A# | → | h#(c, c) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(U101(c, c), U101(c, c)) |
A# | → | h#(c, U101(b, b)) | | A# | → | h#(e, k) |
A# | → | h#(U101(a, a), f(b)) | | A# | → | h#(f(c), k) |
A# | → | h#(U101(a, a), U101(e, b)) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(U101(e, c), d) |
A# | → | h#(f(e), f(e)) | | A# | → | h#(f(d), U101(c, c)) |
A# | → | h#(U101(e, a), c) | | A# | → | h#(U101(e, e), U101(b, b)) |
A# | → | h#(a, e) | | g#(d, x, x) | → | A# |
A# | → | h#(U101(a, a), U101(e, c)) | | A# | → | h#(f(d), f(d)) |
A# | → | h#(f(e), f(c)) | | A# | → | h#(c, U101(e, e)) |
A# | → | h#(U101(c, a), U101(c, c)) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(U101(e, a), d) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(e, k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
Thus, the rule A
# → h
#(e, k) is deleted.
Problem 52: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(U101(e, e), U101(e, e)) | | h#(x, x) | → | g#(x, x, f(k)) |
A# | → | h#(d, d) | | A# | → | h#(a, f(k)) |
A# | → | h#(k, k) | | A# | → | h#(U101(e, c), U101(e, c)) |
A# | → | h#(f(k), f(k)) | | A# | → | h#(U101(c, a), U101(b, b)) |
A# | → | h#(e, e) | | A# | → | h#(U101(a, a), U101(b, b)) |
A# | → | h#(c, c) | | A# | → | h#(U101(c, a), f(c)) |
A# | → | h#(a, U101(e, e)) | | A# | → | h#(U101(e, a), f(b)) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(U101(c, a), f(d)) |
A# | → | h#(U101(c, c), U101(c, c)) | | A# | → | h#(U101(c, a), e) |
A# | → | h#(a, f(e)) | | A# | → | h#(U101(e, a), e) |
A# | → | h#(U101(a, a), U101(e, b)) | | A# | → | h#(f(c), k) |
A# | → | h#(f(d), b) | | A# | → | h#(f(e), b) |
A# | → | h#(U101(e, c), d) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(U101(e, a), c) | | A# | → | h#(f(d), U101(c, c)) |
A# | → | h#(U101(a, a), U101(e, c)) | | A# | → | h#(a, e) |
A# | → | h#(U101(e, e), U101(b, b)) | | g#(d, x, x) | → | A# |
A# | → | h#(f(e), f(c)) | | A# | → | h#(f(d), f(d)) |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(U101(c, a), U101(c, c)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(U101(e, a), d) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(a, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(d, f(k)) | h#(a, U101(k, k)) |
h#(c, f(k)) | |
Thus, the rule A
# → h
#(a, f(k)) is replaced by the following rules:
A# → h#(c, f(k)) | A# → h#(d, f(k)) |
Problem 53: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(k, c) |
A# | → | h#(d, k) | | A# | → | h#(U101(e, c), U101(e, c)) |
A# | → | h#(e, e) | | A# | → | h#(k, e) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(d, b) |
A# | → | h#(c, U101(c, b)) | | A# | → | h#(U101(c, c), U101(c, c)) |
A# | → | h#(U101(c, a), f(d)) | | A# | → | h#(a, k) |
A# | → | h#(U101(c, a), e) | | A# | → | h#(a, f(e)) |
A# | → | h#(c, f(c)) | | A# | → | h#(k, b) |
A# | → | h#(k, U101(e, b)) | | A# | → | h#(U101(e, a), e) |
A# | → | h#(d, f(k)) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(U101(e, c), d) | | A# | → | h#(U101(e, a), c) |
g#(d, x, x) | → | A# | | A# | → | h#(a, e) |
A# | → | h#(f(d), f(d)) | | A# | → | h#(U101(c, a), U101(e, e)) |
A# | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(d, d) |
A# | → | h#(a, U101(c, c)) | | A# | → | h#(a, f(k)) |
A# | → | h#(e, b) | | A# | → | h#(c, d) |
A# | → | h#(k, k) | | A# | → | h#(d, f(c)) |
A# | → | h#(d, U101(c, b)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(U101(e, a), U101(c, c)) | | A# | → | h#(c, U101(e, b)) |
A# | → | h#(U101(c, a), f(k)) | | A# | → | h#(a, d) |
A# | → | h#(k, U101(c, b)) | | A# | → | h#(c, c) |
A# | → | h#(a, U101(e, e)) | | A# | → | h#(d, U101(e, b)) |
A# | → | h#(U101(c, a), U101(e, b)) | | A# | → | h#(U101(e, a), f(b)) |
A# | → | h#(U101(e, a), U101(e, b)) | | A# | → | h#(c, U101(b, b)) |
A# | → | h#(f(c), k) | | A# | → | h#(U101(a, a), U101(e, b)) |
A# | → | h#(f(d), b) | | A# | → | h#(f(e), b) |
A# | → | h#(f(d), U101(c, c)) | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(U101(c, a), U101(c, c)) | | A# | → | h#(c, U101(e, e)) |
A# | → | h#(f(e), f(c)) | | A# | → | h#(U101(e, a), d) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(k, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(k, k) | |
h#(k, e) | |
Thus, the rule A
# → h
#(k, c) is replaced by the following rules:
A# → h#(k, k) | A# → h#(k, e) |
Problem 54: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(U101(e, c), U101(e, c)) |
A# | → | h#(U101(e, a), U101(e, e)) | | A# | → | h#(e, e) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(U101(c, c), U101(c, c)) |
A# | → | h#(U101(c, a), e) | | A# | → | h#(f(e), f(e)) |
g#(d, x, x) | → | A# | | A# | → | h#(f(d), f(d)) |
A# | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(c, e) |
A# | → | h#(d, d) | | A# | → | h#(k, f(e)) |
A# | → | h#(e, U101(c, b)) | | A# | → | h#(a, U101(c, c)) |
A# | → | h#(a, f(k)) | | A# | → | h#(e, b) |
A# | → | h#(k, d) | | A# | → | h#(c, d) |
A# | → | h#(c, f(e)) | | A# | → | h#(d, f(d)) |
A# | → | h#(e, f(c)) | | A# | → | h#(k, f(c)) |
A# | → | h#(c, f(d)) | | A# | → | h#(c, f(k)) |
A# | → | h#(k, k) | | A# | → | h#(d, f(c)) |
A# | → | h#(c, U101(c, c)) | | A# | → | h#(d, U101(c, b)) |
A# | → | h#(k, U101(e, e)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(U101(e, a), U101(c, c)) | | A# | → | h#(c, U101(e, b)) |
A# | → | h#(U101(c, a), f(k)) | | A# | → | h#(a, d) |
A# | → | h#(k, U101(c, b)) | | A# | → | h#(c, c) |
A# | → | h#(U101(e, c), k) | | A# | → | h#(a, U101(e, e)) |
A# | → | h#(d, U101(e, b)) | | A# | → | h#(U101(c, a), U101(e, b)) |
A# | → | h#(U101(e, a), f(b)) | | A# | → | h#(U101(e, a), U101(e, b)) |
A# | → | h#(c, U101(b, b)) | | A# | → | h#(f(c), k) |
A# | → | h#(U101(a, a), U101(e, b)) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(f(d), U101(c, c)) |
A# | → | h#(U101(a, a), U101(e, c)) | | A# | → | h#(U101(e, e), U101(b, b)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(U101(c, a), U101(c, c)) |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(U101(e, a), d) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(
U101(e, a),
U101(e, e)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(U101(e, a), e) | |
h#(a, U101(e, e)) | |
Thus, the rule A
# → h
#(
U101(e, a),
U101(e, e)) is replaced by the following rules:
A# → h#(U101(e, a), e) | A# → h#(a, U101(e, e)) |
Problem 55: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(U101(e, c), U101(e, c)) |
A# | → | h#(e, e) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(U101(c, c), U101(c, c)) | | A# | → | h#(f(e), f(e)) |
g#(d, x, x) | → | A# | | A# | → | h#(f(d), f(d)) |
A# | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(d, d) |
A# | → | h#(k, f(e)) | | A# | → | h#(d, U101(c, c)) |
A# | → | h#(c, f(k)) | | A# | → | h#(k, k) |
A# | → | h#(k, f(c)) | | A# | → | h#(e, U101(e, b)) |
A# | → | h#(d, U101(e, c)) | | A# | → | h#(d, U101(c, b)) |
A# | → | h#(c, U101(c, c)) | | A# | → | h#(k, U101(e, e)) |
A# | → | h#(f(k), f(k)) | | A# | → | h#(k, U101(e, c)) |
A# | → | h#(U101(e, a), U101(c, c)) | | A# | → | h#(c, U101(e, b)) |
A# | → | h#(U101(c, a), f(k)) | | A# | → | h#(a, U101(e, c)) |
A# | → | h#(a, d) | | A# | → | h#(k, U101(c, b)) |
A# | → | h#(c, c) | | A# | → | h#(U101(e, c), k) |
A# | → | h#(a, U101(e, e)) | | A# | → | h#(d, U101(e, b)) |
A# | → | h#(U101(c, a), U101(e, b)) | | A# | → | h#(U101(e, a), f(b)) |
A# | → | h#(U101(e, a), U101(e, b)) | | A# | → | h#(e, d) |
A# | → | h#(c, U101(b, b)) | | A# | → | h#(f(c), k) |
A# | → | h#(U101(a, a), U101(e, b)) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(f(d), U101(c, c)) |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(U101(c, a), U101(c, c)) |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(U101(e, a), d) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(k, f(e)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(k, U101(e, e)) | |
Thus, the rule A
# → h
#(k, f(e)) is replaced by the following rules:
Problem 56: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(U101(e, e), U101(e, e)) | | h#(x, x) | → | g#(x, x, f(k)) |
A# | → | h#(d, d) | | A# | → | h#(k, d) |
A# | → | h#(U101(e, c), U101(e, c)) | | A# | → | h#(k, k) |
A# | → | h#(f(k), f(k)) | | A# | → | h#(a, U101(e, c)) |
A# | → | h#(k, U101(c, b)) | | A# | → | h#(e, e) |
A# | → | h#(k, U101(c, c)) | | A# | → | h#(c, c) |
A# | → | h#(e, U101(c, c)) | | A# | → | h#(U101(e, c), k) |
A# | → | h#(k, e) | | A# | → | h#(c, U101(e, c)) |
A# | → | h#(d, U101(e, b)) | | A# | → | h#(a, U101(e, e)) |
A# | → | h#(U101(c, a), U101(e, b)) | | A# | → | h#(U101(e, a), f(b)) |
A# | → | h#(c, k) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(U101(c, c), U101(c, c)) | | A# | → | h#(U101(e, a), U101(e, b)) |
A# | → | h#(a, k) | | A# | → | h#(k, b) |
A# | → | h#(k, U101(e, b)) | | A# | → | h#(c, U101(b, b)) |
A# | → | h#(e, d) | | A# | → | h#(e, k) |
A# | → | h#(U101(a, a), U101(e, b)) | | A# | → | h#(f(c), k) |
A# | → | h#(d, f(k)) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(U101(e, a), U101(e, c)) | | A# | → | h#(f(d), U101(c, c)) |
A# | → | h#(U101(a, a), U101(e, c)) | | A# | → | h#(U101(e, e), U101(b, b)) |
g#(d, x, x) | → | A# | | A# | → | h#(U101(e, a), d) |
A# | → | h#(f(e), f(c)) | | A# | → | h#(c, U101(e, e)) |
A# | → | h#(U101(c, a), U101(c, c)) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(k, d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(k, k) | |
Thus, the rule A
# → h
#(k, d) is replaced by the following rules:
Problem 57: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(U101(e, e), U101(e, e)) | | h#(x, x) | → | g#(x, x, f(k)) |
A# | → | h#(d, d) | | A# | → | h#(U101(e, c), U101(e, c)) |
A# | → | h#(k, k) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(e, e) | | A# | → | h#(c, c) |
A# | → | h#(U101(e, a), f(b)) | | A# | → | h#(d, U101(e, e)) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(c, k) |
A# | → | h#(d, b) | | A# | → | h#(U101(c, c), U101(c, c)) |
A# | → | h#(U101(e, a), U101(e, b)) | | A# | → | h#(U101(c, a), e) |
A# | → | h#(a, k) | | A# | → | h#(k, U101(e, b)) |
A# | → | h#(k, b) | | A# | → | h#(c, U101(b, b)) |
A# | → | h#(e, d) | | A# | → | h#(e, k) |
A# | → | h#(U101(a, a), U101(e, b)) | | A# | → | h#(f(c), k) |
A# | → | h#(d, f(k)) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(U101(e, a), U101(e, c)) | | A# | → | h#(U101(e, a), c) |
A# | → | h#(f(d), U101(c, c)) | | A# | → | h#(a, e) |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(U101(a, a), U101(e, c)) |
g#(d, x, x) | → | A# | | A# | → | h#(U101(c, a), U101(c, c)) |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(U101(e, a), d) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(d,
U101(e, e)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(d, e) | |
h#(k, U101(e, e)) | |
Thus, the rule A
# → h
#(d,
U101(e, e)) is replaced by the following rules:
A# → h#(d, e) | A# → h#(k, U101(e, e)) |
Problem 58: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(U101(e, c), U101(e, c)) |
A# | → | h#(e, e) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(U101(c, c), U101(c, c)) | | A# | → | h#(U101(e, a), U101(e, c)) |
A# | → | h#(f(e), f(e)) | | A# | → | h#(U101(e, a), c) |
A# | → | h#(a, e) | | g#(d, x, x) | → | A# |
A# | → | h#(f(d), f(d)) | | A# | → | h#(U101(e, e), U101(e, e)) |
A# | → | h#(k, f(b)) | | A# | → | h#(d, d) |
A# | → | h#(e, U101(c, b)) | | A# | → | h#(a, f(k)) |
A# | → | h#(e, b) | | A# | → | h#(k, d) |
A# | → | h#(c, d) | | A# | → | h#(e, f(c)) |
A# | → | h#(c, f(e)) | | A# | → | h#(d, f(d)) |
A# | → | h#(e, f(b)) | | A# | → | h#(k, f(c)) |
A# | → | h#(d, f(c)) | | A# | → | h#(c, f(k)) |
A# | → | h#(k, k) | | A# | → | h#(c, f(d)) |
A# | → | h#(U101(e, a), f(c)) | | A# | → | h#(c, U101(c, c)) |
A# | → | h#(d, U101(c, b)) | | A# | → | h#(a, f(c)) |
A# | → | h#(f(k), f(k)) | | A# | → | h#(c, U101(e, b)) |
A# | → | h#(a, U101(b, b)) | | A# | → | h#(a, d) |
A# | → | h#(k, U101(c, b)) | | A# | → | h#(c, c) |
A# | → | h#(d, U101(e, b)) | | A# | → | h#(U101(e, a), U101(e, b)) |
A# | → | h#(c, U101(b, b)) | | A# | → | h#(e, d) |
A# | → | h#(U101(a, a), U101(e, b)) | | A# | → | h#(f(c), k) |
A# | → | h#(f(d), b) | | A# | → | h#(f(e), b) |
A# | → | h#(f(d), U101(c, c)) | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(U101(c, a), U101(c, c)) |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(U101(e, a), d) | | A# | → | h#(e, U101(e, c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(
U101(e, a),
U101(e, c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(U101(e, a), c) | |
h#(a, U101(e, c)) | |
Thus, the rule A
# → h
#(
U101(e, a),
U101(e, c)) is replaced by the following rules:
A# → h#(a, U101(e, c)) | A# → h#(U101(e, a), c) |
Problem 59: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(U101(e, c), U101(e, c)) |
A# | → | h#(k, f(k)) | | A# | → | h#(e, e) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(U101(c, c), U101(c, c)) |
A# | → | h#(d, f(k)) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(d, f(e)) | | g#(d, x, x) | → | A# |
A# | → | h#(e, f(d)) | | A# | → | h#(f(d), f(d)) |
A# | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(d, d) |
A# | → | h#(k, f(c)) | | A# | → | h#(c, f(k)) |
A# | → | h#(e, f(b)) | | A# | → | h#(k, k) |
A# | → | h#(d, U101(e, c)) | | A# | → | h#(U101(e, a), f(c)) |
A# | → | h#(e, U101(e, b)) | | A# | → | h#(d, U101(c, b)) |
A# | → | h#(c, U101(c, c)) | | A# | → | h#(a, f(c)) |
A# | → | h#(k, U101(e, e)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(k, U101(e, c)) | | A# | → | h#(c, U101(e, b)) |
A# | → | h#(a, U101(b, b)) | | A# | → | h#(a, U101(e, c)) |
A# | → | h#(a, d) | | A# | → | h#(k, U101(c, b)) |
A# | → | h#(c, c) | | A# | → | h#(d, U101(e, b)) |
A# | → | h#(U101(e, a), U101(e, b)) | | A# | → | h#(c, U101(b, b)) |
A# | → | h#(e, d) | | A# | → | h#(U101(a, a), U101(e, b)) |
A# | → | h#(f(c), k) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(f(d), U101(c, c)) |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(U101(c, a), U101(c, c)) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(f(e), f(c)) | | A# | → | h#(U101(e, a), d) |
A# | → | h#(c, U101(e, e)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(k, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
| h#(k, U101(k, k)) |
Thus, the rule A
# → h
#(k, f(k)) is deleted.
Problem 60: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(U101(e, c), U101(e, c)) |
A# | → | h#(e, e) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(U101(c, c), U101(c, c)) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(a, e) | | g#(d, x, x) | → | A# |
A# | → | h#(d, f(e)) | | A# | → | h#(e, f(d)) |
A# | → | h#(f(d), f(d)) | | A# | → | h#(U101(e, e), U101(e, e)) |
A# | → | h#(d, d) | | A# | → | h#(a, f(k)) |
A# | → | h#(a, U101(c, c)) | | A# | → | h#(e, f(c)) |
A# | → | h#(c, f(e)) | | A# | → | h#(d, f(c)) |
A# | → | h#(k, k) | | A# | → | h#(k, f(c)) |
A# | → | h#(c, f(k)) | | A# | → | h#(d, U101(c, b)) |
A# | → | h#(c, U101(c, c)) | | A# | → | h#(k, U101(e, e)) |
A# | → | h#(f(k), f(k)) | | A# | → | h#(k, U101(e, c)) |
A# | → | h#(U101(e, a), U101(c, c)) | | A# | → | h#(c, U101(e, b)) |
A# | → | h#(a, U101(b, b)) | | A# | → | h#(a, U101(e, c)) |
A# | → | h#(a, d) | | A# | → | h#(k, U101(c, b)) |
A# | → | h#(c, c) | | A# | → | h#(a, U101(e, e)) |
A# | → | h#(d, U101(e, b)) | | A# | → | h#(U101(e, a), U101(e, b)) |
A# | → | h#(e, d) | | A# | → | h#(c, U101(b, b)) |
A# | → | h#(f(c), k) | | A# | → | h#(U101(a, a), U101(e, b)) |
A# | → | h#(f(d), b) | | A# | → | h#(f(e), b) |
A# | → | h#(f(d), U101(c, c)) | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(U101(e, a), d) |
A# | → | h#(f(e), f(c)) | | A# | → | h#(c, U101(e, e)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(U101(c, a), U101(c, c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(a, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(d, e) | |
h#(c, e) | |
Thus, the rule A
# → h
#(a, e) is replaced by the following rules:
A# → h#(d, e) | A# → h#(c, e) |
Problem 61: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(U101(e, e), U101(e, e)) | | h#(x, x) | → | g#(x, x, f(k)) |
A# | → | h#(d, d) | | A# | → | h#(U101(e, c), U101(e, c)) |
A# | → | h#(k, k) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(k, U101(e, c)) | | A# | → | h#(c, U101(e, b)) |
A# | → | h#(a, U101(b, b)) | | A# | → | h#(a, U101(e, c)) |
A# | → | h#(a, d) | | A# | → | h#(e, e) |
A# | → | h#(k, U101(c, b)) | | A# | → | h#(k, U101(c, c)) |
A# | → | h#(c, c) | | A# | → | h#(e, U101(c, c)) |
A# | → | h#(k, e) | | A# | → | h#(c, U101(e, c)) |
A# | → | h#(a, U101(e, e)) | | A# | → | h#(d, U101(e, b)) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(U101(c, c), U101(c, c)) |
A# | → | h#(U101(e, a), U101(e, b)) | | A# | → | h#(e, d) |
A# | → | h#(c, U101(b, b)) | | A# | → | h#(U101(a, a), U101(e, b)) |
A# | → | h#(f(c), k) | | A# | → | h#(d, f(k)) |
A# | → | h#(f(d), b) | | A# | → | h#(f(e), b) |
A# | → | h#(f(e), f(e)) | | A# | → | h#(U101(e, a), U101(e, c)) |
A# | → | h#(f(d), U101(c, c)) | | A# | → | h#(d, f(e)) |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(U101(a, a), U101(e, c)) |
g#(d, x, x) | → | A# | | A# | → | h#(U101(c, a), U101(c, c)) |
A# | → | h#(U101(e, a), d) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(k,
U101(e, c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(k, c) | |
Thus, the rule A
# → h
#(k,
U101(e, c)) is replaced by the following rules:
Problem 62: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(e, c) |
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(d, d) |
A# | → | h#(c, d) | | A# | → | h#(k, k) |
A# | → | h#(U101(e, c), U101(e, c)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(c, U101(e, b)) | | A# | → | h#(a, d) |
A# | → | h#(k, U101(c, b)) | | A# | → | h#(e, e) |
A# | → | h#(c, c) | | A# | → | h#(a, c) |
A# | → | h#(d, U101(e, b)) | | A# | → | h#(d, U101(e, e)) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(c, k) |
A# | → | h#(c, U101(c, b)) | | A# | → | h#(d, b) |
A# | → | h#(U101(c, c), U101(c, c)) | | A# | → | h#(U101(e, a), U101(e, b)) |
A# | → | h#(a, k) | | A# | → | h#(k, U101(e, b)) |
A# | → | h#(k, b) | | A# | → | h#(c, U101(b, b)) |
A# | → | h#(e, k) | | A# | → | h#(e, d) |
A# | → | h#(f(c), k) | | A# | → | h#(d, f(k)) |
A# | → | h#(U101(a, a), U101(e, b)) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(U101(e, a), U101(e, c)) | | A# | → | h#(f(d), U101(c, c)) |
A# | → | h#(a, e) | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(d, f(e)) |
g#(d, x, x) | → | A# | | A# | → | h#(c, U101(e, e)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(U101(e, a), d) |
A# | → | h#(U101(c, a), U101(c, c)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(e, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(e, k) | |
h#(e, e) | |
Thus, the rule A
# → h
#(e, c) is replaced by the following rules:
A# → h#(e, e) | A# → h#(e, k) |
Problem 63: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(U101(e, e), U101(e, e)) | | h#(x, x) | → | g#(x, x, f(k)) |
A# | → | h#(d, d) | | A# | → | h#(k, k) |
A# | → | h#(U101(e, c), U101(e, c)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(e, e) | | A# | → | h#(c, c) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(U101(c, c), U101(c, c)) |
A# | → | h#(U101(e, a), U101(e, b)) | | A# | → | h#(a, k) |
A# | → | h#(k, U101(e, b)) | | A# | → | h#(k, b) |
A# | → | h#(e, k) | | A# | → | h#(c, U101(b, b)) |
A# | → | h#(e, d) | | A# | → | h#(d, f(k)) |
A# | → | h#(U101(a, a), U101(e, b)) | | A# | → | h#(f(c), k) |
A# | → | h#(f(d), b) | | A# | → | h#(f(e), b) |
A# | → | h#(U101(e, a), U101(e, c)) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(f(d), U101(c, c)) | | A# | → | h#(a, e) |
A# | → | h#(U101(a, a), U101(e, c)) | | A# | → | h#(U101(e, e), U101(b, b)) |
A# | → | h#(d, f(e)) | | g#(d, x, x) | → | A# |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(U101(e, a), d) | | A# | → | h#(U101(c, a), U101(c, c)) |
A# | → | h#(f(e), f(c)) | | A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(
U101(e, a),
U101(e, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(U101(e, a), b) | |
h#(a, U101(e, b)) | |
Thus, the rule A
# → h
#(
U101(e, a),
U101(e, b)) is replaced by the following rules:
A# → h#(a, U101(e, b)) | A# → h#(U101(e, a), b) |
Problem 64: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(U101(e, e), U101(e, e)) | | h#(x, x) | → | g#(x, x, f(k)) |
A# | → | h#(d, d) | | A# | → | h#(k, k) |
A# | → | h#(U101(e, c), U101(e, c)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(e, e) | | A# | → | h#(c, c) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(U101(c, c), U101(c, c)) |
A# | → | h#(a, k) | | A# | → | h#(k, b) |
A# | → | h#(k, U101(e, b)) | | A# | → | h#(e, k) |
A# | → | h#(c, U101(b, b)) | | A# | → | h#(e, d) |
A# | → | h#(d, f(k)) | | A# | → | h#(U101(a, a), U101(e, b)) |
A# | → | h#(f(c), k) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(U101(e, a), U101(e, c)) | | A# | → | h#(U101(e, a), c) |
A# | → | h#(f(d), U101(c, c)) | | A# | → | h#(a, e) |
A# | → | h#(U101(a, a), U101(e, c)) | | A# | → | h#(U101(e, e), U101(b, b)) |
A# | → | h#(d, f(e)) | | g#(d, x, x) | → | A# |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(U101(e, a), d) | | A# | → | h#(U101(c, a), U101(c, c)) |
A# | → | h#(f(e), f(c)) | | A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(a, k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(d, k) | |
h#(c, k) | |
Thus, the rule A
# → h
#(a, k) is replaced by the following rules:
A# → h#(d, k) | A# → h#(c, k) |
Problem 65: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(U101(e, e), U101(e, e)) | | h#(x, x) | → | g#(x, x, f(k)) |
A# | → | h#(d, d) | | A# | → | h#(k, k) |
A# | → | h#(U101(e, c), U101(e, c)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(U101(a, a), c) | | A# | → | h#(e, e) |
A# | → | h#(c, c) | | A# | → | h#(U101(c, a), k) |
A# | → | h#(U101(e, a), b) | | A# | → | h#(U101(c, a), U101(e, b)) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(U101(c, c), U101(c, c)) |
A# | → | h#(U101(c, a), e) | | A# | → | h#(f(c), k) |
A# | → | h#(d, f(k)) | | A# | → | h#(f(d), b) |
A# | → | h#(f(e), b) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(U101(e, a), U101(e, c)) | | A# | → | h#(U101(e, a), c) |
A# | → | h#(f(d), U101(c, c)) | | g#(d, x, x) | → | A# |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(d, f(e)) |
A# | → | h#(a, e) | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(U101(a, a), k) | | A# | → | h#(c, U101(e, e)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(U101(e, a), d) |
A# | → | h#(U101(c, a), U101(c, c)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(
U101(a, a), c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(U101(a, a), e) | h#(U101(d, a), c) |
h#(U101(a, a), k) | |
h#(U101(c, a), c) | |
Thus, the rule A
# → h
#(
U101(a, a), c) is replaced by the following rules:
A# → h#(U101(c, a), c) | A# → h#(U101(a, a), e) |
A# → h#(U101(a, a), k) |
Problem 66: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(U101(e, e), U101(e, e)) | | h#(x, x) | → | g#(x, x, f(k)) |
A# | → | h#(d, d) | | A# | → | h#(k, k) |
A# | → | h#(U101(e, c), U101(e, c)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(e, e) | | A# | → | h#(c, c) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(U101(c, c), U101(c, c)) |
A# | → | h#(U101(e, a), U101(e, b)) | | A# | → | h#(U101(c, a), e) |
A# | → | h#(a, k) | | A# | → | h#(k, b) |
A# | → | h#(e, k) | | A# | → | h#(e, d) |
A# | → | h#(f(c), k) | | A# | → | h#(d, f(k)) |
A# | → | h#(f(d), b) | | A# | → | h#(f(e), b) |
A# | → | h#(U101(e, a), U101(e, c)) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(f(d), U101(c, c)) | | A# | → | h#(U101(e, a), c) |
A# | → | h#(a, e) | | A# | → | h#(U101(e, e), U101(b, b)) |
g#(d, x, x) | → | A# | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(d, f(e)) | | A# | → | h#(U101(a, a), k) |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(U101(e, a), d) | | A# | → | h#(U101(c, a), U101(c, c)) |
A# | → | h#(f(e), f(c)) | | A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(
U101(e, a),
U101(e, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(U101(e, a), b) | |
h#(a, U101(e, b)) | |
Thus, the rule A
# → h
#(
U101(e, a),
U101(e, b)) is replaced by the following rules:
A# → h#(a, U101(e, b)) | A# → h#(U101(e, a), b) |
Problem 67: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(U101(e, e), U101(e, e)) | | h#(x, x) | → | g#(x, x, f(k)) |
A# | → | h#(d, d) | | A# | → | h#(k, k) |
A# | → | h#(U101(e, c), U101(e, c)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(e, e) | | A# | → | h#(c, c) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(U101(c, c), U101(c, c)) |
A# | → | h#(U101(c, a), e) | | A# | → | h#(a, k) |
A# | → | h#(k, U101(e, b)) | | A# | → | h#(k, b) |
A# | → | h#(e, k) | | A# | → | h#(e, d) |
A# | → | h#(d, f(k)) | | A# | → | h#(f(c), k) |
A# | → | h#(f(d), b) | | A# | → | h#(f(e), b) |
A# | → | h#(f(e), f(e)) | | A# | → | h#(U101(e, a), U101(e, c)) |
A# | → | h#(U101(e, a), c) | | A# | → | h#(f(d), U101(c, c)) |
A# | → | h#(a, e) | | A# | → | h#(U101(e, e), U101(b, b)) |
g#(d, x, x) | → | A# | | A# | → | h#(U101(a, a), U101(e, c)) |
A# | → | h#(d, f(e)) | | A# | → | h#(U101(a, a), k) |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(U101(e, a), d) | | A# | → | h#(U101(c, a), U101(c, c)) |
A# | → | h#(f(e), f(c)) | | A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(a, k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(d, k) | |
h#(c, k) | |
Thus, the rule A
# → h
#(a, k) is replaced by the following rules:
A# → h#(d, k) | A# → h#(c, k) |
Problem 68: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(U101(e, e), U101(e, e)) | | h#(x, x) | → | g#(x, x, f(k)) |
A# | → | h#(d, d) | | A# | → | h#(k, k) |
A# | → | h#(U101(e, c), U101(e, c)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(e, e) | | A# | → | h#(c, c) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(U101(e, e), e) |
A# | → | h#(U101(c, c), U101(c, c)) | | A# | → | h#(U101(e, e), k) |
A# | → | h#(e, k) | | A# | → | h#(e, d) |
A# | → | h#(U101(e, a), U101(e, c)) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(U101(e, a), c) | | A# | → | h#(f(d), U101(c, c)) |
A# | → | h#(d, f(e)) | | g#(d, x, x) | → | A# |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(a, e) |
A# | → | h#(U101(a, a), U101(e, c)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(U101(c, a), U101(c, c)) | | A# | → | h#(U101(e, a), d) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(c, U101(e, e)) |
A# | → | h#(U101(a, a), k) | | A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(
U101(e, e), e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(e, e) | |
Thus, the rule A
# → h
#(
U101(e, e), e) is replaced by the following rules:
Problem 69: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(U101(e, e), U101(e, e)) | | h#(x, x) | → | g#(x, x, f(k)) |
A# | → | h#(d, d) | | A# | → | h#(k, k) |
A# | → | h#(U101(e, c), U101(e, c)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(e, e) | | A# | → | h#(c, c) |
A# | → | h#(k, e) | | A# | → | h#(d, U101(e, e)) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(U101(c, c), U101(c, c)) |
A# | → | h#(f(e), f(e)) | | g#(d, x, x) | → | A# |
A# | → | h#(U101(e, e), U101(b, b)) | | A# | → | h#(a, e) |
A# | → | h#(U101(a, a), U101(e, c)) | | A# | → | h#(f(d), U101(e, c)) |
A# | → | h#(U101(e, a), d) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(f(d), f(d)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(U101(c, a), U101(c, c)) | | A# | → | h#(c, U101(e, e)) |
A# | → | h#(U101(a, a), k) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(k, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
Thus, the rule A
# → h
#(k, e) is deleted.
Problem 70: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(d, e) |
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(k, c) |
A# | → | h#(d, k) | | A# | → | h#(d, d) |
A# | → | h#(k, k) | | A# | → | h#(U101(e, c), U101(e, c)) |
A# | → | h#(f(k), f(k)) | | A# | → | h#(e, e) |
A# | → | h#(c, c) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(U101(c, c), U101(c, c)) | | A# | → | h#(a, k) |
A# | → | h#(U101(e, a), e) | | A# | → | h#(f(e), f(e)) |
g#(d, x, x) | → | A# | | A# | → | h#(U101(e, e), U101(b, b)) |
A# | → | h#(a, e) | | A# | → | h#(f(d), U101(e, c)) |
A# | → | h#(f(d), f(d)) | | A# | → | h#(U101(e, a), d) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(c, U101(e, e)) |
A# | → | h#(f(e), f(c)) | | A# | → | h#(U101(a, a), k) |
A# | → | h#(U101(c, a), U101(c, c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(d, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(k, e) | |
Thus, the rule A
# → h
#(d, e) is replaced by the following rules:
Problem 71: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(U101(e, e), U101(e, e)) | | h#(x, x) | → | g#(x, x, f(k)) |
A# | → | h#(e, e) | | A# | → | h#(f(e), k) |
A# | → | h#(c, c) | | A# | → | h#(e, U101(c, c)) |
A# | → | h#(d, d) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(U101(c, c), U101(c, c)) | | A# | → | h#(f(e), e) |
A# | → | h#(k, k) | | A# | → | h#(U101(e, c), U101(e, c)) |
A# | → | h#(U101(e, e), f(k)) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(f(k), f(k)) | | g#(d, x, x) | → | A# |
A# | → | h#(U101(c, a), U101(c, c)) | | A# | → | h#(c, U101(e, e)) |
A# | → | h#(U101(a, a), k) | | A# | → | h#(f(d), U101(e, c)) |
A# | → | h#(f(d), f(d)) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(U101(e, a), d) | | A# | → | h#(U101(e, e), c) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(
U101(e, e), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(e, f(k)) | h#(U101(e, e), U101(k, k)) |
Thus, the rule A
# → h
#(
U101(e, e), f(k)) is replaced by the following rules:
Problem 72: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(U101(e, e), U101(e, e)) | | h#(x, x) | → | g#(x, x, f(k)) |
A# | → | h#(k, c) | | A# | → | h#(d, d) |
A# | → | h#(U101(e, c), U101(e, c)) | | A# | → | h#(k, k) |
A# | → | h#(f(k), f(k)) | | A# | → | h#(e, e) |
A# | → | h#(c, c) | | A# | → | h#(e, U101(c, c)) |
A# | → | h#(a, c) | | A# | → | h#(k, e) |
A# | → | h#(c, U101(e, c)) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(U101(c, c), U101(c, c)) | | A# | → | h#(a, k) |
A# | → | h#(U101(e, a), U101(e, c)) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(U101(e, a), c) | | A# | → | h#(a, e) |
g#(d, x, x) | → | A# | | A# | → | h#(U101(e, a), d) |
A# | → | h#(U101(a, a), k) | | A# | → | h#(f(d), U101(e, c)) |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(f(d), f(d)) |
A# | → | h#(e, U101(e, c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(k, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(k, k) | |
h#(k, e) | |
Thus, the rule A
# → h
#(k, c) is replaced by the following rules:
A# → h#(k, k) | A# → h#(k, e) |
Problem 73: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(d, e) | | A# | → | h#(U101(e, e), U101(e, e)) |
h#(x, x) | → | g#(x, x, f(k)) | | A# | → | h#(e, e) |
A# | → | h#(c, c) | | A# | → | h#(c, e) |
A# | → | h#(d, d) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(U101(c, c), U101(c, c)) | | A# | → | h#(U101(e, c), U101(e, c)) |
A# | → | h#(k, k) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(f(k), f(k)) | | g#(d, x, x) | → | A# |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(f(d), f(d)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(U101(e, a), d) |
A# | → | h#(U101(a, a), k) | | A# | → | h#(f(d), U101(e, c)) |
A# | → | h#(U101(e, a), k) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(d, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(k, e) | |
Thus, the rule A
# → h
#(d, e) is replaced by the following rules:
Problem 74: BackwardInstantiation
Dependency Pair Problem
Dependency Pairs
A# | → | h#(U101(e, e), U101(e, e)) | | h#(x, x) | → | g#(x, x, f(k)) |
A# | → | h#(e, e) | | A# | → | h#(c, c) |
A# | → | h#(d, d) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(U101(c, c), U101(c, c)) | | A# | → | h#(U101(e, c), U101(e, c)) |
A# | → | h#(k, k) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(f(e), f(e)) | | g#(d, x, x) | → | A# |
A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
Instantiation
For all potential predecessors l → r of the rule h
#(
x,
x) → g
#(
x,
x, f(k)) on dependency pair chains it holds that:
- h#(x, x) matches r,
- all variables of h#(x, x) are embedded in constructor contexts, i.e., each subterm of h#(x, x), containing a variable is rooted by a constructor symbol.
Thus, h
#(
x,
x) → g
#(
x,
x, f(k)) is replaced by instances determined through the above matching. These instances are:
h#(f(d), f(d)) → g#(f(d), f(d), f(k)) | h#(f(e), f(e)) → g#(f(e), f(e), f(k)) |
h#(c, c) → g#(c, c, f(k)) | h#(U101(c, c), U101(c, c)) → g#(U101(c, c), U101(c, c), f(k)) |
h#(e, e) → g#(e, e, f(k)) | h#(U101(e, c), U101(e, c)) → g#(U101(e, c), U101(e, c), f(k)) |
h#(k, k) → g#(k, k, f(k)) | h#(f(k), f(k)) → g#(f(k), f(k), f(k)) |
h#(U101(e, e), U101(e, e)) → g#(U101(e, e), U101(e, e), f(k)) | h#(f(c), f(c)) → g#(f(c), f(c), f(k)) |
h#(d, d) → g#(d, d, f(k)) |
Problem 75: Propagation
Dependency Pair Problem
Dependency Pairs
h#(c, c) | → | g#(c, c, f(k)) | | h#(f(e), f(e)) | → | g#(f(e), f(e), f(k)) |
A# | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(e, e) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(c, c), U101(c, c), f(k)) | | h#(e, e) | → | g#(e, e, f(k)) |
A# | → | h#(c, c) | | A# | → | h#(d, d) |
h#(f(c), f(c)) | → | g#(f(c), f(c), f(k)) | | h#(d, d) | → | g#(d, d, f(k)) |
A# | → | h#(f(c), f(c)) | | h#(f(d), f(d)) | → | g#(f(d), f(d), f(k)) |
A# | → | h#(U101(c, c), U101(c, c)) | | A# | → | h#(k, k) |
A# | → | h#(U101(e, c), U101(e, c)) | | h#(U101(e, c), U101(e, c)) | → | g#(U101(e, c), U101(e, c), f(k)) |
h#(k, k) | → | g#(k, k, f(k)) | | h#(f(k), f(k)) | → | g#(f(k), f(k), f(k)) |
h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(f(k), f(k)) | | g#(d, x, x) | → | A# |
A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The dependency pairs A
# → h
#(c, c) and h
#(c, c) → g
#(c, c, f(k)) are consolidated into the rule A
# → g
#(c, c, f(k)) .
This is possible as
- all subterms of h#(c, c) containing variables are rooted by a constructor symbol,
- there is no variable that is replacing in h#(c, c), but non-replacing in both A# and g#(c, c, f(k))
The dependency pairs g
#(d,
x,
x) → A
# and A
# → h
#(
U101(e, e),
U101(e, e)) are consolidated into the rule g
#(d,
x,
x) → h
#(
U101(e, e),
U101(e, e)) .
This is possible as
- all subterms of A# containing variables are rooted by a constructor symbol,
- there is no variable that is replacing in A#, but non-replacing in both g#(d, x, x) and h#(U101(e, e), U101(e, e))
The dependency pairs g
#(d,
x,
x) → A
# and A
# → h
#(
U101(e, e),
U101(e, e)) are consolidated into the rule g
#(d,
x,
x) → h
#(
U101(e, e),
U101(e, e)) .
This is possible as
- all subterms of A# containing variables are rooted by a constructor symbol,
- there is no variable that is replacing in A#, but non-replacing in both g#(d, x, x) and h#(U101(e, e), U101(e, e))
The dependency pairs g
#(d,
x,
x) → A
# and A
# → h
#(
U101(e, e),
U101(e, e)) are consolidated into the rule g
#(d,
x,
x) → h
#(
U101(e, e),
U101(e, e)) .
This is possible as
- all subterms of A# containing variables are rooted by a constructor symbol,
- there is no variable that is replacing in A#, but non-replacing in both g#(d, x, x) and h#(U101(e, e), U101(e, e))
Summary
Removed Dependency Pairs | Added Dependency Pairs |
---|
A# → h#(U101(e, e), U101(e, e)) | A# → g#(c, c, f(k)) |
h#(c, c) → g#(c, c, f(k)) | g#(d, x, x) → h#(U101(e, e), U101(e, e)) |
A# → h#(c, c) | |
g#(d, x, x) → A# | |
Problem 76: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(f(e), f(e)) | → | g#(f(e), f(e), f(k)) | | g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) |
A# | → | h#(e, e) | | h#(U101(c, c), U101(c, c)) | → | g#(U101(c, c), U101(c, c), f(k)) |
h#(e, e) | → | g#(e, e, f(k)) | | A# | → | h#(d, d) |
h#(f(c), f(c)) | → | g#(f(c), f(c), f(k)) | | h#(d, d) | → | g#(d, d, f(k)) |
A# | → | h#(f(c), f(c)) | | A# | → | g#(c, c, f(k)) |
h#(f(d), f(d)) | → | g#(f(d), f(d), f(k)) | | A# | → | h#(U101(c, c), U101(c, c)) |
h#(k, k) | → | g#(k, k, f(k)) | | h#(U101(e, c), U101(e, c)) | → | g#(U101(e, c), U101(e, c), f(k)) |
A# | → | h#(U101(e, c), U101(e, c)) | | A# | → | h#(k, k) |
h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) | | h#(f(k), f(k)) | → | g#(f(k), f(k), f(k)) |
A# | → | h#(f(k), f(k)) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule h
#(f(e), f(e)) → g
#(f(e), f(e), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
g#(f(e), U101(e, e), f(k)) | g#(f(e), f(e), U101(k, k)) |
g#(U101(e, e), f(e), f(k)) | |
Thus, the rule h
#(f(e), f(e)) → g
#(f(e), f(e), f(k)) is replaced by the following rules:
h#(f(e), f(e)) → g#(f(e), U101(e, e), f(k)) | h#(f(e), f(e)) → g#(U101(e, e), f(e), f(k)) |
Problem 77: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(e, e) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(c, c), U101(c, c), f(k)) | | h#(e, e) | → | g#(e, e, f(k)) |
h#(f(e), f(e)) | → | g#(U101(e, e), f(e), f(k)) | | A# | → | h#(d, d) |
h#(f(c), f(c)) | → | g#(f(c), f(c), f(k)) | | h#(d, d) | → | g#(d, d, f(k)) |
A# | → | h#(f(c), f(c)) | | h#(f(e), f(e)) | → | g#(f(e), U101(e, e), f(k)) |
A# | → | g#(c, c, f(k)) | | h#(f(d), f(d)) | → | g#(f(d), f(d), f(k)) |
A# | → | h#(U101(c, c), U101(c, c)) | | A# | → | h#(k, k) |
A# | → | h#(U101(e, c), U101(e, c)) | | h#(U101(e, c), U101(e, c)) | → | g#(U101(e, c), U101(e, c), f(k)) |
h#(k, k) | → | g#(k, k, f(k)) | | h#(f(k), f(k)) | → | g#(f(k), f(k), f(k)) |
h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(f(k), f(k)) | | A# | → | h#(f(d), f(d)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule h
#(
U101(c, c),
U101(c, c)) → g
#(
U101(c, c),
U101(c, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
g#(U101(e, c), U101(c, c), f(k)) | g#(U101(c, c), U101(c, c), U101(k, k)) |
g#(U101(c, c), U101(e, c), f(k)) | g#(U101(c, c), U101(k, c), f(k)) |
| g#(U101(k, c), U101(c, c), f(k)) |
Thus, the rule h
#(
U101(c, c),
U101(c, c)) → g
#(
U101(c, c),
U101(c, c), f(k)) is replaced by the following rules:
h#(U101(c, c), U101(c, c)) → g#(U101(e, c), U101(c, c), f(k)) | h#(U101(c, c), U101(c, c)) → g#(U101(c, c), U101(e, c), f(k)) |
Problem 78: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(e, e) |
h#(e, e) | → | g#(e, e, f(k)) | | h#(f(e), f(e)) | → | g#(U101(e, e), f(e), f(k)) |
A# | → | h#(d, d) | | h#(f(c), f(c)) | → | g#(f(c), f(c), f(k)) |
h#(d, d) | → | g#(d, d, f(k)) | | A# | → | h#(f(c), f(c)) |
h#(f(e), f(e)) | → | g#(f(e), U101(e, e), f(k)) | | A# | → | g#(c, c, f(k)) |
h#(f(d), f(d)) | → | g#(f(d), f(d), f(k)) | | A# | → | h#(U101(c, c), U101(c, c)) |
h#(k, k) | → | g#(k, k, f(k)) | | h#(U101(e, c), U101(e, c)) | → | g#(U101(e, c), U101(e, c), f(k)) |
A# | → | h#(U101(e, c), U101(e, c)) | | A# | → | h#(k, k) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), U101(c, c), f(k)) | | h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) |
h#(f(k), f(k)) | → | g#(f(k), f(k), f(k)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(f(e), f(e)) | | A# | → | h#(f(d), f(d)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(c, c), U101(e, c), f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule h
#(e, e) → g
#(e, e, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
| g#(e, e, U101(k, k)) |
Thus, the rule h
#(e, e) → g
#(e, e, f(k)) is deleted.
Problem 79: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(e, e) |
h#(f(e), f(e)) | → | g#(U101(e, e), f(e), f(k)) | | A# | → | h#(d, d) |
h#(f(c), f(c)) | → | g#(f(c), f(c), f(k)) | | h#(d, d) | → | g#(d, d, f(k)) |
A# | → | h#(f(c), f(c)) | | h#(f(e), f(e)) | → | g#(f(e), U101(e, e), f(k)) |
A# | → | g#(c, c, f(k)) | | h#(f(d), f(d)) | → | g#(f(d), f(d), f(k)) |
A# | → | h#(U101(c, c), U101(c, c)) | | h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), U101(c, c), f(k)) |
A# | → | h#(k, k) | | A# | → | h#(U101(e, c), U101(e, c)) |
h#(k, k) | → | g#(k, k, f(k)) | | h#(U101(e, c), U101(e, c)) | → | g#(U101(e, c), U101(e, c), f(k)) |
h#(f(k), f(k)) | → | g#(f(k), f(k), f(k)) | | h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) |
A# | → | h#(f(e), f(e)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(f(d), f(d)) | | h#(U101(c, c), U101(c, c)) | → | g#(U101(c, c), U101(e, c), f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(e, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
Thus, the rule A
# → h
#(e, e) is deleted.
Problem 80: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) | | h#(f(e), f(e)) | → | g#(U101(e, e), f(e), f(k)) |
A# | → | h#(d, d) | | h#(f(c), f(c)) | → | g#(f(c), f(c), f(k)) |
h#(d, d) | → | g#(d, d, f(k)) | | A# | → | h#(f(c), f(c)) |
h#(f(e), f(e)) | → | g#(f(e), U101(e, e), f(k)) | | A# | → | g#(c, c, f(k)) |
h#(f(d), f(d)) | → | g#(f(d), f(d), f(k)) | | A# | → | h#(U101(c, c), U101(c, c)) |
h#(U101(e, c), U101(e, c)) | → | g#(U101(e, c), U101(e, c), f(k)) | | h#(k, k) | → | g#(k, k, f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), U101(c, c), f(k)) | | A# | → | h#(k, k) |
A# | → | h#(U101(e, c), U101(e, c)) | | h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) |
h#(f(k), f(k)) | → | g#(f(k), f(k), f(k)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(f(e), f(e)) | | A# | → | h#(f(d), f(d)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(c, c), U101(e, c), f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule h
#(f(e), f(e)) → g
#(
U101(e, e), f(e), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
g#(U101(e, e), U101(e, e), f(k)) | g#(U101(e, e), f(e), U101(k, k)) |
g#(e, f(e), f(k)) | |
Thus, the rule h
#(f(e), f(e)) → g
#(
U101(e, e), f(e), f(k)) is replaced by the following rules:
h#(f(e), f(e)) → g#(e, f(e), f(k)) | h#(f(e), f(e)) → g#(U101(e, e), U101(e, e), f(k)) |
Problem 81: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) | | h#(f(e), f(e)) | → | g#(e, f(e), f(k)) |
A# | → | h#(d, d) | | h#(f(c), f(c)) | → | g#(f(c), f(c), f(k)) |
h#(d, d) | → | g#(d, d, f(k)) | | A# | → | h#(f(c), f(c)) |
h#(f(e), f(e)) | → | g#(f(e), U101(e, e), f(k)) | | A# | → | g#(c, c, f(k)) |
h#(f(d), f(d)) | → | g#(f(d), f(d), f(k)) | | A# | → | h#(U101(c, c), U101(c, c)) |
A# | → | h#(U101(e, c), U101(e, c)) | | A# | → | h#(k, k) |
h#(U101(e, c), U101(e, c)) | → | g#(U101(e, c), U101(e, c), f(k)) | | h#(k, k) | → | g#(k, k, f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), U101(c, c), f(k)) | | h#(f(k), f(k)) | → | g#(f(k), f(k), f(k)) |
h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(f(k), f(k)) | | h#(f(e), f(e)) | → | g#(U101(e, e), U101(e, e), f(k)) |
A# | → | h#(f(d), f(d)) | | h#(U101(c, c), U101(c, c)) | → | g#(U101(c, c), U101(e, c), f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule h
#(f(e), f(e)) → g
#(e, f(e), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
g#(e, U101(e, e), f(k)) | g#(e, f(e), U101(k, k)) |
Thus, the rule h
#(f(e), f(e)) → g
#(e, f(e), f(k)) is replaced by the following rules:
h#(f(e), f(e)) → g#(e, U101(e, e), f(k)) |
Problem 82: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(d, d) |
h#(f(e), f(e)) | → | g#(e, U101(e, e), f(k)) | | h#(f(c), f(c)) | → | g#(f(c), f(c), f(k)) |
h#(d, d) | → | g#(d, d, f(k)) | | A# | → | h#(f(c), f(c)) |
h#(f(e), f(e)) | → | g#(f(e), U101(e, e), f(k)) | | A# | → | g#(c, c, f(k)) |
h#(f(d), f(d)) | → | g#(f(d), f(d), f(k)) | | A# | → | h#(U101(c, c), U101(c, c)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), U101(c, c), f(k)) | | h#(k, k) | → | g#(k, k, f(k)) |
A# | → | h#(U101(e, c), U101(e, c)) | | A# | → | h#(k, k) |
h#(U101(e, c), U101(e, c)) | → | g#(U101(e, c), U101(e, c), f(k)) | | h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) |
h#(f(k), f(k)) | → | g#(f(k), f(k), f(k)) | | h#(f(e), f(e)) | → | g#(U101(e, e), U101(e, e), f(k)) |
A# | → | h#(f(k), f(k)) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(f(d), f(d)) | | h#(U101(c, c), U101(c, c)) | → | g#(U101(c, c), U101(e, c), f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule h
#(f(e), f(e)) → g
#(e,
U101(e, e), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
g#(e, e, f(k)) | g#(e, U101(e, e), U101(k, k)) |
Thus, the rule h
#(f(e), f(e)) → g
#(e,
U101(e, e), f(k)) is replaced by the following rules:
h#(f(e), f(e)) → g#(e, e, f(k)) |
Problem 83: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(d, d) |
h#(f(e), f(e)) | → | g#(e, e, f(k)) | | h#(f(c), f(c)) | → | g#(f(c), f(c), f(k)) |
h#(d, d) | → | g#(d, d, f(k)) | | A# | → | h#(f(c), f(c)) |
h#(f(e), f(e)) | → | g#(f(e), U101(e, e), f(k)) | | A# | → | g#(c, c, f(k)) |
h#(f(d), f(d)) | → | g#(f(d), f(d), f(k)) | | A# | → | h#(U101(c, c), U101(c, c)) |
h#(U101(e, c), U101(e, c)) | → | g#(U101(e, c), U101(e, c), f(k)) | | A# | → | h#(k, k) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), U101(c, c), f(k)) | | h#(k, k) | → | g#(k, k, f(k)) |
A# | → | h#(U101(e, c), U101(e, c)) | | h#(f(k), f(k)) | → | g#(f(k), f(k), f(k)) |
h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(f(k), f(k)) | | h#(f(e), f(e)) | → | g#(U101(e, e), U101(e, e), f(k)) |
A# | → | h#(f(d), f(d)) | | h#(U101(c, c), U101(c, c)) | → | g#(U101(c, c), U101(e, c), f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule h
#(f(e), f(e)) → g
#(e, e, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
| g#(e, e, U101(k, k)) |
Thus, the rule h
#(f(e), f(e)) → g
#(e, e, f(k)) is deleted.
Problem 84: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) | | A# | → | h#(d, d) |
h#(f(c), f(c)) | → | g#(f(c), f(c), f(k)) | | h#(d, d) | → | g#(d, d, f(k)) |
A# | → | h#(f(c), f(c)) | | h#(f(e), f(e)) | → | g#(f(e), U101(e, e), f(k)) |
A# | → | g#(c, c, f(k)) | | h#(f(d), f(d)) | → | g#(f(d), f(d), f(k)) |
A# | → | h#(U101(c, c), U101(c, c)) | | A# | → | h#(U101(e, c), U101(e, c)) |
h#(U101(e, c), U101(e, c)) | → | g#(U101(e, c), U101(e, c), f(k)) | | A# | → | h#(k, k) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), U101(c, c), f(k)) | | h#(k, k) | → | g#(k, k, f(k)) |
h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) | | h#(f(k), f(k)) | → | g#(f(k), f(k), f(k)) |
h#(f(e), f(e)) | → | g#(U101(e, e), U101(e, e), f(k)) | | A# | → | h#(f(k), f(k)) |
A# | → | h#(f(e), f(e)) | | A# | → | h#(f(d), f(d)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(c, c), U101(e, c), f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule h
#(f(c), f(c)) → g
#(f(c), f(c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
g#(f(c), f(k), f(k)) | g#(f(c), f(c), U101(k, k)) |
g#(f(c), f(e), f(k)) | |
g#(f(k), f(c), f(k)) | |
g#(f(c), U101(c, c), f(k)) | |
g#(U101(c, c), f(c), f(k)) | |
g#(f(e), f(c), f(k)) | |
Thus, the rule h
#(f(c), f(c)) → g
#(f(c), f(c), f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(f(e), f(c), f(k)) | h#(f(c), f(c)) → g#(f(c), U101(c, c), f(k)) |
h#(f(c), f(c)) → g#(f(c), f(e), f(k)) | h#(f(c), f(c)) → g#(f(k), f(c), f(k)) |
h#(f(c), f(c)) → g#(U101(c, c), f(c), f(k)) | h#(f(c), f(c)) → g#(f(c), f(k), f(k)) |
Problem 85: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(d, d) | | h#(f(c), f(c)) | → | g#(f(k), f(c), f(k)) |
A# | → | g#(c, c, f(k)) | | A# | → | h#(U101(e, c), U101(e, c)) |
h#(U101(e, c), U101(e, c)) | → | g#(U101(e, c), U101(e, c), f(k)) | | A# | → | h#(k, k) |
h#(f(k), f(k)) | → | g#(f(k), f(k), f(k)) | | h#(f(e), f(e)) | → | g#(U101(e, e), U101(e, e), f(k)) |
A# | → | h#(f(k), f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(U101(c, c), U101(e, c), f(k)) |
g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) | | h#(f(c), f(c)) | → | g#(f(e), f(c), f(k)) |
h#(f(c), f(c)) | → | g#(f(c), f(e), f(k)) | | h#(d, d) | → | g#(d, d, f(k)) |
h#(f(c), f(c)) | → | g#(f(c), f(k), f(k)) | | A# | → | h#(f(c), f(c)) |
h#(f(e), f(e)) | → | g#(f(e), U101(e, e), f(k)) | | A# | → | h#(U101(c, c), U101(c, c)) |
h#(f(d), f(d)) | → | g#(f(d), f(d), f(k)) | | h#(k, k) | → | g#(k, k, f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), U101(c, c), f(k)) | | h#(f(c), f(c)) | → | g#(f(c), U101(c, c), f(k)) |
h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(f(d), f(d)) | | h#(f(c), f(c)) | → | g#(U101(c, c), f(c), f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule h
#(f(c), f(c)) → g
#(f(k), f(c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
g#(f(k), f(k), f(k)) | g#(f(k), f(c), U101(k, k)) |
g#(f(k), f(e), f(k)) | g#(U101(k, k), f(c), f(k)) |
g#(f(k), U101(c, c), f(k)) | |
Thus, the rule h
#(f(c), f(c)) → g
#(f(k), f(c), f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(f(k), U101(c, c), f(k)) | h#(f(c), f(c)) → g#(f(k), f(e), f(k)) |
h#(f(c), f(c)) → g#(f(k), f(k), f(k)) |
Problem 86: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(d, d) | | A# | → | g#(c, c, f(k)) |
A# | → | h#(k, k) | | h#(U101(e, c), U101(e, c)) | → | g#(U101(e, c), U101(e, c), f(k)) |
A# | → | h#(U101(e, c), U101(e, c)) | | h#(f(c), f(c)) | → | g#(f(k), U101(c, c), f(k)) |
h#(f(k), f(k)) | → | g#(f(k), f(k), f(k)) | | A# | → | h#(f(k), f(k)) |
h#(f(e), f(e)) | → | g#(U101(e, e), U101(e, e), f(k)) | | h#(f(c), f(c)) | → | g#(f(k), f(k), f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(c, c), U101(e, c), f(k)) | | g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) |
h#(f(c), f(c)) | → | g#(f(e), f(c), f(k)) | | h#(f(c), f(c)) | → | g#(f(k), f(e), f(k)) |
h#(f(c), f(c)) | → | g#(f(c), f(e), f(k)) | | h#(d, d) | → | g#(d, d, f(k)) |
h#(f(c), f(c)) | → | g#(f(c), f(k), f(k)) | | A# | → | h#(f(c), f(c)) |
h#(f(e), f(e)) | → | g#(f(e), U101(e, e), f(k)) | | A# | → | h#(U101(c, c), U101(c, c)) |
h#(f(d), f(d)) | → | g#(f(d), f(d), f(k)) | | h#(k, k) | → | g#(k, k, f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), U101(c, c), f(k)) | | h#(f(c), f(c)) | → | g#(f(c), U101(c, c), f(k)) |
h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(f(d), f(d)) | | h#(f(c), f(c)) | → | g#(U101(c, c), f(c), f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → g
#(c, c, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
g#(k, c, f(k)) | g#(c, c, U101(k, k)) |
g#(c, e, f(k)) | |
g#(e, c, f(k)) | |
g#(c, k, f(k)) | |
Thus, the rule A
# → g
#(c, c, f(k)) is replaced by the following rules:
A# → g#(e, c, f(k)) | A# → g#(k, c, f(k)) |
A# → g#(c, k, f(k)) | A# → g#(c, e, f(k)) |
Problem 87: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | g#(e, c, f(k)) | | A# | → | h#(d, d) |
h#(f(c), f(c)) | → | g#(f(k), U101(c, c), f(k)) | | A# | → | h#(U101(e, c), U101(e, c)) |
h#(U101(e, c), U101(e, c)) | → | g#(U101(e, c), U101(e, c), f(k)) | | A# | → | h#(k, k) |
h#(f(k), f(k)) | → | g#(f(k), f(k), f(k)) | | h#(f(e), f(e)) | → | g#(U101(e, e), U101(e, e), f(k)) |
A# | → | h#(f(k), f(k)) | | h#(f(c), f(c)) | → | g#(f(k), f(k), f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(c, c), U101(e, c), f(k)) | | g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) |
h#(f(c), f(c)) | → | g#(f(e), f(c), f(k)) | | h#(f(c), f(c)) | → | g#(f(k), f(e), f(k)) |
A# | → | g#(c, k, f(k)) | | h#(f(c), f(c)) | → | g#(f(c), f(e), f(k)) |
h#(d, d) | → | g#(d, d, f(k)) | | A# | → | g#(c, e, f(k)) |
h#(f(c), f(c)) | → | g#(f(c), f(k), f(k)) | | A# | → | h#(f(c), f(c)) |
h#(f(e), f(e)) | → | g#(f(e), U101(e, e), f(k)) | | A# | → | h#(U101(c, c), U101(c, c)) |
h#(f(d), f(d)) | → | g#(f(d), f(d), f(k)) | | h#(k, k) | → | g#(k, k, f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), U101(c, c), f(k)) | | A# | → | g#(k, c, f(k)) |
h#(f(c), f(c)) | → | g#(f(c), U101(c, c), f(k)) | | h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) |
A# | → | h#(f(e), f(e)) | | A# | → | h#(f(d), f(d)) |
h#(f(c), f(c)) | → | g#(U101(c, c), f(c), f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → g
#(e, c, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
g#(e, k, f(k)) | g#(e, c, U101(k, k)) |
g#(e, e, f(k)) | |
Thus, the rule A
# → g
#(e, c, f(k)) is replaced by the following rules:
A# → g#(e, e, f(k)) | A# → g#(e, k, f(k)) |
Problem 88: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | g#(e, e, f(k)) | | A# | → | h#(d, d) |
A# | → | g#(e, k, f(k)) | | A# | → | h#(k, k) |
h#(U101(e, c), U101(e, c)) | → | g#(U101(e, c), U101(e, c), f(k)) | | A# | → | h#(U101(e, c), U101(e, c)) |
h#(f(c), f(c)) | → | g#(f(k), U101(c, c), f(k)) | | h#(f(k), f(k)) | → | g#(f(k), f(k), f(k)) |
A# | → | h#(f(k), f(k)) | | h#(f(e), f(e)) | → | g#(U101(e, e), U101(e, e), f(k)) |
h#(f(c), f(c)) | → | g#(f(k), f(k), f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(U101(c, c), U101(e, c), f(k)) |
g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) | | h#(f(c), f(c)) | → | g#(f(e), f(c), f(k)) |
h#(f(c), f(c)) | → | g#(f(k), f(e), f(k)) | | A# | → | g#(c, k, f(k)) |
h#(f(c), f(c)) | → | g#(f(c), f(e), f(k)) | | h#(d, d) | → | g#(d, d, f(k)) |
A# | → | g#(c, e, f(k)) | | h#(f(c), f(c)) | → | g#(f(c), f(k), f(k)) |
A# | → | h#(f(c), f(c)) | | h#(f(e), f(e)) | → | g#(f(e), U101(e, e), f(k)) |
A# | → | h#(U101(c, c), U101(c, c)) | | h#(f(d), f(d)) | → | g#(f(d), f(d), f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), U101(c, c), f(k)) | | h#(k, k) | → | g#(k, k, f(k)) |
A# | → | g#(k, c, f(k)) | | h#(f(c), f(c)) | → | g#(f(c), U101(c, c), f(k)) |
h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(f(d), f(d)) | | h#(f(c), f(c)) | → | g#(U101(c, c), f(c), f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → g
#(e, e, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
| g#(e, e, U101(k, k)) |
Thus, the rule A
# → g
#(e, e, f(k)) is deleted.
Problem 89: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(d, d) | | A# | → | g#(e, k, f(k)) |
h#(f(c), f(c)) | → | g#(f(k), U101(c, c), f(k)) | | A# | → | h#(U101(e, c), U101(e, c)) |
h#(U101(e, c), U101(e, c)) | → | g#(U101(e, c), U101(e, c), f(k)) | | A# | → | h#(k, k) |
h#(f(k), f(k)) | → | g#(f(k), f(k), f(k)) | | h#(f(e), f(e)) | → | g#(U101(e, e), U101(e, e), f(k)) |
A# | → | h#(f(k), f(k)) | | h#(f(c), f(c)) | → | g#(f(k), f(k), f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(c, c), U101(e, c), f(k)) | | g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) |
h#(f(c), f(c)) | → | g#(f(e), f(c), f(k)) | | h#(f(c), f(c)) | → | g#(f(k), f(e), f(k)) |
A# | → | g#(c, k, f(k)) | | h#(f(c), f(c)) | → | g#(f(c), f(e), f(k)) |
h#(d, d) | → | g#(d, d, f(k)) | | A# | → | g#(c, e, f(k)) |
h#(f(c), f(c)) | → | g#(f(c), f(k), f(k)) | | A# | → | h#(f(c), f(c)) |
h#(f(e), f(e)) | → | g#(f(e), U101(e, e), f(k)) | | A# | → | h#(U101(c, c), U101(c, c)) |
h#(f(d), f(d)) | → | g#(f(d), f(d), f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), U101(c, c), f(k)) |
h#(k, k) | → | g#(k, k, f(k)) | | A# | → | g#(k, c, f(k)) |
h#(f(c), f(c)) | → | g#(f(c), U101(c, c), f(k)) | | h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) |
A# | → | h#(f(e), f(e)) | | A# | → | h#(f(d), f(d)) |
h#(f(c), f(c)) | → | g#(U101(c, c), f(c), f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → g
#(e, k, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
| g#(e, k, U101(k, k)) |
Thus, the rule A
# → g
#(e, k, f(k)) is deleted.
Problem 90: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(d, d) | | A# | → | h#(k, k) |
h#(U101(e, c), U101(e, c)) | → | g#(U101(e, c), U101(e, c), f(k)) | | A# | → | h#(U101(e, c), U101(e, c)) |
h#(f(c), f(c)) | → | g#(f(k), U101(c, c), f(k)) | | h#(f(k), f(k)) | → | g#(f(k), f(k), f(k)) |
A# | → | h#(f(k), f(k)) | | h#(f(e), f(e)) | → | g#(U101(e, e), U101(e, e), f(k)) |
h#(f(c), f(c)) | → | g#(f(k), f(k), f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(U101(c, c), U101(e, c), f(k)) |
g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) | | h#(f(c), f(c)) | → | g#(f(e), f(c), f(k)) |
h#(f(c), f(c)) | → | g#(f(k), f(e), f(k)) | | A# | → | g#(c, k, f(k)) |
h#(f(c), f(c)) | → | g#(f(c), f(e), f(k)) | | h#(d, d) | → | g#(d, d, f(k)) |
A# | → | g#(c, e, f(k)) | | h#(f(c), f(c)) | → | g#(f(c), f(k), f(k)) |
A# | → | h#(f(c), f(c)) | | h#(f(e), f(e)) | → | g#(f(e), U101(e, e), f(k)) |
A# | → | h#(U101(c, c), U101(c, c)) | | h#(f(d), f(d)) | → | g#(f(d), f(d), f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), U101(c, c), f(k)) | | h#(k, k) | → | g#(k, k, f(k)) |
A# | → | g#(k, c, f(k)) | | h#(f(c), f(c)) | → | g#(f(c), U101(c, c), f(k)) |
h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(f(d), f(d)) | | h#(f(c), f(c)) | → | g#(U101(c, c), f(c), f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule h
#(f(c), f(c)) → g
#(f(k),
U101(c, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
g#(f(k), U101(e, c), f(k)) | g#(U101(k, k), U101(c, c), f(k)) |
| g#(f(k), U101(k, c), f(k)) |
| g#(f(k), U101(c, c), U101(k, k)) |
Thus, the rule h
#(f(c), f(c)) → g
#(f(k),
U101(c, c), f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(f(k), U101(e, c), f(k)) |
Problem 91: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(d, d) | | A# | → | h#(U101(e, c), U101(e, c)) |
h#(U101(e, c), U101(e, c)) | → | g#(U101(e, c), U101(e, c), f(k)) | | A# | → | h#(k, k) |
h#(f(c), f(c)) | → | g#(f(k), U101(e, c), f(k)) | | h#(f(k), f(k)) | → | g#(f(k), f(k), f(k)) |
h#(f(e), f(e)) | → | g#(U101(e, e), U101(e, e), f(k)) | | A# | → | h#(f(k), f(k)) |
h#(f(c), f(c)) | → | g#(f(k), f(k), f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(U101(c, c), U101(e, c), f(k)) |
g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) | | h#(f(c), f(c)) | → | g#(f(e), f(c), f(k)) |
h#(f(c), f(c)) | → | g#(f(k), f(e), f(k)) | | A# | → | g#(c, k, f(k)) |
h#(f(c), f(c)) | → | g#(f(c), f(e), f(k)) | | h#(d, d) | → | g#(d, d, f(k)) |
A# | → | g#(c, e, f(k)) | | h#(f(c), f(c)) | → | g#(f(c), f(k), f(k)) |
A# | → | h#(f(c), f(c)) | | h#(f(e), f(e)) | → | g#(f(e), U101(e, e), f(k)) |
A# | → | h#(U101(c, c), U101(c, c)) | | h#(f(d), f(d)) | → | g#(f(d), f(d), f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), U101(c, c), f(k)) | | h#(k, k) | → | g#(k, k, f(k)) |
A# | → | g#(k, c, f(k)) | | h#(f(c), f(c)) | → | g#(f(c), U101(c, c), f(k)) |
h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(f(d), f(d)) | | h#(f(c), f(c)) | → | g#(U101(c, c), f(c), f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule h
#(
U101(e, c),
U101(e, c)) → g
#(
U101(e, c),
U101(e, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
g#(U101(e, c), c, f(k)) | g#(U101(e, c), U101(e, c), U101(k, k)) |
g#(c, U101(e, c), f(k)) | |
Thus, the rule h
#(
U101(e, c),
U101(e, c)) → g
#(
U101(e, c),
U101(e, c), f(k)) is replaced by the following rules:
h#(U101(e, c), U101(e, c)) → g#(U101(e, c), c, f(k)) | h#(U101(e, c), U101(e, c)) → g#(c, U101(e, c), f(k)) |
Problem 92: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(d, d) | | h#(U101(e, c), U101(e, c)) | → | g#(c, U101(e, c), f(k)) |
A# | → | h#(k, k) | | A# | → | h#(U101(e, c), U101(e, c)) |
h#(U101(e, c), U101(e, c)) | → | g#(U101(e, c), c, f(k)) | | h#(f(c), f(c)) | → | g#(f(k), U101(e, c), f(k)) |
h#(f(k), f(k)) | → | g#(f(k), f(k), f(k)) | | A# | → | h#(f(k), f(k)) |
h#(f(e), f(e)) | → | g#(U101(e, e), U101(e, e), f(k)) | | h#(f(c), f(c)) | → | g#(f(k), f(k), f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(c, c), U101(e, c), f(k)) | | g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) |
h#(f(c), f(c)) | → | g#(f(e), f(c), f(k)) | | h#(f(c), f(c)) | → | g#(f(k), f(e), f(k)) |
A# | → | g#(c, k, f(k)) | | h#(f(c), f(c)) | → | g#(f(c), f(e), f(k)) |
h#(d, d) | → | g#(d, d, f(k)) | | A# | → | g#(c, e, f(k)) |
h#(f(c), f(c)) | → | g#(f(c), f(k), f(k)) | | A# | → | h#(f(c), f(c)) |
h#(f(e), f(e)) | → | g#(f(e), U101(e, e), f(k)) | | A# | → | h#(U101(c, c), U101(c, c)) |
h#(f(d), f(d)) | → | g#(f(d), f(d), f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), U101(c, c), f(k)) |
h#(k, k) | → | g#(k, k, f(k)) | | A# | → | g#(k, c, f(k)) |
h#(f(c), f(c)) | → | g#(f(c), U101(c, c), f(k)) | | h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) |
A# | → | h#(f(e), f(e)) | | A# | → | h#(f(d), f(d)) |
h#(f(c), f(c)) | → | g#(U101(c, c), f(c), f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule h
#(
U101(e, c),
U101(e, c)) → g
#(c,
U101(e, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
g#(e, U101(e, c), f(k)) | g#(c, U101(e, c), U101(k, k)) |
g#(k, U101(e, c), f(k)) | |
g#(c, c, f(k)) | |
Thus, the rule h
#(
U101(e, c),
U101(e, c)) → g
#(c,
U101(e, c), f(k)) is replaced by the following rules:
h#(U101(e, c), U101(e, c)) → g#(e, U101(e, c), f(k)) | h#(U101(e, c), U101(e, c)) → g#(c, c, f(k)) |
h#(U101(e, c), U101(e, c)) → g#(k, U101(e, c), f(k)) |
Problem 93: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(d, d) | | h#(U101(e, c), U101(e, c)) | → | g#(e, U101(e, c), f(k)) |
A# | → | h#(U101(e, c), U101(e, c)) | | A# | → | h#(k, k) |
h#(U101(e, c), U101(e, c)) | → | g#(U101(e, c), c, f(k)) | | h#(f(c), f(c)) | → | g#(f(k), U101(e, c), f(k)) |
h#(f(k), f(k)) | → | g#(f(k), f(k), f(k)) | | h#(f(e), f(e)) | → | g#(U101(e, e), U101(e, e), f(k)) |
A# | → | h#(f(k), f(k)) | | h#(f(c), f(c)) | → | g#(f(k), f(k), f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(c, c), U101(e, c), f(k)) | | g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) |
h#(f(c), f(c)) | → | g#(f(e), f(c), f(k)) | | h#(f(c), f(c)) | → | g#(f(k), f(e), f(k)) |
A# | → | g#(c, k, f(k)) | | h#(f(c), f(c)) | → | g#(f(c), f(e), f(k)) |
h#(d, d) | → | g#(d, d, f(k)) | | A# | → | g#(c, e, f(k)) |
h#(f(c), f(c)) | → | g#(f(c), f(k), f(k)) | | A# | → | h#(f(c), f(c)) |
h#(f(e), f(e)) | → | g#(f(e), U101(e, e), f(k)) | | A# | → | h#(U101(c, c), U101(c, c)) |
h#(f(d), f(d)) | → | g#(f(d), f(d), f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), U101(c, c), f(k)) |
h#(k, k) | → | g#(k, k, f(k)) | | A# | → | g#(k, c, f(k)) |
h#(f(c), f(c)) | → | g#(f(c), U101(c, c), f(k)) | | h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) |
h#(U101(e, c), U101(e, c)) | → | g#(c, c, f(k)) | | A# | → | h#(f(e), f(e)) |
h#(U101(e, c), U101(e, c)) | → | g#(k, U101(e, c), f(k)) | | A# | → | h#(f(d), f(d)) |
h#(f(c), f(c)) | → | g#(U101(c, c), f(c), f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule h
#(
U101(e, c),
U101(e, c)) → g
#(e,
U101(e, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
g#(e, c, f(k)) | g#(e, U101(e, c), U101(k, k)) |
Thus, the rule h
#(
U101(e, c),
U101(e, c)) → g
#(e,
U101(e, c), f(k)) is replaced by the following rules:
h#(U101(e, c), U101(e, c)) → g#(e, c, f(k)) |
Problem 94: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(d, d) | | h#(U101(e, c), U101(e, c)) | → | g#(e, c, f(k)) |
A# | → | h#(k, k) | | A# | → | h#(U101(e, c), U101(e, c)) |
h#(U101(e, c), U101(e, c)) | → | g#(U101(e, c), c, f(k)) | | h#(f(c), f(c)) | → | g#(f(k), U101(e, c), f(k)) |
h#(f(k), f(k)) | → | g#(f(k), f(k), f(k)) | | A# | → | h#(f(k), f(k)) |
h#(f(e), f(e)) | → | g#(U101(e, e), U101(e, e), f(k)) | | h#(f(c), f(c)) | → | g#(f(k), f(k), f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(c, c), U101(e, c), f(k)) | | g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) |
h#(f(c), f(c)) | → | g#(f(e), f(c), f(k)) | | h#(f(c), f(c)) | → | g#(f(k), f(e), f(k)) |
A# | → | g#(c, k, f(k)) | | h#(f(c), f(c)) | → | g#(f(c), f(e), f(k)) |
h#(d, d) | → | g#(d, d, f(k)) | | A# | → | g#(c, e, f(k)) |
h#(f(c), f(c)) | → | g#(f(c), f(k), f(k)) | | A# | → | h#(f(c), f(c)) |
h#(f(e), f(e)) | → | g#(f(e), U101(e, e), f(k)) | | A# | → | h#(U101(c, c), U101(c, c)) |
h#(f(d), f(d)) | → | g#(f(d), f(d), f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), U101(c, c), f(k)) |
h#(k, k) | → | g#(k, k, f(k)) | | A# | → | g#(k, c, f(k)) |
h#(f(c), f(c)) | → | g#(f(c), U101(c, c), f(k)) | | h#(U101(e, c), U101(e, c)) | → | g#(c, c, f(k)) |
h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) | | A# | → | h#(f(e), f(e)) |
h#(U101(e, c), U101(e, c)) | → | g#(k, U101(e, c), f(k)) | | A# | → | h#(f(d), f(d)) |
h#(f(c), f(c)) | → | g#(U101(c, c), f(c), f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule h
#(
U101(e, c),
U101(e, c)) → g
#(e, c, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
g#(e, k, f(k)) | g#(e, c, U101(k, k)) |
g#(e, e, f(k)) | |
Thus, the rule h
#(
U101(e, c),
U101(e, c)) → g
#(e, c, f(k)) is replaced by the following rules:
h#(U101(e, c), U101(e, c)) → g#(e, e, f(k)) | h#(U101(e, c), U101(e, c)) → g#(e, k, f(k)) |
Problem 95: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(d, d) | | A# | → | h#(U101(e, c), U101(e, c)) |
A# | → | h#(k, k) | | g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) |
h#(f(c), f(c)) | → | g#(f(e), c, f(k)) | | h#(f(c), f(c)) | → | g#(e, U101(e, c), f(k)) |
h#(U101(e, c), U101(e, c)) | → | g#(U101(e, c), k, f(k)) | | h#(f(c), f(c)) | → | g#(f(k), f(e), f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(c, c), c, f(k)) | | h#(U101(e, c), U101(e, c)) | → | g#(e, k, f(k)) |
h#(f(c), f(c)) | → | g#(f(c), f(e), f(k)) | | A# | → | g#(c, k, f(k)) |
h#(f(c), f(c)) | → | g#(e, k, f(k)) | | h#(d, d) | → | g#(d, d, f(k)) |
A# | → | g#(c, e, f(k)) | | h#(f(c), f(c)) | → | g#(f(c), f(k), f(k)) |
A# | → | h#(f(c), f(c)) | | h#(f(e), f(e)) | → | g#(f(e), U101(e, e), f(k)) |
h#(f(c), f(c)) | → | g#(f(e), f(e), f(k)) | | A# | → | h#(U101(c, c), U101(c, c)) |
h#(f(d), f(d)) | → | g#(f(d), f(d), f(k)) | | h#(f(c), f(c)) | → | g#(f(e), f(k), f(k)) |
h#(U101(e, c), U101(e, c)) | → | g#(k, e, f(k)) | | h#(k, k) | → | g#(k, k, f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), U101(c, c), f(k)) | | A# | → | g#(k, c, f(k)) |
h#(f(c), f(c)) | → | g#(f(k), e, f(k)) | | h#(f(c), f(c)) | → | g#(f(c), U101(c, c), f(k)) |
h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) | | h#(U101(e, c), U101(e, c)) | → | g#(c, c, f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(k, U101(e, c), f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(e, U101(e, c), f(k)) |
A# | → | h#(f(e), f(e)) | | h#(f(c), f(c)) | → | g#(U101(e, e), f(c), f(k)) |
h#(U101(e, c), U101(e, c)) | → | g#(k, U101(e, c), f(k)) | | A# | → | h#(f(d), f(d)) |
h#(U101(c, c), U101(c, c)) | → | g#(c, c, f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), c, f(k)) |
h#(f(c), f(c)) | → | g#(U101(c, c), f(c), f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule h
#(f(c), f(c)) → g
#(e,
U101(e, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
g#(e, c, f(k)) | g#(e, U101(e, c), U101(k, k)) |
Thus, the rule h
#(f(c), f(c)) → g
#(e,
U101(e, c), f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, c, f(k)) |
Problem 96: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(d, d) | | A# | → | h#(U101(e, c), U101(e, c)) |
A# | → | h#(k, k) | | g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) |
h#(f(c), f(c)) | → | g#(f(c), f(k), f(k)) | | A# | → | h#(f(c), f(c)) |
A# | → | g#(c, e, f(k)) | | h#(f(e), f(e)) | → | g#(f(e), U101(e, e), f(k)) |
h#(f(c), f(c)) | → | g#(f(e), f(e), f(k)) | | A# | → | h#(U101(c, c), U101(c, c)) |
h#(f(d), f(d)) | → | g#(f(d), f(d), f(k)) | | h#(f(c), f(c)) | → | g#(f(e), f(k), f(k)) |
h#(f(c), f(c)) | → | g#(f(e), U101(e, e), f(k)) | | h#(U101(e, c), U101(e, c)) | → | g#(k, e, f(k)) |
h#(k, k) | → | g#(k, k, f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), U101(c, c), f(k)) |
h#(f(c), f(c)) | → | g#(U101(e, c), f(e), f(k)) | | h#(f(c), f(c)) | → | g#(f(k), e, f(k)) |
A# | → | g#(k, c, f(k)) | | h#(f(c), f(c)) | → | g#(f(c), U101(c, c), f(k)) |
h#(U101(e, c), U101(e, c)) | → | g#(c, c, f(k)) | | h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(k, U101(e, c), f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(e, U101(e, c), f(k)) |
A# | → | h#(f(e), f(e)) | | h#(f(c), f(c)) | → | g#(U101(e, e), f(c), f(k)) |
h#(U101(e, c), U101(e, c)) | → | g#(k, U101(e, c), f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(k, k, f(k)) |
h#(f(c), f(c)) | → | g#(U101(c, c), U101(e, e), f(k)) | | A# | → | h#(f(d), f(d)) |
h#(U101(c, c), U101(c, c)) | → | g#(c, c, f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(c, e, f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), c, f(k)) | | h#(f(c), f(c)) | → | g#(U101(c, c), f(c), f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(d, d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(k, d) | |
h#(d, k) | |
Thus, the rule A
# → h
#(d, d) is replaced by the following rules:
A# → h#(k, d) | A# → h#(d, k) |
Problem 97: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(U101(e, c), U101(e, c)) | | g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) |
A# | → | h#(f(c), f(c)) | | h#(U101(c, c), U101(c, c)) | → | g#(k, U101(c, c), f(k)) |
A# | → | h#(U101(c, c), U101(c, c)) | | h#(f(c), f(c)) | → | g#(U101(e, c), f(e), f(k)) |
h#(f(c), f(c)) | → | g#(f(k), e, f(k)) | | A# | → | g#(k, c, f(k)) |
h#(f(d), f(d)) | → | g#(f(d), f(k), f(k)) | | h#(f(c), f(c)) | → | g#(f(c), U101(c, c), f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(k, U101(e, c), f(k)) | | h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) |
h#(U101(e, c), U101(e, c)) | → | g#(c, c, f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(e, U101(e, c), f(k)) |
A# | → | h#(f(e), f(e)) | | h#(f(c), f(c)) | → | g#(U101(e, e), f(c), f(k)) |
h#(U101(e, c), U101(e, c)) | → | g#(k, U101(e, c), f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(k, k, f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(c, c, f(k)) | | h#(f(c), f(c)) | → | g#(U101(c, c), U101(e, e), f(k)) |
A# | → | h#(f(d), f(d)) | | h#(f(c), f(c)) | → | g#(e, U101(e, e), f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(c, e, f(k)) | | h#(f(c), f(c)) | → | g#(U101(c, c), f(c), f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), c, f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule h
#(
U101(c, c),
U101(c, c)) → g
#(k,
U101(c, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
g#(k, U101(e, c), f(k)) | g#(k, U101(c, c), U101(k, k)) |
| g#(k, U101(k, c), f(k)) |
Thus, the rule h
#(
U101(c, c),
U101(c, c)) → g
#(k,
U101(c, c), f(k)) is replaced by the following rules:
h#(U101(c, c), U101(c, c)) → g#(k, U101(e, c), f(k)) |
Problem 98: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(f(c), f(c)) | → | g#(c, c, f(k)) | | h#(f(c), f(c)) | → | g#(U101(c, c), e, f(k)) |
A# | → | h#(U101(e, c), U101(e, c)) | | h#(f(c), f(c)) | → | g#(f(k), U101(e, c), f(k)) |
h#(f(c), f(c)) | → | g#(c, U101(e, c), f(k)) | | h#(f(c), f(c)) | → | g#(e, c, f(k)) |
h#(f(c), f(c)) | → | g#(e, U101(c, c), f(k)) | | h#(f(c), f(c)) | → | g#(f(c), U101(e, c), f(k)) |
h#(f(c), f(c)) | → | g#(f(e), U101(c, c), f(k)) | | h#(f(c), f(c)) | → | g#(k, e, f(k)) |
g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) | | h#(f(c), f(c)) | → | g#(c, e, f(k)) |
h#(f(c), f(c)) | → | g#(U101(e, c), e, f(k)) | | h#(f(c), f(c)) | → | g#(U101(e, c), k, f(k)) |
h#(f(c), f(c)) | → | g#(U101(c, c), k, f(k)) | | h#(f(c), f(c)) | → | g#(e, k, f(k)) |
A# | → | h#(f(c), f(c)) | | h#(f(c), f(c)) | → | g#(k, k, f(k)) |
A# | → | h#(U101(c, c), U101(c, c)) | | h#(U101(c, c), U101(c, c)) | → | g#(e, U101(e, c), f(k)) |
h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) | | h#(U101(e, c), U101(e, c)) | → | g#(c, c, f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(k, U101(e, c), f(k)) | | A# | → | h#(f(e), f(e)) |
h#(f(c), f(c)) | → | g#(U101(e, e), f(c), f(k)) | | h#(U101(e, c), U101(e, c)) | → | g#(k, U101(e, c), f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(k, k, f(k)) | | A# | → | h#(f(d), f(d)) |
h#(f(c), f(c)) | → | g#(U101(c, c), U101(e, e), f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(c, c, f(k)) |
h#(f(c), f(c)) | → | g#(U101(c, c), f(c), f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), c, f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(c, e, f(k)) | | h#(f(c), f(c)) | → | g#(e, U101(e, e), f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule h
#(f(c), f(c)) → g
#(c, c, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
g#(k, c, f(k)) | g#(c, c, U101(k, k)) |
g#(c, e, f(k)) | |
g#(e, c, f(k)) | |
g#(c, k, f(k)) | |
Thus, the rule h
#(f(c), f(c)) → g
#(c, c, f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(k, c, f(k)) | h#(f(c), f(c)) → g#(c, e, f(k)) |
h#(f(c), f(c)) → g#(c, k, f(k)) | h#(f(c), f(c)) → g#(e, c, f(k)) |
Problem 99: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(f(c), f(c)) | → | g#(k, c, f(k)) | | A# | → | h#(U101(e, c), U101(e, c)) |
h#(f(c), f(c)) | → | g#(c, k, f(k)) | | h#(f(c), f(c)) | → | g#(U101(c, c), c, f(k)) |
h#(f(c), f(c)) | → | g#(c, U101(e, c), f(k)) | | h#(f(c), f(c)) | → | g#(e, c, f(k)) |
g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) | | h#(f(c), f(c)) | → | g#(c, e, f(k)) |
h#(f(c), f(c)) | → | g#(U101(e, e), c, f(k)) | | h#(f(c), f(c)) | → | g#(f(e), c, f(k)) |
h#(f(c), f(c)) | → | g#(e, U101(e, c), f(k)) | | h#(f(c), f(c)) | → | g#(U101(e, c), e, f(k)) |
h#(f(c), f(c)) | → | g#(f(c), e, f(k)) | | h#(f(c), f(c)) | → | g#(U101(e, c), k, f(k)) |
h#(f(c), f(c)) | → | g#(U101(c, c), k, f(k)) | | h#(f(c), f(c)) | → | g#(e, k, f(k)) |
A# | → | h#(f(c), f(c)) | | h#(f(c), f(c)) | → | g#(k, k, f(k)) |
A# | → | h#(U101(c, c), U101(c, c)) | | h#(f(c), f(c)) | → | g#(f(k), e, f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(e, U101(e, c), f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(k, U101(e, c), f(k)) |
h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) | | h#(U101(e, c), U101(e, c)) | → | g#(c, c, f(k)) |
A# | → | h#(f(e), f(e)) | | h#(f(c), f(c)) | → | g#(U101(e, e), f(c), f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(k, k, f(k)) | | h#(U101(e, c), U101(e, c)) | → | g#(k, U101(e, c), f(k)) |
A# | → | h#(f(d), f(d)) | | h#(U101(c, c), U101(c, c)) | → | g#(c, c, f(k)) |
h#(f(c), f(c)) | → | g#(U101(c, c), U101(e, e), f(k)) | | h#(f(c), f(c)) | → | g#(U101(c, c), f(c), f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), c, f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(c, e, f(k)) |
h#(f(c), f(c)) | → | g#(e, U101(e, e), f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule h
#(f(c), f(c)) → g
#(k, c, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
g#(k, e, f(k)) | g#(k, c, U101(k, k)) |
g#(k, k, f(k)) | |
Thus, the rule h
#(f(c), f(c)) → g
#(k, c, f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(k, k, f(k)) | h#(f(c), f(c)) → g#(k, e, f(k)) |
Problem 100: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
g#(d, x, x) | → | h#(U101(e, e), U101(e, e)) | | h#(f(c), f(c)) | → | g#(U101(c, c), k, f(k)) |
h#(f(c), f(c)) | → | g#(e, k, f(k)) | | A# | → | h#(f(c), f(c)) |
h#(f(c), f(c)) | → | g#(k, k, f(k)) | | A# | → | h#(U101(c, c), U101(c, c)) |
A# | → | h#(U101(e, c), U101(e, c)) | | h#(f(c), f(c)) | → | g#(c, k, f(k)) |
h#(f(c), f(c)) | → | g#(f(k), e, f(k)) | | h#(U101(e, e), U101(e, e)) | → | g#(U101(e, e), U101(e, e), f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(e, U101(e, c), f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(k, U101(e, c), f(k)) |
h#(U101(e, c), U101(e, c)) | → | g#(c, c, f(k)) | | A# | → | h#(f(e), f(e)) |
h#(f(c), f(c)) | → | g#(U101(e, e), f(c), f(k)) | | h#(U101(e, c), U101(e, c)) | → | g#(k, U101(e, c), f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(k, k, f(k)) | | h#(f(c), f(c)) | → | g#(U101(c, c), U101(e, e), f(k)) |
A# | → | h#(f(d), f(d)) | | h#(U101(c, c), U101(c, c)) | → | g#(c, c, f(k)) |
h#(f(c), f(c)) | → | g#(U101(c, c), f(c), f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(c, e, f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), c, f(k)) | | h#(f(c), f(c)) | → | g#(e, U101(e, e), f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule h
#(f(c), f(c)) → g
#(
U101(c, c), k, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
g#(U101(e, c), k, f(k)) | g#(U101(c, c), k, U101(k, k)) |
| g#(U101(k, c), k, f(k)) |
Thus, the rule h
#(f(c), f(c)) → g
#(
U101(c, c), k, f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U101(e, c), k, f(k)) |
Problem 101: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(f(c), f(c)) | → | g#(U101(e, e), f(k), f(k)) | | A# | → | h#(f(c), f(c)) |
h#(f(c), f(c)) | → | g#(U101(e, e), U101(c, c), f(k)) | | A# | → | h#(U101(c, c), U101(c, c)) |
h#(f(c), f(c)) | → | g#(U101(e, e), f(e), f(k)) | | A# | → | h#(U101(e, c), U101(e, c)) |
h#(f(c), f(c)) | → | g#(e, f(c), f(k)) | | h#(U101(e, c), U101(e, c)) | → | g#(k, U101(e, c), f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(k, k, f(k)) | | A# | → | h#(f(d), f(d)) |
h#(f(c), f(c)) | → | g#(U101(c, c), U101(e, e), f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(c, c, f(k)) |
h#(f(c), f(c)) | → | g#(e, U101(e, e), f(k)) | | h#(f(c), f(c)) | → | g#(U101(c, c), f(c), f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), c, f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(c, e, f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule h
#(f(c), f(c)) → g
#(
U101(e, e), f(k), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
g#(e, f(k), f(k)) | g#(U101(e, e), U101(k, k), f(k)) |
| g#(U101(e, e), f(k), U101(k, k)) |
Thus, the rule h
#(f(c), f(c)) → g
#(
U101(e, e), f(k), f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, f(k), f(k)) |
Problem 102: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(k, c) | | A# | → | h#(f(c), f(c)) |
A# | → | h#(U101(c, c), U101(c, c)) | | h#(U101(c, c), U101(c, c)) | → | g#(k, k, f(k)) |
A# | → | h#(f(d), f(d)) | | h#(U101(c, c), U101(c, c)) | → | g#(c, c, f(k)) |
A# | → | h#(e, U101(e, c)) | | h#(f(c), f(c)) | → | g#(e, e, f(k)) |
h#(f(c), f(c)) | → | g#(e, f(e), f(k)) | | h#(f(c), f(c)) | → | g#(U101(c, c), U101(e, e), f(k)) |
h#(f(c), f(c)) | → | g#(U101(c, c), f(c), f(k)) | | h#(f(c), f(c)) | → | g#(e, U101(e, e), f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), c, f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(c, e, f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(k, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(k, k) | |
h#(k, e) | |
Thus, the rule A
# → h
#(k, c) is replaced by the following rules:
A# → h#(k, k) | A# → h#(k, e) |
Problem 103: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(f(c), f(c)) | → | g#(k, U101(c, c), f(k)) | | h#(f(c), f(c)) | → | g#(e, f(k), f(k)) |
h#(f(c), f(c)) | → | g#(k, f(k), f(k)) | | h#(f(c), f(c)) | → | g#(k, f(e), f(k)) |
h#(f(c), f(c)) | → | g#(U101(e, c), U101(e, e), f(k)) | | A# | → | h#(f(c), f(c)) |
h#(f(c), f(c)) | → | g#(U101(e, c), U101(e, c), f(k)) | | A# | → | h#(U101(c, c), U101(c, c)) |
h#(f(c), f(c)) | → | g#(U101(e, c), f(k), f(k)) | | h#(f(c), f(c)) | → | g#(U101(e, c), U101(c, c), f(k)) |
h#(f(c), f(c)) | → | g#(c, U101(c, c), f(k)) | | h#(f(c), f(c)) | → | g#(U101(e, c), f(e), f(k)) |
h#(f(c), f(c)) | → | g#(c, f(e), f(k)) | | h#(f(c), f(c)) | → | g#(e, f(c), f(k)) |
h#(f(c), f(c)) | → | g#(U101(c, c), c, f(k)) | | h#(f(c), f(c)) | → | g#(k, e, f(k)) |
h#(f(c), f(c)) | → | g#(U101(c, c), U101(e, e), f(k)) | | h#(f(c), f(c)) | → | g#(e, f(e), f(k)) |
h#(f(c), f(c)) | → | g#(e, e, f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(c, e, f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), c, f(k)) | | h#(f(c), f(c)) | → | g#(e, U101(e, e), f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule h
#(f(c), f(c)) → g
#(k,
U101(c, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
g#(k, U101(e, c), f(k)) | g#(k, U101(c, c), U101(k, k)) |
| g#(k, U101(k, c), f(k)) |
Thus, the rule h
#(f(c), f(c)) → g
#(k,
U101(c, c), f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(k, U101(e, c), f(k)) |
Problem 104: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
h#(f(c), f(c)) | → | g#(c, U101(e, e), f(k)) | | h#(f(c), f(c)) | → | g#(k, f(e), f(k)) |
A# | → | h#(f(c), f(c)) | | A# | → | h#(U101(c, c), U101(c, c)) |
h#(f(c), f(c)) | → | g#(U101(c, c), c, f(k)) | | h#(f(c), f(c)) | → | g#(e, f(c), f(k)) |
h#(f(c), f(c)) | → | g#(e, U101(c, c), f(k)) | | h#(f(c), f(c)) | → | g#(e, c, f(k)) |
h#(f(c), f(c)) | → | g#(c, U101(e, c), f(k)) | | h#(f(c), f(c)) | → | g#(k, e, f(k)) |
h#(f(c), f(c)) | → | g#(e, e, f(k)) | | h#(f(c), f(c)) | → | g#(e, f(e), f(k)) |
h#(f(c), f(c)) | → | g#(U101(c, c), U101(e, e), f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(c, e, f(k)) |
h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), c, f(k)) | | h#(f(c), f(c)) | → | g#(e, U101(e, e), f(k)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule h
#(f(c), f(c)) → g
#(c,
U101(e, e), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
g#(c, e, f(k)) | g#(c, U101(e, e), U101(k, k)) |
g#(e, U101(e, e), f(k)) | |
g#(k, U101(e, e), f(k)) | |
Thus, the rule h
#(f(c), f(c)) → g
#(c,
U101(e, e), f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(c, e, f(k)) | h#(f(c), f(c)) → g#(k, U101(e, e), f(k)) |
h#(f(c), f(c)) → g#(e, U101(e, e), f(k)) |
Problem 105: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(U101(c, c), U101(c, c)) | | h#(f(c), f(c)) | → | g#(U101(e, c), e, f(k)) |
h#(f(c), f(c)) | → | g#(k, U101(e, e), f(k)) | | h#(f(c), f(c)) | → | g#(k, e, f(k)) |
h#(f(c), f(c)) | → | g#(e, k, f(k)) | | h#(f(c), f(c)) | → | g#(e, e, f(k)) |
h#(f(c), f(c)) | → | g#(e, f(e), f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(c, e, f(k)) |
h#(f(c), f(c)) | → | g#(e, U101(e, e), f(k)) | | h#(U101(c, c), U101(c, c)) | → | g#(U101(e, c), c, f(k)) |
A# | → | h#(f(c), f(c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule h
#(f(c), f(c)) → g
#(
U101(e, c), e, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
g#(c, e, f(k)) | g#(U101(e, c), e, U101(k, k)) |
Thus, the rule h
#(f(c), f(c)) → g
#(
U101(e, c), e, f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(c, e, f(k)) |
Problem 106: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(e, k) | | A# | → | h#(U101(e, c), k) |
A# | → | h#(k, e) | | A# | → | h#(c, U101(e, c)) |
A# | → | h#(c, e) | | A# | → | h#(U101(e, c), U101(c, c)) |
A# | → | h#(c, k) | | h#(f(c), f(c)) | → | g#(e, U101(e, e), f(k)) |
A# | → | h#(f(c), f(c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(e, k) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
Thus, the rule A
# → h
#(e, k) is deleted.
Problem 107: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(c, k) | | A# | → | h#(f(c), f(c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(f(c), f(c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(U101(c, c), f(c)) | |
h#(f(c), U101(c, c)) | |
h#(f(c), f(k)) | |
h#(f(e), f(c)) | |
h#(f(k), f(c)) | |
h#(f(c), f(e)) | |
Thus, the rule A
# → h
#(f(c), f(c)) is replaced by the following rules:
A# → h#(U101(c, c), f(c)) | A# → h#(f(c), f(e)) |
A# → h#(f(c), U101(c, c)) | A# → h#(f(k), f(c)) |
A# → h#(f(c), f(k)) | A# → h#(f(e), f(c)) |
Problem 108: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(k, f(e)) | | A# | → | h#(f(k), k) |
A# | → | h#(k, k) | | A# | → | h#(c, f(k)) |
A# | → | h#(e, k) | | A# | → | h#(f(c), U101(e, c)) |
A# | → | h#(f(e), U101(c, c)) | | A# | → | h#(f(k), e) |
A# | → | h#(c, U101(c, c)) | | A# | → | h#(k, f(k)) |
A# | → | h#(k, U101(e, e)) | | A# | → | h#(f(k), f(e)) |
A# | → | h#(U101(e, e), f(k)) | | A# | → | h#(U101(c, c), U101(e, c)) |
A# | → | h#(U101(e, c), U101(c, c)) | | A# | → | h#(f(c), U101(e, e)) |
A# | → | h#(f(k), f(k)) | | A# | → | h#(f(e), f(e)) |
A# | → | h#(k, U101(e, c)) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(f(e), f(c)) | | A# | → | h#(c, U101(e, e)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(k, f(e)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(k, U101(e, e)) | |
Thus, the rule A
# → h
#(k, f(e)) is replaced by the following rules:
Problem 109: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(k, c) | | A# | → | h#(U101(e, c), k) |
A# | → | h#(c, e) | | A# | → | h#(c, k) |
A# | → | h#(f(c), e) | | A# | → | h#(U101(c, c), e) |
A# | → | h#(f(e), e) | | A# | → | h#(U101(e, e), k) |
A# | → | h#(f(k), U101(e, e)) | | A# | → | h#(k, k) |
A# | → | h#(f(k), k) | | A# | → | h#(e, k) |
A# | → | h#(f(c), k) | | A# | → | h#(U101(c, c), U101(e, c)) |
A# | → | h#(f(e), f(e)) | | A# | → | h#(U101(e, c), U101(c, c)) |
A# | → | h#(f(c), U101(e, e)) | | A# | → | h#(k, U101(e, c)) |
A# | → | h#(U101(e, e), c) | | A# | → | h#(e, U101(e, c)) |
A# | → | h#(c, U101(e, e)) | | A# | → | h#(f(e), f(c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(k, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(k, k) | |
h#(k, e) | |
Thus, the rule A
# → h
#(k, c) is replaced by the following rules:
A# → h#(k, k) | A# → h#(k, e) |
Problem 110: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(k, e) | | A# | → | h#(c, k) |
A# | → | h#(k, k) | | A# | → | h#(e, k) |
A# | → | h#(U101(c, c), c) | | A# | → | h#(f(c), U101(e, e)) |
A# | → | h#(f(e), f(e)) | | A# | → | h#(U101(e, c), U101(c, c)) |
A# | → | h#(k, U101(e, c)) | | A# | → | h#(c, U101(e, e)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(U101(e, e), c) |
A# | → | h#(f(e), f(c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(k, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
Thus, the rule A
# → h
#(k, e) is deleted.
Problem 111: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(e, e) | | A# | → | h#(f(e), U101(e, e)) |
A# | → | h#(U101(e, c), U101(c, c)) | | A# | → | h#(e, f(e)) |
A# | → | h#(k, U101(e, c)) | | A# | → | h#(e, U101(e, e)) |
A# | → | h#(U101(e, e), c) | | A# | → | h#(c, U101(e, e)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(f(e), f(c)) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(e, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
Thus, the rule A
# → h
#(e, e) is deleted.
Problem 112: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(e, c) | | A# | → | h#(e, e) |
A# | → | h#(U101(e, e), k) | | A# | → | h#(e, U101(e, e)) |
A# | → | h#(e, U101(e, c)) | | A# | → | h#(f(e), f(c)) |
A# | → | h#(c, k) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(e, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(e, k) | |
h#(e, e) | |
Thus, the rule A
# → h
#(e, c) is replaced by the following rules:
A# → h#(e, e) | A# → h#(e, k) |
Problem 113: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
A# | → | h#(e, c) | | A# | → | h#(e, e) |
A# | → | h#(U101(e, e), k) | | A# | → | h#(c, k) |
Rewrite Rules
a | → | c | | b | → | c |
a | → | d | | b | → | d |
c | → | e | | c | → | k |
d | → | k | | A | → | h(f(a), f(b)) |
h(x, x) | → | g(x, x, f(k)) | | g(d, x, x) | → | A |
f(x) | → | U101(x, x) | | U101(e, x) | → | x |
Original Signature
Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, k, h
Strategy
Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U101#) = μ(U101) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}
The right-hand side of the rule A
# → h
#(e, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
h#(e, k) | |
h#(e, e) | |
Thus, the rule A
# → h
#(e, c) is replaced by the following rules:
A# → h#(e, e) | A# → h#(e, k) |