YES

The TRS could be proven terminating. The proof took 10125 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (69ms).
 | – Problem 2 was processed with processor ForwardNarrowing (4ms).
 |    | – Problem 3 was processed with processor ForwardNarrowing (4ms).
 |    |    | – Problem 4 was processed with processor ForwardNarrowing (8ms).
 |    |    |    | – Problem 5 was processed with processor ForwardNarrowing (3ms).
 |    |    |    |    | – Problem 6 was processed with processor ForwardNarrowing (4ms).
 |    |    |    |    |    | – Problem 7 was processed with processor ForwardNarrowing (7ms).
 |    |    |    |    |    |    | – Problem 8 was processed with processor ForwardNarrowing (13ms).
 |    |    |    |    |    |    |    | – Problem 9 was processed with processor ForwardNarrowing (8ms).
 |    |    |    |    |    |    |    |    | – Problem 10 was processed with processor ForwardNarrowing (3ms).
 |    |    |    |    |    |    |    |    |    | – Problem 11 was processed with processor ForwardNarrowing (4ms).
 |    |    |    |    |    |    |    |    |    |    | – Problem 12 was processed with processor ForwardNarrowing (4ms).
 |    |    |    |    |    |    |    |    |    |    |    | – Problem 13 was processed with processor ForwardNarrowing (4ms).
 |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 14 was processed with processor ForwardNarrowing (5ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 15 was processed with processor ForwardNarrowing (9ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 16 was processed with processor ForwardNarrowing (4ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 17 was processed with processor ForwardNarrowing (5ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 18 was processed with processor ForwardNarrowing (3ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 19 was processed with processor ForwardNarrowing (3ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 20 was processed with processor ForwardNarrowing (5ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 21 was processed with processor ForwardNarrowing (3ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 22 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 23 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 24 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 25 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 26 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 27 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 28 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 29 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 30 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 31 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 32 was processed with processor ForwardNarrowing (3ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 33 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 34 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 35 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 36 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 37 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 38 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 39 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 40 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 41 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 42 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 43 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 44 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 45 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 46 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 47 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 48 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 49 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 50 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 51 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 52 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 53 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 54 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 55 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 56 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 57 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 58 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 59 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 60 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 61 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 62 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 63 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 64 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 65 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 66 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 67 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 68 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 69 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 70 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 71 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 72 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 73 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 74 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 75 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 76 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 77 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 78 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 79 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 80 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 81 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 82 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 83 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 84 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 85 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 86 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 87 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 88 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 89 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 90 was processed with processor BackwardInstantiation (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 91 was processed with processor Propagation (7ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 92 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 93 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 94 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 95 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 96 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 97 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 98 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 99 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 100 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 101 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 102 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 103 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 104 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 105 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 106 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 107 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 108 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 109 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 110 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 111 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 112 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 113 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 114 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 115 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 116 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 117 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 118 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 119 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 120 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 121 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 122 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 123 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 124 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 125 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 126 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 127 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 128 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 129 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 130 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 131 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 132 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 133 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 134 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 135 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 136 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 137 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 138 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 139 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 140 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 141 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 142 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 143 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 144 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 145 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 146 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 147 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 148 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 149 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 150 was processed with processor ForwardNarrowing (3ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 151 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 152 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 153 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 154 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 155 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 156 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 157 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 158 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 159 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 160 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 161 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 162 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 163 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 164 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 165 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 166 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 167 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 168 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 169 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 170 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 171 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 172 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 173 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 174 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 175 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 176 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 177 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 178 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 179 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 180 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 181 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 182 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 183 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 184 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 185 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 186 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 187 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 188 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 189 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 190 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 191 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 192 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 193 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 194 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 195 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 196 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 197 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 198 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 199 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 200 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 201 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 202 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 203 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 204 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 205 was processed with processor ForwardNarrowing (0ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 206 was processed with processor ForwardNarrowing (0ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#b#
a#c#A#f#(a)
a#d#A#a#
b#c#h#(x, x)k#
A#h#(f(a), f(b))A#f#(b)
h#(x, x)f#(k)U121#(e, x)T(x)
g#(d, x, x)A#b#d#
f#(x)U121#(x, x)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The following SCCs where found

h#(x, x) → g#(x, x, f(k))A# → h#(f(a), f(b))
g#(d, x, x) → A#

Problem 2: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(a), f(b))
g#(d, x, x)A#

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(a), f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U121(a, a), f(b)) 
h#(f(c), f(b)) 
h#(f(a), U121(b, b)) 
h#(f(a), f(d)) 
h#(f(d), f(b)) 
h#(f(a), f(c)) 
Thus, the rule A# → h#(f(a), f(b)) is replaced by the following rules:
A# → h#(f(c), f(b))A# → h#(f(d), f(b))
A# → h#(f(a), f(d))A# → h#(f(a), U121(b, b))
A# → h#(f(a), f(c))A# → h#(U121(a, a), f(b))

Problem 3: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(c), f(b))
A#h#(f(d), f(b))A#h#(f(a), f(d))
A#h#(f(a), U121(b, b))A#h#(f(a), f(c))
A#h#(U121(a, a), f(b))g#(d, x, x)A#

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(c), f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U121(c, c), f(b)) 
h#(f(l), f(b)) 
h#(f(e), f(b)) 
h#(f(c), f(c)) 
h#(f(c), f(d)) 
h#(f(c), U121(b, b)) 
Thus, the rule A# → h#(f(c), f(b)) is replaced by the following rules:
A# → h#(f(l), f(b))A# → h#(U121(c, c), f(b))
A# → h#(f(e), f(b))A# → h#(f(c), f(d))
A# → h#(f(c), U121(b, b))A# → h#(f(c), f(c))

Problem 4: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), f(b))h#(x, x)g#(x, x, f(k))
A#h#(f(d), f(b))A#h#(f(e), f(b))
A#h#(f(a), f(d))A#h#(f(a), f(c))
A#h#(U121(a, a), f(b))A#h#(f(c), f(c))
A#h#(f(l), f(b))A#h#(f(c), f(d))
A#h#(f(a), U121(b, b))A#h#(f(c), U121(b, b))
g#(d, x, x)A#

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U121(c, c), f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U121(c, c), f(c))h#(U121(l, c), f(b))
h#(U121(c, c), f(d)) 
h#(U121(e, c), f(b)) 
h#(U121(c, c), U121(b, b)) 
Thus, the rule A# → h#(U121(c, c), f(b)) is replaced by the following rules:
A# → h#(U121(c, c), f(c))A# → h#(U121(c, c), f(d))
A# → h#(U121(c, c), U121(b, b))A# → h#(U121(e, c), f(b))

Problem 5: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), f(d))h#(x, x)g#(x, x, f(k))
A#h#(f(d), f(b))A#h#(f(e), f(b))
A#h#(f(a), f(d))A#h#(f(a), f(c))
A#h#(U121(e, c), f(b))A#h#(U121(a, a), f(b))
A#h#(f(c), f(c))A#h#(f(l), f(b))
A#h#(U121(c, c), f(c))A#h#(U121(c, c), U121(b, b))
A#h#(f(c), f(d))A#h#(f(a), U121(b, b))
A#h#(f(c), U121(b, b))g#(d, x, x)A#

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U121(c, c), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U121(e, c), f(d))h#(U121(c, c), U121(d, d))
h#(U121(c, c), f(m))h#(U121(l, c), f(d))
Thus, the rule A# → h#(U121(c, c), f(d)) is replaced by the following rules:
A# → h#(U121(e, c), f(d))A# → h#(U121(c, c), f(m))

Problem 6: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(d), f(b))
A#h#(U121(e, c), f(d))A#h#(f(e), f(b))
A#h#(U121(c, c), f(m))A#h#(f(a), f(d))
A#h#(f(a), f(c))A#h#(U121(e, c), f(b))
A#h#(U121(a, a), f(b))A#h#(f(c), f(c))
A#h#(f(l), f(b))A#h#(U121(c, c), f(c))
A#h#(U121(c, c), U121(b, b))A#h#(f(c), f(d))
A#h#(f(a), U121(b, b))A#h#(f(c), U121(b, b))
g#(d, x, x)A#

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(d), f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(d), f(c))h#(U121(d, d), f(b))
h#(f(m), f(b)) 
h#(f(d), f(d)) 
h#(f(d), U121(b, b)) 
Thus, the rule A# → h#(f(d), f(b)) is replaced by the following rules:
A# → h#(f(d), U121(b, b))A# → h#(f(m), f(b))
A# → h#(f(d), f(d))A# → h#(f(d), f(c))

Problem 7: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(d), U121(b, b))h#(x, x)g#(x, x, f(k))
A#h#(U121(e, c), f(d))A#h#(f(e), f(b))
A#h#(U121(c, c), f(m))A#h#(f(a), f(d))
A#h#(f(a), f(c))A#h#(U121(e, c), f(b))
A#h#(U121(a, a), f(b))A#h#(f(d), f(c))
A#h#(f(c), f(c))A#h#(f(l), f(b))
A#h#(U121(c, c), f(c))A#h#(f(m), f(b))
A#h#(U121(c, c), U121(b, b))A#h#(f(c), f(d))
A#h#(f(a), U121(b, b))A#h#(f(c), U121(b, b))
g#(d, x, x)A#A#h#(f(d), f(d))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(d), U121(b, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(m), U121(b, b))h#(U121(d, d), U121(b, b))
h#(f(d), U121(c, b))h#(f(d), U121(d, b))
Thus, the rule A# → h#(f(d), U121(b, b)) is replaced by the following rules:
A# → h#(f(d), U121(c, b))A# → h#(f(m), U121(b, b))

Problem 8: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(d), U121(c, b))
A#h#(U121(e, c), f(d))A#h#(f(e), f(b))
A#h#(U121(c, c), f(m))A#h#(f(a), f(d))
A#h#(f(a), f(c))A#h#(U121(e, c), f(b))
A#h#(U121(a, a), f(b))A#h#(f(d), f(c))
A#h#(f(c), f(c))A#h#(f(l), f(b))
A#h#(U121(c, c), f(c))A#h#(f(m), f(b))
A#h#(U121(c, c), U121(b, b))A#h#(f(c), f(d))
A#h#(f(m), U121(b, b))A#h#(f(a), U121(b, b))
A#h#(f(c), U121(b, b))g#(d, x, x)A#
A#h#(f(d), f(d))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(d), U121(c, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(m), U121(c, b))h#(U121(d, d), U121(c, b))
h#(f(d), U121(e, b))h#(f(d), U121(l, b))
Thus, the rule A# → h#(f(d), U121(c, b)) is replaced by the following rules:
A# → h#(f(d), U121(e, b))A# → h#(f(m), U121(c, b))

Problem 9: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(d), U121(e, b))h#(x, x)g#(x, x, f(k))
A#h#(U121(e, c), f(d))A#h#(f(e), f(b))
A#h#(f(m), U121(c, b))A#h#(U121(c, c), f(m))
A#h#(f(a), f(d))A#h#(f(a), f(c))
A#h#(U121(e, c), f(b))A#h#(U121(a, a), f(b))
A#h#(f(d), f(c))A#h#(f(c), f(c))
A#h#(f(l), f(b))A#h#(U121(c, c), f(c))
A#h#(f(m), f(b))A#h#(U121(c, c), U121(b, b))
A#h#(f(m), U121(b, b))A#h#(f(c), f(d))
A#h#(f(a), U121(b, b))A#h#(f(c), U121(b, b))
g#(d, x, x)A#A#h#(f(d), f(d))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(d), U121(e, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U121(d, d), U121(e, b)) 
h#(f(m), U121(e, b)) 
h#(f(d), b) 
Thus, the rule A# → h#(f(d), U121(e, b)) is replaced by the following rules:
A# → h#(f(m), U121(e, b))A# → h#(f(d), b)
A# → h#(U121(d, d), U121(e, b))

Problem 10: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U121(e, c), f(d))
A#h#(f(e), f(b))A#h#(f(m), U121(c, b))
A#h#(U121(c, c), f(m))A#h#(f(a), f(d))
A#h#(f(a), f(c))A#h#(U121(e, c), f(b))
A#h#(U121(a, a), f(b))A#h#(U121(d, d), U121(e, b))
A#h#(f(d), f(c))A#h#(f(c), f(c))
A#h#(f(l), f(b))A#h#(U121(c, c), f(c))
A#h#(f(m), f(b))A#h#(U121(c, c), U121(b, b))
A#h#(f(m), U121(e, b))A#h#(f(c), f(d))
A#h#(f(m), U121(b, b))A#h#(f(d), b)
A#h#(f(a), U121(b, b))A#h#(f(c), U121(b, b))
g#(d, x, x)A#A#h#(f(d), f(d))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U121(e, c), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U121(e, c), f(m))h#(U121(e, c), U121(d, d))
h#(c, f(d)) 
Thus, the rule A# → h#(U121(e, c), f(d)) is replaced by the following rules:
A# → h#(U121(e, c), f(m))A# → h#(c, f(d))

Problem 11: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(m), U121(c, b))
A#h#(f(a), f(d))A#h#(f(a), f(c))
A#h#(U121(e, c), f(b))A#h#(U121(a, a), f(b))
A#h#(f(d), f(c))A#h#(U121(e, c), f(m))
A#h#(c, f(d))A#h#(f(c), f(d))
A#h#(f(m), U121(b, b))A#h#(f(e), f(b))
A#h#(U121(c, c), f(m))A#h#(U121(d, d), U121(e, b))
A#h#(f(c), f(c))A#h#(f(l), f(b))
A#h#(U121(c, c), f(c))A#h#(f(m), f(b))
A#h#(U121(c, c), U121(b, b))A#h#(f(m), U121(e, b))
A#h#(f(d), b)A#h#(f(a), U121(b, b))
A#h#(f(c), U121(b, b))g#(d, x, x)A#
A#h#(f(d), f(d))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(m), U121(c, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(m), U121(e, b))h#(f(m), U121(l, b))
 h#(U121(m, m), U121(c, b))
Thus, the rule A# → h#(f(m), U121(c, b)) is replaced by the following rules:
A# → h#(f(m), U121(e, b))

Problem 12: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(e), f(b))
A#h#(U121(c, c), f(m))A#h#(f(a), f(d))
A#h#(f(a), f(c))A#h#(U121(e, c), f(b))
A#h#(U121(a, a), f(b))A#h#(U121(d, d), U121(e, b))
A#h#(f(c), f(c))A#h#(f(d), f(c))
A#h#(f(l), f(b))A#h#(U121(c, c), f(c))
A#h#(f(m), f(b))A#h#(U121(e, c), f(m))
A#h#(U121(c, c), U121(b, b))A#h#(c, f(d))
A#h#(f(m), U121(e, b))A#h#(f(c), f(d))
A#h#(f(m), U121(b, b))A#h#(f(d), b)
A#h#(f(a), U121(b, b))A#h#(f(c), U121(b, b))
g#(d, x, x)A#A#h#(f(d), f(d))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(a), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(a), f(m))h#(f(a), U121(d, d))
h#(U121(a, a), f(d)) 
h#(f(d), f(d)) 
h#(f(c), f(d)) 
Thus, the rule A# → h#(f(a), f(d)) is replaced by the following rules:
A# → h#(U121(a, a), f(d))A# → h#(f(a), f(m))
A# → h#(f(c), f(d))A# → h#(f(d), f(d))

Problem 13: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(a), f(m))
A#h#(f(a), f(c))A#h#(U121(e, c), f(b))
A#h#(U121(a, a), f(b))A#h#(f(d), f(c))
A#h#(U121(e, c), f(m))A#h#(U121(a, a), f(d))
A#h#(c, f(d))A#h#(f(c), f(d))
A#h#(f(m), U121(b, b))A#h#(f(e), f(b))
A#h#(U121(c, c), f(m))A#h#(U121(d, d), U121(e, b))
A#h#(f(c), f(c))A#h#(f(l), f(b))
A#h#(U121(c, c), f(c))A#h#(f(m), f(b))
A#h#(U121(c, c), U121(b, b))A#h#(f(m), U121(e, b))
A#h#(f(d), b)A#h#(f(a), U121(b, b))
A#h#(f(c), U121(b, b))g#(d, x, x)A#
A#h#(f(d), f(d))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(a), f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U121(a, a), f(m))h#(f(a), U121(m, m))
h#(f(d), f(m)) 
h#(f(c), f(m)) 
Thus, the rule A# → h#(f(a), f(m)) is replaced by the following rules:
A# → h#(f(c), f(m))A# → h#(U121(a, a), f(m))
A# → h#(f(d), f(m))

Problem 14: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(a), f(c))
A#h#(U121(a, a), f(b))A#h#(U121(e, c), f(b))
A#h#(f(d), f(c))A#h#(U121(e, c), f(m))
A#h#(c, f(d))A#h#(U121(a, a), f(d))
A#h#(f(m), U121(b, b))A#h#(f(c), f(d))
A#h#(f(c), f(m))A#h#(f(e), f(b))
A#h#(U121(c, c), f(m))A#h#(U121(a, a), f(m))
A#h#(U121(d, d), U121(e, b))A#h#(f(d), f(m))
A#h#(f(c), f(c))A#h#(f(l), f(b))
A#h#(U121(c, c), f(c))A#h#(f(m), f(b))
A#h#(U121(c, c), U121(b, b))A#h#(f(m), U121(e, b))
A#h#(f(d), b)A#h#(f(a), U121(b, b))
A#h#(f(c), U121(b, b))g#(d, x, x)A#
A#h#(f(d), f(d))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(a), f(c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(d), f(c)) 
h#(f(a), U121(c, c)) 
h#(f(a), f(e)) 
h#(f(c), f(c)) 
h#(U121(a, a), f(c)) 
h#(f(a), f(l)) 
Thus, the rule A# → h#(f(a), f(c)) is replaced by the following rules:
A# → h#(f(a), f(e))A# → h#(f(a), U121(c, c))
A# → h#(f(a), f(l))A# → h#(f(c), f(c))
A# → h#(U121(a, a), f(c))A# → h#(f(d), f(c))

Problem 15: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U121(e, c), f(b))
A#h#(U121(a, a), f(b))A#h#(f(d), f(c))
A#h#(U121(e, c), f(m))A#h#(f(a), f(e))
A#h#(U121(a, a), f(d))A#h#(c, f(d))
A#h#(f(c), f(d))A#h#(f(m), U121(b, b))
A#h#(f(c), f(m))A#h#(f(e), f(b))
A#h#(U121(c, c), f(m))A#h#(U121(a, a), f(m))
A#h#(U121(d, d), U121(e, b))A#h#(f(d), f(m))
A#h#(f(c), f(c))A#h#(f(l), f(b))
A#h#(U121(c, c), f(c))A#h#(f(m), f(b))
A#h#(f(a), U121(c, c))A#h#(U121(c, c), U121(b, b))
A#h#(f(a), f(l))A#h#(f(m), U121(e, b))
A#h#(f(d), b)A#h#(f(a), U121(b, b))
A#h#(f(c), U121(b, b))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U121(a, a), f(c))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U121(a, a), f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U121(c, a), f(b))h#(U121(d, a), f(b))
h#(U121(a, a), f(d)) 
h#(U121(a, a), U121(b, b)) 
h#(U121(a, a), f(c)) 
Thus, the rule A# → h#(U121(a, a), f(b)) is replaced by the following rules:
A# → h#(U121(a, a), f(d))A# → h#(U121(c, a), f(b))
A# → h#(U121(a, a), U121(b, b))A# → h#(U121(a, a), f(c))

Problem 16: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U121(e, c), f(b))
A#h#(f(d), f(c))A#h#(f(a), f(e))
A#h#(U121(e, c), f(m))A#h#(c, f(d))
A#h#(U121(a, a), f(d))A#h#(f(m), U121(b, b))
A#h#(f(c), f(d))A#h#(f(c), f(m))
A#h#(f(e), f(b))A#h#(U121(c, c), f(m))
A#h#(U121(c, a), f(b))A#h#(U121(a, a), f(m))
A#h#(U121(d, d), U121(e, b))A#h#(f(d), f(m))
A#h#(f(c), f(c))A#h#(f(l), f(b))
A#h#(U121(c, c), f(c))A#h#(f(m), f(b))
A#h#(f(a), U121(c, c))A#h#(U121(c, c), U121(b, b))
A#h#(f(a), f(l))A#h#(f(m), U121(e, b))
A#h#(f(d), b)A#h#(f(a), U121(b, b))
A#h#(f(c), U121(b, b))A#h#(U121(a, a), U121(b, b))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U121(a, a), f(c))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U121(e, c), f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U121(e, c), f(d)) 
h#(c, f(b)) 
h#(U121(e, c), U121(b, b)) 
h#(U121(e, c), f(c)) 
Thus, the rule A# → h#(U121(e, c), f(b)) is replaced by the following rules:
A# → h#(U121(e, c), U121(b, b))A# → h#(U121(e, c), f(d))
A# → h#(U121(e, c), f(c))A# → h#(c, f(b))

Problem 17: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U121(e, c), U121(b, b))
A#h#(U121(e, c), f(d))A#h#(c, f(b))
A#h#(f(d), f(c))A#h#(U121(e, c), f(m))
A#h#(f(a), f(e))A#h#(U121(a, a), f(d))
A#h#(c, f(d))A#h#(f(c), f(d))
A#h#(f(m), U121(b, b))A#h#(U121(e, c), f(c))
A#h#(f(c), f(m))A#h#(f(e), f(b))
A#h#(U121(c, c), f(m))A#h#(U121(c, a), f(b))
A#h#(U121(a, a), f(m))A#h#(U121(d, d), U121(e, b))
A#h#(f(d), f(m))A#h#(f(c), f(c))
A#h#(f(l), f(b))A#h#(U121(c, c), f(c))
A#h#(f(m), f(b))A#h#(f(a), U121(c, c))
A#h#(U121(c, c), U121(b, b))A#h#(f(m), U121(e, b))
A#h#(f(a), f(l))A#h#(f(d), b)
A#h#(f(a), U121(b, b))A#h#(U121(a, a), U121(b, b))
A#h#(f(c), U121(b, b))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U121(a, a), f(c))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U121(e, c), U121(b, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U121(e, c), U121(c, b))h#(U121(e, c), U121(d, b))
h#(c, U121(b, b)) 
Thus, the rule A# → h#(U121(e, c), U121(b, b)) is replaced by the following rules:
A# → h#(c, U121(b, b))A# → h#(U121(e, c), U121(c, b))

Problem 18: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(U121(e, c), f(d))
A#h#(c, f(b))A#h#(f(d), f(c))
A#h#(f(a), f(e))A#h#(U121(e, c), f(m))
A#h#(c, f(d))A#h#(U121(a, a), f(d))
A#h#(U121(e, c), f(c))A#h#(f(m), U121(b, b))
A#h#(f(c), f(d))A#h#(c, U121(b, b))
A#h#(f(c), f(m))A#h#(f(e), f(b))
A#h#(U121(c, c), f(m))A#h#(U121(c, a), f(b))
A#h#(U121(a, a), f(m))A#h#(U121(d, d), U121(e, b))
A#h#(f(d), f(m))A#h#(f(c), f(c))
A#h#(f(l), f(b))A#h#(U121(e, c), U121(c, b))
A#h#(U121(c, c), f(c))A#h#(f(m), f(b))
A#h#(f(a), U121(c, c))A#h#(U121(c, c), U121(b, b))
A#h#(f(a), f(l))A#h#(f(m), U121(e, b))
A#h#(f(d), b)A#h#(f(a), U121(b, b))
A#h#(f(c), U121(b, b))A#h#(U121(a, a), U121(b, b))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U121(a, a), f(c))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U121(e, c), f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U121(e, c), f(m))h#(U121(e, c), U121(d, d))
h#(c, f(d)) 
Thus, the rule A# → h#(U121(e, c), f(d)) is replaced by the following rules:
A# → h#(U121(e, c), f(m))A# → h#(c, f(d))

Problem 19: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(c, f(b))
A#h#(f(d), f(c))A#h#(U121(e, c), f(m))
A#h#(f(a), f(e))A#h#(U121(a, a), f(d))
A#h#(c, f(d))A#h#(f(c), f(d))
A#h#(f(m), U121(b, b))A#h#(U121(e, c), f(c))
A#h#(c, U121(b, b))A#h#(f(c), f(m))
A#h#(f(e), f(b))A#h#(U121(c, c), f(m))
A#h#(U121(c, a), f(b))A#h#(U121(a, a), f(m))
A#h#(U121(d, d), U121(e, b))A#h#(f(d), f(m))
A#h#(f(c), f(c))A#h#(f(l), f(b))
A#h#(U121(e, c), U121(c, b))A#h#(U121(c, c), f(c))
A#h#(f(m), f(b))A#h#(f(a), U121(c, c))
A#h#(U121(c, c), U121(b, b))A#h#(f(m), U121(e, b))
A#h#(f(a), f(l))A#h#(f(d), b)
A#h#(f(a), U121(b, b))A#h#(U121(a, a), U121(b, b))
A#h#(f(c), U121(b, b))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U121(a, a), f(c))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(c, f(b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(l, f(b)) 
h#(c, f(c)) 
h#(c, f(d)) 
h#(e, f(b)) 
h#(c, U121(b, b)) 
Thus, the rule A# → h#(c, f(b)) is replaced by the following rules:
A# → h#(c, U121(b, b))A# → h#(c, f(c))
A# → h#(c, f(d))A# → h#(e, f(b))
A# → h#(l, f(b))

Problem 20: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(d), f(c))
A#h#(f(a), f(e))A#h#(U121(e, c), f(m))
A#h#(c, f(d))A#h#(U121(a, a), f(d))
A#h#(e, f(b))A#h#(l, f(b))
A#h#(U121(e, c), f(c))A#h#(f(m), U121(b, b))
A#h#(f(c), f(d))A#h#(c, U121(b, b))
A#h#(f(c), f(m))A#h#(f(e), f(b))
A#h#(U121(c, c), f(m))A#h#(U121(c, a), f(b))
A#h#(U121(a, a), f(m))A#h#(U121(d, d), U121(e, b))
A#h#(f(d), f(m))A#h#(f(c), f(c))
A#h#(f(l), f(b))A#h#(U121(e, c), U121(c, b))
A#h#(U121(c, c), f(c))A#h#(f(m), f(b))
A#h#(f(a), U121(c, c))A#h#(c, f(c))
A#h#(U121(c, c), U121(b, b))A#h#(f(a), f(l))
A#h#(f(m), U121(e, b))A#h#(f(d), b)
A#h#(f(a), U121(b, b))A#h#(f(c), U121(b, b))
A#h#(U121(a, a), U121(b, b))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U121(a, a), f(c))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(d), f(c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(d), f(e))h#(U121(d, d), f(c))
h#(f(d), U121(c, c)) 
h#(f(m), f(c)) 
h#(f(d), f(l)) 
Thus, the rule A# → h#(f(d), f(c)) is replaced by the following rules:
A# → h#(f(m), f(c))A# → h#(f(d), U121(c, c))
A# → h#(f(d), f(l))A# → h#(f(d), f(e))

Problem 21: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(f(d), f(l))
A#h#(f(d), f(e))A#h#(f(m), f(c))
A#h#(U121(e, c), f(m))A#h#(f(a), f(e))
A#h#(l, f(b))A#h#(e, f(b))
A#h#(U121(a, a), f(d))A#h#(c, f(d))
A#h#(f(d), U121(c, c))A#h#(f(m), U121(b, b))
A#h#(U121(e, c), f(c))A#h#(f(c), f(d))
A#h#(c, U121(b, b))A#h#(f(c), f(m))
A#h#(f(e), f(b))A#h#(U121(c, c), f(m))
A#h#(U121(c, a), f(b))A#h#(U121(a, a), f(m))
A#h#(U121(d, d), U121(e, b))A#h#(f(d), f(m))
A#h#(f(c), f(c))A#h#(f(l), f(b))
A#h#(U121(c, c), f(c))A#h#(U121(e, c), U121(c, b))
A#h#(f(m), f(b))A#h#(c, f(c))
A#h#(f(a), U121(c, c))A#h#(U121(c, c), U121(b, b))
A#h#(f(m), U121(e, b))A#h#(f(a), f(l))
A#h#(f(d), b)A#h#(f(a), U121(b, b))
A#h#(U121(a, a), U121(b, b))A#h#(f(c), U121(b, b))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U121(a, a), f(c))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(d), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(m), f(l))h#(U121(d, d), f(l))
 h#(f(d), U121(l, l))
Thus, the rule A# → h#(f(d), f(l)) is replaced by the following rules:
A# → h#(f(m), f(l))

Problem 22: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(l, U121(b, b))
A#h#(U121(a, a), f(d))A#h#(e, f(b))
A#h#(f(d), c)A#h#(f(m), U121(b, b))
A#h#(f(c), f(d))A#h#(U121(e, c), f(c))
A#h#(U121(c, c), f(e))A#h#(U121(e, c), U121(m, m))
A#h#(f(l), f(e))A#h#(c, U121(b, b))
A#h#(l, f(m))A#h#(f(c), f(m))
A#h#(f(e), f(b))A#h#(U121(c, c), f(m))
A#h#(U121(c, a), f(b))A#h#(U121(a, a), f(m))
A#h#(U121(d, d), U121(e, b))A#h#(f(d), f(m))
A#h#(f(c), f(c))A#h#(f(l), f(b))
A#h#(U121(e, c), U121(c, b))A#h#(U121(c, c), f(c))
A#h#(f(m), f(b))A#h#(U121(a, a), f(e))
A#h#(f(m), U121(e, c))A#h#(f(m), U121(c, c))
A#h#(f(a), U121(c, c))A#h#(c, f(c))
A#h#(U121(c, c), U121(b, b))A#h#(f(a), U121(e, e))
A#h#(f(a), f(l))A#h#(f(m), U121(e, b))
A#h#(l, f(c))A#h#(e, f(m))
A#h#(f(d), b)A#h#(f(d), e)
A#h#(f(c), U121(e, e))A#h#(f(a), U121(b, b))
A#h#(f(e), f(e))A#h#(f(c), U121(b, b))
A#h#(U121(a, a), U121(b, b))g#(d, x, x)A#
A#h#(e, f(d))A#h#(f(d), f(d))
A#h#(U121(a, a), f(c))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(l, U121(b, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(l, U121(c, b))h#(l, U121(d, b))
Thus, the rule A# → h#(l, U121(b, b)) is replaced by the following rules:
A# → h#(l, U121(c, b))

Problem 23: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(l, U121(c, c))
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(f(m), f(m))A#h#(f(a), U121(c, c))
A#h#(U121(c, a), f(d))A#h#(U121(c, c), U121(b, b))
A#h#(f(a), f(l))A#h#(c, f(l))
A#h#(U121(e, e), U121(m, m))A#h#(l, f(c))
A#h#(f(d), e)A#h#(f(c), U121(e, e))
A#h#(f(e), f(e))A#h#(U121(m, m), U121(c, b))
A#h#(f(c), U121(b, b))A#h#(U121(a, a), U121(b, b))
A#h#(U121(e, e), U121(c, b))A#h#(U121(e, c), U121(e, b))
A#h#(f(l), U121(e, c))A#h#(e, f(d))
g#(d, x, x)A#A#h#(U121(e, c), f(l))
A#h#(f(d), f(d))A#h#(U121(a, a), f(c))
A#h#(U121(e, c), U121(e, c))A#h#(U121(e, e), U121(c, c))
A#h#(e, c)A#h#(U121(e, c), f(e))
A#h#(f(e), U121(e, b))A#h#(f(m), U121(e, e))
A#h#(l, U121(b, b))A#h#(c, U121(c, b))
A#h#(f(l), m)A#h#(c, f(e))
A#h#(e, f(c))A#h#(e, f(b))
A#h#(f(d), c)A#h#(e, U121(b, b))
A#h#(U121(e, e), f(e))A#h#(f(e), f(d))
A#h#(f(c), f(d))A#h#(f(l), f(e))
A#h#(f(l), c)A#h#(e, f(l))
A#h#(l, f(m))A#h#(U121(c, a), f(m))
A#h#(U121(c, c), U121(e, e))A#h#(U121(c, c), f(m))
A#h#(l, U121(c, b))A#h#(f(m), c)
A#h#(U121(m, m), U121(e, c))A#h#(e, U121(e, e))
A#h#(U121(l, l), U121(c, b))A#h#(U121(c, a), f(b))
A#h#(U121(d, d), U121(e, b))A#h#(f(d), f(m))
A#h#(f(l), f(d))A#h#(U121(c, c), f(c))
A#h#(U121(a, a), f(e))A#h#(f(m), U121(c, c))
A#h#(U121(e, e), f(d))A#h#(f(a), U121(e, e))
A#h#(f(m), U121(e, b))A#h#(U121(e, e), U121(b, b))
A#h#(f(d), b)A#h#(e, f(m))
A#h#(f(a), U121(b, b))A#h#(l, U121(e, c))
A#h#(U121(l, l), U121(e, b))A#h#(f(e), f(c))
A#h#(c, U121(e, c))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(l, U121(c, c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(l, U121(e, c))h#(l, U121(l, c))
Thus, the rule A# → h#(l, U121(c, c)) is replaced by the following rules:
A# → h#(l, U121(e, c))

Problem 24: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(U121(e, a), U121(d, d))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(f(m), f(m))A#h#(f(e), f(l))
A#h#(U121(a, a), f(l))A#h#(f(e), f(e))
A#h#(f(c), U121(b, b))A#h#(U121(m, m), U121(c, b))
A#h#(U121(a, a), U121(b, b))A#h#(U121(e, c), U121(e, b))
A#h#(U121(e, e), U121(c, b))A#h#(f(l), U121(e, c))
A#h#(U121(e, c), f(l))A#h#(e, f(d))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U121(a, a), f(c))A#h#(U121(c, a), U121(c, c))
A#h#(U121(e, e), U121(c, c))A#h#(e, c)
A#h#(U121(e, c), U121(e, c))A#h#(f(e), l)
A#h#(U121(e, a), f(m))A#h#(U121(e, c), f(e))
A#h#(f(e), U121(e, b))A#h#(f(m), U121(e, e))
A#h#(U121(a, a), U121(e, c))A#h#(l, U121(b, b))
A#h#(c, U121(c, b))A#h#(f(l), m)
A#h#(f(m), e)A#h#(d, f(d))
A#h#(c, f(e))A#h#(e, f(c))
A#h#(a, f(m))A#h#(c, f(d))
A#h#(f(d), U121(c, c))A#h#(e, f(b))
A#h#(f(d), c)A#h#(e, U121(b, b))
A#h#(U121(c, a), c)A#h#(f(c), f(d))
A#h#(U121(e, e), f(e))A#h#(f(e), f(d))
A#h#(f(l), f(e))A#h#(U121(c, c), l)
A#h#(f(l), c)A#h#(e, f(l))
A#h#(l, f(e))A#h#(f(a), l)
A#h#(c, c)A#h#(l, f(m))
A#h#(U121(c, c), U121(e, b))A#h#(U121(c, a), f(m))
A#h#(U121(c, c), U121(e, e))A#h#(U121(c, c), f(m))
A#h#(l, U121(c, b))A#h#(f(m), c)
A#h#(U121(m, m), U121(e, c))A#h#(e, U121(e, e))
A#h#(U121(l, l), U121(c, b))A#h#(U121(c, a), f(b))
A#h#(U121(d, d), U121(e, b))A#h#(U121(e, a), l)
A#h#(f(d), f(m))A#h#(U121(e, c), e)
A#h#(f(c), e)A#h#(f(l), f(d))
A#h#(f(c), c)A#h#(U121(c, a), e)
A#h#(U121(c, c), f(c))A#h#(U121(a, a), f(e))
A#h#(f(e), e)A#h#(f(m), U121(c, c))
A#h#(U121(e, e), f(d))A#h#(f(a), U121(e, e))
A#h#(U121(e, e), l)A#h#(f(m), U121(e, b))
A#h#(U121(e, e), U121(b, b))A#h#(f(d), b)
A#h#(e, f(m))A#h#(f(a), U121(b, b))
A#h#(l, U121(e, c))A#h#(U121(l, l), U121(e, b))
A#h#(f(e), U121(e, e))A#h#(U121(e, e), U121(e, c))
A#h#(f(e), f(c))A#h#(c, U121(e, c))
A#h#(U121(e, c), l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U121(e, a), U121(d, d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 h#(U121(e, a), U121(m, d))
 h#(a, U121(d, d))
Thus, the rule A# → h#(U121(e, a), U121(d, d)) is deleted.

Problem 25: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(U121(e, c), U121(e, c))A#h#(c, e)
A#h#(c, f(d))A#h#(f(d), U121(c, c))
A#h#(e, f(b))A#h#(c, U121(e, b))
A#h#(f(c), f(d))A#h#(U121(c, a), c)
A#h#(m, f(d))A#h#(d, f(m))
A#h#(U121(e, a), f(l))A#h#(e, f(l))
A#h#(l, f(e))A#h#(c, c)
A#h#(l, f(m))A#h#(U121(c, c), U121(e, b))
A#h#(U121(c, c), U121(e, e))A#h#(U121(m, m), U121(e, c))
A#h#(l, U121(c, b))A#h#(U121(l, l), U121(c, b))
A#h#(U121(d, d), U121(e, b))A#h#(f(c), c)
A#h#(U121(c, c), f(c))A#h#(U121(c, a), e)
A#h#(U121(e, c), U121(e, e))A#h#(f(a), U121(e, e))
A#h#(f(m), U121(e, b))A#h#(f(d), b)
A#h#(U121(e, e), U121(b, b))A#h#(l, U121(e, c))
A#h#(U121(l, l), U121(e, b))A#h#(f(e), U121(e, e))
A#h#(U121(e, e), U121(e, c))A#h#(f(e), f(c))
A#h#(c, U121(e, c))A#h#(e, l)
A#h#(U121(c, c), U121(c, c))A#h#(U121(c, a), U121(e, c))
A#h#(U121(a, a), l)A#h#(f(e), U121(b, b))
A#h#(f(l), b)A#h#(f(l), U121(b, b))
A#h#(e, f(e))A#h#(U121(c, c), U121(c, b))
A#h#(U121(c, a), f(c))A#h#(f(m), f(m))
A#h#(U121(c, c), U121(b, b))A#h#(U121(c, a), U121(c, b))
A#h#(U121(m, m), U121(c, b))A#h#(U121(e, e), U121(c, b))
A#h#(U121(e, c), f(l))A#h#(f(l), U121(e, c))
A#h#(f(d), f(d))A#h#(U121(c, a), U121(c, c))
A#h#(f(e), l)A#h#(U121(e, a), f(m))
A#h#(f(c), b)A#h#(f(m), U121(e, e))
A#h#(c, U121(c, b))A#h#(U121(a, a), U121(c, b))
A#h#(e, b)A#h#(f(m), e)
A#h#(c, d)A#h#(a, f(m))
A#h#(l, b)A#h#(f(d), c)
A#h#(e, U121(b, b))A#h#(U121(e, e), f(e))
A#h#(f(e), f(d))A#h#(U121(c, c), l)
A#h#(f(l), f(e))A#h#(f(l), c)
A#h#(f(a), l)A#h#(U121(c, a), f(m))
A#h#(U121(c, c), f(m))A#h#(f(m), c)
A#h#(e, U121(e, e))A#h#(U121(e, e), U121(e, b))
A#h#(U121(c, a), f(b))A#h#(U121(e, a), l)
A#h#(f(d), f(m))A#h#(U121(e, c), e)
A#h#(f(c), e)A#h#(f(l), f(d))
A#h#(U121(a, a), f(e))A#h#(f(e), e)
A#h#(f(m), U121(c, c))A#h#(U121(e, e), f(d))
A#h#(a, U121(b, b))A#h#(U121(e, e), l)
A#h#(e, f(m))A#h#(f(a), U121(b, b))
A#h#(f(e), b)A#h#(U121(e, a), U121(c, b))
A#h#(U121(e, c), l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(c, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(l, e) 
h#(e, e) 
Thus, the rule A# → h#(c, e) is replaced by the following rules:
A# → h#(e, e)A# → h#(l, e)

Problem 26: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(U121(e, c), U121(e, c))A#h#(f(m), b)
A#h#(c, c)A#h#(f(d), b)
A#h#(U121(e, e), U121(b, b))A#h#(l, U121(e, c))
A#h#(U121(l, l), U121(e, b))A#h#(f(e), U121(e, e))
A#h#(c, U121(e, c))A#h#(U121(e, e), U121(e, c))
A#h#(f(e), f(c))A#h#(e, l)
A#h#(m, e)A#h#(c, b)
A#h#(U121(c, c), U121(c, c))A#h#(U121(c, a), U121(e, c))
A#h#(f(d), U121(e, c))A#h#(U121(a, a), l)
A#h#(f(e), c)A#h#(f(e), U121(b, b))
A#h#(f(l), b)A#h#(f(l), U121(b, b))
A#h#(e, f(e))A#h#(f(c), l)
A#h#(U121(c, a), l)A#h#(U121(c, c), c)
A#h#(f(d), U121(e, e))A#h#(f(a), e)
A#h#(U121(e, c), f(c))A#h#(U121(c, c), f(e))
A#h#(U121(c, c), U121(c, b))A#h#(f(l), f(m))
A#h#(U121(c, c), f(d))A#h#(U121(c, a), f(c))
A#h#(U121(c, c), f(l))A#h#(U121(e, a), c)
A#h#(U121(c, c), e)A#h#(f(e), f(m))
A#h#(f(m), f(m))A#h#(U121(c, c), U121(b, b))
A#h#(U121(c, a), U121(c, b))A#h#(f(c), U121(e, e))
A#h#(U121(e, e), U121(c, b))A#h#(U121(e, c), U121(e, b))
A#h#(U121(m, m), U121(c, b))A#h#(f(l), U121(e, c))
A#h#(U121(e, c), f(l))A#h#(f(d), f(d))
A#h#(U121(a, a), U121(e, e))A#h#(U121(c, a), U121(c, c))
A#h#(U121(l, c), U121(e, b))A#h#(f(e), l)
A#h#(U121(e, a), f(m))A#h#(f(c), b)
A#h#(a, f(l))A#h#(f(m), U121(e, e))
A#h#(c, f(m))A#h#(l, f(d))
A#h#(c, U121(c, b))A#h#(U121(a, a), U121(c, b))
A#h#(e, b)A#h#(f(m), e)
A#h#(c, d)A#h#(a, f(m))
A#h#(l, b)A#h#(f(d), c)
A#h#(e, U121(b, b))A#h#(U121(c, c), b)
A#h#(U121(e, e), f(e))A#h#(f(e), f(d))
A#h#(l, U121(e, b))A#h#(U121(c, c), l)
A#h#(f(l), f(e))A#h#(f(l), c)
A#h#(f(a), l)A#h#(U121(c, a), f(m))
A#h#(U121(c, c), f(m))A#h#(f(m), c)
A#h#(e, U121(e, e))A#h#(U121(e, e), U121(e, b))
A#h#(U121(c, a), f(b))A#h#(U121(e, a), l)
A#h#(f(d), f(m))A#h#(U121(e, c), e)
A#h#(f(c), e)A#h#(f(l), f(d))
A#h#(U121(a, a), f(e))A#h#(f(e), e)
A#h#(f(m), U121(c, c))A#h#(U121(e, e), f(d))
A#h#(a, U121(b, b))A#h#(U121(e, e), l)
A#h#(e, f(m))A#h#(f(a), U121(b, b))
A#h#(f(e), b)A#h#(U121(e, a), U121(c, b))
A#h#(U121(e, c), l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(m), b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(m), c)h#(U121(m, m), b)
h#(f(m), d) 
Thus, the rule A# → h#(f(m), b) is replaced by the following rules:
A# → h#(f(m), d)A# → h#(f(m), c)

Problem 27: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(f(l), b)A#h#(U121(e, c), f(c))
A#h#(U121(c, c), f(e))A#h#(U121(e, e), c)
A#h#(f(e), U121(c, c))A#h#(U121(c, c), U121(c, b))
A#h#(U121(e, e), f(c))A#h#(U121(e, c), c)
A#h#(f(l), f(m))A#h#(e, e)
A#h#(U121(c, c), f(d))A#h#(U121(c, a), f(c))
A#h#(U121(c, c), f(l))A#h#(U121(e, e), U121(e, e))
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(U121(e, a), c)A#h#(U121(c, c), e)
A#h#(f(e), f(m))A#h#(U121(e, a), U121(e, c))
A#h#(f(m), U121(e, c))A#h#(f(m), f(m))
A#h#(U121(c, c), U121(b, b))A#h#(U121(c, a), U121(c, b))
A#h#(f(d), e)A#h#(f(c), U121(e, e))
A#h#(f(e), f(l))A#h#(f(e), f(e))
A#h#(U121(e, e), U121(c, b))A#h#(U121(e, c), U121(e, b))
A#h#(U121(m, m), U121(c, b))g#(d, x, x)A#
A#h#(U121(e, c), f(l))A#h#(f(l), U121(e, c))
A#h#(f(d), f(d))A#h#(U121(a, a), U121(e, e))
A#h#(U121(c, a), U121(c, c))A#h#(U121(e, c), U121(e, c))
A#h#(U121(l, c), U121(e, b))A#h#(f(e), l)
A#h#(U121(e, a), f(m))A#h#(f(c), b)
A#h#(f(m), U121(e, e))A#h#(a, f(l))
A#h#(c, f(m))A#h#(l, f(d))
A#h#(c, U121(c, b))A#h#(U121(a, a), U121(c, b))
A#h#(e, b)A#h#(f(m), d)
A#h#(f(l), m)A#h#(f(m), e)
A#h#(c, d)A#h#(f(m), m)
A#h#(a, f(m))A#h#(l, b)
A#h#(f(d), c)A#h#(e, U121(b, b))
A#h#(U121(c, c), b)A#h#(U121(e, e), f(e))
A#h#(f(e), f(d))A#h#(l, U121(e, b))
A#h#(U121(c, c), l)A#h#(f(l), f(e))
A#h#(f(l), c)A#h#(c, c)
A#h#(f(a), l)A#h#(U121(c, a), f(m))
A#h#(U121(c, c), f(m))A#h#(f(m), c)
A#h#(e, U121(e, e))A#h#(U121(l, l), U121(c, b))
A#h#(U121(e, e), U121(e, b))A#h#(U121(c, a), f(b))
A#h#(U121(e, a), l)A#h#(f(d), f(m))
A#h#(U121(e, c), e)A#h#(f(c), e)
A#h#(f(l), f(d))A#h#(U121(c, a), e)
A#h#(U121(a, a), f(e))A#h#(f(e), e)
A#h#(f(m), U121(c, c))A#h#(U121(e, e), f(d))
A#h#(a, U121(b, b))A#h#(f(l), l)
A#h#(U121(e, e), l)A#h#(e, f(m))
A#h#(f(a), U121(b, b))A#h#(l, c)
A#h#(f(e), b)A#h#(U121(l, l), U121(e, b))
A#h#(U121(e, a), U121(c, b))A#h#(U121(e, c), l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(l), b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(l), d)h#(U121(l, l), b)
h#(f(l), c) 
Thus, the rule A# → h#(f(l), b) is replaced by the following rules:
A# → h#(f(l), d)A# → h#(f(l), c)

Problem 28: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(U121(l, c), U121(c, b))A#h#(U121(e, e), e)
A#h#(U121(e, e), f(c))A#h#(U121(e, c), c)
A#h#(f(l), f(m))A#h#(U121(c, c), f(d))
A#h#(e, e)A#h#(U121(c, a), f(c))
A#h#(U121(c, c), f(l))A#h#(f(e), U121(e, c))
A#h#(f(l), f(l))A#h#(U121(e, e), U121(e, e))
A#h#(f(c), f(c))A#h#(U121(e, a), c)
A#h#(U121(c, c), e)A#h#(U121(e, c), U121(c, c))
A#h#(f(e), f(m))A#h#(U121(e, a), U121(e, c))
A#h#(c, f(c))A#h#(f(m), U121(e, c))
A#h#(f(m), f(m))A#h#(U121(c, c), U121(b, b))
A#h#(U121(c, a), U121(c, b))A#h#(f(d), e)
A#h#(f(e), f(l))A#h#(f(c), U121(e, e))
A#h#(f(e), f(e))A#h#(U121(m, m), U121(c, b))
A#h#(U121(e, c), U121(e, b))A#h#(U121(e, e), U121(c, b))
g#(d, x, x)A#A#h#(f(l), U121(e, c))
A#h#(U121(e, c), f(l))A#h#(f(d), f(d))
A#h#(U121(a, a), U121(e, e))A#h#(U121(c, a), U121(c, c))
A#h#(U121(e, c), U121(e, c))A#h#(U121(l, c), U121(e, b))
A#h#(f(e), l)A#h#(U121(e, a), f(m))
A#h#(f(c), b)A#h#(l, e)
A#h#(f(m), U121(e, e))A#h#(a, f(l))
A#h#(l, f(d))A#h#(c, f(m))
A#h#(c, U121(c, b))A#h#(U121(a, a), U121(c, b))
A#h#(e, b)A#h#(f(m), d)
A#h#(c, d)A#h#(f(m), e)
A#h#(f(m), m)A#h#(l, b)
A#h#(a, f(m))A#h#(f(d), c)
A#h#(e, U121(b, b))A#h#(f(e), f(d))
A#h#(U121(e, e), f(e))A#h#(U121(c, c), b)
A#h#(l, U121(e, b))A#h#(f(l), f(e))
A#h#(U121(c, c), l)A#h#(f(l), c)
A#h#(c, c)A#h#(f(a), l)
A#h#(U121(c, c), U121(e, b))A#h#(U121(c, a), f(m))
A#h#(f(m), c)A#h#(U121(c, c), f(m))
A#h#(e, U121(e, e))A#h#(U121(c, a), f(b))
A#h#(U121(e, e), U121(e, b))A#h#(f(d), f(m))
A#h#(U121(e, a), l)A#h#(f(c), e)
A#h#(U121(e, c), e)A#h#(f(l), f(d))
A#h#(f(e), e)A#h#(U121(a, a), f(e))
A#h#(U121(e, e), f(d))A#h#(f(m), U121(c, c))
A#h#(a, U121(b, b))A#h#(U121(e, e), l)
A#h#(f(l), l)A#h#(e, f(m))
A#h#(f(e), b)A#h#(l, c)
A#h#(f(a), U121(b, b))A#h#(U121(l, l), U121(e, b))
A#h#(U121(e, a), U121(c, b))A#h#(e, l)
A#h#(U121(e, e), U121(e, c))A#h#(U121(e, c), l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U121(l, c), U121(c, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U121(l, c), U121(e, b))h#(U121(l, c), U121(l, b))
Thus, the rule A# → h#(U121(l, c), U121(c, b)) is replaced by the following rules:
A# → h#(U121(l, c), U121(e, b))

Problem 29: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(a, e)
g#(d, x, x)A#A#h#(U121(e, c), U121(e, c))
A#h#(a, l)A#h#(l, e)
A#h#(m, l)A#h#(e, f(c))
A#h#(U121(e, a), f(l))A#h#(e, f(l))
A#h#(c, c)A#h#(U121(c, c), U121(e, b))
A#h#(l, l)A#h#(l, U121(e, c))
A#h#(U121(l, l), U121(e, b))A#h#(c, U121(e, c))
A#h#(U121(e, e), U121(e, c))A#h#(e, l)
A#h#(U121(c, c), U121(c, c))A#h#(d, c)
A#h#(U121(e, e), U121(e, e))A#h#(f(e), f(m))
A#h#(U121(c, a), f(e))A#h#(f(m), f(m))
A#h#(f(m), U121(e, c))A#h#(c, f(c))
A#h#(U121(c, c), U121(b, b))A#h#(U121(c, a), U121(c, b))
A#h#(f(d), e)A#h#(f(e), f(l))
A#h#(f(c), U121(e, e))A#h#(U121(e, e), U121(c, b))
A#h#(U121(e, c), U121(e, b))A#h#(U121(m, m), U121(c, b))
A#h#(f(l), U121(e, c))A#h#(U121(e, c), f(l))
A#h#(f(d), f(d))A#h#(U121(a, a), U121(e, e))
A#h#(U121(c, a), U121(c, c))A#h#(U121(l, c), U121(e, b))
A#h#(f(e), l)A#h#(U121(e, a), f(m))
A#h#(f(c), b)A#h#(U121(e, c), f(d))
A#h#(f(m), U121(e, e))A#h#(a, f(l))
A#h#(c, f(m))A#h#(l, f(d))
A#h#(c, U121(c, b))A#h#(U121(a, a), U121(c, b))
A#h#(e, b)A#h#(f(m), d)
A#h#(c, d)A#h#(f(m), e)
A#h#(f(m), m)A#h#(l, b)
A#h#(a, f(m))A#h#(f(d), c)
A#h#(e, U121(b, b))A#h#(U121(c, c), b)
A#h#(U121(e, e), f(e))A#h#(f(e), f(d))
A#h#(l, U121(e, b))A#h#(U121(c, c), l)
A#h#(f(l), f(e))A#h#(f(l), c)
A#h#(U121(e, a), f(c))A#h#(f(a), l)
A#h#(U121(c, a), f(m))A#h#(U121(c, c), f(m))
A#h#(f(m), c)A#h#(a, U121(e, c))
A#h#(e, U121(e, e))A#h#(U121(e, e), U121(e, b))
A#h#(U121(c, a), f(b))A#h#(U121(e, a), l)
A#h#(f(d), f(m))A#h#(U121(e, c), e)
A#h#(f(c), e)A#h#(f(l), f(d))
A#h#(U121(a, a), f(e))A#h#(f(e), e)
A#h#(f(m), U121(c, c))A#h#(U121(e, e), f(d))
A#h#(a, U121(b, b))A#h#(f(l), l)
A#h#(U121(e, e), l)A#h#(e, f(m))
A#h#(f(a), U121(b, b))A#h#(l, c)
A#h#(f(e), b)A#h#(U121(e, a), U121(c, b))
A#h#(U121(e, c), l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(a, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(d, e) 
h#(c, e) 
Thus, the rule A# → h#(a, e) is replaced by the following rules:
A# → h#(d, e)A# → h#(c, e)

Problem 30: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(U121(e, c), U121(e, c))A#h#(c, f(e))
A#h#(l, f(e))A#h#(e, f(l))
A#h#(c, c)A#h#(U121(c, c), U121(e, b))
A#h#(U121(m, m), U121(e, c))A#h#(l, l)
A#h#(l, U121(e, c))A#h#(U121(l, l), U121(e, b))
A#h#(a, U121(e, e))A#h#(c, U121(e, c))
A#h#(U121(e, e), U121(e, c))A#h#(e, l)
A#h#(U121(c, c), U121(c, c))A#h#(e, f(e))
A#h#(l, U121(c, c))A#h#(c, U121(c, c))
A#h#(U121(e, e), U121(e, e))A#h#(f(m), f(m))
A#h#(U121(c, c), U121(b, b))A#h#(U121(c, a), U121(c, b))
A#h#(U121(e, e), U121(m, m))A#h#(f(d), e)
A#h#(f(e), f(l))A#h#(f(c), U121(e, e))
A#h#(U121(e, e), U121(c, b))A#h#(U121(e, c), U121(e, b))
A#h#(U121(m, m), U121(c, b))A#h#(f(l), U121(e, c))
A#h#(U121(e, c), f(l))A#h#(f(d), f(d))
A#h#(U121(a, a), U121(e, e))A#h#(U121(c, a), U121(c, c))
A#h#(U121(l, c), U121(e, b))A#h#(U121(e, a), U121(e, e))
A#h#(f(e), l)A#h#(U121(e, a), f(m))
A#h#(f(c), b)A#h#(U121(e, c), f(d))
A#h#(m, U121(e, e))A#h#(a, f(l))
A#h#(f(m), U121(e, e))A#h#(l, f(d))
A#h#(c, f(m))A#h#(c, U121(c, b))
A#h#(U121(a, a), U121(c, b))A#h#(e, b)
A#h#(f(m), d)A#h#(c, d)
A#h#(f(m), e)A#h#(f(m), m)
A#h#(a, f(m))A#h#(l, b)
A#h#(f(d), c)A#h#(e, U121(b, b))
A#h#(U121(e, e), f(e))A#h#(U121(c, c), b)
A#h#(f(e), f(d))A#h#(l, U121(e, b))
A#h#(U121(c, c), l)A#h#(f(l), f(e))
A#h#(f(l), c)A#h#(U121(e, a), f(c))
A#h#(f(a), l)A#h#(U121(c, a), f(m))
A#h#(U121(c, c), f(m))A#h#(f(m), c)
A#h#(a, U121(e, c))A#h#(e, U121(e, e))
A#h#(U121(e, e), U121(e, b))A#h#(U121(c, a), f(b))
A#h#(U121(e, a), l)A#h#(f(d), f(m))
A#h#(U121(e, c), e)A#h#(f(c), e)
A#h#(f(l), f(d))A#h#(U121(a, a), f(e))
A#h#(f(e), e)A#h#(f(m), U121(c, c))
A#h#(U121(e, e), f(d))A#h#(a, U121(b, b))
A#h#(f(l), l)A#h#(U121(e, e), l)
A#h#(m, f(e))A#h#(e, f(m))
A#h#(l, c)A#h#(f(e), b)
A#h#(f(a), U121(b, b))A#h#(U121(c, a), U121(e, e))
A#h#(U121(e, a), U121(c, b))A#h#(U121(e, c), l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(c, f(e)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, f(e)) 
h#(c, U121(e, e)) 
h#(l, f(e)) 
Thus, the rule A# → h#(c, f(e)) is replaced by the following rules:
A# → h#(l, f(e))A# → h#(e, f(e))
A# → h#(c, U121(e, e))

Problem 31: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(U121(e, c), U121(e, c))A#h#(a, U121(e, b))
A#h#(e, f(l))A#h#(c, c)
A#h#(U121(c, c), U121(e, b))A#h#(U121(c, c), U121(e, e))
A#h#(l, U121(c, b))A#h#(U121(m, m), U121(e, c))
A#h#(l, l)A#h#(U121(c, a), e)
A#h#(l, U121(e, c))A#h#(U121(l, l), U121(e, b))
A#h#(f(e), U121(e, e))A#h#(U121(e, e), U121(e, c))
A#h#(e, l)A#h#(a, U121(e, e))
A#h#(c, U121(e, c))A#h#(U121(c, c), U121(c, c))
A#h#(c, b)A#h#(U121(c, a), l)
A#h#(a, b)A#h#(U121(e, c), c)
A#h#(U121(e, e), U121(e, e))A#h#(U121(e, a), c)
A#h#(f(m), f(m))A#h#(U121(e, c), m)
A#h#(U121(e, a), d)A#h#(f(l), U121(e, c))
A#h#(U121(e, c), f(l))A#h#(f(d), f(d))
A#h#(U121(a, a), U121(e, e))A#h#(U121(c, a), U121(c, c))
A#h#(U121(l, c), U121(e, b))A#h#(f(e), l)
A#h#(U121(e, a), U121(e, e))A#h#(U121(e, a), f(m))
A#h#(f(c), b)A#h#(U121(e, c), f(d))
A#h#(m, U121(e, e))A#h#(f(m), U121(e, e))
A#h#(a, f(l))A#h#(l, f(d))
A#h#(c, f(m))A#h#(c, U121(c, b))
A#h#(U121(a, a), U121(c, b))A#h#(e, b)
A#h#(f(m), d)A#h#(c, d)
A#h#(f(m), e)A#h#(f(m), m)
A#h#(a, f(m))A#h#(l, b)
A#h#(f(d), c)A#h#(e, U121(b, b))
A#h#(f(e), f(d))A#h#(U121(e, e), f(e))
A#h#(U121(c, c), b)A#h#(l, U121(e, b))
A#h#(f(l), f(e))A#h#(U121(c, c), l)
A#h#(f(l), c)A#h#(U121(e, a), f(c))
A#h#(f(a), l)A#h#(U121(c, a), f(m))
A#h#(f(m), c)A#h#(U121(c, c), f(m))
A#h#(e, U121(e, e))A#h#(a, U121(e, c))
A#h#(U121(c, a), f(b))A#h#(U121(e, e), U121(e, b))
A#h#(f(d), f(m))A#h#(U121(e, a), l)
A#h#(f(c), e)A#h#(U121(e, c), e)
A#h#(f(l), f(d))A#h#(f(e), e)
A#h#(U121(a, a), f(e))A#h#(U121(e, e), f(d))
A#h#(f(m), U121(c, c))A#h#(U121(c, a), m)
A#h#(a, U121(b, b))A#h#(U121(e, e), l)
A#h#(f(l), l)A#h#(e, f(m))
A#h#(m, f(e))A#h#(f(a), U121(b, b))
A#h#(f(e), b)A#h#(l, c)
A#h#(U121(c, a), U121(e, e))A#h#(U121(e, a), U121(c, b))
A#h#(U121(e, c), l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(a, U121(e, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(d, U121(e, b)) 
h#(c, U121(e, b)) 
h#(a, b) 
Thus, the rule A# → h#(a, U121(e, b)) is replaced by the following rules:
A# → h#(c, U121(e, b))A# → h#(a, b)
A# → h#(d, U121(e, b))

Problem 32: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(m, m)A#h#(e, e)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(d, b)
A#h#(f(m), f(m))A#h#(U121(e, c), m)
A#h#(e, m)A#h#(f(e), f(e))
A#h#(U121(e, a), d)A#h#(U121(e, c), U121(e, b))
A#h#(U121(e, c), f(l))A#h#(f(l), U121(e, c))
g#(d, x, x)A#A#h#(a, e)
A#h#(f(d), f(d))A#h#(U121(a, a), U121(e, e))
A#h#(U121(c, a), U121(c, c))A#h#(U121(e, c), U121(e, c))
A#h#(U121(l, c), U121(e, b))A#h#(f(e), l)
A#h#(U121(e, a), U121(e, e))A#h#(U121(e, a), f(m))
A#h#(a, l)A#h#(f(c), b)
A#h#(U121(e, c), f(d))A#h#(m, U121(e, e))
A#h#(f(m), U121(e, e))A#h#(d, d)
A#h#(a, f(l))A#h#(m, l)
A#h#(l, f(d))A#h#(c, f(m))
A#h#(c, U121(c, b))A#h#(U121(a, a), U121(c, b))
A#h#(e, b)A#h#(f(m), d)
A#h#(f(m), e)A#h#(c, d)
A#h#(f(m), m)A#h#(l, b)
A#h#(a, f(m))A#h#(f(d), c)
A#h#(e, U121(b, b))A#h#(U121(e, e), f(e))
A#h#(U121(c, c), b)A#h#(f(e), f(d))
A#h#(l, U121(e, b))A#h#(f(l), f(e))
A#h#(U121(c, c), l)A#h#(f(l), c)
A#h#(U121(e, a), f(c))A#h#(c, c)
A#h#(f(a), l)A#h#(U121(c, a), f(m))
A#h#(U121(c, c), f(m))A#h#(f(m), c)
A#h#(a, U121(e, c))A#h#(e, U121(e, e))
A#h#(l, l)A#h#(U121(e, e), U121(e, b))
A#h#(U121(c, a), f(b))A#h#(U121(e, a), l)
A#h#(f(d), f(m))A#h#(U121(e, c), e)
A#h#(f(c), e)A#h#(f(l), f(d))
A#h#(U121(a, a), f(e))A#h#(f(e), e)
A#h#(f(m), U121(c, c))A#h#(U121(e, e), f(d))
A#h#(U121(c, a), m)A#h#(a, U121(b, b))
A#h#(f(l), l)A#h#(U121(e, e), l)
A#h#(m, f(e))A#h#(e, f(m))
A#h#(l, c)A#h#(f(e), b)
A#h#(f(a), U121(b, b))A#h#(U121(c, a), U121(e, e))
A#h#(f(e), U121(e, e))A#h#(U121(e, a), U121(c, b))
A#h#(a, U121(e, e))A#h#(c, U121(e, c))
A#h#(e, l)A#h#(U121(e, e), U121(e, c))
A#h#(d, U121(e, b))A#h#(U121(e, c), l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(d, b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(m, b) 
h#(d, c) 
h#(d, d) 
Thus, the rule A# → h#(d, b) is replaced by the following rules:
A# → h#(m, b)A# → h#(d, c)
A# → h#(d, d)

Problem 33: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(d, e)
h#(x, x)g#(x, x, f(k))A#h#(m, m)
A#h#(e, e)A#h#(U121(e, e), U121(e, e))
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(f(m), f(m))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U121(e, c), U121(e, c))A#h#(f(e), l)
A#h#(U121(e, a), f(m))A#h#(a, l)
A#h#(f(c), b)A#h#(U121(e, c), f(d))
A#h#(m, U121(e, e))A#h#(d, d)
A#h#(c, e)A#h#(a, f(l))
A#h#(f(m), U121(e, e))A#h#(m, l)
A#h#(l, f(d))A#h#(c, f(m))
A#h#(c, U121(c, b))A#h#(U121(a, a), U121(c, b))
A#h#(e, b)A#h#(f(m), d)
A#h#(f(m), e)A#h#(c, d)
A#h#(m, b)A#h#(f(m), m)
A#h#(l, b)A#h#(a, f(m))
A#h#(f(d), c)A#h#(c, U121(e, b))
A#h#(e, U121(b, b))A#h#(a, U121(c, c))
A#h#(U121(c, a), c)A#h#(f(e), f(d))
A#h#(U121(e, e), f(e))A#h#(U121(c, c), b)
A#h#(l, U121(e, b))A#h#(U121(c, c), l)
A#h#(f(l), f(e))A#h#(f(l), c)
A#h#(a, d)A#h#(e, f(l))
A#h#(U121(e, a), f(c))A#h#(c, c)
A#h#(f(a), l)A#h#(U121(c, a), f(m))
A#h#(U121(c, c), f(m))A#h#(f(m), c)
A#h#(a, U121(e, c))A#h#(e, U121(e, e))
A#h#(l, l)A#h#(U121(e, e), U121(e, b))
A#h#(U121(c, a), f(b))A#h#(U121(e, a), l)
A#h#(f(d), f(m))A#h#(U121(e, c), e)
A#h#(f(c), e)A#h#(f(l), f(d))
A#h#(U121(c, a), e)A#h#(U121(a, a), f(e))
A#h#(f(e), e)A#h#(f(m), U121(c, c))
A#h#(U121(e, e), f(d))A#h#(U121(c, a), m)
A#h#(a, U121(b, b))A#h#(U121(e, a), m)
A#h#(f(l), l)A#h#(U121(e, e), l)
A#h#(m, f(e))A#h#(e, f(m))
A#h#(l, c)A#h#(f(e), b)
A#h#(f(a), U121(b, b))A#h#(U121(c, a), U121(e, e))
A#h#(f(e), U121(e, e))A#h#(U121(e, a), U121(c, b))
A#h#(a, U121(e, e))A#h#(c, U121(e, c))
A#h#(e, l)A#h#(U121(e, e), U121(e, c))
A#h#(d, U121(e, b))A#h#(U121(e, c), l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(d, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(m, e) 
Thus, the rule A# → h#(d, e) is replaced by the following rules:
A# → h#(m, e)

Problem 34: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(m, m)A#h#(e, e)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(f(m), f(m))
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U121(e, c), U121(e, c))
A#h#(U121(c, a), b)A#h#(d, d)
A#h#(U121(e, a), b)A#h#(e, b)
A#h#(f(m), d)A#h#(f(l), m)
A#h#(f(m), e)A#h#(c, d)
A#h#(U121(e, c), f(m))A#h#(f(m), m)
A#h#(m, b)A#h#(a, f(m))
A#h#(c, f(d))A#h#(l, b)
A#h#(f(d), c)A#h#(c, U121(e, b))
A#h#(e, U121(b, b))A#h#(a, U121(c, c))
A#h#(U121(c, a), c)A#h#(f(e), f(d))
A#h#(U121(e, e), f(e))A#h#(U121(c, c), b)
A#h#(l, U121(e, b))A#h#(U121(c, c), l)
A#h#(f(l), f(e))A#h#(a, U121(e, b))
A#h#(f(l), c)A#h#(a, d)
A#h#(e, f(l))A#h#(U121(e, a), f(c))
A#h#(c, c)A#h#(f(a), l)
A#h#(l, f(m))A#h#(m, f(l))
A#h#(U121(c, a), f(m))A#h#(f(m), c)
A#h#(l, U121(c, b))A#h#(f(e), d)
A#h#(U121(c, c), f(m))A#h#(a, U121(e, c))
A#h#(e, U121(e, e))A#h#(l, l)
A#h#(U121(e, e), U121(e, b))A#h#(U121(c, a), f(b))
A#h#(U121(e, a), l)A#h#(f(d), f(m))
A#h#(U121(e, c), e)A#h#(f(c), e)
A#h#(f(c), c)A#h#(f(l), f(d))
A#h#(U121(c, a), e)A#h#(U121(a, a), f(e))
A#h#(f(e), e)A#h#(f(m), U121(c, c))
A#h#(U121(e, e), f(d))A#h#(U121(c, a), m)
A#h#(a, U121(b, b))A#h#(U121(e, a), m)
A#h#(f(l), l)A#h#(U121(e, e), l)
A#h#(m, f(e))A#h#(e, f(m))
A#h#(U121(a, a), U121(e, b))A#h#(l, c)
A#h#(f(e), b)A#h#(f(a), U121(b, b))
A#h#(U121(c, a), U121(e, e))A#h#(f(e), U121(e, e))
A#h#(U121(e, a), U121(c, b))A#h#(a, U121(e, e))
A#h#(c, U121(e, c))A#h#(e, l)
A#h#(U121(e, e), U121(e, c))A#h#(d, U121(e, b))
A#h#(U121(e, c), l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U121(c, a), b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U121(e, a), b)h#(U121(l, a), b)
h#(U121(c, a), c) 
h#(U121(c, a), d) 
Thus, the rule A# → h#(U121(c, a), b) is replaced by the following rules:
A# → h#(U121(c, a), c)A# → h#(U121(c, a), d)
A# → h#(U121(e, a), b)

Problem 35: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(m, m)A#h#(U121(e, c), U121(m, m))
A#h#(e, e)A#h#(U121(e, e), U121(e, e))
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(f(m), f(m))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U121(e, c), U121(e, c))A#h#(d, d)
A#h#(c, f(m))A#h#(m, b)
A#h#(f(m), m)A#h#(a, f(m))
A#h#(c, f(d))A#h#(l, b)
A#h#(f(d), c)A#h#(c, U121(e, b))
A#h#(e, U121(b, b))A#h#(a, U121(c, c))
A#h#(f(e), f(d))A#h#(U121(c, a), c)
A#h#(U121(e, e), f(e))A#h#(U121(c, c), b)
A#h#(l, U121(e, b))A#h#(U121(c, c), l)
A#h#(f(l), f(e))A#h#(a, U121(e, b))
A#h#(f(l), c)A#h#(a, d)
A#h#(e, f(l))A#h#(U121(e, a), f(c))
A#h#(c, c)A#h#(f(a), l)
A#h#(l, f(m))A#h#(m, f(l))
A#h#(U121(c, a), f(m))A#h#(f(m), c)
A#h#(l, U121(c, b))A#h#(f(e), d)
A#h#(U121(c, c), f(m))A#h#(a, U121(e, c))
A#h#(e, U121(e, e))A#h#(U121(e, e), U121(e, b))
A#h#(l, l)A#h#(U121(c, a), f(b))
A#h#(U121(e, a), l)A#h#(f(d), f(m))
A#h#(U121(e, c), e)A#h#(f(c), e)
A#h#(f(c), c)A#h#(f(l), f(d))
A#h#(U121(c, a), e)A#h#(U121(a, a), f(e))
A#h#(f(e), e)A#h#(f(m), U121(c, c))
A#h#(U121(e, e), f(d))A#h#(U121(c, a), m)
A#h#(a, U121(b, b))A#h#(U121(e, a), m)
A#h#(e, d)A#h#(f(l), l)
A#h#(U121(e, e), l)A#h#(m, f(e))
A#h#(e, f(m))A#h#(U121(a, a), U121(e, b))
A#h#(l, c)A#h#(f(e), b)
A#h#(f(a), U121(b, b))A#h#(U121(c, a), U121(e, e))
A#h#(f(e), U121(e, e))A#h#(U121(e, a), U121(c, b))
A#h#(a, U121(e, e))A#h#(c, U121(e, c))
A#h#(e, l)A#h#(U121(e, e), U121(e, c))
A#h#(d, U121(e, b))A#h#(U121(e, c), l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U121(e, c), U121(m, m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 h#(c, U121(m, m))
Thus, the rule A# → h#(U121(e, c), U121(m, m)) is deleted.

Problem 36: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(m, m)A#h#(e, e)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(f(m), f(m))
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U121(e, c), U121(e, c))
A#h#(d, d)A#h#(U121(c, c), d)
A#h#(e, b)A#h#(c, d)
A#h#(l, b)A#h#(U121(e, e), f(e))
A#h#(a, U121(c, c))A#h#(f(e), f(d))
A#h#(U121(c, a), c)A#h#(l, U121(e, b))
A#h#(f(l), f(e))A#h#(U121(c, c), l)
A#h#(f(l), c)A#h#(a, U121(e, b))
A#h#(a, d)A#h#(d, f(m))
A#h#(e, f(l))A#h#(U121(e, a), f(c))
A#h#(c, c)A#h#(f(a), l)
A#h#(l, f(m))A#h#(m, f(l))
A#h#(U121(c, a), f(m))A#h#(m, d)
A#h#(f(m), c)A#h#(l, U121(c, b))
A#h#(f(e), d)A#h#(U121(c, c), f(m))
A#h#(a, U121(e, c))A#h#(e, U121(e, e))
A#h#(U121(e, e), U121(e, b))A#h#(l, l)
A#h#(U121(c, a), f(b))A#h#(U121(e, a), l)
A#h#(f(d), f(m))A#h#(f(c), e)
A#h#(U121(e, c), e)A#h#(f(c), c)
A#h#(f(l), f(d))A#h#(U121(c, a), e)
A#h#(U121(a, a), f(e))A#h#(f(e), e)
A#h#(f(m), U121(c, c))A#h#(U121(e, e), f(d))
A#h#(U121(c, a), m)A#h#(a, U121(b, b))
A#h#(U121(e, a), m)A#h#(e, d)
A#h#(f(l), l)A#h#(U121(e, e), l)
A#h#(m, f(e))A#h#(e, f(m))
A#h#(U121(a, a), U121(e, b))A#h#(l, c)
A#h#(f(e), b)A#h#(f(a), U121(b, b))
A#h#(U121(c, a), U121(e, e))A#h#(f(e), U121(e, e))
A#h#(U121(e, a), U121(c, b))A#h#(a, U121(e, e))
A#h#(c, U121(e, c))A#h#(e, l)
A#h#(U121(e, e), U121(e, c))A#h#(d, U121(e, b))
A#h#(U121(e, c), l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U121(c, c), d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U121(c, c), m)h#(U121(l, c), d)
h#(U121(e, c), d) 
Thus, the rule A# → h#(U121(c, c), d) is replaced by the following rules:
A# → h#(U121(e, c), d)A# → h#(U121(c, c), m)

Problem 37: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(m, m)A#h#(e, e)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(f(m), f(m))
A#h#(f(e), f(e))A#h#(a, e)
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U121(e, c), U121(e, c))A#h#(a, l)
A#h#(d, d)A#h#(m, l)
A#h#(l, U121(e, b))A#h#(f(l), f(e))
A#h#(U121(c, c), l)A#h#(m, U121(c, c))
A#h#(a, U121(e, b))A#h#(f(l), c)
A#h#(a, d)A#h#(e, f(l))
A#h#(d, f(m))A#h#(U121(e, a), f(c))
A#h#(c, c)A#h#(f(a), l)
A#h#(l, f(m))A#h#(m, f(l))
A#h#(U121(c, a), f(m))A#h#(m, d)
A#h#(f(m), c)A#h#(l, U121(c, b))
A#h#(f(e), d)A#h#(U121(c, c), f(m))
A#h#(a, U121(e, c))A#h#(e, U121(e, e))
A#h#(U121(e, e), U121(e, b))A#h#(l, l)
A#h#(U121(c, a), f(b))A#h#(U121(e, a), l)
A#h#(f(d), f(m))A#h#(U121(e, c), e)
A#h#(f(c), e)A#h#(f(c), c)
A#h#(f(l), f(d))A#h#(U121(c, a), e)
A#h#(U121(a, a), f(e))A#h#(f(e), e)
A#h#(f(m), U121(c, c))A#h#(U121(e, e), f(d))
A#h#(U121(c, a), m)A#h#(a, U121(b, b))
A#h#(U121(e, a), m)A#h#(e, d)
A#h#(f(l), l)A#h#(U121(e, e), l)
A#h#(m, f(e))A#h#(e, f(m))
A#h#(U121(a, a), U121(e, b))A#h#(l, c)
A#h#(f(e), b)A#h#(f(a), U121(b, b))
A#h#(l, U121(e, c))A#h#(U121(c, a), U121(e, e))
A#h#(f(e), U121(e, e))A#h#(U121(e, a), U121(c, b))
A#h#(a, U121(e, e))A#h#(c, U121(e, c))
A#h#(e, l)A#h#(U121(e, e), U121(e, c))
A#h#(d, U121(e, b))A#h#(U121(e, c), l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(a, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(d, e) 
h#(c, e) 
Thus, the rule A# → h#(a, e) is replaced by the following rules:
A# → h#(d, e)A# → h#(c, e)

Problem 38: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(m, m)A#h#(e, e)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(f(m), f(m))
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U121(e, c), U121(e, c))
A#h#(d, d)A#h#(e, b)
A#h#(c, d)A#h#(m, b)
A#h#(l, b)A#h#(c, U121(e, b))
A#h#(a, d)A#h#(e, f(l))
A#h#(d, f(m))A#h#(U121(e, a), f(c))
A#h#(f(a), l)A#h#(c, c)
A#h#(m, f(l))A#h#(l, f(m))
A#h#(U121(c, a), f(m))A#h#(m, d)
A#h#(f(m), c)A#h#(l, U121(c, b))
A#h#(f(e), d)A#h#(U121(c, c), f(m))
A#h#(a, U121(e, c))A#h#(e, U121(e, e))
A#h#(U121(e, e), U121(e, b))A#h#(l, l)
A#h#(U121(c, a), f(b))A#h#(U121(e, a), l)
A#h#(f(d), f(m))A#h#(U121(e, c), e)
A#h#(f(c), e)A#h#(f(c), c)
A#h#(f(l), f(d))A#h#(U121(c, a), e)
A#h#(f(e), e)A#h#(U121(a, a), f(e))
A#h#(U121(e, e), f(d))A#h#(f(m), U121(c, c))
A#h#(U121(c, a), m)A#h#(U121(e, a), m)
A#h#(e, d)A#h#(a, U121(b, b))
A#h#(f(l), l)A#h#(U121(e, e), l)
A#h#(m, f(e))A#h#(e, f(m))
A#h#(U121(a, a), U121(e, b))A#h#(l, c)
A#h#(f(e), b)A#h#(f(a), U121(b, b))
A#h#(l, U121(e, c))A#h#(U121(c, a), U121(e, e))
A#h#(f(e), U121(e, e))A#h#(U121(e, a), U121(c, b))
A#h#(a, U121(e, e))A#h#(c, U121(e, c))
A#h#(e, l)A#h#(U121(e, e), U121(e, c))
A#h#(d, U121(e, b))A#h#(U121(e, c), l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, d) 
h#(e, c) 
Thus, the rule A# → h#(e, b) is replaced by the following rules:
A# → h#(e, c)A# → h#(e, d)

Problem 39: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(m, m)A#h#(e, e)
A#h#(a, c)A#h#(U121(e, e), U121(e, e))
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(a, f(e))A#h#(f(m), f(m))
A#h#(f(e), f(e))A#h#(a, e)
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U121(e, c), U121(e, c))A#h#(U121(e, a), U121(e, e))
A#h#(d, d)A#h#(a, f(c))
A#h#(a, U121(c, c))A#h#(U121(e, a), f(l))
A#h#(f(a), l)A#h#(c, c)
A#h#(m, f(l))A#h#(l, f(m))
A#h#(U121(c, a), f(m))A#h#(m, d)
A#h#(f(e), d)A#h#(U121(c, c), f(m))
A#h#(d, m)A#h#(l, U121(c, b))
A#h#(f(m), c)A#h#(a, U121(e, c))
A#h#(e, U121(e, e))A#h#(U121(e, e), U121(e, b))
A#h#(l, l)A#h#(U121(c, a), f(b))
A#h#(U121(e, a), l)A#h#(f(d), f(m))
A#h#(U121(e, c), e)A#h#(f(c), e)
A#h#(f(c), c)A#h#(f(l), f(d))
A#h#(U121(c, a), e)A#h#(f(e), e)
A#h#(U121(a, a), f(e))A#h#(U121(e, e), f(d))
A#h#(f(m), U121(c, c))A#h#(U121(c, a), m)
A#h#(U121(e, a), m)A#h#(a, U121(b, b))
A#h#(e, d)A#h#(U121(e, e), l)
A#h#(f(l), l)A#h#(m, f(e))
A#h#(U121(a, a), U121(e, b))A#h#(e, f(m))
A#h#(l, c)A#h#(f(e), b)
A#h#(f(a), U121(b, b))A#h#(l, U121(e, c))
A#h#(U121(c, a), U121(e, e))A#h#(f(e), U121(e, e))
A#h#(U121(e, a), U121(c, b))A#h#(a, U121(e, e))
A#h#(c, U121(e, c))A#h#(e, l)
A#h#(U121(e, e), U121(e, c))A#h#(d, U121(e, b))
A#h#(U121(e, c), l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(a, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(d, c) 
h#(a, e) 
h#(c, c) 
h#(a, l) 
Thus, the rule A# → h#(a, c) is replaced by the following rules:
A# → h#(a, l)A# → h#(c, c)
A# → h#(d, c)A# → h#(a, e)

Problem 40: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(m, e)A#h#(U121(c, c), U121(c, c))
h#(x, x)g#(x, x, f(k))A#h#(m, m)
A#h#(e, e)A#h#(U121(e, e), U121(e, e))
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(f(m), f(m))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(e, c)A#h#(U121(e, c), U121(e, c))
A#h#(m, U121(e, e))A#h#(d, d)
A#h#(a, f(l))A#h#(c, f(e))
A#h#(e, f(c))A#h#(d, f(c))
A#h#(a, U121(c, c))A#h#(e, f(l))
A#h#(l, f(e))A#h#(U121(e, a), f(l))
A#h#(c, c)A#h#(f(a), l)
A#h#(l, f(m))A#h#(m, f(l))
A#h#(U121(c, a), f(m))A#h#(m, d)
A#h#(f(e), d)A#h#(U121(c, c), f(m))
A#h#(d, m)A#h#(l, U121(c, b))
A#h#(f(m), c)A#h#(a, U121(e, c))
A#h#(e, U121(e, e))A#h#(U121(e, e), U121(e, b))
A#h#(l, l)A#h#(U121(c, a), f(b))
A#h#(U121(e, a), l)A#h#(f(d), f(m))
A#h#(U121(e, c), e)A#h#(f(c), e)
A#h#(f(c), c)A#h#(f(l), f(d))
A#h#(U121(c, a), e)A#h#(U121(a, a), f(e))
A#h#(f(e), e)A#h#(f(m), U121(c, c))
A#h#(U121(e, e), f(d))A#h#(U121(c, a), m)
A#h#(U121(e, a), m)A#h#(e, d)
A#h#(a, U121(b, b))A#h#(U121(e, e), l)
A#h#(f(l), l)A#h#(m, f(e))
A#h#(U121(a, a), U121(e, b))A#h#(e, f(m))
A#h#(l, c)A#h#(f(e), b)
A#h#(f(a), U121(b, b))A#h#(l, U121(e, c))
A#h#(U121(c, a), U121(e, e))A#h#(f(e), U121(e, e))
A#h#(U121(e, a), U121(c, b))A#h#(a, U121(e, e))
A#h#(c, U121(e, c))A#h#(e, l)
A#h#(U121(e, e), U121(e, c))A#h#(d, U121(e, b))
A#h#(U121(e, c), l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(m, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(m, e) is deleted.

Problem 41: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(m, m)A#h#(e, e)
A#h#(d, l)A#h#(U121(e, e), U121(e, e))
A#h#(f(l), f(l))A#h#(m, c)
A#h#(f(c), f(c))A#h#(f(m), f(m))
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(e, c)
A#h#(U121(e, c), U121(e, c))A#h#(d, d)
A#h#(m, U121(c, c))A#h#(e, f(l))
A#h#(l, f(e))A#h#(U121(e, a), f(l))
A#h#(f(a), l)A#h#(c, c)
A#h#(m, f(l))A#h#(l, f(m))
A#h#(U121(c, a), f(m))A#h#(m, d)
A#h#(f(e), d)A#h#(U121(c, c), f(m))
A#h#(d, m)A#h#(l, U121(c, b))
A#h#(f(m), c)A#h#(a, U121(e, c))
A#h#(e, U121(e, e))A#h#(U121(e, e), U121(e, b))
A#h#(l, l)A#h#(U121(c, a), f(b))
A#h#(U121(e, a), l)A#h#(f(d), f(m))
A#h#(U121(e, c), e)A#h#(f(c), e)
A#h#(f(c), c)A#h#(f(l), f(d))
A#h#(U121(c, a), e)A#h#(U121(a, a), f(e))
A#h#(f(e), e)A#h#(f(m), U121(c, c))
A#h#(U121(e, e), f(d))A#h#(U121(c, a), m)
A#h#(a, U121(b, b))A#h#(U121(e, a), m)
A#h#(e, d)A#h#(U121(e, e), l)
A#h#(f(l), l)A#h#(m, f(e))
A#h#(U121(a, a), U121(e, b))A#h#(e, f(m))
A#h#(l, c)A#h#(f(e), b)
A#h#(f(a), U121(b, b))A#h#(l, U121(e, c))
A#h#(U121(c, a), U121(e, e))A#h#(f(e), U121(e, e))
A#h#(U121(e, a), U121(c, b))A#h#(a, U121(e, e))
A#h#(c, U121(e, c))A#h#(e, l)
A#h#(U121(e, e), U121(e, c))A#h#(d, U121(e, b))
A#h#(U121(e, c), l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(d, l) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(m, l) 
Thus, the rule A# → h#(d, l) is replaced by the following rules:
A# → h#(m, l)

Problem 42: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(U121(e, e), d)A#h#(m, m)
A#h#(e, e)A#h#(U121(e, e), U121(e, e))
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(f(e), m)A#h#(f(m), f(m))
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U121(e, c), U121(e, c))
A#h#(d, d)A#h#(c, c)
A#h#(l, U121(c, b))A#h#(a, U121(e, c))
A#h#(e, U121(e, e))A#h#(U121(e, e), U121(e, b))
A#h#(l, l)A#h#(U121(c, a), f(b))
A#h#(f(d), f(m))A#h#(U121(e, a), l)
A#h#(f(c), e)A#h#(U121(e, c), e)
A#h#(f(c), c)A#h#(f(l), f(d))
A#h#(U121(c, a), e)A#h#(U121(a, a), f(e))
A#h#(f(e), e)A#h#(f(m), U121(c, c))
A#h#(U121(e, e), f(d))A#h#(U121(c, a), m)
A#h#(e, d)A#h#(a, U121(b, b))
A#h#(U121(e, a), m)A#h#(f(l), l)
A#h#(U121(e, e), l)A#h#(e, f(m))
A#h#(m, f(e))A#h#(U121(a, a), U121(e, b))
A#h#(l, c)A#h#(f(a), U121(b, b))
A#h#(f(e), b)A#h#(l, U121(e, c))
A#h#(U121(c, a), U121(e, e))A#h#(U121(e, a), U121(c, b))
A#h#(f(e), U121(e, e))A#h#(a, U121(e, e))
A#h#(c, U121(e, c))A#h#(e, l)
A#h#(U121(e, e), U121(e, c))A#h#(d, U121(e, b))
A#h#(U121(e, c), l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U121(e, e), d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U121(e, e), m) 
h#(e, d) 
Thus, the rule A# → h#(U121(e, e), d) is replaced by the following rules:
A# → h#(U121(e, e), m)A# → h#(e, d)

Problem 43: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(a, f(d))A#h#(m, m)
A#h#(U121(e, a), U121(d, d))A#h#(e, e)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(f(m), f(m))
A#h#(f(e), f(e))A#h#(d, f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U121(c, a), U121(c, c))A#h#(U121(e, c), U121(e, c))
A#h#(U121(e, a), U121(e, e))A#h#(U121(e, a), f(m))
A#h#(U121(c, a), b)A#h#(U121(c, a), f(l))
A#h#(d, d)A#h#(U121(e, a), b)
A#h#(a, f(b))A#h#(c, f(e))
A#h#(a, U121(e, b))A#h#(U121(e, a), f(c))
A#h#(c, c)A#h#(U121(c, a), f(m))
A#h#(l, l)A#h#(U121(e, e), U121(e, b))
A#h#(f(d), f(m))A#h#(U121(e, a), l)
A#h#(U121(e, c), e)A#h#(f(c), e)
A#h#(f(l), f(d))A#h#(f(c), c)
A#h#(U121(c, a), e)A#h#(U121(a, a), f(e))
A#h#(f(e), e)A#h#(f(m), U121(c, c))
A#h#(U121(e, e), f(d))A#h#(U121(c, a), m)
A#h#(e, d)A#h#(a, U121(b, b))
A#h#(U121(e, a), m)A#h#(f(l), l)
A#h#(U121(e, e), l)A#h#(U121(a, a), U121(e, b))
A#h#(e, f(m))A#h#(m, f(e))
A#h#(l, c)A#h#(f(e), b)
A#h#(f(a), U121(b, b))A#h#(l, U121(e, c))
A#h#(U121(c, a), U121(e, e))A#h#(U121(e, a), U121(c, b))
A#h#(f(e), U121(e, e))A#h#(U121(e, e), U121(e, c))
A#h#(c, U121(e, c))A#h#(d, U121(e, b))
A#h#(a, U121(e, e))A#h#(U121(e, c), l)
A#h#(e, l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(a, f(d)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(a, f(m))h#(a, U121(d, d))
h#(d, f(d)) 
h#(c, f(d)) 
Thus, the rule A# → h#(a, f(d)) is replaced by the following rules:
A# → h#(d, f(d))A# → h#(c, f(d))
A# → h#(a, f(m))

Problem 44: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(m, m)A#h#(e, e)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(m, c)A#h#(f(c), f(c))
A#h#(U121(e, a), c)A#h#(d, b)
A#h#(f(m), f(m))A#h#(U121(e, a), d)
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(a, e)A#h#(f(d), f(d))
A#h#(U121(e, c), U121(e, c))A#h#(a, l)
A#h#(d, d)A#h#(m, l)
A#h#(e, b)A#h#(c, d)
A#h#(a, f(b))A#h#(c, f(e))
A#h#(d, f(d))A#h#(c, f(d))
A#h#(a, f(m))A#h#(l, b)
A#h#(a, U121(c, c))A#h#(U121(c, a), c)
A#h#(a, U121(e, b))A#h#(a, d)
A#h#(U121(e, a), f(l))A#h#(U121(e, a), f(c))
A#h#(c, c)A#h#(U121(c, a), f(m))
A#h#(a, U121(e, c))A#h#(l, l)
A#h#(U121(e, e), U121(e, b))A#h#(f(d), f(m))
A#h#(U121(e, a), l)A#h#(U121(e, c), e)
A#h#(f(c), e)A#h#(f(l), f(d))
A#h#(f(c), c)A#h#(U121(c, a), e)
A#h#(U121(a, a), f(e))A#h#(f(e), e)
A#h#(f(m), U121(c, c))A#h#(U121(e, e), f(d))
A#h#(U121(c, a), m)A#h#(a, U121(b, b))
A#h#(U121(e, a), m)A#h#(e, d)
A#h#(f(l), l)A#h#(U121(e, e), l)
A#h#(U121(a, a), U121(e, b))A#h#(m, f(e))
A#h#(e, f(m))A#h#(l, c)
A#h#(f(e), b)A#h#(f(a), U121(b, b))
A#h#(l, U121(e, c))A#h#(U121(c, a), U121(e, e))
A#h#(U121(e, a), U121(c, b))A#h#(f(e), U121(e, e))
A#h#(U121(e, e), U121(e, c))A#h#(c, U121(e, c))
A#h#(d, U121(e, b))A#h#(a, U121(e, e))
A#h#(U121(e, c), l)A#h#(e, l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(m, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(m, e) 
h#(m, l) 
Thus, the rule A# → h#(m, c) is replaced by the following rules:
A# → h#(m, e)A# → h#(m, l)

Problem 45: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(m, m)A#h#(e, e)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(l, f(l))A#h#(f(c), f(c))
A#h#(f(m), f(m))A#h#(l, f(c))
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(e, c)
A#h#(U121(e, c), U121(e, c))A#h#(d, d)
A#h#(m, f(c))A#h#(c, U121(c, b))
A#h#(l, U121(b, b))A#h#(c, f(e))
A#h#(d, f(d))A#h#(m, b)
A#h#(e, f(c))A#h#(e, f(b))
A#h#(d, f(c))A#h#(l, f(b))
A#h#(a, f(m))A#h#(c, f(d))
A#h#(l, b)A#h#(e, U121(b, b))
A#h#(a, f(c))A#h#(U121(c, a), c)
A#h#(a, U121(c, c))A#h#(a, U121(e, b))
A#h#(a, d)A#h#(e, f(l))
A#h#(m, f(d))A#h#(U121(e, a), f(l))
A#h#(U121(e, a), f(c))A#h#(c, c)
A#h#(U121(c, a), f(m))A#h#(a, U121(e, c))
A#h#(m, U121(b, b))A#h#(l, l)
A#h#(U121(e, e), U121(e, b))A#h#(f(d), f(m))
A#h#(U121(e, a), l)A#h#(U121(e, c), e)
A#h#(f(c), e)A#h#(f(l), f(d))
A#h#(f(c), c)A#h#(U121(c, a), e)
A#h#(f(e), e)A#h#(U121(a, a), f(e))
A#h#(U121(e, e), f(d))A#h#(f(m), U121(c, c))
A#h#(U121(c, a), m)A#h#(a, U121(b, b))
A#h#(e, d)A#h#(U121(e, a), m)
A#h#(U121(e, e), l)A#h#(f(l), l)
A#h#(U121(a, a), U121(e, b))A#h#(m, f(e))
A#h#(e, f(m))A#h#(l, c)
A#h#(f(e), b)A#h#(f(a), U121(b, b))
A#h#(l, U121(e, c))A#h#(m, U121(e, b))
A#h#(U121(c, a), U121(e, e))A#h#(U121(e, a), U121(c, b))
A#h#(f(e), U121(e, e))A#h#(U121(e, e), U121(e, c))
A#h#(c, U121(e, c))A#h#(d, U121(e, b))
A#h#(a, U121(e, e))A#h#(U121(e, c), l)
A#h#(e, l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(l, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 h#(l, U121(l, l))
Thus, the rule A# → h#(l, f(l)) is deleted.

Problem 46: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(m, e)A#h#(U121(c, c), U121(c, c))
h#(x, x)g#(x, x, f(k))A#h#(m, m)
A#h#(m, U121(e, c))A#h#(e, e)
A#h#(d, l)A#h#(U121(e, e), U121(e, e))
A#h#(f(l), f(l))A#h#(m, c)
A#h#(f(c), f(c))A#h#(f(m), f(m))
A#h#(f(e), f(e))A#h#(d, f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U121(e, c), U121(e, c))A#h#(d, d)
A#h#(m, f(c))A#h#(d, f(l))
A#h#(l, f(b))A#h#(e, U121(b, b))
A#h#(c, U121(e, b))A#h#(a, U121(c, c))
A#h#(a, f(c))A#h#(U121(c, a), c)
A#h#(m, U121(c, c))A#h#(a, U121(e, b))
A#h#(a, d)A#h#(l, f(e))
A#h#(d, f(m))A#h#(e, f(l))
A#h#(m, f(d))A#h#(U121(e, a), f(l))
A#h#(U121(e, a), f(c))A#h#(c, c)
A#h#(l, f(m))A#h#(m, f(l))
A#h#(U121(c, a), f(m))A#h#(m, d)
A#h#(l, U121(c, b))A#h#(e, U121(e, e))
A#h#(a, U121(e, c))A#h#(m, U121(b, b))
A#h#(l, l)A#h#(U121(e, e), U121(e, b))
A#h#(f(d), f(m))A#h#(U121(e, a), l)
A#h#(f(c), e)A#h#(U121(e, c), e)
A#h#(f(c), c)A#h#(f(l), f(d))
A#h#(U121(c, a), e)A#h#(U121(a, a), f(e))
A#h#(f(e), e)A#h#(U121(e, e), f(d))
A#h#(f(m), U121(c, c))A#h#(U121(c, a), m)
A#h#(a, U121(b, b))A#h#(e, d)
A#h#(U121(e, a), m)A#h#(U121(e, e), l)
A#h#(f(l), l)A#h#(U121(a, a), U121(e, b))
A#h#(m, f(e))A#h#(e, f(m))
A#h#(l, c)A#h#(f(e), b)
A#h#(f(a), U121(b, b))A#h#(l, U121(e, c))
A#h#(m, U121(e, b))A#h#(U121(c, a), U121(e, e))
A#h#(U121(e, a), U121(c, b))A#h#(f(e), U121(e, e))
A#h#(U121(e, e), U121(e, c))A#h#(c, U121(e, c))
A#h#(d, U121(e, b))A#h#(a, U121(e, e))
A#h#(U121(e, c), l)A#h#(e, l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(m, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(m, e) is deleted.

Problem 47: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(d, e)
h#(x, x)g#(x, x, f(k))A#h#(m, m)
A#h#(e, e)A#h#(U121(e, e), U121(e, e))
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(f(m), f(m))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U121(e, c), U121(e, c))A#h#(a, l)
A#h#(d, d)A#h#(c, e)
A#h#(m, l)A#h#(a, U121(c, c))
A#h#(a, f(c))A#h#(l, U121(e, b))
A#h#(m, U121(c, c))A#h#(a, U121(e, b))
A#h#(a, d)A#h#(e, f(l))
A#h#(d, f(m))A#h#(U121(e, a), f(l))
A#h#(m, f(d))A#h#(l, f(e))
A#h#(U121(e, a), f(c))A#h#(c, c)
A#h#(l, f(m))A#h#(m, f(l))
A#h#(U121(c, a), f(m))A#h#(m, d)
A#h#(l, U121(c, b))A#h#(e, U121(e, e))
A#h#(a, U121(e, c))A#h#(m, U121(b, b))
A#h#(l, l)A#h#(U121(e, e), U121(e, b))
A#h#(f(d), f(m))A#h#(U121(e, a), l)
A#h#(f(c), e)A#h#(U121(e, c), e)
A#h#(f(c), c)A#h#(f(l), f(d))
A#h#(U121(c, a), e)A#h#(f(e), e)
A#h#(U121(a, a), f(e))A#h#(f(m), U121(c, c))
A#h#(U121(e, e), f(d))A#h#(U121(c, a), m)
A#h#(a, U121(b, b))A#h#(e, d)
A#h#(U121(e, a), m)A#h#(U121(e, e), l)
A#h#(f(l), l)A#h#(U121(a, a), U121(e, b))
A#h#(m, f(e))A#h#(e, f(m))
A#h#(l, c)A#h#(f(e), b)
A#h#(f(a), U121(b, b))A#h#(l, U121(e, c))
A#h#(m, U121(e, b))A#h#(U121(c, a), U121(e, e))
A#h#(U121(e, a), U121(c, b))A#h#(f(e), U121(e, e))
A#h#(U121(e, e), U121(e, c))A#h#(c, U121(e, c))
A#h#(d, U121(e, b))A#h#(a, U121(e, e))
A#h#(U121(e, c), l)A#h#(e, l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(d, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(m, e) 
Thus, the rule A# → h#(d, e) is replaced by the following rules:
A# → h#(m, e)

Problem 48: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(m, m)A#h#(e, e)
A#h#(d, l)A#h#(U121(e, e), U121(e, e))
A#h#(f(l), f(l))A#h#(m, c)
A#h#(f(c), f(c))A#h#(f(m), f(m))
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(d, f(e))A#h#(f(d), f(d))
A#h#(U121(e, c), U121(e, c))A#h#(d, d)
A#h#(m, f(c))A#h#(d, f(l))
A#h#(a, U121(c, c))A#h#(l, U121(e, b))
A#h#(m, U121(c, c))A#h#(a, U121(e, b))
A#h#(a, d)A#h#(m, f(d))
A#h#(d, f(m))A#h#(e, f(l))
A#h#(l, f(e))A#h#(U121(e, a), f(l))
A#h#(U121(e, a), f(c))A#h#(c, c)
A#h#(l, f(m))A#h#(m, f(l))
A#h#(U121(c, a), f(m))A#h#(m, d)
A#h#(l, U121(c, b))A#h#(e, U121(e, e))
A#h#(a, U121(e, c))A#h#(m, U121(b, b))
A#h#(l, l)A#h#(U121(e, e), U121(e, b))
A#h#(f(d), f(m))A#h#(U121(e, a), l)
A#h#(f(c), e)A#h#(U121(e, c), e)
A#h#(f(c), c)A#h#(f(l), f(d))
A#h#(U121(c, a), e)A#h#(U121(a, a), f(e))
A#h#(f(e), e)A#h#(f(m), U121(c, c))
A#h#(U121(e, e), f(d))A#h#(U121(c, a), m)
A#h#(a, U121(b, b))A#h#(e, d)
A#h#(U121(e, a), m)A#h#(U121(e, e), l)
A#h#(f(l), l)A#h#(U121(a, a), U121(e, b))
A#h#(m, f(e))A#h#(e, f(m))
A#h#(l, c)A#h#(f(e), b)
A#h#(f(a), U121(b, b))A#h#(l, U121(e, c))
A#h#(m, U121(e, b))A#h#(U121(c, a), U121(e, e))
A#h#(U121(e, a), U121(c, b))A#h#(f(e), U121(e, e))
A#h#(U121(e, e), U121(e, c))A#h#(c, U121(e, c))
A#h#(d, U121(e, b))A#h#(a, U121(e, e))
A#h#(U121(e, c), l)A#h#(e, l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(d, l) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(m, l) 
Thus, the rule A# → h#(d, l) is replaced by the following rules:
A# → h#(m, l)

Problem 49: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(m, e)A#h#(U121(c, c), U121(c, c))
h#(x, x)g#(x, x, f(k))A#h#(m, m)
A#h#(e, e)A#h#(d, l)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(m, c)A#h#(f(c), f(c))
A#h#(f(m), f(m))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(a, e)
A#h#(f(d), f(d))A#h#(U121(e, c), U121(e, c))
A#h#(a, l)A#h#(d, d)
A#h#(m, l)A#h#(e, b)
A#h#(c, d)A#h#(m, b)
A#h#(l, b)A#h#(c, U121(e, b))
A#h#(a, d)A#h#(e, f(l))
A#h#(m, f(d))A#h#(d, f(m))
A#h#(l, f(e))A#h#(U121(e, a), f(l))
A#h#(U121(e, a), f(c))A#h#(c, c)
A#h#(l, f(m))A#h#(m, f(l))
A#h#(U121(c, a), f(m))A#h#(m, d)
A#h#(l, U121(c, b))A#h#(e, U121(e, e))
A#h#(a, U121(e, c))A#h#(m, U121(b, b))
A#h#(l, l)A#h#(U121(e, e), U121(e, b))
A#h#(f(d), f(m))A#h#(U121(e, a), l)
A#h#(f(c), e)A#h#(U121(e, c), e)
A#h#(f(c), c)A#h#(f(l), f(d))
A#h#(U121(c, a), e)A#h#(U121(a, a), f(e))
A#h#(f(e), e)A#h#(f(m), U121(c, c))
A#h#(U121(e, e), f(d))A#h#(U121(c, a), m)
A#h#(a, U121(b, b))A#h#(e, d)
A#h#(U121(e, a), m)A#h#(f(l), l)
A#h#(U121(e, e), l)A#h#(U121(a, a), U121(e, b))
A#h#(m, f(e))A#h#(e, f(m))
A#h#(l, c)A#h#(f(e), b)
A#h#(f(a), U121(b, b))A#h#(l, U121(e, c))
A#h#(m, U121(e, b))A#h#(U121(c, a), U121(e, e))
A#h#(U121(e, a), U121(c, b))A#h#(f(e), U121(e, e))
A#h#(U121(e, e), U121(e, c))A#h#(c, U121(e, c))
A#h#(d, U121(e, b))A#h#(a, U121(e, e))
A#h#(U121(e, c), l)A#h#(e, l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(m, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(m, e) is deleted.

Problem 50: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(c, m)A#h#(l, d)
A#h#(m, m)A#h#(e, e)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(f(m), f(m))
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U121(e, c), U121(e, c))
A#h#(d, d)A#h#(U121(e, a), f(l))
A#h#(l, f(e))A#h#(m, f(d))
A#h#(e, f(l))A#h#(d, f(m))
A#h#(U121(e, a), f(c))A#h#(c, c)
A#h#(l, f(m))A#h#(m, f(l))
A#h#(U121(c, a), f(m))A#h#(m, d)
A#h#(d, m)A#h#(l, U121(c, b))
A#h#(e, U121(e, e))A#h#(a, U121(e, c))
A#h#(m, U121(b, b))A#h#(l, l)
A#h#(U121(e, e), U121(e, b))A#h#(f(d), f(m))
A#h#(U121(e, a), l)A#h#(f(c), e)
A#h#(U121(e, c), e)A#h#(f(c), c)
A#h#(f(l), f(d))A#h#(U121(c, a), e)
A#h#(f(e), e)A#h#(U121(a, a), f(e))
A#h#(U121(e, e), f(d))A#h#(f(m), U121(c, c))
A#h#(U121(c, a), m)A#h#(e, d)
A#h#(a, U121(b, b))A#h#(U121(e, a), m)
A#h#(f(l), l)A#h#(U121(e, e), l)
A#h#(U121(a, a), U121(e, b))A#h#(m, f(e))
A#h#(e, f(m))A#h#(l, c)
A#h#(f(e), b)A#h#(f(a), U121(b, b))
A#h#(l, U121(e, c))A#h#(m, U121(e, b))
A#h#(U121(c, a), U121(e, e))A#h#(U121(e, a), U121(c, b))
A#h#(f(e), U121(e, e))A#h#(U121(e, e), U121(e, c))
A#h#(c, U121(e, c))A#h#(d, U121(e, b))
A#h#(a, U121(e, e))A#h#(U121(e, c), l)
A#h#(e, l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(c, m) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(l, m) 
h#(e, m) 
Thus, the rule A# → h#(c, m) is replaced by the following rules:
A# → h#(l, m)A# → h#(e, m)

Problem 51: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(m, m)A#h#(e, e)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(f(m), f(m))
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U121(e, c), U121(e, c))
A#h#(l, e)A#h#(d, d)
A#h#(m, l)A#h#(c, f(e))
A#h#(a, f(c))A#h#(a, U121(c, c))
A#h#(U121(e, a), f(l))A#h#(c, c)
A#h#(l, f(m))A#h#(m, f(l))
A#h#(U121(c, a), f(m))A#h#(m, d)
A#h#(d, m)A#h#(l, U121(c, b))
A#h#(e, U121(e, e))A#h#(a, U121(e, c))
A#h#(l, l)A#h#(m, U121(b, b))
A#h#(U121(e, e), U121(e, b))A#h#(f(d), f(m))
A#h#(U121(e, a), l)A#h#(f(c), e)
A#h#(U121(e, c), e)A#h#(f(c), c)
A#h#(f(l), f(d))A#h#(U121(c, a), e)
A#h#(f(e), e)A#h#(U121(a, a), f(e))
A#h#(U121(e, e), f(d))A#h#(f(m), U121(c, c))
A#h#(U121(c, a), m)A#h#(e, d)
A#h#(a, U121(b, b))A#h#(U121(e, a), m)
A#h#(f(l), l)A#h#(U121(e, e), l)
A#h#(U121(a, a), U121(e, b))A#h#(m, f(e))
A#h#(e, f(m))A#h#(f(e), b)
A#h#(l, c)A#h#(f(a), U121(b, b))
A#h#(l, U121(e, c))A#h#(m, U121(e, b))
A#h#(U121(c, a), U121(e, e))A#h#(U121(e, a), U121(c, b))
A#h#(f(e), U121(e, e))A#h#(U121(e, e), U121(e, c))
A#h#(c, U121(e, c))A#h#(d, U121(e, b))
A#h#(a, U121(e, e))A#h#(U121(e, c), l)
A#h#(e, l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(l, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(l, e) is deleted.

Problem 52: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(m, m)A#h#(m, U121(e, c))
A#h#(e, e)A#h#(d, l)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(m, c)A#h#(f(c), f(c))
A#h#(f(m), f(m))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(d, f(e))
A#h#(f(d), f(d))A#h#(U121(e, c), U121(e, c))
A#h#(d, d)A#h#(d, f(l))
A#h#(m, f(c))A#h#(a, U121(c, c))
A#h#(m, U121(c, c))A#h#(e, f(l))
A#h#(l, f(e))A#h#(U121(e, a), f(l))
A#h#(c, c)A#h#(l, f(m))
A#h#(m, f(l))A#h#(U121(c, a), f(m))
A#h#(m, d)A#h#(l, U121(c, b))
A#h#(d, m)A#h#(e, U121(e, e))
A#h#(a, U121(e, c))A#h#(l, l)
A#h#(m, U121(b, b))A#h#(U121(e, e), U121(e, b))
A#h#(f(d), f(m))A#h#(U121(e, a), l)
A#h#(f(c), e)A#h#(U121(e, c), e)
A#h#(f(c), c)A#h#(f(l), f(d))
A#h#(U121(c, a), e)A#h#(f(e), e)
A#h#(U121(a, a), f(e))A#h#(U121(e, e), f(d))
A#h#(f(m), U121(c, c))A#h#(U121(c, a), m)
A#h#(a, U121(b, b))A#h#(U121(e, a), m)
A#h#(e, d)A#h#(f(l), l)
A#h#(U121(e, e), l)A#h#(e, f(m))
A#h#(m, f(e))A#h#(U121(a, a), U121(e, b))
A#h#(f(e), b)A#h#(l, c)
A#h#(f(a), U121(b, b))A#h#(l, U121(e, c))
A#h#(m, U121(e, b))A#h#(U121(c, a), U121(e, e))
A#h#(U121(e, a), U121(c, b))A#h#(f(e), U121(e, e))
A#h#(U121(e, e), U121(e, c))A#h#(c, U121(e, c))
A#h#(d, U121(e, b))A#h#(a, U121(e, e))
A#h#(U121(e, c), l)A#h#(e, l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(m, U121(e, c)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(m, c) 
Thus, the rule A# → h#(m, U121(e, c)) is replaced by the following rules:
A# → h#(m, c)

Problem 53: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(m, m)A#h#(e, e)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(f(m), f(m))
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U121(e, c), U121(e, c))
A#h#(d, d)A#h#(d, f(m))
A#h#(c, c)A#h#(l, f(m))
A#h#(m, d)A#h#(l, U121(c, b))
A#h#(d, m)A#h#(a, U121(e, c))
A#h#(e, U121(e, e))A#h#(m, U121(b, b))
A#h#(l, l)A#h#(U121(e, e), U121(e, b))
A#h#(U121(e, a), l)A#h#(f(d), f(m))
A#h#(f(c), e)A#h#(U121(e, c), e)
A#h#(f(c), c)A#h#(f(l), f(d))
A#h#(U121(c, a), e)A#h#(f(e), e)
A#h#(U121(a, a), f(e))A#h#(U121(e, e), f(d))
A#h#(f(m), U121(c, c))A#h#(U121(c, a), m)
A#h#(U121(e, a), m)A#h#(e, d)
A#h#(a, U121(b, b))A#h#(U121(e, e), l)
A#h#(f(l), l)A#h#(e, f(m))
A#h#(m, f(e))A#h#(U121(a, a), U121(e, b))
A#h#(f(a), U121(b, b))A#h#(f(e), b)
A#h#(l, c)A#h#(m, U121(e, b))
A#h#(l, U121(e, c))A#h#(U121(c, a), U121(e, e))
A#h#(U121(e, a), U121(c, b))A#h#(f(e), U121(e, e))
A#h#(U121(e, e), U121(e, c))A#h#(c, U121(e, c))
A#h#(d, U121(e, b))A#h#(a, U121(e, e))
A#h#(U121(e, c), l)A#h#(e, l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(d, f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(m, f(m))h#(d, U121(m, m))
Thus, the rule A# → h#(d, f(m)) is replaced by the following rules:
A# → h#(m, f(m))

Problem 54: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(U121(e, c), U121(e, c))
h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(m, m)A#h#(e, e)
A#h#(c, c)A#h#(f(l), f(l))
A#h#(U121(e, e), U121(e, e))A#h#(l, l)
A#h#(f(c), f(c))A#h#(U121(c, c), e)
A#h#(U121(e, c), e)A#h#(U121(e, e), b)
A#h#(f(c), c)A#h#(f(l), f(d))
A#h#(U121(c, a), e)A#h#(U121(a, a), f(e))
A#h#(f(e), e)A#h#(f(m), f(m))
A#h#(f(m), U121(c, c))A#h#(U121(e, e), f(d))
A#h#(U121(c, a), m)A#h#(a, U121(b, b))
A#h#(e, d)A#h#(U121(e, a), m)
A#h#(f(l), l)A#h#(U121(e, e), l)
A#h#(U121(a, a), U121(e, b))A#h#(m, f(e))
A#h#(e, f(m))A#h#(l, c)
A#h#(f(e), b)A#h#(f(a), U121(b, b))
A#h#(l, U121(e, c))A#h#(m, U121(e, b))
A#h#(f(e), f(e))A#h#(U121(c, a), U121(e, e))
A#h#(U121(e, a), U121(c, b))A#h#(f(e), U121(e, e))
g#(d, x, x)A#A#h#(a, U121(e, e))
A#h#(e, l)A#h#(U121(e, e), U121(e, c))
A#h#(d, U121(e, b))A#h#(c, U121(e, c))
A#h#(U121(e, c), l)A#h#(f(d), f(d))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U121(c, c), e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U121(e, c), e)h#(U121(l, c), e)
Thus, the rule A# → h#(U121(c, c), e) is replaced by the following rules:
A# → h#(U121(e, c), e)

Problem 55: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(U121(e, c), U121(e, c))
h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(m, m)A#h#(e, e)
A#h#(c, c)A#h#(e, U121(e, e))
A#h#(f(l), f(l))A#h#(U121(e, e), U121(e, e))
A#h#(l, l)A#h#(l, U121(e, e))
A#h#(f(c), f(c))A#h#(f(m), f(m))
A#h#(U121(e, e), f(d))A#h#(f(m), U121(c, c))
A#h#(U121(c, a), m)A#h#(U121(e, a), m)
A#h#(a, U121(b, b))A#h#(e, d)
A#h#(f(l), l)A#h#(U121(e, e), l)
A#h#(U121(a, a), U121(e, b))A#h#(e, f(m))
A#h#(m, f(e))A#h#(l, c)
A#h#(f(e), b)A#h#(f(a), U121(b, b))
A#h#(f(e), f(e))A#h#(l, U121(e, c))
A#h#(m, U121(e, b))A#h#(U121(c, a), U121(e, e))
g#(d, x, x)A#A#h#(U121(e, a), U121(c, b))
A#h#(f(e), U121(e, e))A#h#(a, e)
A#h#(d, f(e))A#h#(f(d), f(d))
A#h#(e, l)A#h#(U121(e, c), l)
A#h#(c, U121(e, c))A#h#(d, U121(e, b))
A#h#(a, U121(e, e))A#h#(U121(e, e), U121(e, c))
A#h#(U121(a, a), U121(e, e))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, U121(e, e)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, e) 
Thus, the rule A# → h#(e, U121(e, e)) is replaced by the following rules:
A# → h#(e, e)

Problem 56: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(U121(e, c), U121(e, c))
h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(m, m)A#h#(l, d)
A#h#(a, U121(e, b))A#h#(e, e)
A#h#(c, c)A#h#(l, U121(c, b))
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(l, l)A#h#(m, U121(b, b))
A#h#(e, U121(e, b))A#h#(f(c), f(c))
A#h#(e, U121(c, b))A#h#(f(m), f(m))
A#h#(e, d)A#h#(f(l), l)
A#h#(U121(e, e), l)A#h#(e, f(m))
A#h#(U121(a, a), U121(e, b))A#h#(m, f(e))
A#h#(e, m)A#h#(f(a), U121(b, b))
A#h#(l, c)A#h#(f(e), b)
A#h#(f(e), f(e))A#h#(m, U121(e, b))
A#h#(l, U121(e, c))A#h#(U121(c, a), U121(e, e))
A#h#(e, f(d))g#(d, x, x)A#
A#h#(d, f(e))A#h#(a, e)
A#h#(f(e), U121(e, e))A#h#(U121(e, a), U121(c, b))
A#h#(f(d), f(d))A#h#(e, l)
A#h#(a, U121(e, e))A#h#(U121(e, e), U121(e, c))
A#h#(c, U121(e, c))A#h#(d, U121(e, b))
A#h#(U121(e, c), l)A#h#(U121(a, a), U121(e, e))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(l, d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(l, m) 
Thus, the rule A# → h#(l, d) is replaced by the following rules:
A# → h#(l, m)

Problem 57: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(U121(e, c), U121(e, c))
h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(m, m)A#h#(c, d)
A#h#(a, m)A#h#(e, e)
A#h#(c, c)A#h#(m, d)
A#h#(l, U121(c, b))A#h#(U121(e, e), U121(e, e))
A#h#(f(l), f(l))A#h#(m, U121(b, b))
A#h#(l, l)A#h#(m, c)
A#h#(f(c), f(c))A#h#(d, U121(e, e))
A#h#(f(m), f(m))A#h#(e, d)
A#h#(U121(e, e), l)A#h#(f(l), l)
A#h#(e, f(m))A#h#(U121(a, a), U121(e, b))
A#h#(m, f(e))A#h#(l, c)
A#h#(f(e), b)A#h#(f(a), U121(b, b))
A#h#(e, m)A#h#(l, U121(e, c))
A#h#(m, U121(e, b))A#h#(f(e), f(e))
A#h#(U121(c, a), U121(e, e))A#h#(U121(e, a), U121(c, b))
A#h#(f(e), U121(e, e))g#(d, x, x)A#
A#h#(U121(e, c), l)A#h#(a, U121(e, e))
A#h#(c, U121(e, c))A#h#(e, l)
A#h#(d, U121(e, b))A#h#(U121(e, e), U121(e, c))
A#h#(f(d), f(d))A#h#(U121(a, a), U121(e, e))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(c, d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(c, m) 
h#(e, d) 
h#(l, d) 
Thus, the rule A# → h#(c, d) is replaced by the following rules:
A# → h#(c, m)A# → h#(e, d)
A# → h#(l, d)

Problem 58: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(U121(e, c), U121(e, c))
h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(m, m)A#h#(a, b)
A#h#(a, d)A#h#(U121(a, a), d)
A#h#(e, e)A#h#(c, c)
A#h#(a, c)A#h#(U121(e, e), U121(e, e))
A#h#(f(l), f(l))A#h#(l, l)
A#h#(U121(e, a), l)A#h#(f(c), f(c))
A#h#(U121(e, a), c)A#h#(d, b)
A#h#(U121(c, a), e)A#h#(U121(e, a), U121(e, b))
A#h#(f(m), f(m))A#h#(e, d)
A#h#(U121(a, a), c)A#h#(U121(m, a), U121(e, b))
A#h#(m, f(e))A#h#(e, f(m))
A#h#(l, c)A#h#(f(a), U121(b, b))
A#h#(e, m)A#h#(f(e), b)
A#h#(U121(c, a), d)A#h#(f(e), f(e))
A#h#(l, U121(e, c))A#h#(m, U121(e, b))
A#h#(U121(e, a), d)A#h#(U121(c, a), U121(e, e))
A#h#(f(e), U121(e, e))A#h#(U121(e, a), U121(c, b))
g#(d, x, x)A#A#h#(U121(e, c), l)
A#h#(a, U121(e, e))A#h#(c, U121(e, c))
A#h#(e, l)A#h#(d, U121(e, b))
A#h#(U121(e, e), U121(e, c))A#h#(f(d), f(d))
A#h#(U121(a, a), U121(e, e))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(a, b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(a, c) 
h#(c, b) 
h#(a, d) 
h#(d, b) 
Thus, the rule A# → h#(a, b) is replaced by the following rules:
A# → h#(c, b)A# → h#(a, d)
A# → h#(d, b)A# → h#(a, c)

Problem 59: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(l, d)A#h#(m, m)
A#h#(l, m)A#h#(a, b)
A#h#(e, e)A#h#(U121(e, e), U121(e, e))
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(U121(e, a), c)A#h#(f(m), f(m))
A#h#(e, m)A#h#(U121(e, a), d)
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U121(e, c), U121(e, c))
A#h#(d, d)A#h#(m, b)
A#h#(l, b)A#h#(U121(c, a), c)
A#h#(a, U121(e, b))A#h#(a, d)
A#h#(U121(a, a), d)A#h#(c, c)
A#h#(l, l)A#h#(U121(e, a), l)
A#h#(U121(c, a), e)A#h#(U121(c, a), m)
A#h#(e, d)A#h#(U121(e, a), m)
A#h#(U121(m, a), U121(e, b))A#h#(e, f(m))
A#h#(m, f(e))A#h#(f(e), b)
A#h#(f(a), U121(b, b))A#h#(l, c)
A#h#(m, U121(e, b))A#h#(l, U121(e, c))
A#h#(U121(c, a), U121(e, e))A#h#(U121(e, a), U121(c, b))
A#h#(f(e), U121(e, e))A#h#(a, U121(e, e))
A#h#(e, l)A#h#(d, U121(e, b))
A#h#(c, U121(e, c))A#h#(U121(e, e), U121(e, c))
A#h#(U121(e, c), l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(l, d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(l, m) 
Thus, the rule A# → h#(l, d) is replaced by the following rules:
A# → h#(l, m)

Problem 60: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(U121(e, c), U121(e, c))
h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(m, m)A#h#(l, b)
A#h#(l, m)A#h#(a, U121(e, b))
A#h#(a, d)A#h#(U121(a, a), d)
A#h#(e, e)A#h#(c, c)
A#h#(m, d)A#h#(f(l), f(l))
A#h#(U121(e, e), U121(e, e))A#h#(l, l)
A#h#(m, c)A#h#(U121(e, a), l)
A#h#(f(c), f(c))A#h#(U121(c, a), e)
A#h#(f(m), f(m))A#h#(U121(c, a), m)
A#h#(e, d)A#h#(U121(e, a), m)
A#h#(U121(m, a), U121(e, b))A#h#(m, f(e))
A#h#(e, f(m))A#h#(l, c)
A#h#(f(a), U121(b, b))A#h#(f(e), b)
A#h#(e, m)A#h#(l, U121(e, c))
A#h#(m, U121(e, b))A#h#(f(e), f(e))
A#h#(U121(c, a), U121(e, e))A#h#(f(e), U121(e, e))
A#h#(U121(e, a), U121(c, b))g#(d, x, x)A#
A#h#(U121(e, e), U121(e, c))A#h#(d, U121(e, b))
A#h#(a, U121(e, e))A#h#(e, l)
A#h#(c, U121(e, c))A#h#(U121(e, c), l)
A#h#(f(d), f(d))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(l, b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(l, c) 
h#(l, d) 
Thus, the rule A# → h#(l, b) is replaced by the following rules:
A# → h#(l, c)A# → h#(l, d)

Problem 61: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(U121(e, c), U121(e, c))
h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(m, l)A#h#(m, m)
A#h#(e, e)A#h#(c, c)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(l, l)A#h#(e, U121(e, b))
A#h#(U121(e, a), l)A#h#(f(c), f(c))
A#h#(d, b)A#h#(U121(c, a), e)
A#h#(f(m), f(m))A#h#(U121(c, a), m)
A#h#(e, d)A#h#(U121(e, a), m)
A#h#(U121(m, a), U121(e, b))A#h#(m, f(e))
A#h#(e, f(m))A#h#(l, c)
A#h#(f(a), U121(b, b))A#h#(f(e), b)
A#h#(e, m)A#h#(U121(c, a), d)
A#h#(l, U121(e, c))A#h#(m, U121(e, b))
A#h#(f(e), f(e))A#h#(U121(c, a), U121(e, e))
A#h#(f(e), U121(e, e))A#h#(U121(e, a), U121(c, b))
g#(d, x, x)A#A#h#(a, e)
A#h#(U121(e, e), U121(e, c))A#h#(d, U121(e, b))
A#h#(a, U121(e, e))A#h#(e, l)
A#h#(c, U121(e, c))A#h#(U121(e, c), l)
A#h#(f(d), f(d))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(m, l) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(m, l) is deleted.

Problem 62: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(U121(e, c), U121(e, c))
h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(m, m)A#h#(e, e)
A#h#(c, c)A#h#(U121(e, e), U121(e, e))
A#h#(f(l), f(l))A#h#(l, l)
A#h#(f(c), f(c))A#h#(f(e), e)
A#h#(f(e), m)A#h#(f(m), f(m))
A#h#(e, d)A#h#(U121(e, e), l)
A#h#(f(a), U121(b, b))A#h#(l, c)
A#h#(e, m)A#h#(f(e), f(e))
A#h#(l, U121(e, c))A#h#(m, U121(e, b))
A#h#(U121(c, a), d)A#h#(U121(c, a), U121(e, e))
A#h#(U121(e, a), U121(c, b))A#h#(a, e)
A#h#(f(e), U121(e, e))g#(d, x, x)A#
A#h#(U121(e, e), U121(e, c))A#h#(d, U121(e, b))
A#h#(a, U121(e, e))A#h#(e, l)
A#h#(c, U121(e, c))A#h#(U121(e, c), l)
A#h#(f(d), f(d))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(e), m) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U121(e, e), m) 
Thus, the rule A# → h#(f(e), m) is replaced by the following rules:
A# → h#(U121(e, e), m)

Problem 63: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(U121(e, c), U121(e, c))
h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(m, m)A#h#(f(c), U121(c, b))
A#h#(f(d), U121(e, b))A#h#(e, e)
A#h#(c, c)A#h#(f(l), f(l))
A#h#(U121(e, e), U121(e, e))A#h#(l, l)
A#h#(f(c), U121(e, b))A#h#(f(c), f(c))
A#h#(f(m), f(m))A#h#(U121(c, a), U121(c, b))
A#h#(f(m), U121(e, b))A#h#(U121(a, a), U121(e, b))
A#h#(f(e), f(e))A#h#(l, U121(e, c))
A#h#(m, U121(e, b))A#h#(U121(c, a), d)
A#h#(U121(a, a), U121(b, b))A#h#(U121(c, a), U121(e, e))
A#h#(f(a), b)A#h#(f(c), U121(b, b))
A#h#(U121(m, m), U121(c, b))A#h#(f(e), U121(e, e))
A#h#(U121(e, a), U121(c, b))g#(d, x, x)A#
A#h#(a, e)A#h#(U121(e, e), U121(e, c))
A#h#(d, U121(e, b))A#h#(a, U121(e, e))
A#h#(e, l)A#h#(c, U121(e, c))
A#h#(U121(e, c), l)A#h#(f(d), f(d))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(c), U121(c, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U121(c, c), U121(c, b))h#(f(c), U121(l, b))
h#(f(l), U121(c, b)) 
h#(f(c), U121(e, b)) 
h#(f(e), U121(c, b)) 
Thus, the rule A# → h#(f(c), U121(c, b)) is replaced by the following rules:
A# → h#(f(l), U121(c, b))A# → h#(f(c), U121(e, b))
A# → h#(f(e), U121(c, b))A# → h#(U121(c, c), U121(c, b))

Problem 64: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(m, m)A#h#(e, e)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(f(c), U121(e, b))A#h#(f(e), U121(c, b))
A#h#(f(c), f(c))A#h#(U121(e, c), U121(c, b))
A#h#(f(m), f(m))A#h#(U121(c, c), U121(b, b))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, b))
A#h#(U121(m, m), U121(c, b))A#h#(U121(e, e), U121(c, b))
A#h#(U121(a, a), U121(b, b))A#h#(f(a), b)
A#h#(a, e)g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U121(e, c), U121(e, c))
A#h#(U121(c, a), b)A#h#(f(e), U121(e, b))
A#h#(f(c), b)A#h#(d, d)
A#h#(U121(c, c), d)A#h#(c, U121(c, b))
A#h#(U121(e, a), b)A#h#(e, b)
A#h#(f(l), m)A#h#(c, d)
A#h#(l, b)A#h#(U121(c, c), l)
A#h#(a, U121(e, b))A#h#(f(l), c)
A#h#(a, d)A#h#(c, c)
A#h#(U121(c, c), U121(e, b))A#h#(U121(l, l), U121(c, b))
A#h#(l, l)A#h#(U121(d, d), U121(e, b))
A#h#(U121(e, c), e)A#h#(U121(c, a), m)
A#h#(U121(e, a), m)A#h#(f(m), U121(e, b))
A#h#(f(l), l)A#h#(U121(e, e), U121(b, b))
A#h#(U121(a, a), U121(e, b))A#h#(f(d), b)
A#h#(l, U121(e, c))A#h#(m, U121(e, b))
A#h#(U121(l, l), U121(e, b))A#h#(U121(c, a), U121(e, e))
A#h#(U121(e, a), U121(c, b))A#h#(f(e), U121(e, e))
A#h#(U121(e, c), l)A#h#(U121(e, e), U121(e, c))
A#h#(e, l)A#h#(c, U121(e, c))
A#h#(d, U121(e, b))A#h#(a, U121(e, e))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(f(c), U121(e, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(f(e), U121(e, b)) 
h#(f(l), U121(e, b)) 
h#(f(c), b) 
h#(U121(c, c), U121(e, b)) 
Thus, the rule A# → h#(f(c), U121(e, b)) is replaced by the following rules:
A# → h#(f(e), U121(e, b))A# → h#(f(c), b)
A# → h#(U121(c, c), U121(e, b))A# → h#(f(l), U121(e, b))

Problem 65: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(m, m)A#h#(e, e)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(f(m), f(m))
A#h#(U121(c, a), d)A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U121(e, c), U121(e, c))A#h#(f(c), b)
A#h#(f(c), d)A#h#(c, e)
A#h#(d, d)A#h#(U121(c, c), d)
A#h#(c, U121(c, b))A#h#(l, U121(b, b))
A#h#(U121(e, a), b)A#h#(U121(a, a), U121(c, b))
A#h#(e, b)A#h#(f(m), d)
A#h#(f(l), m)A#h#(f(m), e)
A#h#(c, d)A#h#(f(m), m)
A#h#(U121(m, m), U121(e, b))A#h#(l, b)
A#h#(f(d), c)A#h#(c, U121(e, b))
A#h#(e, U121(b, b))A#h#(U121(c, a), c)
A#h#(f(a), m)A#h#(U121(c, c), l)
A#h#(a, U121(e, b))A#h#(f(l), c)
A#h#(U121(a, a), b)A#h#(a, d)
A#h#(U121(a, a), d)A#h#(f(a), l)
A#h#(c, c)A#h#(U121(c, c), U121(e, b))
A#h#(l, l)A#h#(U121(l, l), U121(c, b))
A#h#(U121(e, e), U121(e, b))A#h#(U121(d, d), U121(e, b))
A#h#(U121(e, a), l)A#h#(f(c), e)
A#h#(U121(e, c), e)A#h#(f(c), c)
A#h#(U121(c, a), e)A#h#(U121(c, a), m)
A#h#(a, U121(b, b))A#h#(U121(e, a), m)
A#h#(f(m), U121(e, b))A#h#(f(l), l)
A#h#(f(d), b)A#h#(U121(e, e), U121(b, b))
A#h#(U121(a, a), U121(e, b))A#h#(f(e), b)
A#h#(m, U121(e, b))A#h#(l, U121(e, c))
A#h#(U121(l, l), U121(e, b))A#h#(U121(c, a), U121(e, e))
A#h#(U121(e, a), U121(c, b))A#h#(f(e), U121(e, e))
A#h#(U121(e, c), l)A#h#(U121(e, e), U121(e, c))
A#h#(e, l)A#h#(c, U121(e, c))
A#h#(d, U121(e, b))A#h#(a, U121(e, e))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U121(c, a), d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U121(e, a), d)h#(U121(l, a), d)
h#(U121(c, a), m) 
Thus, the rule A# → h#(U121(c, a), d) is replaced by the following rules:
A# → h#(U121(c, a), m)A# → h#(U121(e, a), d)

Problem 66: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(m, e)A#h#(U121(c, c), U121(c, c))
h#(x, x)g#(x, x, f(k))A#h#(m, m)
A#h#(e, e)A#h#(d, l)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(m, c)A#h#(f(c), f(c))
A#h#(f(m), f(m))A#h#(U121(e, a), d)
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(a, e)A#h#(f(d), f(d))
A#h#(U121(e, c), U121(e, c))A#h#(a, l)
A#h#(d, d)A#h#(m, l)
A#h#(U121(a, a), U121(c, b))A#h#(e, b)
A#h#(f(m), d)A#h#(f(l), m)
A#h#(f(m), e)A#h#(c, d)
A#h#(m, b)A#h#(f(m), m)
A#h#(U121(m, m), U121(e, b))A#h#(l, b)
A#h#(f(d), c)A#h#(c, U121(e, b))
A#h#(e, U121(b, b))A#h#(U121(c, c), b)
A#h#(U121(c, a), c)A#h#(f(a), m)
A#h#(U121(c, c), l)A#h#(a, U121(e, b))
A#h#(f(l), c)A#h#(U121(a, a), b)
A#h#(a, d)A#h#(U121(a, a), d)
A#h#(f(a), l)A#h#(c, c)
A#h#(U121(c, c), U121(e, b))A#h#(l, U121(c, b))
A#h#(f(e), d)A#h#(l, l)
A#h#(U121(l, l), U121(c, b))A#h#(U121(e, e), U121(e, b))
A#h#(U121(d, d), U121(e, b))A#h#(U121(e, a), l)
A#h#(f(c), e)A#h#(U121(e, c), e)
A#h#(f(c), c)A#h#(U121(c, a), e)
A#h#(U121(c, a), m)A#h#(a, U121(b, b))
A#h#(U121(e, a), m)A#h#(f(m), U121(e, b))
A#h#(f(l), l)A#h#(f(d), b)
A#h#(U121(e, e), U121(b, b))A#h#(U121(a, a), U121(e, b))
A#h#(f(e), b)A#h#(m, U121(e, b))
A#h#(l, U121(e, c))A#h#(U121(l, l), U121(e, b))
A#h#(U121(c, a), U121(e, e))A#h#(U121(e, a), U121(c, b))
A#h#(f(e), U121(e, e))A#h#(U121(e, c), l)
A#h#(U121(e, e), U121(e, c))A#h#(e, l)
A#h#(c, U121(e, c))A#h#(d, U121(e, b))
A#h#(a, U121(e, e))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(m, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(m, e) is deleted.

Problem 67: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(m, m)A#h#(e, e)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(f(m), f(m))
A#h#(U121(e, a), d)A#h#(f(e), f(e))
A#h#(a, e)g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U121(e, c), U121(e, c))
A#h#(a, l)A#h#(d, d)
A#h#(m, l)A#h#(e, b)
A#h#(f(m), d)A#h#(f(l), m)
A#h#(f(m), e)A#h#(c, d)
A#h#(f(m), m)A#h#(m, b)
A#h#(l, b)A#h#(U121(m, m), U121(e, b))
A#h#(f(d), c)A#h#(c, U121(e, b))
A#h#(e, U121(b, b))A#h#(U121(c, c), b)
A#h#(U121(c, a), c)A#h#(f(a), m)
A#h#(U121(c, c), l)A#h#(a, U121(e, b))
A#h#(f(l), c)A#h#(U121(a, a), b)
A#h#(a, d)A#h#(U121(a, a), d)
A#h#(f(a), l)A#h#(c, c)
A#h#(U121(c, c), U121(e, b))A#h#(l, U121(c, b))
A#h#(f(e), d)A#h#(U121(e, e), U121(e, b))
A#h#(l, l)A#h#(U121(l, l), U121(c, b))
A#h#(U121(d, d), U121(e, b))A#h#(U121(e, a), l)
A#h#(U121(e, c), e)A#h#(f(c), e)
A#h#(f(c), c)A#h#(U121(c, a), e)
A#h#(U121(c, a), m)A#h#(a, U121(b, b))
A#h#(U121(e, a), m)A#h#(f(m), U121(e, b))
A#h#(f(l), l)A#h#(f(d), b)
A#h#(U121(e, e), U121(b, b))A#h#(U121(a, a), U121(e, b))
A#h#(f(e), b)A#h#(m, U121(e, b))
A#h#(l, U121(e, c))A#h#(U121(l, l), U121(e, b))
A#h#(U121(c, a), U121(e, e))A#h#(U121(e, a), U121(c, b))
A#h#(f(e), U121(e, e))A#h#(U121(e, c), l)
A#h#(U121(e, e), U121(e, c))A#h#(e, l)
A#h#(c, U121(e, c))A#h#(d, U121(e, b))
A#h#(a, U121(e, e))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U121(e, a), d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U121(e, a), m) 
h#(a, d) 
Thus, the rule A# → h#(U121(e, a), d) is replaced by the following rules:
A# → h#(a, d)A# → h#(U121(e, a), m)

Problem 68: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(m, m)A#h#(e, e)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(f(m), f(m))
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U121(e, c), U121(e, c))
A#h#(d, d)A#h#(e, b)
A#h#(U121(c, a), c)A#h#(U121(c, c), b)
A#h#(f(a), m)A#h#(l, U121(e, b))
A#h#(U121(c, c), l)A#h#(f(l), c)
A#h#(a, U121(e, b))A#h#(U121(a, a), b)
A#h#(a, d)A#h#(U121(a, a), d)
A#h#(f(a), l)A#h#(c, c)
A#h#(U121(c, c), U121(e, b))A#h#(m, d)
A#h#(f(m), c)A#h#(l, U121(c, b))
A#h#(f(e), d)A#h#(U121(e, e), U121(e, b))
A#h#(l, l)A#h#(U121(l, l), U121(c, b))
A#h#(U121(d, d), U121(e, b))A#h#(U121(e, a), l)
A#h#(f(c), e)A#h#(U121(e, c), e)
A#h#(f(c), c)A#h#(U121(c, a), e)
A#h#(U121(c, a), m)A#h#(a, U121(b, b))
A#h#(e, d)A#h#(U121(e, a), m)
A#h#(f(m), U121(e, b))A#h#(f(l), l)
A#h#(U121(a, a), U121(e, b))A#h#(f(d), b)
A#h#(U121(e, e), U121(b, b))A#h#(l, c)
A#h#(f(e), b)A#h#(m, U121(e, b))
A#h#(l, U121(e, c))A#h#(U121(l, l), U121(e, b))
A#h#(U121(c, a), U121(e, e))A#h#(U121(e, a), U121(c, b))
A#h#(f(e), U121(e, e))A#h#(U121(e, c), l)
A#h#(U121(e, e), U121(e, c))A#h#(e, l)
A#h#(c, U121(e, c))A#h#(d, U121(e, b))
A#h#(a, U121(e, e))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, d) 
h#(e, c) 
Thus, the rule A# → h#(e, b) is replaced by the following rules:
A# → h#(e, c)A# → h#(e, d)

Problem 69: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(c, m)A#h#(m, m)
A#h#(e, e)A#h#(U121(e, e), U121(e, e))
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(f(m), f(m))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U121(e, c), U121(e, c))A#h#(d, d)
A#h#(e, b)A#h#(c, d)
A#h#(l, b)A#h#(l, U121(e, b))
A#h#(U121(c, c), l)A#h#(f(l), c)
A#h#(a, U121(e, b))A#h#(U121(a, a), b)
A#h#(a, d)A#h#(U121(a, a), d)
A#h#(f(a), l)A#h#(c, c)
A#h#(U121(c, c), U121(e, b))A#h#(m, d)
A#h#(f(m), c)A#h#(l, U121(c, b))
A#h#(f(e), d)A#h#(U121(e, e), U121(e, b))
A#h#(l, l)A#h#(U121(l, l), U121(c, b))
A#h#(U121(d, d), U121(e, b))A#h#(U121(e, a), l)
A#h#(f(c), e)A#h#(U121(e, c), e)
A#h#(f(c), c)A#h#(U121(c, a), e)
A#h#(U121(c, a), m)A#h#(a, U121(b, b))
A#h#(e, d)A#h#(U121(e, a), m)
A#h#(f(m), U121(e, b))A#h#(f(l), l)
A#h#(U121(e, e), U121(b, b))A#h#(f(d), b)
A#h#(U121(a, a), U121(e, b))A#h#(l, c)
A#h#(f(e), b)A#h#(m, U121(e, b))
A#h#(l, U121(e, c))A#h#(U121(l, l), U121(e, b))
A#h#(U121(c, a), U121(e, e))A#h#(U121(e, a), U121(c, b))
A#h#(f(e), U121(e, e))A#h#(U121(e, c), l)
A#h#(U121(e, e), U121(e, c))A#h#(e, l)
A#h#(c, U121(e, c))A#h#(d, U121(e, b))
A#h#(a, U121(e, e))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(c, m) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(l, m) 
h#(e, m) 
Thus, the rule A# → h#(c, m) is replaced by the following rules:
A# → h#(l, m)A# → h#(e, m)

Problem 70: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(m, m)A#h#(e, e)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(f(m), f(m))
A#h#(e, m)A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
A#h#(U121(e, c), U121(e, c))A#h#(d, d)
A#h#(m, b)A#h#(l, b)
A#h#(c, U121(e, b))A#h#(f(l), c)
A#h#(U121(a, a), b)A#h#(a, d)
A#h#(U121(a, a), d)A#h#(f(a), l)
A#h#(c, c)A#h#(U121(c, c), U121(e, b))
A#h#(m, d)A#h#(f(m), c)
A#h#(f(e), d)A#h#(l, U121(c, b))
A#h#(U121(e, e), U121(e, b))A#h#(l, l)
A#h#(U121(l, l), U121(c, b))A#h#(U121(d, d), U121(e, b))
A#h#(U121(e, a), l)A#h#(f(c), e)
A#h#(U121(e, c), e)A#h#(f(c), c)
A#h#(U121(c, a), e)A#h#(U121(c, a), m)
A#h#(a, U121(b, b))A#h#(e, d)
A#h#(U121(e, a), m)A#h#(f(m), U121(e, b))
A#h#(f(l), l)A#h#(U121(e, e), U121(b, b))
A#h#(f(d), b)A#h#(U121(a, a), U121(e, b))
A#h#(f(e), b)A#h#(l, c)
A#h#(l, U121(e, c))A#h#(m, U121(e, b))
A#h#(U121(c, a), U121(e, e))A#h#(U121(l, l), U121(e, b))
A#h#(U121(e, a), U121(c, b))A#h#(f(e), U121(e, e))
A#h#(U121(e, c), l)A#h#(U121(e, e), U121(e, c))
A#h#(e, l)A#h#(c, U121(e, c))
A#h#(d, U121(e, b))A#h#(a, U121(e, e))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, m) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(e, m) is deleted.

Problem 71: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(m, e)A#h#(U121(c, c), U121(c, c))
h#(x, x)g#(x, x, f(k))A#h#(m, m)
A#h#(e, e)A#h#(d, l)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(m, c)A#h#(f(c), f(c))
A#h#(d, b)A#h#(f(m), f(m))
A#h#(U121(e, a), d)A#h#(f(e), f(e))
A#h#(a, e)g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U121(e, c), U121(e, c))
A#h#(a, l)A#h#(d, d)
A#h#(m, l)A#h#(e, b)
A#h#(c, d)A#h#(l, b)
A#h#(U121(c, a), c)A#h#(a, d)
A#h#(U121(a, a), d)A#h#(f(a), l)
A#h#(c, c)A#h#(U121(c, c), U121(e, b))
A#h#(m, d)A#h#(l, U121(c, b))
A#h#(f(e), d)A#h#(f(m), c)
A#h#(l, l)A#h#(U121(e, e), U121(e, b))
A#h#(U121(l, l), U121(c, b))A#h#(U121(d, d), U121(e, b))
A#h#(U121(e, a), l)A#h#(f(c), e)
A#h#(U121(e, c), e)A#h#(f(c), c)
A#h#(U121(c, a), e)A#h#(U121(c, a), m)
A#h#(a, U121(b, b))A#h#(e, d)
A#h#(U121(e, a), m)A#h#(f(m), U121(e, b))
A#h#(f(l), l)A#h#(f(d), b)
A#h#(U121(a, a), U121(e, b))A#h#(U121(e, e), U121(b, b))
A#h#(l, c)A#h#(f(e), b)
A#h#(m, U121(e, b))A#h#(l, U121(e, c))
A#h#(U121(c, a), U121(e, e))A#h#(U121(l, l), U121(e, b))
A#h#(f(e), U121(e, e))A#h#(U121(e, a), U121(c, b))
A#h#(U121(e, c), l)A#h#(U121(e, e), U121(e, c))
A#h#(e, l)A#h#(c, U121(e, c))
A#h#(d, U121(e, b))A#h#(a, U121(e, e))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(m, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(m, e) is deleted.

Problem 72: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(m, m)A#h#(c, l)
A#h#(e, e)A#h#(d, l)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(f(m), f(m))
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U121(e, c), U121(e, c))
A#h#(c, e)A#h#(d, d)
A#h#(m, l)A#h#(a, d)
A#h#(U121(a, a), d)A#h#(f(a), l)
A#h#(c, c)A#h#(U121(c, c), U121(e, b))
A#h#(m, d)A#h#(f(e), d)
A#h#(l, U121(c, b))A#h#(f(m), c)
A#h#(l, l)A#h#(U121(e, e), U121(e, b))
A#h#(U121(l, l), U121(c, b))A#h#(U121(d, d), U121(e, b))
A#h#(U121(e, a), l)A#h#(f(c), e)
A#h#(U121(e, c), e)A#h#(f(c), c)
A#h#(U121(c, a), e)A#h#(U121(c, a), m)
A#h#(a, U121(b, b))A#h#(e, d)
A#h#(U121(e, a), m)A#h#(f(m), U121(e, b))
A#h#(f(l), l)A#h#(U121(a, a), U121(e, b))
A#h#(U121(e, e), U121(b, b))A#h#(f(d), b)
A#h#(f(e), b)A#h#(l, c)
A#h#(l, U121(e, c))A#h#(m, U121(e, b))
A#h#(U121(c, a), U121(e, e))A#h#(U121(l, l), U121(e, b))
A#h#(f(e), U121(e, e))A#h#(U121(e, a), U121(c, b))
A#h#(U121(e, c), l)A#h#(U121(e, e), U121(e, c))
A#h#(e, l)A#h#(c, U121(e, c))
A#h#(d, U121(e, b))A#h#(a, U121(e, e))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(c, l) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(l, l) 
h#(e, l) 
Thus, the rule A# → h#(c, l) is replaced by the following rules:
A# → h#(l, l)A# → h#(e, l)

Problem 73: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(m, m)A#h#(e, e)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(f(m), f(m))
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U121(e, c), U121(e, c))
A#h#(d, d)A#h#(c, d)
A#h#(l, b)A#h#(c, U121(e, b))
A#h#(U121(c, c), b)A#h#(c, c)
A#h#(m, d)A#h#(f(e), d)
A#h#(l, U121(c, b))A#h#(d, m)
A#h#(f(m), c)A#h#(U121(l, l), U121(c, b))
A#h#(l, l)A#h#(U121(e, e), U121(e, b))
A#h#(U121(d, d), U121(e, b))A#h#(U121(e, a), l)
A#h#(f(c), e)A#h#(U121(e, c), e)
A#h#(f(c), c)A#h#(U121(c, a), e)
A#h#(U121(c, a), m)A#h#(a, U121(b, b))
A#h#(e, d)A#h#(U121(e, a), m)
A#h#(U121(e, e), l)A#h#(f(m), U121(e, b))
A#h#(f(l), l)A#h#(U121(a, a), U121(e, b))
A#h#(U121(e, e), U121(b, b))A#h#(f(d), b)
A#h#(f(e), b)A#h#(l, c)
A#h#(l, U121(e, c))A#h#(m, U121(e, b))
A#h#(U121(c, a), U121(e, e))A#h#(U121(l, l), U121(e, b))
A#h#(f(e), U121(e, e))A#h#(U121(e, a), U121(c, b))
A#h#(U121(e, c), l)A#h#(U121(e, e), U121(e, c))
A#h#(e, l)A#h#(c, U121(e, c))
A#h#(d, U121(e, b))A#h#(a, U121(e, e))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(c, d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(c, m) 
h#(e, d) 
h#(l, d) 
Thus, the rule A# → h#(c, d) is replaced by the following rules:
A# → h#(c, m)A# → h#(e, d)
A# → h#(l, d)

Problem 74: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(m, m)A#h#(e, e)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(f(m), f(m))
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(f(d), f(d))A#h#(U121(e, c), U121(e, c))
A#h#(d, d)A#h#(l, b)
A#h#(U121(c, c), l)A#h#(c, c)
A#h#(m, d)A#h#(l, U121(c, b))
A#h#(f(e), d)A#h#(f(m), c)
A#h#(d, m)A#h#(U121(e, e), U121(e, b))
A#h#(U121(l, l), U121(c, b))A#h#(l, l)
A#h#(U121(d, d), U121(e, b))A#h#(U121(e, a), l)
A#h#(f(c), e)A#h#(U121(e, c), e)
A#h#(f(c), c)A#h#(U121(c, a), e)
A#h#(U121(c, a), m)A#h#(a, U121(b, b))
A#h#(e, d)A#h#(U121(e, a), m)
A#h#(U121(e, e), l)A#h#(f(m), U121(e, b))
A#h#(f(l), l)A#h#(U121(a, a), U121(e, b))
A#h#(U121(e, e), U121(b, b))A#h#(f(d), b)
A#h#(f(e), b)A#h#(l, c)
A#h#(m, U121(e, b))A#h#(l, U121(e, c))
A#h#(U121(c, a), U121(e, e))A#h#(U121(l, l), U121(e, b))
A#h#(U121(e, a), U121(c, b))A#h#(f(e), U121(e, e))
A#h#(U121(e, c), l)A#h#(U121(e, e), U121(e, c))
A#h#(e, l)A#h#(c, U121(e, c))
A#h#(d, U121(e, b))A#h#(a, U121(e, e))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(l, b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(l, c) 
h#(l, d) 
Thus, the rule A# → h#(l, b) is replaced by the following rules:
A# → h#(l, c)A# → h#(l, d)

Problem 75: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(U121(e, c), U121(e, c))
h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(m, m)A#h#(U121(c, c), c)
A#h#(U121(c, c), l)A#h#(U121(e, e), c)
A#h#(f(l), c)A#h#(e, e)
A#h#(c, c)A#h#(U121(e, e), U121(e, e))
A#h#(f(l), f(l))A#h#(l, l)
A#h#(f(c), f(c))A#h#(f(c), e)
A#h#(U121(c, a), e)A#h#(f(e), e)
A#h#(U121(e, e), m)A#h#(f(m), f(m))
A#h#(U121(c, a), m)A#h#(U121(e, a), m)
A#h#(e, d)A#h#(a, U121(b, b))
A#h#(U121(e, e), l)A#h#(f(m), U121(e, b))
A#h#(f(l), l)A#h#(U121(e, e), U121(b, b))
A#h#(U121(a, a), U121(e, b))A#h#(f(d), b)
A#h#(f(e), b)A#h#(l, c)
A#h#(f(e), f(e))A#h#(m, U121(e, b))
A#h#(l, U121(e, c))A#h#(U121(c, a), U121(e, e))
A#h#(U121(l, l), U121(e, b))g#(d, x, x)A#
A#h#(U121(e, a), U121(c, b))A#h#(f(e), U121(e, e))
A#h#(f(d), f(d))A#h#(a, U121(e, e))
A#h#(d, U121(e, b))A#h#(c, U121(e, c))
A#h#(U121(e, c), l)A#h#(U121(e, e), U121(e, c))
A#h#(e, l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U121(c, c), c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U121(c, c), e)h#(U121(l, c), c)
h#(U121(e, c), c) 
h#(U121(c, c), l) 
Thus, the rule A# → h#(U121(c, c), c) is replaced by the following rules:
A# → h#(U121(c, c), e)A# → h#(U121(c, c), l)
A# → h#(U121(e, c), c)

Problem 76: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(U121(e, c), U121(e, c))
h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(m, m)A#h#(l, d)
A#h#(e, e)A#h#(c, c)
A#h#(l, U121(c, b))A#h#(d, U121(b, b))
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(l, l)A#h#(e, U121(e, b))
A#h#(f(c), f(c))A#h#(e, U121(c, b))
A#h#(a, U121(c, b))A#h#(f(m), f(m))
A#h#(e, d)A#h#(U121(e, e), l)
A#h#(f(m), U121(e, b))A#h#(f(l), l)
A#h#(f(d), b)A#h#(U121(e, e), U121(b, b))
A#h#(U121(a, a), U121(e, b))A#h#(f(e), b)
A#h#(l, c)A#h#(e, m)
A#h#(m, U121(e, b))A#h#(l, U121(e, c))
A#h#(f(e), f(e))A#h#(U121(c, a), U121(e, e))
A#h#(U121(l, l), U121(e, b))A#h#(a, e)
g#(d, x, x)A#A#h#(U121(e, a), U121(c, b))
A#h#(f(e), U121(e, e))A#h#(f(d), f(d))
A#h#(a, U121(e, e))A#h#(d, U121(e, b))
A#h#(c, U121(e, c))A#h#(U121(e, c), l)
A#h#(U121(e, e), U121(e, c))A#h#(e, l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(l, d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(l, m) 
Thus, the rule A# → h#(l, d) is replaced by the following rules:
A# → h#(l, m)

Problem 77: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(U121(e, c), U121(e, c))
h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(m, m)A#h#(a, b)
A#h#(e, e)A#h#(c, c)
A#h#(d, U121(c, b))A#h#(l, U121(c, b))
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(l, l)A#h#(e, U121(e, b))
A#h#(f(c), f(c))A#h#(e, U121(c, b))
A#h#(f(m), f(m))A#h#(e, d)
A#h#(U121(e, e), l)A#h#(f(m), U121(e, b))
A#h#(f(l), l)A#h#(f(d), b)
A#h#(U121(e, e), U121(b, b))A#h#(U121(a, a), U121(e, b))
A#h#(f(e), b)A#h#(l, c)
A#h#(e, m)A#h#(l, U121(e, c))
A#h#(m, U121(e, b))A#h#(f(e), f(e))
A#h#(U121(c, a), U121(e, e))A#h#(U121(l, l), U121(e, b))
A#h#(a, e)g#(d, x, x)A#
A#h#(U121(e, a), U121(c, b))A#h#(f(e), U121(e, e))
A#h#(f(d), f(d))A#h#(a, U121(e, e))
A#h#(d, U121(e, b))A#h#(c, U121(e, c))
A#h#(U121(e, c), l)A#h#(U121(e, e), U121(e, c))
A#h#(e, l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(a, b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(a, c) 
h#(c, b) 
h#(a, d) 
h#(d, b) 
Thus, the rule A# → h#(a, b) is replaced by the following rules:
A# → h#(c, b)A# → h#(a, d)
A# → h#(d, b)A# → h#(a, c)

Problem 78: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(U121(e, c), U121(e, c))
h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(m, l)A#h#(m, m)
A#h#(e, e)A#h#(c, c)
A#h#(m, d)A#h#(f(l), f(l))
A#h#(U121(e, e), U121(e, e))A#h#(l, l)
A#h#(m, c)A#h#(f(c), f(c))
A#h#(f(m), f(m))A#h#(e, d)
A#h#(f(l), l)A#h#(U121(e, e), l)
A#h#(f(m), U121(e, b))A#h#(U121(a, a), U121(e, b))
A#h#(U121(e, e), U121(b, b))A#h#(f(d), b)
A#h#(l, c)A#h#(e, m)
A#h#(f(e), b)A#h#(l, U121(e, c))
A#h#(f(e), f(e))A#h#(m, U121(e, b))
A#h#(U121(c, a), U121(e, e))A#h#(U121(l, l), U121(e, b))
A#h#(a, e)g#(d, x, x)A#
A#h#(U121(e, a), U121(c, b))A#h#(f(e), U121(e, e))
A#h#(f(d), f(d))A#h#(a, U121(e, e))
A#h#(d, U121(e, b))A#h#(c, U121(e, c))
A#h#(U121(e, c), l)A#h#(U121(e, e), U121(e, c))
A#h#(e, l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(m, l) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(m, l) is deleted.

Problem 79: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(x, x)g#(x, x, f(k))
A#h#(m, m)A#h#(e, e)
A#h#(a, c)A#h#(U121(e, e), U121(e, e))
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(d, b)A#h#(U121(e, a), U121(e, b))
A#h#(f(m), f(m))A#h#(U121(a, a), c)
A#h#(e, m)A#h#(U121(c, a), d)
A#h#(f(e), f(e))A#h#(U121(e, a), d)
g#(d, x, x)A#A#h#(a, e)
A#h#(f(d), f(d))A#h#(U121(e, c), U121(e, c))
A#h#(a, l)A#h#(d, d)
A#h#(m, l)A#h#(e, b)
A#h#(c, d)A#h#(l, b)
A#h#(a, d)A#h#(U121(a, a), d)
A#h#(c, c)A#h#(l, l)
A#h#(U121(e, a), l)A#h#(U121(c, a), e)
A#h#(e, d)A#h#(U121(m, a), U121(e, b))
A#h#(U121(e, e), U121(b, b))A#h#(f(d), b)
A#h#(f(e), b)A#h#(l, c)
A#h#(l, U121(e, c))A#h#(m, U121(e, b))
A#h#(U121(l, l), U121(e, b))A#h#(U121(c, a), U121(e, e))
A#h#(U121(e, a), U121(c, b))A#h#(f(e), U121(e, e))
A#h#(d, U121(e, b))A#h#(U121(e, c), l)
A#h#(a, U121(e, e))A#h#(c, U121(e, c))
A#h#(e, l)A#h#(U121(e, e), U121(e, c))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(a, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(d, c) 
h#(a, e) 
h#(c, c) 
h#(a, l) 
Thus, the rule A# → h#(a, c) is replaced by the following rules:
A# → h#(a, l)A# → h#(c, c)
A# → h#(d, c)A# → h#(a, e)

Problem 80: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(m, e)A#h#(U121(c, c), U121(c, c))
h#(x, x)g#(x, x, f(k))A#h#(m, m)
A#h#(e, e)A#h#(d, l)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(m, c)A#h#(f(c), f(c))
A#h#(U121(e, a), c)A#h#(d, b)
A#h#(f(m), f(m))A#h#(e, m)
A#h#(f(e), f(e))A#h#(U121(e, a), d)
g#(d, x, x)A#A#h#(a, e)
A#h#(f(d), f(d))A#h#(U121(e, c), U121(e, c))
A#h#(a, l)A#h#(d, d)
A#h#(e, b)A#h#(c, d)
A#h#(l, b)A#h#(a, U121(e, b))
A#h#(a, d)A#h#(U121(a, a), d)
A#h#(c, c)A#h#(m, d)
A#h#(l, l)A#h#(U121(e, a), l)
A#h#(U121(c, a), e)A#h#(U121(c, a), m)
A#h#(e, d)A#h#(U121(e, a), m)
A#h#(U121(m, a), U121(e, b))A#h#(f(d), b)
A#h#(U121(e, e), U121(b, b))A#h#(l, c)
A#h#(f(e), b)A#h#(m, U121(e, b))
A#h#(l, U121(e, c))A#h#(U121(c, a), U121(e, e))
A#h#(U121(l, l), U121(e, b))A#h#(f(e), U121(e, e))
A#h#(U121(e, a), U121(c, b))A#h#(d, U121(e, b))
A#h#(U121(e, c), l)A#h#(U121(e, e), U121(e, c))
A#h#(c, U121(e, c))A#h#(e, l)
A#h#(a, U121(e, e))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(m, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(m, e) is deleted.

Problem 81: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(U121(e, c), U121(e, c))
h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(m, m)A#h#(l, m)
A#h#(l, U121(e, b))A#h#(a, b)
A#h#(a, d)A#h#(U121(a, a), d)
A#h#(e, e)A#h#(c, c)
A#h#(m, d)A#h#(U121(e, e), U121(e, e))
A#h#(f(l), f(l))A#h#(l, l)
A#h#(m, c)A#h#(e, U121(e, b))
A#h#(U121(e, a), l)A#h#(f(c), f(c))
A#h#(U121(c, a), e)A#h#(f(m), f(m))
A#h#(U121(c, a), m)A#h#(U121(e, a), m)
A#h#(e, d)A#h#(U121(m, a), U121(e, b))
A#h#(U121(e, e), U121(b, b))A#h#(f(d), b)
A#h#(e, m)A#h#(l, c)
A#h#(f(e), b)A#h#(f(e), f(e))
A#h#(m, U121(e, b))A#h#(l, U121(e, c))
A#h#(U121(c, a), U121(e, e))A#h#(U121(l, l), U121(e, b))
g#(d, x, x)A#A#h#(f(e), U121(e, e))
A#h#(U121(e, a), U121(c, b))A#h#(f(d), f(d))
A#h#(c, U121(e, c))A#h#(d, U121(e, b))
A#h#(e, l)A#h#(a, U121(e, e))
A#h#(U121(e, e), U121(e, c))A#h#(U121(e, c), l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(l, m) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(l, m) is deleted.

Problem 82: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(m, e)
A#h#(U121(e, c), U121(e, c))h#(x, x)g#(x, x, f(k))
A#h#(d, d)A#h#(m, m)
A#h#(e, e)A#h#(d, l)
A#h#(c, c)A#h#(m, d)
A#h#(f(l), f(l))A#h#(U121(e, e), U121(e, e))
A#h#(l, l)A#h#(m, c)
A#h#(f(c), f(c))A#h#(U121(c, a), e)
A#h#(f(m), f(m))A#h#(U121(c, a), m)
A#h#(e, d)A#h#(U121(e, a), m)
A#h#(U121(m, a), U121(e, b))A#h#(U121(e, e), U121(b, b))
A#h#(f(d), b)A#h#(l, c)
A#h#(e, m)A#h#(f(e), b)
A#h#(f(e), f(e))A#h#(m, U121(e, b))
A#h#(U121(c, a), d)A#h#(l, U121(e, c))
A#h#(U121(c, a), U121(e, e))A#h#(U121(l, l), U121(e, b))
A#h#(a, e)g#(d, x, x)A#
A#h#(f(e), U121(e, e))A#h#(U121(e, a), U121(c, b))
A#h#(f(d), f(d))A#h#(c, U121(e, c))
A#h#(d, U121(e, b))A#h#(e, l)
A#h#(a, U121(e, e))A#h#(U121(e, e), U121(e, c))
A#h#(U121(e, c), l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(m, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(m, e) is deleted.

Problem 83: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(U121(e, c), U121(e, c))
h#(x, x)g#(x, x, f(k))A#h#(U121(e, e), d)
A#h#(d, d)A#h#(m, m)
A#h#(e, e)A#h#(c, c)
A#h#(f(l), f(l))A#h#(U121(e, e), U121(e, e))
A#h#(l, l)A#h#(f(c), f(c))
A#h#(U121(e, e), b)A#h#(f(e), m)
A#h#(f(e), e)A#h#(f(m), f(m))
A#h#(U121(e, e), l)A#h#(U121(c, a), d)
A#h#(l, U121(e, c))A#h#(f(e), f(e))
A#h#(m, U121(e, b))A#h#(U121(e, e), U121(c, b))
A#h#(U121(c, a), U121(e, e))A#h#(U121(l, l), U121(e, b))
g#(d, x, x)A#A#h#(f(e), U121(e, e))
A#h#(a, e)A#h#(U121(e, a), U121(c, b))
A#h#(f(d), f(d))A#h#(c, U121(e, c))
A#h#(d, U121(e, b))A#h#(e, l)
A#h#(a, U121(e, e))A#h#(U121(e, e), U121(e, c))
A#h#(U121(e, c), l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U121(e, e), d) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U121(e, e), m) 
h#(e, d) 
Thus, the rule A# → h#(U121(e, e), d) is replaced by the following rules:
A# → h#(U121(e, e), m)A# → h#(e, d)

Problem 84: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(U121(e, c), U121(e, c))
h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(m, m)A#h#(e, e)
A#h#(c, c)A#h#(f(l), f(l))
A#h#(U121(e, e), U121(e, e))A#h#(l, l)
A#h#(f(c), f(c))A#h#(f(m), f(m))
A#h#(f(e), f(e))A#h#(U121(l, l), U121(e, b))
A#h#(U121(c, a), U121(e, e))A#h#(U121(e, e), U121(c, b))
A#h#(f(e), U121(e, e))g#(d, x, x)A#
A#h#(U121(e, a), U121(c, b))A#h#(a, e)
A#h#(a, U121(e, e))A#h#(d, U121(e, b))
A#h#(e, l)A#h#(U121(e, e), U121(e, c))
A#h#(U121(e, c), l)A#h#(f(d), f(d))
A#h#(c, U121(e, c))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U121(l, l), U121(e, b)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 h#(U121(l, l), b)
Thus, the rule A# → h#(U121(l, l), U121(e, b)) is deleted.

Problem 85: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(U121(e, c), U121(e, c))
h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(m, m)A#h#(l, m)
A#h#(a, U121(e, b))A#h#(e, e)
A#h#(c, c)A#h#(d, U121(c, b))
A#h#(l, U121(c, b))A#h#(f(l), f(l))
A#h#(U121(e, e), U121(e, e))A#h#(l, l)
A#h#(e, U121(e, b))A#h#(f(c), f(c))
A#h#(e, U121(c, b))A#h#(U121(e, a), U121(e, b))
A#h#(f(m), f(m))A#h#(e, d)
A#h#(l, c)A#h#(e, m)
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(U121(e, c), l)A#h#(c, U121(e, c))
A#h#(U121(e, e), U121(e, c))A#h#(e, l)
A#h#(d, U121(e, b))A#h#(a, U121(e, e))
A#h#(f(d), f(d))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(l, m) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(l, m) is deleted.

Problem 86: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(U121(e, c), U121(e, c))
h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(m, m)A#h#(e, e)
A#h#(c, c)A#h#(f(l), f(l))
A#h#(U121(e, e), U121(e, e))A#h#(l, l)
A#h#(m, c)A#h#(e, U121(e, b))
A#h#(f(c), f(c))A#h#(e, U121(c, b))
A#h#(d, b)A#h#(U121(e, a), U121(e, b))
A#h#(f(m), f(m))A#h#(e, d)
A#h#(l, c)A#h#(e, m)
A#h#(m, U121(e, b))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(a, e)
A#h#(c, U121(e, c))A#h#(U121(e, c), l)
A#h#(U121(e, e), U121(e, c))A#h#(e, l)
A#h#(d, U121(e, b))A#h#(f(d), f(d))
A#h#(a, U121(e, e))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(m, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(m, e) 
h#(m, l) 
Thus, the rule A# → h#(m, c) is replaced by the following rules:
A# → h#(m, e)A# → h#(m, l)

Problem 87: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(U121(e, c), U121(e, c))
h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(m, m)A#h#(e, b)
A#h#(c, d)A#h#(l, b)
A#h#(a, d)A#h#(e, e)
A#h#(c, c)A#h#(a, c)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(l, l)A#h#(e, U121(e, b))
A#h#(f(c), f(c))A#h#(U121(e, a), c)
A#h#(d, b)A#h#(f(m), f(m))
A#h#(e, d)A#h#(l, c)
A#h#(e, m)A#h#(f(e), f(e))
A#h#(m, U121(e, b))A#h#(U121(e, a), d)
g#(d, x, x)A#A#h#(a, e)
A#h#(f(d), f(d))A#h#(a, U121(e, e))
A#h#(c, U121(e, c))A#h#(e, l)
A#h#(d, U121(e, b))A#h#(U121(e, c), l)
A#h#(U121(e, e), U121(e, c))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, d) 
h#(e, c) 
Thus, the rule A# → h#(e, b) is replaced by the following rules:
A# → h#(e, c)A# → h#(e, d)

Problem 88: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(U121(e, c), U121(e, c))
h#(x, x)g#(x, x, f(k))A#h#(d, d)
A#h#(m, m)A#h#(m, b)
A#h#(d, c)A#h#(e, e)
A#h#(c, c)A#h#(f(l), f(l))
A#h#(U121(e, e), U121(e, e))A#h#(l, l)
A#h#(f(c), f(c))A#h#(f(m), f(m))
A#h#(e, d)A#h#(l, c)
A#h#(e, m)A#h#(f(e), f(e))
A#h#(m, U121(e, b))A#h#(U121(e, a), d)
A#h#(a, e)g#(d, x, x)A#
A#h#(e, l)A#h#(a, U121(e, e))
A#h#(c, U121(e, c))A#h#(f(d), f(d))
A#h#(U121(e, e), U121(e, c))A#h#(d, U121(e, b))
A#h#(U121(e, c), l)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(m, b) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(m, c) 
h#(m, d) 
Thus, the rule A# → h#(m, b) is replaced by the following rules:
A# → h#(m, d)A# → h#(m, c)

Problem 89: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(U121(e, c), U121(e, c))
h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(c, c)A#h#(d, d)
A#h#(f(l), f(l))A#h#(U121(e, e), U121(e, e))
A#h#(l, l)A#h#(m, m)
A#h#(f(c), f(c))A#h#(f(m), f(m))
A#h#(c, l)A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(c, U121(e, c))
A#h#(d, U121(e, b))A#h#(f(d), f(d))
A#h#(e, l)A#h#(a, U121(e, e))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(c, l) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(l, l) 
h#(e, l) 
Thus, the rule A# → h#(c, l) is replaced by the following rules:
A# → h#(l, l)A# → h#(e, l)

Problem 90: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))A#h#(U121(e, c), U121(e, c))
h#(x, x)g#(x, x, f(k))A#h#(e, e)
A#h#(c, c)A#h#(d, d)
A#h#(f(l), f(l))A#h#(U121(e, e), U121(e, e))
A#h#(l, l)A#h#(f(c), f(c))
A#h#(m, m)A#h#(f(m), f(m))
A#h#(f(e), f(e))g#(d, x, x)A#
A#h#(f(d), f(d))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


Instantiation

For all potential predecessors l → r of the rule h#(x, x) → g#(x, x, f(k)) on dependency pair chains it holds that: Thus, h#(x, x) → g#(x, x, f(k)) is replaced by instances determined through the above matching. These instances are:
h#(c, c) → g#(c, c, f(k))h#(f(e), f(e)) → g#(f(e), f(e), f(k))
h#(U121(c, c), U121(c, c)) → g#(U121(c, c), U121(c, c), f(k))h#(e, e) → g#(e, e, f(k))
h#(f(m), f(m)) → g#(f(m), f(m), f(k))h#(f(c), f(c)) → g#(f(c), f(c), f(k))
h#(d, d) → g#(d, d, f(k))h#(m, m) → g#(m, m, f(k))
h#(f(d), f(d)) → g#(f(d), f(d), f(k))h#(l, l) → g#(l, l, f(k))
h#(U121(e, c), U121(e, c)) → g#(U121(e, c), U121(e, c), f(k))h#(U121(e, e), U121(e, e)) → g#(U121(e, e), U121(e, e), f(k))
h#(f(l), f(l)) → g#(f(l), f(l), f(k))

Problem 91: Propagation



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), U121(c, c))h#(c, c)g#(c, c, f(k))
A#h#(U121(e, c), U121(e, c))h#(e, e)g#(e, e, f(k))
h#(f(m), f(m))g#(f(m), f(m), f(k))A#h#(d, d)
h#(f(c), f(c))g#(f(c), f(c), f(k))h#(m, m)g#(m, m, f(k))
A#h#(m, m)h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(k))
h#(f(e), f(e))g#(f(e), f(e), f(k))A#h#(e, e)
A#h#(c, c)h#(U121(c, c), U121(c, c))g#(U121(c, c), U121(c, c), f(k))
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(l, l)h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))h#(f(d), f(d))g#(f(d), f(d), f(k))
A#h#(f(m), f(m))h#(l, l)g#(l, l, f(k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))A#h#(f(e), f(e))
g#(d, x, x)A#A#h#(f(d), f(d))
h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The dependency pairs A# → h#(U121(c, c), U121(c, c)) and h#(U121(c, c), U121(c, c)) → g#(U121(c, c), U121(c, c), f(k)) are consolidated into the rule A# → g#(U121(c, c), U121(c, c), f(k)) .

This is possible as

The dependency pairs g#(d, x, x) → A# and A# → h#(U121(c, c), U121(c, c)) are consolidated into the rule g#(d, x, x) → h#(U121(c, c), U121(c, c)) .

This is possible as


Summary

Removed Dependency PairsAdded Dependency Pairs
A# → h#(U121(c, c), U121(c, c))g#(d, x, x) → h#(U121(c, c), U121(c, c))
h#(U121(c, c), U121(c, c)) → g#(U121(c, c), U121(c, c), f(k))A# → g#(U121(c, c), U121(c, c), f(k))
g#(d, x, x) → A# 

Problem 92: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, c), U121(e, c))h#(c, c)g#(c, c, f(k))
h#(e, e)g#(e, e, f(k))h#(f(m), f(m))g#(f(m), f(m), f(k))
A#h#(d, d)A#g#(U121(c, c), U121(c, c), f(k))
h#(f(c), f(c))g#(f(c), f(c), f(k))h#(m, m)g#(m, m, f(k))
A#h#(m, m)h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(k))
h#(f(e), f(e))g#(f(e), f(e), f(k))A#h#(e, e)
A#h#(c, c)A#h#(U121(e, e), U121(e, e))
A#h#(f(l), f(l))A#h#(l, l)
h#(d, d)g#(d, d, f(k))A#h#(f(c), f(c))
h#(f(d), f(d))g#(f(d), f(d), f(k))A#h#(f(m), f(m))
h#(l, l)g#(l, l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))A#h#(f(e), f(e))
A#h#(f(d), f(d))h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(c, c) → g#(c, c, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(c, c, f(m)) 
g#(c, e, f(k)) 
g#(c, c, U121(k, k)) 
g#(e, c, f(k)) 
g#(l, c, f(k)) 
g#(c, c, f(l)) 
g#(c, l, f(k)) 
Thus, the rule h#(c, c) → g#(c, c, f(k)) is replaced by the following rules:
h#(c, c) → g#(c, c, U121(k, k))h#(c, c) → g#(c, l, f(k))
h#(c, c) → g#(c, c, f(l))h#(c, c) → g#(e, c, f(k))
h#(c, c) → g#(l, c, f(k))h#(c, c) → g#(c, c, f(m))
h#(c, c) → g#(c, e, f(k))

Problem 93: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, c), U121(e, c))h#(e, e)g#(e, e, f(k))
h#(f(m), f(m))g#(f(m), f(m), f(k))A#h#(d, d)
A#g#(U121(c, c), U121(c, c), f(k))h#(f(c), f(c))g#(f(c), f(c), f(k))
h#(m, m)g#(m, m, f(k))A#h#(m, m)
h#(c, c)g#(c, c, U121(k, k))h#(c, c)g#(c, c, f(m))
h#(c, c)g#(c, e, f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(k))
h#(f(e), f(e))g#(f(e), f(e), f(k))A#h#(e, e)
h#(c, c)g#(c, l, f(k))A#h#(c, c)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(l, l)h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(c, c)g#(c, c, f(l))A#h#(f(m), f(m))
h#(l, l)g#(l, l, f(k))h#(c, c)g#(e, c, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(c, c)g#(l, c, f(k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))A#h#(f(e), f(e))
A#h#(f(d), f(d))h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(e, e) → g#(e, e, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, e, f(l)) 
g#(e, e, U121(k, k)) 
g#(e, e, f(m)) 
Thus, the rule h#(e, e) → g#(e, e, f(k)) is replaced by the following rules:
h#(e, e) → g#(e, e, U121(k, k))h#(e, e) → g#(e, e, f(m))
h#(e, e) → g#(e, e, f(l))

Problem 94: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, c), U121(e, c))h#(f(m), f(m))g#(f(m), f(m), f(k))
A#h#(d, d)A#g#(U121(c, c), U121(c, c), f(k))
h#(f(c), f(c))g#(f(c), f(c), f(k))h#(m, m)g#(m, m, f(k))
A#h#(m, m)h#(c, c)g#(c, c, U121(k, k))
h#(e, e)g#(e, e, f(m))h#(c, c)g#(c, e, f(k))
h#(c, c)g#(c, c, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(k))
h#(e, e)g#(e, e, U121(k, k))h#(f(e), f(e))g#(f(e), f(e), f(k))
A#h#(e, e)h#(c, c)g#(c, l, f(k))
A#h#(c, c)A#h#(U121(e, e), U121(e, e))
A#h#(f(l), f(l))A#h#(l, l)
h#(d, d)g#(d, d, f(k))A#h#(f(c), f(c))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(c, c)g#(c, c, f(l))
A#h#(f(m), f(m))h#(c, c)g#(e, c, f(k))
h#(l, l)g#(l, l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(c, c)g#(l, c, f(k))h#(e, e)g#(e, e, f(l))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))A#h#(f(e), f(e))
A#h#(f(d), f(d))h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(m), f(m)) → g#(f(m), f(m), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(f(m), f(m), f(m))g#(f(m), U121(m, m), f(k))
g#(f(m), f(m), f(l))g#(U121(m, m), f(m), f(k))
g#(f(m), f(m), U121(k, k)) 
Thus, the rule h#(f(m), f(m)) → g#(f(m), f(m), f(k)) is replaced by the following rules:
h#(f(m), f(m)) → g#(f(m), f(m), U121(k, k))h#(f(m), f(m)) → g#(f(m), f(m), f(m))
h#(f(m), f(m)) → g#(f(m), f(m), f(l))

Problem 95: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, c), U121(e, c))h#(f(m), f(m))g#(f(m), f(m), U121(k, k))
A#h#(d, d)A#g#(U121(c, c), U121(c, c), f(k))
h#(f(c), f(c))g#(f(c), f(c), f(k))h#(f(m), f(m))g#(f(m), f(m), f(l))
h#(m, m)g#(m, m, f(k))A#h#(m, m)
h#(e, e)g#(e, e, f(m))h#(c, c)g#(c, c, U121(k, k))
h#(c, c)g#(c, c, f(m))h#(c, c)g#(c, e, f(k))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(k))h#(e, e)g#(e, e, U121(k, k))
h#(f(e), f(e))g#(f(e), f(e), f(k))A#h#(e, e)
h#(f(m), f(m))g#(f(m), f(m), f(m))h#(c, c)g#(c, l, f(k))
A#h#(c, c)A#h#(U121(e, e), U121(e, e))
A#h#(f(l), f(l))A#h#(l, l)
h#(d, d)g#(d, d, f(k))A#h#(f(c), f(c))
h#(f(d), f(d))g#(f(d), f(d), f(k))A#h#(f(m), f(m))
h#(c, c)g#(c, c, f(l))h#(l, l)g#(l, l, f(k))
h#(c, c)g#(e, c, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(c, c)g#(l, c, f(k))h#(e, e)g#(e, e, f(l))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))A#h#(f(e), f(e))
A#h#(f(d), f(d))h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(m), f(m)) → g#(f(m), f(m), U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(f(m), f(m), U121(l, k))
 g#(f(m), U121(m, m), U121(k, k))
 g#(f(m), f(m), U121(m, k))
 g#(U121(m, m), f(m), U121(k, k))
Thus, the rule h#(f(m), f(m)) → g#(f(m), f(m), U121(k, k)) is deleted.

Problem 96: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, c), U121(e, c))A#h#(d, d)
A#g#(U121(c, c), U121(c, c), f(k))h#(f(m), f(m))g#(f(m), f(m), f(l))
h#(f(c), f(c))g#(f(c), f(c), f(k))h#(m, m)g#(m, m, f(k))
A#h#(m, m)h#(c, c)g#(c, c, U121(k, k))
h#(e, e)g#(e, e, f(m))h#(c, c)g#(c, e, f(k))
h#(c, c)g#(c, c, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(k))
h#(e, e)g#(e, e, U121(k, k))h#(f(e), f(e))g#(f(e), f(e), f(k))
A#h#(e, e)h#(f(m), f(m))g#(f(m), f(m), f(m))
h#(c, c)g#(c, l, f(k))A#h#(c, c)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(l, l)h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(c, c)g#(c, c, f(l))A#h#(f(m), f(m))
h#(c, c)g#(e, c, f(k))h#(l, l)g#(l, l, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(c, c)g#(l, c, f(k))
h#(e, e)g#(e, e, f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))
A#h#(f(e), f(e))A#h#(f(d), f(d))
h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → g#(U121(c, c), U121(c, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U121(c, c), U121(c, c), U121(k, k))g#(U121(l, c), U121(c, c), f(k))
g#(U121(c, c), U121(c, c), f(m))g#(U121(c, c), U121(l, c), f(k))
g#(U121(c, c), U121(e, c), f(k)) 
g#(U121(e, c), U121(c, c), f(k)) 
g#(U121(c, c), U121(c, c), f(l)) 
Thus, the rule A# → g#(U121(c, c), U121(c, c), f(k)) is replaced by the following rules:
A# → g#(U121(c, c), U121(c, c), f(m))A# → g#(U121(e, c), U121(c, c), f(k))
A# → g#(U121(c, c), U121(c, c), U121(k, k))A# → g#(U121(c, c), U121(e, c), f(k))
A# → g#(U121(c, c), U121(c, c), f(l))

Problem 97: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, c), U121(e, c))A#h#(d, d)
h#(f(c), f(c))g#(f(c), f(c), f(k))h#(f(m), f(m))g#(f(m), f(m), f(l))
h#(m, m)g#(m, m, f(k))A#g#(U121(c, c), U121(c, c), f(l))
A#h#(m, m)h#(e, e)g#(e, e, f(m))
h#(c, c)g#(c, c, U121(k, k))h#(c, c)g#(c, c, f(m))
h#(c, c)g#(c, e, f(k))A#g#(U121(c, c), U121(e, c), f(k))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(k))h#(e, e)g#(e, e, U121(k, k))
h#(f(e), f(e))g#(f(e), f(e), f(k))A#h#(e, e)
A#g#(U121(e, c), U121(c, c), f(k))h#(f(m), f(m))g#(f(m), f(m), f(m))
h#(c, c)g#(c, l, f(k))A#h#(c, c)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(l, l)h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))h#(f(d), f(d))g#(f(d), f(d), f(k))
A#g#(U121(c, c), U121(c, c), f(m))A#h#(f(m), f(m))
h#(c, c)g#(c, c, f(l))h#(l, l)g#(l, l, f(k))
h#(c, c)g#(e, c, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
A#g#(U121(c, c), U121(c, c), U121(k, k))h#(c, c)g#(l, c, f(k))
h#(e, e)g#(e, e, f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))
A#h#(f(e), f(e))A#h#(f(d), f(d))
h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(m), f(m)) → g#(f(m), f(m), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(U121(m, m), f(m), f(l))
 g#(f(m), f(m), U121(l, l))
 g#(f(m), U121(m, m), f(l))
Thus, the rule h#(f(m), f(m)) → g#(f(m), f(m), f(l)) is deleted.

Problem 98: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, c), U121(e, c))A#h#(d, d)
h#(f(c), f(c))g#(f(c), f(c), f(k))A#g#(U121(c, c), U121(c, c), f(l))
h#(m, m)g#(m, m, f(k))A#h#(m, m)
h#(c, c)g#(c, c, U121(k, k))h#(e, e)g#(e, e, f(m))
h#(c, c)g#(c, e, f(k))h#(c, c)g#(c, c, f(m))
A#g#(U121(c, c), U121(e, c), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(k))
h#(e, e)g#(e, e, U121(k, k))h#(f(e), f(e))g#(f(e), f(e), f(k))
A#h#(e, e)A#g#(U121(e, c), U121(c, c), f(k))
h#(f(m), f(m))g#(f(m), f(m), f(m))h#(c, c)g#(c, l, f(k))
A#h#(c, c)A#h#(U121(e, e), U121(e, e))
A#h#(f(l), f(l))A#h#(l, l)
h#(d, d)g#(d, d, f(k))A#h#(f(c), f(c))
h#(f(d), f(d))g#(f(d), f(d), f(k))A#g#(U121(c, c), U121(c, c), f(m))
h#(c, c)g#(c, c, f(l))A#h#(f(m), f(m))
h#(c, c)g#(e, c, f(k))h#(l, l)g#(l, l, f(k))
A#g#(U121(c, c), U121(c, c), U121(k, k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(c, c)g#(l, c, f(k))h#(e, e)g#(e, e, f(l))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))A#h#(f(e), f(e))
A#h#(f(d), f(d))h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(c), f(c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(f(c), f(e), f(k)) 
g#(f(c), U121(c, c), f(k)) 
g#(U121(c, c), f(c), f(k)) 
g#(f(c), f(l), f(k)) 
g#(f(c), f(c), U121(k, k)) 
g#(f(l), f(c), f(k)) 
g#(f(c), f(c), f(m)) 
g#(f(c), f(c), f(l)) 
g#(f(e), f(c), f(k)) 
Thus, the rule h#(f(c), f(c)) → g#(f(c), f(c), f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U121(c, c), f(c), f(k))h#(f(c), f(c)) → g#(f(c), U121(c, c), f(k))
h#(f(c), f(c)) → g#(f(e), f(c), f(k))h#(f(c), f(c)) → g#(f(c), f(c), f(l))
h#(f(c), f(c)) → g#(f(l), f(c), f(k))h#(f(c), f(c)) → g#(f(c), f(c), f(m))
h#(f(c), f(c)) → g#(f(c), f(c), U121(k, k))h#(f(c), f(c)) → g#(f(c), f(e), f(k))
h#(f(c), f(c)) → g#(f(c), f(l), f(k))

Problem 99: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(f(c), f(c), f(l))
A#h#(d, d)h#(m, m)g#(m, m, f(k))
A#g#(U121(c, c), U121(c, c), f(l))A#h#(m, m)
h#(f(c), f(c))g#(U121(c, c), f(c), f(k))h#(e, e)g#(e, e, f(m))
h#(c, c)g#(c, c, U121(k, k))h#(c, c)g#(c, c, f(m))
h#(c, c)g#(c, e, f(k))A#g#(U121(c, c), U121(e, c), f(k))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(k))h#(e, e)g#(e, e, U121(k, k))
h#(f(e), f(e))g#(f(e), f(e), f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(k))
A#h#(e, e)h#(f(c), f(c))g#(f(e), f(c), f(k))
A#g#(U121(e, c), U121(c, c), f(k))h#(f(m), f(m))g#(f(m), f(m), f(m))
h#(c, c)g#(c, l, f(k))A#h#(c, c)
A#h#(U121(e, e), U121(e, e))A#h#(f(l), f(l))
A#h#(l, l)h#(f(c), f(c))g#(f(c), f(c), f(m))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(d, d)g#(d, d, f(k))h#(f(c), f(c))g#(f(c), f(l), f(k))
A#h#(f(c), f(c))h#(f(d), f(d))g#(f(d), f(d), f(k))
A#g#(U121(c, c), U121(c, c), f(m))A#h#(f(m), f(m))
h#(c, c)g#(c, c, f(l))h#(l, l)g#(l, l, f(k))
h#(c, c)g#(e, c, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
A#g#(U121(c, c), U121(c, c), U121(k, k))h#(c, c)g#(l, c, f(k))
h#(e, e)g#(e, e, f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))
A#h#(f(e), f(e))h#(f(c), f(c))g#(f(l), f(c), f(k))
A#h#(f(d), f(d))h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(c), f(c), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(f(c), f(l), f(l))g#(f(c), f(c), U121(l, l))
g#(f(e), f(c), f(l)) 
g#(f(c), U121(c, c), f(l)) 
g#(f(c), f(e), f(l)) 
g#(U121(c, c), f(c), f(l)) 
g#(f(l), f(c), f(l)) 
Thus, the rule h#(f(c), f(c)) → g#(f(c), f(c), f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(f(e), f(c), f(l))h#(f(c), f(c)) → g#(f(c), U121(c, c), f(l))
h#(f(c), f(c)) → g#(f(c), f(l), f(l))h#(f(c), f(c)) → g#(f(c), f(e), f(l))
h#(f(c), f(c)) → g#(f(l), f(c), f(l))h#(f(c), f(c)) → g#(U121(c, c), f(c), f(l))

Problem 100: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(m, m)h#(c, c)g#(c, c, U121(k, k))
h#(f(c), f(c))g#(f(e), f(c), f(l))h#(c, c)g#(c, e, f(k))
h#(c, c)g#(c, c, f(m))h#(f(c), f(c))g#(f(c), f(e), f(l))
h#(e, e)g#(e, e, U121(k, k))A#h#(e, e)
h#(f(c), f(c))g#(f(e), f(c), f(k))A#h#(f(l), f(l))
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(f(c), f(c), U121(k, k))
h#(d, d)g#(d, d, f(k))A#h#(f(c), f(c))
A#h#(f(m), f(m))h#(c, c)g#(c, c, f(l))
h#(l, l)g#(l, l, f(k))h#(c, c)g#(e, c, f(k))
h#(f(c), f(c))g#(f(c), f(l), f(l))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(c, c)g#(l, c, f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))
A#h#(f(e), f(e))h#(f(c), f(c))g#(f(l), f(c), f(k))
A#h#(f(d), f(d))A#h#(U121(e, c), U121(e, c))
A#h#(d, d)A#g#(U121(c, c), U121(c, c), f(l))
h#(m, m)g#(m, m, f(k))h#(f(c), f(c))g#(U121(c, c), f(c), f(k))
h#(e, e)g#(e, e, f(m))A#g#(U121(c, c), U121(e, c), f(k))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(k))h#(f(e), f(e))g#(f(e), f(e), f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(k))h#(f(m), f(m))g#(f(m), f(m), f(m))
A#g#(U121(e, c), U121(c, c), f(k))A#h#(c, c)
h#(c, c)g#(c, l, f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(l))
A#h#(l, l)h#(f(c), f(c))g#(f(c), f(c), f(m))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U121(c, c), f(c), f(l))h#(f(d), f(d))g#(f(d), f(d), f(k))
A#g#(U121(c, c), U121(c, c), f(m))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(c, c) → g#(c, c, U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(c, e, U121(k, k))g#(c, c, U121(l, k))
g#(e, c, U121(k, k))g#(c, c, U121(m, k))
g#(c, l, U121(k, k)) 
g#(l, c, U121(k, k)) 
Thus, the rule h#(c, c) → g#(c, c, U121(k, k)) is replaced by the following rules:
h#(c, c) → g#(c, e, U121(k, k))h#(c, c) → g#(e, c, U121(k, k))
h#(c, c) → g#(l, c, U121(k, k))h#(c, c) → g#(c, l, U121(k, k))

Problem 101: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(c, c)g#(c, e, U121(k, k))A#h#(m, m)
h#(f(c), f(c))g#(f(e), f(c), f(l))h#(c, c)g#(c, e, f(k))
h#(c, c)g#(c, c, f(m))h#(f(c), f(c))g#(f(c), f(e), f(l))
h#(e, e)g#(e, e, U121(k, k))A#h#(e, e)
h#(f(c), f(c))g#(f(e), f(c), f(k))A#h#(f(l), f(l))
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(f(c), f(c), U121(k, k))
h#(d, d)g#(d, d, f(k))A#h#(f(c), f(c))
h#(c, c)g#(c, c, f(l))A#h#(f(m), f(m))
h#(c, c)g#(e, c, f(k))h#(l, l)g#(l, l, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(f(c), f(c))g#(f(c), f(l), f(l))
h#(c, c)g#(l, c, f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))
A#h#(f(e), f(e))h#(f(c), f(c))g#(f(l), f(c), f(k))
A#h#(f(d), f(d))A#h#(U121(e, c), U121(e, c))
A#h#(d, d)A#g#(U121(c, c), U121(c, c), f(l))
h#(m, m)g#(m, m, f(k))h#(f(c), f(c))g#(U121(c, c), f(c), f(k))
h#(e, e)g#(e, e, f(m))h#(c, c)g#(l, c, U121(k, k))
A#g#(U121(c, c), U121(e, c), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(k))
h#(f(e), f(e))g#(f(e), f(e), f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(k))
h#(f(m), f(m))g#(f(m), f(m), f(m))A#g#(U121(e, c), U121(c, c), f(k))
A#h#(c, c)h#(c, c)g#(c, l, f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(l))A#h#(l, l)
h#(f(c), f(c))g#(f(c), f(c), f(m))h#(c, c)g#(c, l, U121(k, k))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U121(c, c), f(c), f(l))h#(f(d), f(d))g#(f(d), f(d), f(k))
A#g#(U121(c, c), U121(c, c), f(m))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(c, c)g#(e, c, U121(k, k))h#(e, e)g#(e, e, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(c, c) → g#(c, e, U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, e, U121(k, k))g#(c, e, U121(l, k))
g#(l, e, U121(k, k))g#(c, e, U121(m, k))
Thus, the rule h#(c, c) → g#(c, e, U121(k, k)) is replaced by the following rules:
h#(c, c) → g#(l, e, U121(k, k))h#(c, c) → g#(e, e, U121(k, k))

Problem 102: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(m, m)h#(f(c), f(c))g#(f(e), f(c), f(l))
h#(c, c)g#(c, e, f(k))h#(c, c)g#(c, c, f(m))
h#(f(c), f(c))g#(f(c), f(e), f(l))h#(e, e)g#(e, e, U121(k, k))
A#h#(e, e)h#(f(c), f(c))g#(f(e), f(c), f(k))
A#h#(f(l), f(l))A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))A#h#(f(m), f(m))
h#(c, c)g#(c, c, f(l))h#(l, l)g#(l, l, f(k))
h#(c, c)g#(e, c, f(k))h#(f(c), f(c))g#(f(c), f(l), f(l))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(c, c)g#(l, c, f(k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))A#h#(f(e), f(e))
h#(f(c), f(c))g#(f(l), f(c), f(k))A#h#(f(d), f(d))
A#h#(U121(e, c), U121(e, c))A#h#(d, d)
A#g#(U121(c, c), U121(c, c), f(l))h#(m, m)g#(m, m, f(k))
h#(f(c), f(c))g#(U121(c, c), f(c), f(k))h#(e, e)g#(e, e, f(m))
h#(c, c)g#(l, e, U121(k, k))h#(c, c)g#(l, c, U121(k, k))
A#g#(U121(c, c), U121(e, c), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(k))
h#(f(e), f(e))g#(f(e), f(e), f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(k))
h#(f(m), f(m))g#(f(m), f(m), f(m))A#g#(U121(e, c), U121(c, c), f(k))
A#h#(c, c)h#(c, c)g#(c, l, f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(l))A#h#(l, l)
h#(f(c), f(c))g#(f(c), f(c), f(m))h#(c, c)g#(c, l, U121(k, k))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U121(c, c), f(c), f(l))h#(f(d), f(d))g#(f(d), f(d), f(k))
A#g#(U121(c, c), U121(c, c), f(m))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(c, c)g#(e, c, U121(k, k))h#(e, e)g#(e, e, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(c, c)g#(e, e, U121(k, k))
h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(e), f(c), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(f(e), f(l), f(l))g#(f(e), f(c), U121(l, l))
g#(U121(e, e), f(c), f(l)) 
g#(f(e), U121(c, c), f(l)) 
g#(f(e), f(e), f(l)) 
Thus, the rule h#(f(c), f(c)) → g#(f(e), f(c), f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(f(e), f(e), f(l))h#(f(c), f(c)) → g#(f(e), U121(c, c), f(l))
h#(f(c), f(c)) → g#(f(e), f(l), f(l))h#(f(c), f(c)) → g#(U121(e, e), f(c), f(l))

Problem 103: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(U121(e, e), f(c), f(l))A#h#(m, m)
h#(c, c)g#(c, e, f(k))h#(c, c)g#(c, c, f(m))
h#(f(c), f(c))g#(f(c), f(e), f(l))h#(e, e)g#(e, e, U121(k, k))
A#h#(e, e)h#(f(c), f(c))g#(f(e), f(c), f(k))
A#h#(f(l), f(l))A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))h#(f(c), f(c))g#(f(e), f(e), f(l))
h#(c, c)g#(c, c, f(l))A#h#(f(m), f(m))
h#(c, c)g#(e, c, f(k))h#(l, l)g#(l, l, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(f(c), f(c))g#(f(c), f(l), f(l))
h#(c, c)g#(l, c, f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))
A#h#(f(e), f(e))h#(f(c), f(c))g#(f(l), f(c), f(k))
A#h#(f(d), f(d))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(f(e), U121(c, c), f(l))A#h#(d, d)
A#g#(U121(c, c), U121(c, c), f(l))h#(m, m)g#(m, m, f(k))
h#(f(c), f(c))g#(U121(c, c), f(c), f(k))h#(e, e)g#(e, e, f(m))
h#(c, c)g#(l, e, U121(k, k))h#(c, c)g#(l, c, U121(k, k))
A#g#(U121(c, c), U121(e, c), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(k))
h#(f(e), f(e))g#(f(e), f(e), f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(k))
h#(f(m), f(m))g#(f(m), f(m), f(m))A#g#(U121(e, c), U121(c, c), f(k))
A#h#(c, c)h#(c, c)g#(c, l, f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(l))h#(f(c), f(c))g#(f(e), f(l), f(l))
A#h#(l, l)h#(f(c), f(c))g#(f(c), f(c), f(m))
h#(c, c)g#(c, l, U121(k, k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U121(c, c), f(c), f(l))
h#(f(d), f(d))g#(f(d), f(d), f(k))A#g#(U121(c, c), U121(c, c), f(m))
A#g#(U121(c, c), U121(c, c), U121(k, k))h#(c, c)g#(e, c, U121(k, k))
h#(e, e)g#(e, e, f(l))h#(c, c)g#(e, e, U121(k, k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U121(e, e), f(c), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U121(e, e), f(l), f(l))g#(U121(e, e), f(c), U121(l, l))
g#(e, f(c), f(l)) 
g#(U121(e, e), U121(c, c), f(l)) 
g#(U121(e, e), f(e), f(l)) 
Thus, the rule h#(f(c), f(c)) → g#(U121(e, e), f(c), f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U121(e, e), f(e), f(l))h#(f(c), f(c)) → g#(U121(e, e), U121(c, c), f(l))
h#(f(c), f(c)) → g#(e, f(c), f(l))h#(f(c), f(c)) → g#(U121(e, e), f(l), f(l))

Problem 104: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(U121(e, e), f(e), f(l))A#h#(m, m)
h#(c, c)g#(c, e, f(k))h#(c, c)g#(c, c, f(m))
h#(f(c), f(c))g#(f(c), f(e), f(l))h#(e, e)g#(e, e, U121(k, k))
A#h#(e, e)h#(f(c), f(c))g#(f(e), f(c), f(k))
A#h#(f(l), f(l))A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))h#(f(c), f(c))g#(f(e), f(e), f(l))
A#h#(f(m), f(m))h#(c, c)g#(c, c, f(l))
h#(l, l)g#(l, l, f(k))h#(c, c)g#(e, c, f(k))
h#(f(c), f(c))g#(f(c), f(l), f(l))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(c, c)g#(l, c, f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))
A#h#(f(e), f(e))h#(f(c), f(c))g#(f(l), f(c), f(k))
A#h#(f(d), f(d))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(f(e), U121(c, c), f(l))A#h#(d, d)
A#g#(U121(c, c), U121(c, c), f(l))h#(m, m)g#(m, m, f(k))
h#(f(c), f(c))g#(U121(c, c), f(c), f(k))h#(e, e)g#(e, e, f(m))
h#(c, c)g#(l, e, U121(k, k))h#(c, c)g#(l, c, U121(k, k))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(U121(e, e), f(l), f(l))
A#g#(U121(c, c), U121(e, c), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(k))
h#(f(e), f(e))g#(f(e), f(e), f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(k))
h#(f(m), f(m))g#(f(m), f(m), f(m))A#g#(U121(e, c), U121(c, c), f(k))
A#h#(c, c)h#(c, c)g#(c, l, f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(c, c), f(l))
h#(f(c), f(c))g#(f(e), f(l), f(l))A#h#(l, l)
h#(f(c), f(c))g#(f(c), f(c), f(m))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(c, c)g#(c, l, U121(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U121(c, c), f(c), f(l))h#(f(d), f(d))g#(f(d), f(d), f(k))
A#g#(U121(c, c), U121(c, c), f(m))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(c, c)g#(e, c, U121(k, k))h#(e, e)g#(e, e, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(c, c)g#(e, e, U121(k, k))
h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U121(e, e), f(e), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U121(e, e), U121(e, e), f(l))g#(U121(e, e), f(e), U121(l, l))
g#(e, f(e), f(l)) 
Thus, the rule h#(f(c), f(c)) → g#(U121(e, e), f(e), f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, f(e), f(l))h#(f(c), f(c)) → g#(U121(e, e), U121(e, e), f(l))

Problem 105: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(m, m)h#(f(c), f(c))g#(U121(e, e), U121(e, e), f(l))
h#(c, c)g#(c, e, f(k))h#(c, c)g#(c, c, f(m))
h#(f(c), f(c))g#(f(c), f(e), f(l))h#(e, e)g#(e, e, U121(k, k))
A#h#(e, e)h#(f(c), f(c))g#(f(e), f(c), f(k))
A#h#(f(l), f(l))A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))h#(f(c), f(c))g#(f(e), f(e), f(l))
h#(c, c)g#(c, c, f(l))A#h#(f(m), f(m))
h#(c, c)g#(e, c, f(k))h#(l, l)g#(l, l, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(f(c), f(c))g#(f(c), f(l), f(l))
h#(c, c)g#(l, c, f(k))h#(f(c), f(c))g#(e, f(e), f(l))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))A#h#(f(e), f(e))
h#(f(c), f(c))g#(f(l), f(c), f(k))A#h#(f(d), f(d))
A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(f(e), U121(c, c), f(l))
A#h#(d, d)A#g#(U121(c, c), U121(c, c), f(l))
h#(m, m)g#(m, m, f(k))h#(f(c), f(c))g#(U121(c, c), f(c), f(k))
h#(e, e)g#(e, e, f(m))h#(c, c)g#(l, e, U121(k, k))
h#(c, c)g#(l, c, U121(k, k))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(U121(e, e), f(l), f(l))A#g#(U121(c, c), U121(e, c), f(k))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(k))h#(f(e), f(e))g#(f(e), f(e), f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(k))h#(f(m), f(m))g#(f(m), f(m), f(m))
A#g#(U121(e, c), U121(c, c), f(k))A#h#(c, c)
h#(c, c)g#(c, l, f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), f(l))h#(f(c), f(c))g#(f(e), f(l), f(l))
A#h#(l, l)h#(f(c), f(c))g#(f(c), f(c), f(m))
h#(c, c)g#(c, l, U121(k, k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U121(c, c), f(c), f(l))
h#(f(d), f(d))g#(f(d), f(d), f(k))A#g#(U121(c, c), U121(c, c), f(m))
A#g#(U121(c, c), U121(c, c), U121(k, k))h#(c, c)g#(e, c, U121(k, k))
h#(e, e)g#(e, e, f(l))h#(c, c)g#(e, e, U121(k, k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U121(e, e), U121(e, e), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, U121(e, e), f(l))g#(U121(e, e), U121(e, e), U121(l, l))
g#(U121(e, e), e, f(l)) 
Thus, the rule h#(f(c), f(c)) → g#(U121(e, e), U121(e, e), f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U121(e, e), e, f(l))h#(f(c), f(c)) → g#(e, U121(e, e), f(l))

Problem 106: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(m, m)h#(c, c)g#(c, e, f(k))
h#(c, c)g#(c, c, f(m))h#(f(c), f(c))g#(f(c), f(e), f(l))
h#(e, e)g#(e, e, U121(k, k))A#h#(e, e)
h#(f(c), f(c))g#(f(e), f(c), f(k))A#h#(f(l), f(l))
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))h#(f(c), f(c))g#(f(e), f(e), f(l))
A#h#(f(m), f(m))h#(c, c)g#(c, c, f(l))
h#(l, l)g#(l, l, f(k))h#(c, c)g#(e, c, f(k))
h#(f(c), f(c))g#(f(c), f(l), f(l))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(c, c)g#(l, c, f(k))h#(f(c), f(c))g#(e, f(e), f(l))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))A#h#(f(e), f(e))
h#(f(c), f(c))g#(f(l), f(c), f(k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(e, U121(e, e), f(l))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(f(e), U121(c, c), f(l))A#h#(d, d)
A#g#(U121(c, c), U121(c, c), f(l))h#(m, m)g#(m, m, f(k))
h#(f(c), f(c))g#(U121(c, c), f(c), f(k))h#(e, e)g#(e, e, f(m))
h#(c, c)g#(l, e, U121(k, k))h#(c, c)g#(l, c, U121(k, k))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(U121(e, e), f(l), f(l))
A#g#(U121(c, c), U121(e, c), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(k))
h#(f(e), f(e))g#(f(e), f(e), f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(k))
h#(f(m), f(m))g#(f(m), f(m), f(m))A#g#(U121(e, c), U121(c, c), f(k))
A#h#(c, c)h#(c, c)g#(c, l, f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(c, c), f(l))
h#(f(c), f(c))g#(f(e), f(l), f(l))A#h#(l, l)
h#(f(c), f(c))g#(f(c), f(c), f(m))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(c, c)g#(c, l, U121(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U121(c, c), f(c), f(l))h#(f(d), f(d))g#(f(d), f(d), f(k))
A#g#(U121(c, c), U121(c, c), f(m))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(c, c)g#(e, c, U121(k, k))h#(e, e)g#(e, e, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(c, c)g#(e, e, U121(k, k))
h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(c, c) → g#(c, e, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(c, e, U121(k, k)) 
g#(l, e, f(k)) 
g#(c, e, f(m)) 
g#(c, e, f(l)) 
g#(e, e, f(k)) 
Thus, the rule h#(c, c) → g#(c, e, f(k)) is replaced by the following rules:
h#(c, c) → g#(c, e, f(l))h#(c, c) → g#(c, e, U121(k, k))
h#(c, c) → g#(l, e, f(k))h#(c, c) → g#(e, e, f(k))
h#(c, c) → g#(c, e, f(m))

Problem 107: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(c, c)g#(l, e, f(k))h#(c, c)g#(c, e, U121(k, k))
A#h#(m, m)h#(c, c)g#(c, c, f(m))
h#(f(c), f(c))g#(f(c), f(e), f(l))h#(e, e)g#(e, e, U121(k, k))
A#h#(e, e)h#(f(c), f(c))g#(f(e), f(c), f(k))
h#(c, c)g#(c, e, f(l))A#h#(f(l), f(l))
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))h#(d, d)g#(d, d, f(k))
h#(c, c)g#(e, e, f(k))A#h#(f(c), f(c))
h#(f(c), f(c))g#(f(e), f(e), f(l))h#(c, c)g#(c, c, f(l))
A#h#(f(m), f(m))h#(c, c)g#(e, c, f(k))
h#(l, l)g#(l, l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(f(c), f(c))g#(f(c), f(l), f(l))h#(c, c)g#(l, c, f(k))
h#(f(c), f(c))g#(e, f(e), f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))
A#h#(f(e), f(e))h#(f(c), f(c))g#(f(l), f(c), f(k))
A#h#(f(d), f(d))h#(f(c), f(c))g#(e, U121(e, e), f(l))
A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(f(e), U121(c, c), f(l))
A#h#(d, d)A#g#(U121(c, c), U121(c, c), f(l))
h#(m, m)g#(m, m, f(k))h#(f(c), f(c))g#(U121(c, c), f(c), f(k))
h#(e, e)g#(e, e, f(m))h#(c, c)g#(l, e, U121(k, k))
h#(c, c)g#(l, c, U121(k, k))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(U121(e, e), f(l), f(l))A#g#(U121(c, c), U121(e, c), f(k))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(k))h#(c, c)g#(c, e, f(m))
h#(f(e), f(e))g#(f(e), f(e), f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(k))
h#(f(m), f(m))g#(f(m), f(m), f(m))A#g#(U121(e, c), U121(c, c), f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(l))h#(c, c)g#(c, l, f(k))
A#h#(c, c)h#(f(c), f(c))g#(U121(e, e), U121(c, c), f(l))
h#(f(c), f(c))g#(f(e), f(l), f(l))A#h#(l, l)
h#(f(c), f(c))g#(f(c), f(c), f(m))h#(c, c)g#(c, l, U121(k, k))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U121(c, c), f(c), f(l))h#(f(d), f(d))g#(f(d), f(d), f(k))
A#g#(U121(c, c), U121(c, c), f(m))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(c, c)g#(e, c, U121(k, k))h#(e, e)g#(e, e, f(l))
h#(c, c)g#(e, e, U121(k, k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(c, c) → g#(l, e, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, e, f(m)) 
g#(l, e, U121(k, k)) 
g#(l, e, f(l)) 
Thus, the rule h#(c, c) → g#(l, e, f(k)) is replaced by the following rules:
h#(c, c) → g#(l, e, U121(k, k))h#(c, c) → g#(l, e, f(l))
h#(c, c) → g#(l, e, f(m))

Problem 108: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(c, c)g#(c, e, U121(k, k))A#h#(m, m)
h#(c, c)g#(c, c, f(m))h#(f(c), f(c))g#(f(c), f(e), f(l))
h#(e, e)g#(e, e, U121(k, k))A#h#(e, e)
h#(f(c), f(c))g#(f(e), f(c), f(k))h#(c, c)g#(c, e, f(l))
A#h#(f(l), f(l))A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(f(c), f(c), U121(k, k))
h#(c, c)g#(e, e, f(k))h#(d, d)g#(d, d, f(k))
A#h#(f(c), f(c))h#(f(c), f(c))g#(f(e), f(e), f(l))
A#h#(f(m), f(m))h#(c, c)g#(c, c, f(l))
h#(l, l)g#(l, l, f(k))h#(c, c)g#(e, c, f(k))
h#(f(c), f(c))g#(f(c), f(l), f(l))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(c, c)g#(l, c, f(k))h#(f(c), f(c))g#(e, f(e), f(l))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))A#h#(f(e), f(e))
h#(f(c), f(c))g#(f(l), f(c), f(k))h#(c, c)g#(l, e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(e, U121(e, e), f(l))
A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(f(e), U121(c, c), f(l))
A#h#(d, d)h#(c, c)g#(l, e, f(l))
A#g#(U121(c, c), U121(c, c), f(l))h#(m, m)g#(m, m, f(k))
h#(f(c), f(c))g#(U121(c, c), f(c), f(k))h#(e, e)g#(e, e, f(m))
h#(c, c)g#(l, e, U121(k, k))h#(c, c)g#(l, c, U121(k, k))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(U121(e, e), f(l), f(l))
A#g#(U121(c, c), U121(e, c), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(k))
h#(c, c)g#(c, e, f(m))h#(f(e), f(e))g#(f(e), f(e), f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(k))h#(f(m), f(m))g#(f(m), f(m), f(m))
A#g#(U121(e, c), U121(c, c), f(k))A#h#(c, c)
h#(c, c)g#(c, l, f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), f(l))h#(f(c), f(c))g#(f(e), f(l), f(l))
A#h#(l, l)h#(f(c), f(c))g#(f(c), f(c), f(m))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(c, c)g#(c, l, U121(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U121(c, c), f(c), f(l))
h#(f(d), f(d))g#(f(d), f(d), f(k))A#g#(U121(c, c), U121(c, c), f(m))
A#g#(U121(c, c), U121(c, c), U121(k, k))h#(c, c)g#(e, c, U121(k, k))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(c, c)g#(e, e, U121(k, k))h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(c, c) → g#(c, e, U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, e, U121(k, k))g#(c, e, U121(l, k))
g#(l, e, U121(k, k))g#(c, e, U121(m, k))
Thus, the rule h#(c, c) → g#(c, e, U121(k, k)) is replaced by the following rules:
h#(c, c) → g#(l, e, U121(k, k))h#(c, c) → g#(e, e, U121(k, k))

Problem 109: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(m, m)h#(c, c)g#(c, c, f(m))
h#(f(c), f(c))g#(f(c), f(e), f(l))h#(e, e)g#(e, e, U121(k, k))
A#h#(e, e)h#(f(c), f(c))g#(f(e), f(c), f(k))
h#(c, c)g#(c, e, f(l))A#h#(f(l), f(l))
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))h#(c, c)g#(e, e, f(k))
h#(d, d)g#(d, d, f(k))A#h#(f(c), f(c))
h#(f(c), f(c))g#(f(e), f(e), f(l))h#(c, c)g#(c, c, f(l))
A#h#(f(m), f(m))h#(c, c)g#(e, c, f(k))
h#(l, l)g#(l, l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(f(c), f(c))g#(f(c), f(l), f(l))h#(c, c)g#(l, c, f(k))
h#(f(c), f(c))g#(e, f(e), f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))
A#h#(f(e), f(e))h#(f(c), f(c))g#(f(l), f(c), f(k))
h#(c, c)g#(l, e, f(m))A#h#(f(d), f(d))
h#(f(c), f(c))g#(e, U121(e, e), f(l))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(f(e), U121(c, c), f(l))A#h#(d, d)
h#(c, c)g#(l, e, f(l))A#g#(U121(c, c), U121(c, c), f(l))
h#(m, m)g#(m, m, f(k))h#(f(c), f(c))g#(U121(c, c), f(c), f(k))
h#(e, e)g#(e, e, f(m))h#(c, c)g#(l, e, U121(k, k))
h#(c, c)g#(l, c, U121(k, k))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(U121(e, e), f(l), f(l))A#g#(U121(c, c), U121(e, c), f(k))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(k))h#(c, c)g#(c, e, f(m))
h#(f(e), f(e))g#(f(e), f(e), f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(k))
h#(f(m), f(m))g#(f(m), f(m), f(m))A#g#(U121(e, c), U121(c, c), f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(l))h#(c, c)g#(c, l, f(k))
A#h#(c, c)h#(f(c), f(c))g#(U121(e, e), U121(c, c), f(l))
h#(f(c), f(c))g#(f(e), f(l), f(l))A#h#(l, l)
h#(f(c), f(c))g#(f(c), f(c), f(m))h#(c, c)g#(c, l, U121(k, k))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(U121(c, c), f(c), f(l))h#(f(d), f(d))g#(f(d), f(d), f(k))
A#g#(U121(c, c), U121(c, c), f(m))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(c, c)g#(e, c, U121(k, k))h#(e, e)g#(e, e, f(l))
h#(c, c)g#(e, e, U121(k, k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(l), f(l))g#(f(l), f(l), f(k))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(c, c) → g#(c, c, f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, c, f(m))g#(c, c, U121(m, m))
g#(c, e, f(m)) 
g#(c, l, f(m)) 
g#(e, c, f(m)) 
Thus, the rule h#(c, c) → g#(c, c, f(m)) is replaced by the following rules:
h#(c, c) → g#(l, c, f(m))h#(c, c) → g#(e, c, f(m))
h#(c, c) → g#(c, l, f(m))h#(c, c) → g#(c, e, f(m))

Problem 110: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(c, c)g#(l, c, f(m))A#h#(m, m)
h#(f(c), f(c))g#(f(c), f(e), f(l))h#(e, e)g#(e, e, U121(k, k))
A#h#(e, e)h#(f(c), f(c))g#(f(e), f(c), f(k))
h#(c, c)g#(c, e, f(l))A#h#(f(l), f(l))
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))h#(d, d)g#(d, d, f(k))
h#(c, c)g#(e, c, f(m))h#(c, c)g#(e, e, f(k))
A#h#(f(c), f(c))h#(f(c), f(c))g#(f(e), f(e), f(l))
A#h#(f(m), f(m))h#(c, c)g#(c, c, f(l))
h#(l, l)g#(l, l, f(k))h#(c, c)g#(e, c, f(k))
h#(f(c), f(c))g#(f(c), f(l), f(l))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(c, c)g#(l, c, f(k))h#(f(c), f(c))g#(e, f(e), f(l))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))A#h#(f(e), f(e))
h#(f(c), f(c))g#(f(l), f(c), f(k))h#(c, c)g#(l, e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(e, U121(e, e), f(l))
A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(f(e), U121(c, c), f(l))
A#h#(d, d)h#(c, c)g#(l, e, f(l))
A#g#(U121(c, c), U121(c, c), f(l))h#(m, m)g#(m, m, f(k))
h#(f(c), f(c))g#(U121(c, c), f(c), f(k))h#(e, e)g#(e, e, f(m))
h#(c, c)g#(l, e, U121(k, k))h#(c, c)g#(l, c, U121(k, k))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(U121(e, e), f(l), f(l))
A#g#(U121(c, c), U121(e, c), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(k))
h#(c, c)g#(c, e, f(m))h#(f(e), f(e))g#(f(e), f(e), f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(k))h#(f(m), f(m))g#(f(m), f(m), f(m))
A#g#(U121(e, c), U121(c, c), f(k))A#h#(c, c)
h#(c, c)g#(c, l, f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), f(l))h#(f(c), f(c))g#(f(e), f(l), f(l))
A#h#(l, l)h#(f(c), f(c))g#(f(c), f(c), f(m))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(c, c)g#(c, l, U121(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(U121(c, c), f(c), f(l))
h#(f(d), f(d))g#(f(d), f(d), f(k))A#g#(U121(c, c), U121(c, c), f(m))
A#g#(U121(c, c), U121(c, c), U121(k, k))h#(c, c)g#(e, c, U121(k, k))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(c, c)g#(e, e, U121(k, k))h#(f(l), f(l))g#(f(l), f(l), f(k))
h#(c, c)g#(c, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, c, A, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(m) = μ(a#) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(c, c) → g#(l, c, f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, e, f(m))g#(l, c, U121(m, m))
g#(l, l, f(m)) 
Thus, the rule h#(c, c) → g#(l, c, f(m)) is replaced by the following rules:
h#(c, c) → g#(l, l, f(m))h#(c, c) → g#(l, e, f(m))

Problem 111: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(d, d)g#(d, m, f(k))A#h#(e, e)
A#h#(f(l), f(l))h#(c, c)g#(e, e, f(k))
h#(c, c)g#(e, c, f(m))A#h#(f(c), f(c))
h#(f(c), f(c))g#(f(c), f(l), f(l))h#(c, c)g#(l, c, f(k))
h#(f(c), f(c))g#(e, f(e), f(l))A#h#(f(e), f(e))
h#(f(c), f(c))g#(f(l), f(c), f(k))h#(f(c), f(c))g#(e, U121(e, e), f(l))
A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(f(e), U121(c, c), f(l))
h#(f(c), f(c))g#(f(e), U121(c, c), f(k))h#(c, c)g#(l, e, f(l))
A#g#(U121(c, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(c, c), f(c), f(k))
h#(e, e)g#(e, e, f(m))h#(f(c), f(c))g#(e, f(c), f(k))
h#(c, c)g#(l, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(l))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))
h#(c, c)g#(c, e, f(m))h#(f(e), f(e))g#(f(e), f(e), f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(k))h#(f(c), f(c))g#(U121(e, e), U121(c, c), f(k))
A#g#(U121(e, c), U121(c, c), f(k))A#h#(c, c)
h#(c, c)g#(c, l, f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(l))
h#(f(c), f(c))g#(f(e), U121(e, c), U121(k, k))h#(f(c), f(c))g#(f(e), f(l), f(l))
A#h#(l, l)h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(f(c), f(c))g#(U121(c, c), f(c), f(l))h#(d, d)g#(m, d, f(k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(f(e), f(c), f(m))h#(f(c), f(c))g#(U121(e, e), c, f(m))
h#(f(c), f(c))g#(U121(e, e), e, f(k))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(f(e), f(l), f(k))h#(e, e)g#(e, e, f(l))
h#(c, c)g#(e, e, U121(k, k))h#(d, d)g#(d, d, U121(k, k))
h#(f(l), f(l))g#(f(l), f(l), f(k))h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(f(c), f(c))g#(U121(c, c), e, f(l))h#(f(c), f(c))g#(U121(e, e), f(l), f(m))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), f(m))A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(f(c), f(c), U121(k, k))
h#(f(c), f(c))g#(f(e), f(l), U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, e), f(l))
h#(f(c), f(c))g#(e, f(e), U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(f(e), f(e), f(l))
h#(f(c), f(c))g#(U121(e, e), f(e), f(m))h#(c, c)g#(c, c, f(l))
A#h#(f(m), f(m))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
h#(c, c)g#(e, c, f(k))h#(l, l)g#(l, l, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))
h#(c, c)g#(l, e, f(m))A#h#(f(d), f(d))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(c), f(c))g#(U121(e, e), f(c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))A#h#(d, d)
h#(f(c), f(c))g#(e, U121(e, c), f(m))h#(m, m)g#(m, m, f(k))
h#(f(c), f(c))g#(e, f(c), f(m))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))
h#(c, c)g#(l, e, U121(k, k))h#(d, d)g#(d, d, f(l))
h#(c, c)g#(e, e, f(l))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(e, f(c), f(l))
A#g#(U121(c, c), U121(e, c), f(k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(m), f(m))g#(f(m), f(m), f(m))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), f(l))h#(f(c), f(c))g#(f(c), f(c), f(m))
h#(c, c)g#(c, l, U121(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
A#g#(U121(c, c), U121(c, c), f(m))h#(d, d)g#(d, d, f(m))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(c, c)g#(c, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(d, d) → g#(d, m, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(d, m, f(l)) 
g#(m, m, f(k)) 
g#(d, m, f(m)) 
g#(d, m, U121(k, k)) 
Thus, the rule h#(d, d) → g#(d, m, f(k)) is replaced by the following rules:
h#(d, d) → g#(d, m, f(l))h#(d, d) → g#(m, m, f(k))
h#(d, d) → g#(d, m, U121(k, k))h#(d, d) → g#(d, m, f(m))

Problem 112: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(c, f(l), U121(k, k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(e, f(l), U121(k, k))h#(f(c), f(c))g#(U121(c, c), f(l), f(m))
h#(f(c), f(c))g#(U121(e, c), f(l), f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(k))
h#(d, d)g#(d, m, f(l))h#(e, e)g#(e, e, f(m))
h#(f(c), f(c))g#(U121(c, c), f(e), f(k))h#(f(c), f(c))g#(c, f(e), f(k))
h#(f(c), f(c))g#(e, f(c), f(k))h#(c, c)g#(l, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(l))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(m))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))
h#(c, c)g#(c, e, f(m))h#(f(e), f(e))g#(f(e), f(e), f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), f(k))A#g#(U121(e, c), U121(c, c), f(k))
h#(c, c)g#(c, l, f(k))A#h#(c, c)
h#(f(c), f(c))g#(f(c), U121(c, c), f(l))h#(f(c), f(c))g#(f(e), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(c, f(c), f(k))h#(f(c), f(c))g#(f(e), f(l), f(l))
A#h#(l, l)h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(f(c), f(c))g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(c, c), f(c), f(l))
h#(d, d)g#(m, d, f(k))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(f(l), U121(c, c), f(l))h#(f(c), f(c))g#(f(e), f(c), f(m))
h#(d, d)g#(m, m, f(k))h#(f(c), f(c))g#(U121(e, e), c, f(m))
h#(f(c), f(c))g#(U121(e, e), e, f(k))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(f(e), f(l), f(k))h#(f(c), f(c))g#(f(l), f(c), U121(k, k))
h#(e, e)g#(e, e, f(l))h#(c, c)g#(e, e, U121(k, k))
h#(d, d)g#(d, d, U121(k, k))h#(f(l), f(l))g#(f(l), f(l), f(k))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), f(e), U121(k, k))h#(f(c), f(c))g#(f(l), f(e), f(m))
h#(d, d)g#(d, m, U121(k, k))h#(f(c), f(c))g#(U121(c, c), f(c), f(m))
h#(c, c)g#(l, e, f(k))h#(c, c)g#(l, c, f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))
h#(f(c), f(c))g#(f(l), f(e), f(l))h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(f(c), f(c))g#(e, f(l), f(l))h#(f(c), f(c))g#(f(l), c, f(k))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(m, m))
h#(f(c), f(c))g#(U121(c, c), e, f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(l), U121(c, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))
h#(f(c), f(c))g#(U121(e, e), f(l), f(m))h#(f(c), f(c))g#(U121(e, e), U121(e, e), f(m))
A#h#(U121(e, e), U121(e, e))h#(d, d)g#(d, m, f(m))
h#(f(c), f(c))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(f(c), f(c), U121(k, k))
h#(f(c), f(c))g#(f(e), f(l), U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, e), f(l))
h#(f(c), f(c))g#(e, f(e), U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(f(e), f(e), f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(k))h#(f(c), f(c))g#(U121(e, e), f(e), f(m))
h#(c, c)g#(c, c, f(l))A#h#(f(m), f(m))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
h#(c, c)g#(e, c, f(k))h#(l, l)g#(l, l, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))
h#(c, c)g#(l, e, f(m))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(c), f(c))g#(e, U121(e, e), f(k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), f(c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
A#h#(d, d)h#(f(c), f(c))g#(l, f(l), U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(f(c), f(c))g#(e, U121(e, c), f(m))
h#(m, m)g#(m, m, f(k))h#(f(c), f(c))g#(e, f(c), f(m))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))
h#(c, c)g#(l, e, U121(k, k))A#g#(U121(c, c), U121(e, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(l))h#(d, d)g#(d, d, f(l))
h#(c, c)g#(e, e, f(l))h#(f(c), f(c))g#(l, U121(c, c), f(m))
h#(f(c), f(c))g#(c, U121(c, c), f(k))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))
h#(c, c)g#(l, l, f(k))h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(f(l), c, f(l))A#g#(U121(c, c), U121(e, c), f(k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(c), f(c))g#(f(e), U121(c, c), f(m))h#(f(m), f(m))g#(f(m), f(m), f(m))
h#(f(c), f(c))g#(f(l), f(c), f(m))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), f(l))h#(f(c), f(c))g#(f(c), f(c), f(m))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))A#g#(U121(c, c), U121(c, c), f(m))
h#(d, d)g#(d, d, f(m))h#(c, c)g#(e, e, f(m))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(c, c)g#(c, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(c, f(l), U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, f(l), U121(k, k))g#(c, f(l), U121(m, k))
g#(l, f(l), U121(k, k))g#(c, U121(l, l), U121(k, k))
 g#(c, f(l), U121(l, k))
Thus, the rule h#(f(c), f(c)) → g#(c, f(l), U121(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(l, f(l), U121(k, k))h#(f(c), f(c)) → g#(e, f(l), U121(k, k))

Problem 113: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(e, e)h#(f(c), f(c))g#(U121(e, c), U121(c, c), f(m))
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
h#(c, c)g#(c, e, f(m))h#(f(e), f(e))g#(f(e), f(e), f(k))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(k))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(k))A#g#(U121(e, c), U121(c, c), f(k))
h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))h#(f(c), f(c))g#(f(c), U121(c, c), f(l))
A#h#(c, c)h#(c, c)g#(c, l, f(k))
h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))h#(f(c), f(c))g#(c, f(c), f(k))
h#(f(c), f(c))g#(f(e), U121(e, c), U121(k, k))h#(f(c), f(c))g#(f(e), f(l), f(l))
A#h#(l, l)h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(f(c), f(c))g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(c, c), f(c), f(l))
h#(d, d)g#(m, d, f(k))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(f(l), U121(c, c), f(l))h#(f(c), f(c))g#(f(e), f(c), f(m))
h#(d, d)g#(m, m, f(k))h#(f(c), f(c))g#(U121(e, e), c, f(m))
h#(f(c), f(c))g#(U121(e, e), e, f(k))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(f(l), f(c), U121(k, k))h#(f(c), f(c))g#(f(e), f(l), f(k))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(U121(c, c), e, U121(k, k))
h#(f(c), f(c))g#(c, e, U121(k, k))h#(c, c)g#(e, e, U121(k, k))
h#(d, d)g#(d, d, U121(k, k))h#(f(l), f(l))g#(f(l), f(l), f(k))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(f(l), f(e), f(m))h#(f(c), f(c))g#(U121(c, c), f(e), U121(k, k))
h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(m))h#(d, d)g#(d, m, U121(k, k))
h#(f(c), f(c))g#(c, U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(c, c), f(c), f(m))
h#(c, c)g#(l, e, f(k))h#(c, c)g#(l, c, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(k))h#(f(c), f(c))g#(U121(e, c), f(e), f(m))
h#(f(c), f(c))g#(U121(e, c), e, f(k))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), f(l), U121(m, m))h#(f(c), f(c))g#(f(l), f(e), f(l))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))A#h#(m, m)
h#(f(c), f(c))g#(e, U121(c, c), f(m))h#(f(c), f(c))g#(e, f(l), f(l))
h#(f(c), f(c))g#(c, f(l), f(m))h#(f(c), f(c))g#(f(l), c, f(k))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(m, m))
h#(f(c), f(c))g#(U121(c, c), e, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(l), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(e, U121(c, c), f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, e), f(l), f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(m))h#(f(c), f(c))g#(U121(e, e), U121(e, e), f(m))
A#h#(U121(e, e), U121(e, e))h#(d, d)g#(d, m, f(m))
h#(f(c), f(c))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(e, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), U121(e, e), f(l))h#(f(c), f(c))g#(e, f(e), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(e), f(e), f(l))h#(f(c), f(c))g#(l, f(l), f(m))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(k))h#(f(c), f(c))g#(U121(e, e), f(e), f(m))
h#(c, c)g#(c, c, f(l))A#h#(f(m), f(m))
A#g#(U121(e, c), U121(c, c), f(l))h#(l, l)g#(l, l, f(k))
h#(c, c)g#(e, c, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))
h#(c, c)g#(l, e, f(m))A#h#(f(d), f(d))
h#(f(c), f(c))g#(U121(c, c), e, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(l))
h#(f(c), f(c))g#(c, U121(e, e), f(k))h#(f(c), f(c))g#(e, U121(e, c), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(c), f(c))g#(e, U121(e, e), f(k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), f(c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
A#h#(d, d)h#(f(c), f(c))g#(l, f(l), U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(f(c), f(c))g#(e, U121(e, c), f(m))
h#(c, c)g#(l, l, U121(k, k))h#(m, m)g#(m, m, f(k))
h#(f(c), f(c))g#(c, f(e), f(m))h#(f(c), f(c))g#(e, f(c), f(m))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))h#(c, c)g#(l, e, U121(k, k))
A#g#(U121(c, c), U121(e, c), f(l))h#(f(c), f(c))g#(f(e), c, f(l))
h#(d, d)g#(d, d, f(l))h#(c, c)g#(e, e, f(l))
h#(f(c), f(c))g#(l, U121(c, c), f(m))h#(f(c), f(c))g#(c, U121(c, c), f(k))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))h#(c, c)g#(l, l, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(f(l), c, f(l))
h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))A#g#(U121(c, c), U121(e, c), f(k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(U121(c, c), f(e), f(m))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(c), f(c))g#(f(e), U121(c, c), f(m))
h#(f(m), f(m))g#(f(m), f(m), f(m))h#(f(c), f(c))g#(f(l), f(c), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(c, c), f(l))
h#(f(c), f(c))g#(f(c), f(c), f(m))h#(c, c)g#(l, c, f(l))
h#(c, c)g#(c, l, U121(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(U121(c, c), U121(c, c), f(m))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(d, d)g#(d, d, f(m))h#(c, c)g#(e, e, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(c, c)g#(c, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U121(e, c), U121(c, c), f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U121(e, c), U121(c, c), U121(m, m))g#(U121(e, c), U121(l, c), f(m))
g#(U121(e, c), U121(e, c), f(m)) 
g#(c, U121(c, c), f(m)) 
Thus, the rule h#(f(c), f(c)) → g#(U121(e, c), U121(c, c), f(m)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U121(e, c), U121(c, c), U121(m, m))h#(f(c), f(c)) → g#(c, U121(c, c), f(m))
h#(f(c), f(c)) → g#(U121(e, c), U121(e, c), f(m))

Problem 114: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(l, l)
h#(c, c)g#(e, e, U121(k, k))h#(f(l), f(l))g#(f(l), f(l), f(k))
h#(f(c), f(c))g#(U121(e, e), f(c), f(m))h#(f(c), f(c))g#(U121(c, c), f(e), U121(k, k))
h#(f(c), f(c))g#(f(l), f(e), f(m))h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(m))
h#(d, d)g#(d, m, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(k))
h#(f(c), f(c))g#(U121(c, c), f(c), f(m))h#(f(c), f(c))g#(c, U121(e, e), U121(k, k))
h#(c, c)g#(l, e, f(k))h#(c, c)g#(l, c, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(k))h#(f(c), f(c))g#(e, l, U121(k, k))
h#(f(c), f(c))g#(f(l), f(e), f(l))h#(f(c), f(c))g#(U121(e, c), f(l), U121(m, m))
h#(f(c), f(c))g#(e, f(l), f(l))h#(f(c), f(c))g#(c, f(l), f(m))
h#(f(c), f(c))g#(f(l), c, f(k))h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(m, m))
h#(f(c), f(c))g#(U121(c, c), e, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), f(m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(l), U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(m))
h#(f(c), f(c))g#(f(e), f(e), f(m))h#(f(c), f(c))g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), f(m))h#(f(c), f(c))g#(c, c, U121(k, k))
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(U121(e, e), e, f(l))
h#(d, d)g#(d, m, f(m))h#(f(c), f(c))g#(e, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(f(c), U121(e, e), f(l))h#(f(c), f(c))g#(f(e), f(e), f(l))
h#(f(c), f(c))g#(l, f(l), f(m))h#(c, c)g#(c, c, f(l))
h#(f(c), f(c))g#(U121(e, e), f(e), f(m))h#(l, l)g#(l, l, f(k))
h#(c, c)g#(e, c, f(k))h#(f(c), f(c))g#(f(e), c, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))h#(f(c), f(c))g#(e, l, f(l))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(l))h#(f(c), f(c))g#(e, U121(e, c), f(k))
h#(f(c), f(c))g#(c, U121(e, e), f(k))h#(f(c), f(c))g#(U121(e, c), c, f(l))
h#(f(c), f(c))g#(U121(e, e), f(c), U121(k, k))h#(f(e), f(e))g#(f(e), U121(e, e), f(l))
h#(f(c), f(c))g#(l, f(l), U121(k, k))h#(f(c), f(c))g#(f(c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(e, U121(e, c), f(m))h#(f(e), f(e))g#(f(e), U121(e, e), f(k))
h#(m, m)g#(m, m, f(k))h#(f(c), f(c))g#(e, f(c), f(m))
h#(f(c), f(c))g#(c, f(e), f(m))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))A#g#(U121(c, c), U121(e, c), f(l))
h#(f(c), f(c))g#(e, l, f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(l))
h#(c, c)g#(e, e, f(l))h#(d, d)g#(d, d, f(l))
h#(f(c), f(c))g#(f(e), c, f(l))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))
h#(f(c), f(c))g#(c, U121(c, c), f(k))h#(f(c), f(c))g#(l, U121(c, c), f(m))
h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))h#(f(c), f(c))g#(f(l), c, f(l))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))A#g#(U121(c, c), U121(e, c), f(k))
h#(f(e), f(e))g#(f(e), U121(e, e), f(m))h#(f(c), f(c))g#(c, e, f(l))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(c, c), f(e), f(m))
h#(f(c), f(c))g#(f(e), U121(c, c), f(m))h#(f(m), f(m))g#(f(m), f(m), f(m))
h#(f(c), f(c))g#(f(l), f(c), f(m))h#(f(c), f(c))g#(U121(e, e), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))h#(f(c), f(c))g#(c, U121(e, c), f(k))
h#(f(c), f(c))g#(f(c), f(c), f(m))h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))
h#(c, c)g#(e, e, f(m))h#(d, d)g#(d, d, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(c, c)g#(c, l, f(m))h#(f(c), f(c))g#(f(l), U121(e, c), f(l))
h#(f(c), f(c))g#(U121(c, c), f(e), f(l))h#(f(c), f(c))g#(c, f(l), f(l))
h#(f(c), f(c))g#(e, e, f(k))h#(f(c), f(c))g#(e, c, f(m))
A#h#(e, e)h#(f(c), f(c))g#(e, e, U121(k, k))
h#(d, d)g#(m, d, U121(k, k))A#h#(f(c), f(c))
A#h#(f(e), f(e))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(k))
A#g#(c, U121(c, c), f(k))A#g#(U121(e, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(f(l), f(l), U121(k, k))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(c, l, f(m))h#(f(c), f(c))g#(f(c), U121(e, c), f(k))
h#(f(c), f(c))g#(f(e), U121(c, c), f(k))h#(d, d)g#(m, m, f(l))
h#(f(c), f(c))g#(l, c, f(k))h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))
A#h#(c, c)h#(f(c), f(c))g#(f(c), U121(c, c), f(l))
h#(c, c)g#(c, l, f(k))h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))
h#(f(c), f(c))g#(c, f(c), f(k))h#(f(c), f(c))g#(f(e), f(l), f(l))
A#g#(U121(e, c), U121(e, c), f(k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(d, d)g#(m, d, f(k))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(f(c), f(c))g#(f(l), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(U121(e, e), c, f(m))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(f(c), U121(c, c), f(m))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), f(e), f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), e, f(k))h#(f(c), f(c))g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))A#h#(m, m)
h#(f(c), f(c))g#(e, U121(c, c), f(m))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(e, U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))
h#(f(c), f(c))g#(f(e), f(l), U121(k, k))h#(f(c), f(c))g#(f(c), f(c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))h#(f(c), f(c))g#(e, f(e), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(e, c), f(c), f(m))
A#h#(f(m), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(k))A#g#(U121(e, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))h#(f(c), f(c))g#(U121(e, c), l, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(c, c)g#(l, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(e, U121(e, e), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), f(m))
A#g#(U121(e, c), U121(c, c), f(m))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(c, c)g#(l, e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
h#(c, c)g#(l, l, f(k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(U121(c, c), U121(c, c), f(m))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(c, c) → g#(e, e, U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U121(l, k))
 g#(e, e, U121(m, k))
Thus, the rule h#(c, c) → g#(e, e, U121(k, k)) is deleted.

Problem 115: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(l, l)
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(U121(e, e), e, f(l))
h#(d, d)g#(d, m, f(m))h#(f(c), f(c))g#(e, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(f(c), U121(e, e), f(l))h#(f(c), f(c))g#(f(e), f(e), f(l))
h#(f(c), f(c))g#(l, f(l), f(m))h#(c, c)g#(c, c, f(l))
h#(f(c), f(c))g#(U121(e, e), f(e), f(m))h#(l, l)g#(l, l, f(k))
h#(c, c)g#(e, c, f(k))h#(f(c), f(c))g#(f(e), c, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(k))h#(f(c), f(c))g#(e, l, f(l))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), f(l))h#(f(c), f(c))g#(e, U121(e, c), f(k))
h#(f(c), f(c))g#(c, U121(e, e), f(k))h#(f(c), f(c))g#(U121(e, c), c, f(l))
h#(f(c), f(c))g#(U121(e, e), f(c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, f(k))
h#(f(e), f(e))g#(f(e), U121(e, e), f(l))h#(f(c), f(c))g#(f(c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(l, f(l), U121(k, k))h#(f(c), f(c))g#(e, U121(e, c), f(m))
h#(f(e), f(e))g#(f(e), U121(e, e), f(k))h#(m, m)g#(m, m, f(k))
h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, f(e), f(m))
h#(f(c), f(c))g#(e, f(c), f(m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))A#g#(U121(c, c), U121(e, c), f(l))
h#(f(c), f(c))g#(e, l, f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(l))
h#(c, c)g#(e, e, f(l))h#(f(c), f(c))g#(f(e), c, f(l))
h#(d, d)g#(d, d, f(l))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))
h#(f(c), f(c))g#(c, U121(c, c), f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(c, c), f(m))h#(f(c), f(c))g#(f(l), l, f(k))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))
h#(f(c), f(c))g#(f(l), c, f(l))A#g#(U121(c, c), U121(e, c), f(k))
h#(f(e), f(e))g#(f(e), U121(e, e), f(m))h#(f(c), f(c))g#(c, e, f(l))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(c, c), f(e), f(m))
h#(f(c), f(c))g#(f(e), U121(c, c), f(m))h#(f(m), f(m))g#(f(m), f(m), f(m))
h#(f(c), f(c))g#(f(l), f(c), f(m))h#(f(c), f(c))g#(l, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(k))h#(f(c), f(c))g#(f(c), f(c), f(m))
h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))h#(c, c)g#(e, e, f(m))
h#(d, d)g#(d, d, f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(e, f(l), f(k))h#(c, c)g#(c, l, f(m))
h#(f(c), f(c))g#(f(l), U121(e, c), f(l))h#(c, c)g#(l, l, f(m))
h#(f(c), f(c))g#(U121(c, c), f(e), f(l))h#(f(c), f(c))g#(c, f(l), f(l))
h#(f(c), f(c))g#(c, U121(c, c), f(m))h#(U121(e, e), U121(e, e))g#(e, e, f(m))
h#(f(c), f(c))g#(f(l), c, f(m))h#(f(c), f(c))g#(f(l), e, f(k))
h#(f(c), f(c))g#(f(l), U121(e, e), f(l))h#(f(c), f(c))g#(e, c, f(m))
h#(f(c), f(c))g#(e, e, f(k))A#h#(e, e)
h#(f(c), f(c))g#(e, e, U121(k, k))h#(d, d)g#(m, d, U121(k, k))
A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(k))A#g#(U121(e, c), U121(c, c), U121(k, k))
A#g#(c, U121(c, c), f(k))h#(f(c), f(c))g#(f(l), f(l), U121(k, k))
A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(c, l, f(m))
h#(f(c), f(c))g#(f(e), U121(c, c), f(k))h#(f(c), f(c))g#(f(c), U121(e, c), f(k))
h#(c, c)g#(l, e, f(l))h#(d, d)g#(m, m, f(l))
h#(f(c), f(c))g#(U121(c, c), f(l), f(m))h#(f(c), f(c))g#(f(l), U121(e, e), f(m))
h#(f(c), f(c))g#(f(e), U121(e, e), f(m))h#(f(c), f(c))g#(e, U121(e, e), f(m))
h#(f(c), f(c))g#(l, c, f(k))h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))
A#h#(c, c)h#(f(c), f(c))g#(f(c), U121(c, c), f(l))
h#(c, c)g#(c, l, f(k))h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))
h#(f(c), f(c))g#(e, f(l), f(m))h#(f(c), f(c))g#(c, f(c), f(k))
h#(f(c), f(c))g#(f(e), f(l), f(l))h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))
A#g#(U121(e, c), U121(e, c), f(k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(d, d)g#(m, d, f(k))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(f(c), f(c))g#(f(l), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(U121(e, e), c, f(m))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(f(c), U121(c, c), f(m))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))h#(f(c), f(c))g#(U121(e, c), e, f(k))
h#(f(c), f(c))g#(U121(e, c), c, f(m))h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))
h#(f(c), f(c))g#(f(l), c, U121(k, k))A#h#(m, m)
h#(f(c), f(c))g#(e, U121(c, c), f(m))h#(f(l), f(l))g#(f(l), f(l), U121(k, k))
h#(f(c), f(c))g#(l, e, f(k))h#(f(c), f(c))g#(l, c, f(m))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(c, l, U121(k, k))h#(f(c), f(c))g#(e, U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), e, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), f(m))
A#h#(f(m), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(k))A#g#(U121(e, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))h#(f(c), f(c))g#(U121(e, c), l, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(c, c)g#(l, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(e, U121(e, e), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), f(m))
A#g#(U121(e, c), U121(c, c), f(m))h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))h#(c, c)g#(l, l, f(k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(U121(c, c), U121(c, c), f(m))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U121(e, e), e, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, e, f(l))g#(U121(e, e), e, U121(l, l))
Thus, the rule h#(f(c), f(c)) → g#(U121(e, e), e, f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, e, f(l))

Problem 116: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(l, l)
h#(f(c), f(c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(c, U121(e, e), f(l))
h#(f(c), f(c))g#(c, U121(e, e), U121(k, k))A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(U121(e, c), c, f(l))h#(f(c), f(c))g#(U121(e, e), f(c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, f(k))h#(f(e), f(e))g#(f(e), U121(e, e), f(l))
h#(f(c), f(c))g#(l, f(l), U121(k, k))h#(f(c), f(c))g#(f(c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(c, U121(e, e), f(m))h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))
h#(f(c), f(c))g#(e, U121(e, c), f(m))h#(f(e), f(e))g#(f(e), U121(e, e), f(k))
h#(m, m)g#(m, m, f(k))h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(c, f(e), f(m))h#(f(c), f(c))g#(e, f(c), f(m))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))
A#g#(U121(c, c), U121(e, c), f(l))h#(f(c), f(c))g#(e, l, f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(l))h#(d, d)g#(d, d, f(l))
h#(f(c), f(c))g#(f(e), c, f(l))h#(c, c)g#(e, e, f(l))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))h#(f(c), f(c))g#(c, U121(c, c), f(k))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(m))
h#(f(c), f(c))g#(f(l), l, f(k))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))h#(f(c), f(c))g#(f(l), c, f(l))
h#(f(e), f(e))g#(f(e), U121(e, e), f(m))A#g#(U121(c, c), U121(e, c), f(k))
h#(f(c), f(c))g#(c, e, f(l))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(c, c), f(e), f(m))h#(f(c), f(c))g#(f(e), U121(c, c), f(m))
h#(f(m), f(m))g#(f(m), f(m), f(m))h#(f(c), f(c))g#(f(l), f(c), f(m))
h#(f(c), f(c))g#(l, c, U121(k, k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(c, c), f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(k))h#(f(c), f(c))g#(f(c), f(c), f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))
h#(c, c)g#(e, e, f(m))h#(d, d)g#(d, d, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))h#(c, c)g#(e, l, f(l))
h#(c, c)g#(c, l, f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), c, f(k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(e, f(l), f(k))h#(c, c)g#(c, l, f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(m))h#(f(c), f(c))g#(f(l), U121(e, c), f(l))
h#(c, c)g#(l, l, f(m))h#(U121(e, c), U121(e, c))g#(c, c, f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), f(l))h#(f(c), f(c))g#(f(e), e, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, e), f(k))h#(f(c), f(c))g#(U121(c, c), f(e), f(l))
h#(f(c), f(c))g#(c, f(l), f(l))h#(f(c), f(c))g#(c, U121(c, c), f(m))
h#(U121(e, e), U121(e, e))g#(e, e, f(m))h#(f(c), f(c))g#(f(l), c, f(m))
h#(f(c), f(c))g#(f(l), e, f(k))h#(f(c), f(c))g#(f(l), U121(e, e), f(l))
h#(f(c), f(c))g#(e, c, f(m))h#(f(c), f(c))g#(e, e, f(k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(l))A#h#(e, e)
h#(c, c)g#(c, e, f(l))h#(f(c), f(c))g#(e, e, U121(k, k))
h#(d, d)g#(m, d, U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(e, e), f(l))
A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U121(e, e), l, U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(k))
A#g#(U121(e, c), U121(c, c), U121(k, k))A#g#(c, U121(c, c), f(k))
h#(f(c), f(c))g#(f(l), f(l), U121(k, k))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(c, l, f(m))h#(f(c), f(c))g#(f(c), U121(e, c), f(k))
h#(f(c), f(c))g#(f(e), U121(c, c), f(k))h#(U121(e, c), U121(e, c))g#(c, U121(e, c), f(k))
h#(c, c)g#(l, e, f(l))h#(d, d)g#(m, m, f(l))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(c, c), f(l), f(m))
h#(f(c), f(c))g#(f(l), U121(e, e), f(m))h#(f(c), f(c))g#(f(e), U121(e, e), f(m))
h#(c, c)g#(e, l, U121(k, k))h#(f(c), f(c))g#(e, U121(e, e), f(m))
h#(f(c), f(c))g#(l, c, f(k))h#(l, l)g#(l, l, U121(k, k))
h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))A#h#(c, c)
h#(f(c), f(c))g#(f(c), U121(c, c), f(l))h#(c, c)g#(c, l, f(k))
h#(U121(e, c), U121(e, c))g#(c, e, f(m))h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))
h#(f(c), f(c))g#(e, f(l), f(m))h#(f(c), f(c))g#(c, f(c), f(k))
h#(f(c), f(c))g#(e, f(e), f(m))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))A#g#(U121(e, c), U121(e, c), f(k))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(d, d)g#(m, d, f(k))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(l, l)g#(l, l, f(m))
h#(f(c), f(c))g#(f(l), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(U121(e, e), c, f(m))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(e, e)g#(e, e, f(l))h#(U121(e, c), U121(e, c))g#(l, c, f(m))
h#(f(c), f(c))g#(f(c), U121(c, c), f(m))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))
h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), e, f(k))h#(f(c), f(c))g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))h#(f(c), f(c))g#(f(l), c, U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(e, U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))
h#(f(c), f(c))g#(f(e), f(l), U121(k, k))h#(f(c), f(c))g#(f(c), f(c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))h#(f(c), f(c))g#(e, f(e), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))A#h#(f(m), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(f(e), f(e))g#(U121(e, e), f(e), f(m))h#(c, c)g#(l, e, f(m))
h#(f(c), f(c))g#(U121(c, c), e, f(m))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), U121(e, e), f(l))h#(f(c), f(c))g#(e, U121(e, e), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), f(m))A#g#(U121(e, c), U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(c, c)g#(l, e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
h#(c, c)g#(l, l, f(k))h#(c, c)g#(e, c, f(l))
h#(f(c), f(c))g#(e, f(e), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(c, e, U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, e, U121(k, k))g#(c, e, U121(l, k))
g#(l, e, U121(k, k))g#(c, e, U121(m, k))
Thus, the rule h#(f(c), f(c)) → g#(c, e, U121(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, e, U121(k, k))h#(f(c), f(c)) → g#(l, e, U121(k, k))

Problem 117: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))h#(f(c), f(c))g#(e, c, U121(k, k))
A#h#(l, l)A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(f(c), l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))
h#(f(c), f(c))g#(c, U121(e, e), f(m))h#(f(c), f(c))g#(e, U121(e, c), f(m))
h#(f(e), f(e))g#(f(e), U121(e, e), f(k))h#(m, m)g#(m, m, f(k))
h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(e, f(c), f(m))
h#(f(c), f(c))g#(c, f(e), f(m))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))A#g#(U121(c, c), U121(e, c), f(l))
h#(f(c), f(c))g#(e, l, f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(l))
h#(d, d)g#(d, d, f(l))h#(c, c)g#(e, e, f(l))
h#(f(c), f(c))g#(f(e), c, f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(m))
h#(f(c), f(c))g#(c, U121(c, c), f(k))h#(f(c), f(c))g#(f(l), l, f(k))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))
h#(f(c), f(c))g#(f(l), c, f(l))h#(f(c), f(c))g#(U121(e, c), l, f(l))
h#(f(e), f(e))g#(f(e), U121(e, e), f(m))A#g#(U121(c, c), U121(e, c), f(k))
h#(f(c), f(c))g#(c, e, f(l))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(c, c), f(e), f(m))h#(f(c), f(c))g#(f(e), U121(c, c), f(m))
h#(f(m), f(m))g#(f(m), f(m), f(m))h#(f(c), f(c))g#(f(l), f(c), f(m))
h#(f(c), f(c))g#(l, c, U121(k, k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(k))h#(f(c), f(c))g#(f(c), f(c), f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))
h#(d, d)g#(d, d, f(m))h#(c, c)g#(e, e, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))h#(c, c)g#(e, l, f(l))
h#(c, c)g#(c, l, f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), c, f(k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(e, f(l), f(k))h#(c, c)g#(c, l, f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(m))h#(f(c), f(c))g#(f(l), U121(e, c), f(l))
h#(c, c)g#(l, l, f(m))h#(U121(e, c), U121(e, c))g#(c, c, f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), f(l))h#(f(c), f(c))g#(f(e), e, U121(k, k))
h#(f(c), f(c))g#(e, f(c), U121(k, k))h#(f(c), f(c))g#(l, U121(e, e), f(k))
h#(f(c), f(c))g#(U121(c, c), f(e), f(l))h#(f(c), f(c))g#(c, f(l), f(l))
h#(f(c), f(c))g#(c, U121(c, c), f(m))h#(U121(e, e), U121(e, e))g#(e, e, f(m))
h#(f(c), f(c))g#(f(l), c, f(m))h#(f(c), f(c))g#(f(l), e, f(k))
h#(f(c), f(c))g#(f(l), U121(e, e), f(l))h#(f(c), f(c))g#(e, c, f(m))
h#(f(c), f(c))g#(e, e, f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(l))
A#h#(e, e)h#(c, c)g#(c, e, f(l))
h#(f(c), f(c))g#(e, e, U121(k, k))h#(d, d)g#(m, d, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), f(l))A#h#(f(c), f(c))
A#h#(f(e), f(e))h#(f(c), f(c))g#(U121(e, e), l, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(k))A#g#(U121(e, c), U121(c, c), U121(k, k))
A#g#(c, U121(c, c), f(k))h#(f(c), f(c))g#(e, U121(e, e), f(l))
h#(f(c), f(c))g#(f(l), f(l), U121(k, k))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(c, l, f(m))h#(f(c), f(c))g#(U121(e, c), l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, U121(e, c), f(k))h#(f(c), f(c))g#(f(c), U121(e, c), f(k))
h#(f(c), f(c))g#(f(e), U121(c, c), f(k))h#(c, c)g#(l, e, f(l))
h#(d, d)g#(m, m, f(l))h#(f(c), f(c))g#(U121(c, c), f(l), f(m))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(m, m))h#(f(c), f(c))g#(f(l), U121(e, e), f(m))
h#(f(c), f(c))g#(f(e), U121(e, e), f(m))h#(c, c)g#(e, l, U121(k, k))
h#(f(c), f(c))g#(e, U121(e, e), f(m))h#(f(c), f(c))g#(l, c, f(k))
h#(l, l)g#(l, l, U121(k, k))h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))
A#h#(c, c)h#(f(c), f(c))g#(f(c), U121(c, c), f(l))
h#(c, c)g#(c, l, f(k))h#(U121(e, c), U121(e, c))g#(c, e, f(m))
h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))h#(f(c), f(c))g#(e, f(l), f(m))
h#(f(c), f(c))g#(c, f(c), f(k))h#(f(c), f(c))g#(e, f(e), f(m))
h#(f(c), f(c))g#(f(e), f(l), f(l))h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))
A#g#(U121(e, c), U121(e, c), f(k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(d, d)g#(m, d, f(k))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(l, l)g#(l, l, f(m))h#(f(c), f(c))g#(f(l), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), e, f(k))h#(f(c), f(c))g#(U121(e, e), c, f(m))
A#g#(U121(c, c), U121(c, c), U121(k, k))h#(e, e)g#(e, e, f(l))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(l, c, f(m))
h#(f(c), f(c))g#(f(c), U121(c, c), f(m))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))
h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), l, f(m))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))h#(f(c), f(c))g#(U121(e, c), e, f(k))
h#(f(c), f(c))g#(U121(e, c), c, f(m))h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))
h#(f(c), f(c))g#(f(l), c, U121(k, k))A#h#(m, m)
h#(f(c), f(c))g#(e, U121(c, c), f(m))h#(f(l), f(l))g#(f(l), f(l), U121(k, k))
h#(f(c), f(c))g#(l, e, f(k))h#(f(c), f(c))g#(l, c, f(m))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(c, l, U121(k, k))h#(f(c), f(c))g#(e, U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))A#h#(f(m), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(f(e), f(e))g#(U121(e, e), f(e), f(m))h#(c, c)g#(l, e, f(m))
h#(f(c), f(c))g#(U121(c, c), e, f(m))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), U121(e, e), f(l))h#(f(c), f(c))g#(e, U121(e, e), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), f(m))A#g#(U121(e, c), U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))h#(c, c)g#(l, e, U121(k, k))
h#(c, c)g#(l, l, f(k))h#(c, c)g#(e, c, f(l))
h#(f(c), f(c))g#(e, f(e), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, c, U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, l, U121(k, k))g#(e, c, U121(m, k))
g#(e, e, U121(k, k))g#(e, c, U121(l, k))
Thus, the rule h#(f(c), f(c)) → g#(e, c, U121(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, e, U121(k, k))h#(f(c), f(c)) → g#(e, l, U121(k, k))

Problem 118: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(e, U121(c, c), f(k))A#h#(f(l), f(l))
A#h#(l, l)A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(l, U121(c, c), f(k))h#(f(c), f(c))g#(f(l), l, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))
h#(f(c), f(c))g#(f(l), c, f(l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(U121(e, c), l, f(l))
A#g#(U121(c, c), U121(e, c), f(k))h#(f(e), f(e))g#(f(e), U121(e, e), f(m))
h#(f(c), f(c))g#(c, e, f(l))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(c, c), f(e), f(m))h#(f(c), f(c))g#(f(e), U121(c, c), f(m))
h#(f(m), f(m))g#(f(m), f(m), f(m))h#(f(c), f(c))g#(f(l), f(c), f(m))
h#(f(c), f(c))g#(l, c, U121(k, k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(c, c), f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(k))h#(f(e), f(e))g#(e, U121(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(c), f(m))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(k, k))
h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))h#(d, d)g#(d, d, f(m))
h#(c, c)g#(e, e, f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))
h#(c, c)g#(c, l, f(l))h#(c, c)g#(e, l, f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), c, f(k))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(l, f(e), f(k))h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))
h#(c, c)g#(c, l, f(m))h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(m))
h#(c, c)g#(l, l, f(m))h#(f(c), f(c))g#(f(l), U121(e, c), f(l))
h#(U121(e, c), U121(e, c))g#(c, c, f(m))h#(f(c), f(c))g#(U121(e, e), f(e), f(l))
h#(f(c), f(c))g#(f(e), e, U121(k, k))h#(f(c), f(c))g#(e, f(c), U121(k, k))
h#(f(c), f(c))g#(l, U121(e, e), f(m))h#(f(c), f(c))g#(l, U121(e, e), f(k))
h#(f(c), f(c))g#(U121(c, c), f(e), f(l))h#(f(c), f(c))g#(c, f(l), f(l))
h#(f(c), f(c))g#(c, U121(c, c), f(m))h#(U121(e, e), U121(e, e))g#(e, e, f(m))
h#(f(c), f(c))g#(f(l), c, f(m))h#(f(c), f(c))g#(f(l), e, f(k))
h#(f(c), f(c))g#(f(l), U121(e, e), f(l))h#(f(c), f(c))g#(e, c, f(m))
h#(f(c), f(c))g#(e, e, f(k))h#(f(e), f(e))g#(f(e), e, f(k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(l))A#h#(e, e)
h#(c, c)g#(c, e, f(l))h#(f(c), f(c))g#(e, e, U121(k, k))
A#g#(U121(c, c), c, f(l))h#(d, d)g#(m, d, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), f(l))A#h#(f(c), f(c))
A#h#(f(e), f(e))h#(f(c), f(c))g#(U121(e, e), l, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(k))A#g#(U121(e, c), U121(c, c), U121(k, k))
A#g#(c, U121(c, c), f(k))h#(f(c), f(c))g#(e, U121(e, e), f(l))
h#(f(c), f(c))g#(c, U121(c, c), U121(k, k))h#(f(c), f(c))g#(f(l), f(l), U121(k, k))
A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(c, l, f(m))
h#(f(c), f(c))g#(U121(e, c), l, U121(k, k))h#(U121(e, c), U121(e, c))g#(c, U121(e, c), f(k))
h#(f(c), f(c))g#(f(c), U121(e, c), f(k))h#(f(c), f(c))g#(f(e), U121(c, c), f(k))
h#(c, c)g#(l, e, f(l))h#(d, d)g#(m, m, f(l))
h#(f(c), f(c))g#(U121(c, c), f(l), f(m))h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(f(l), U121(e, e), f(m))h#(f(c), f(c))g#(f(e), U121(e, e), f(m))
h#(f(c), f(c))g#(e, U121(e, e), f(m))h#(c, c)g#(e, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, c, f(k))
h#(c, c)g#(c, l, f(k))A#h#(c, c)
h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))h#(f(c), f(c))g#(f(c), U121(c, c), f(l))
h#(l, l)g#(l, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(c, e, f(m))
h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))h#(f(c), f(c))g#(l, f(e), f(m))
h#(f(c), f(c))g#(e, f(l), f(m))h#(f(c), f(c))g#(c, f(c), f(k))
h#(f(c), f(c))g#(e, f(e), f(m))h#(m, m)g#(m, m, f(m))
h#(f(c), f(c))g#(f(e), f(l), f(l))h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))
A#g#(U121(e, c), U121(e, c), f(k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(d, d)g#(m, d, f(k))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(l, l)g#(l, l, f(m))h#(f(c), f(c))g#(f(l), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), e, f(k))h#(f(c), f(c))g#(U121(e, e), c, f(m))
A#g#(U121(c, c), U121(c, c), U121(k, k))h#(e, e)g#(e, e, f(l))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(l, c, f(m))
h#(f(c), f(c))g#(f(c), U121(c, c), f(m))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))
h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), l, f(m))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), e, f(k))h#(f(c), f(c))g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))h#(f(c), f(c))g#(f(l), c, U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))
h#(f(c), f(c))g#(e, U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))
h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))A#h#(f(m), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(f(e), f(e))g#(U121(e, e), f(e), f(m))h#(c, c)g#(l, e, f(m))
h#(f(c), f(c))g#(U121(c, c), e, f(m))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), U121(e, e), f(l))h#(f(c), f(c))g#(e, U121(e, e), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), f(m))A#g#(U121(e, c), U121(c, c), f(m))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))
h#(c, c)g#(l, e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
h#(c, c)g#(l, l, f(k))h#(c, c)g#(e, c, f(l))
h#(f(c), f(c))g#(e, f(e), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))h#(c, c)g#(l, c, f(l))
h#(c, c)g#(c, l, U121(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, U121(c, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, U121(c, c), f(l))g#(e, U121(l, c), f(k))
g#(e, U121(c, c), U121(k, k)) 
g#(e, U121(e, c), f(k)) 
g#(e, U121(c, c), f(m)) 
Thus, the rule h#(f(c), f(c)) → g#(e, U121(c, c), f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, U121(c, c), f(m))h#(f(c), f(c)) → g#(e, U121(c, c), U121(k, k))
h#(f(c), f(c)) → g#(e, U121(c, c), f(l))h#(f(c), f(c)) → g#(e, U121(e, c), f(k))

Problem 119: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#g#(U121(e, c), c, f(k))
A#h#(l, l)A#h#(U121(e, e), U121(e, e))
A#g#(U121(e, c), U121(e, c), U121(k, k))A#g#(U121(c, c), U121(e, c), f(l))
h#(f(c), f(c))g#(c, e, f(l))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(c, c), f(e), f(m))h#(f(c), f(c))g#(f(e), U121(c, c), f(m))
h#(f(m), f(m))g#(f(m), f(m), f(m))h#(f(c), f(c))g#(f(l), f(c), f(m))
h#(f(c), f(c))g#(l, c, U121(k, k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(c, c), f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))
h#(f(e), f(e))g#(e, U121(e, e), f(l))h#(f(c), f(c))g#(f(c), f(c), f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))
h#(c, c)g#(e, e, f(m))h#(d, d)g#(d, d, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))h#(c, c)g#(c, l, f(l))
h#(c, c)g#(e, l, f(l))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), c, f(k))h#(f(c), f(c))g#(f(l), l, U121(k, k))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))h#(c, c)g#(c, l, f(m))
h#(f(c), f(c))g#(f(l), U121(e, c), f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(m))
h#(c, c)g#(l, l, f(m))h#(U121(e, c), U121(e, c))g#(c, c, f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), f(l))h#(f(c), f(c))g#(f(e), e, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, e), f(m))h#(f(c), f(c))g#(e, f(c), U121(k, k))
h#(f(c), f(c))g#(l, U121(e, e), f(k))h#(f(c), f(c))g#(U121(c, c), f(e), f(l))
h#(f(c), f(c))g#(c, f(l), f(l))h#(f(c), f(c))g#(c, U121(c, c), f(m))
h#(U121(e, e), U121(e, e))g#(e, e, f(m))h#(f(c), f(c))g#(f(l), e, f(k))
h#(f(c), f(c))g#(f(l), c, f(m))h#(f(c), f(c))g#(f(l), U121(e, e), f(l))
h#(f(c), f(c))g#(e, c, f(m))h#(f(c), f(c))g#(e, e, f(k))
h#(f(e), f(e))g#(f(e), e, f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(l))
A#h#(e, e)h#(c, c)g#(c, e, f(l))
h#(f(c), f(c))g#(e, e, U121(k, k))A#g#(U121(c, c), c, f(l))
h#(d, d)g#(m, d, U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(e, e), f(l))
A#h#(f(c), f(c))h#(f(c), f(c))g#(e, f(e), f(l))
A#h#(f(e), f(e))h#(f(c), f(c))g#(U121(e, e), l, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(k))A#g#(U121(e, c), U121(c, c), U121(k, k))
A#g#(c, U121(c, c), f(k))h#(f(c), f(c))g#(e, U121(e, e), f(l))
h#(f(c), f(c))g#(c, U121(c, c), U121(k, k))h#(f(c), f(c))g#(f(l), f(l), U121(k, k))
A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(c, l, f(m))
h#(f(c), f(c))g#(U121(e, c), l, U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, U121(m, m))
h#(U121(e, c), U121(e, c))g#(c, U121(e, c), f(k))h#(f(c), f(c))g#(f(c), U121(e, c), f(k))
h#(f(c), f(c))g#(f(e), U121(c, c), f(k))h#(c, c)g#(l, e, f(l))
h#(f(c), f(c))g#(c, l, f(l))h#(d, d)g#(m, m, f(l))
h#(f(c), f(c))g#(U121(c, c), f(l), f(m))h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(m, m))
A#g#(U121(c, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(m))h#(f(c), f(c))g#(f(e), U121(e, e), f(m))
h#(f(c), f(c))g#(e, U121(e, e), f(m))h#(c, c)g#(e, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, c, f(k))
h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))h#(f(c), f(c))g#(f(c), U121(c, c), f(l))
A#h#(c, c)h#(l, l)g#(l, l, U121(k, k))
h#(c, c)g#(c, l, f(k))h#(U121(e, c), U121(e, c))g#(c, e, f(m))
h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))A#g#(U121(c, c), e, f(k))
A#g#(U121(c, c), c, f(m))h#(f(c), f(c))g#(c, f(c), f(k))
h#(f(c), f(c))g#(e, f(l), f(m))h#(f(c), f(c))g#(l, f(e), f(m))
h#(f(c), f(c))g#(e, f(e), f(m))h#(m, m)g#(m, m, f(m))
h#(f(c), f(c))g#(f(e), f(l), f(l))h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))
A#g#(U121(e, c), U121(e, c), f(k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(d, d)g#(m, d, f(k))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(l, l)g#(l, l, f(m))h#(f(c), f(c))g#(f(l), U121(c, c), f(l))
A#g#(U121(c, c), l, f(k))h#(f(c), f(c))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(U121(e, e), c, f(m))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(l, U121(e, c), f(k))h#(e, e)g#(e, e, f(l))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(l, c, f(m))
h#(f(c), f(c))g#(f(c), U121(c, c), f(m))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))
h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), l, f(m))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), e, f(k))h#(f(c), f(c))g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))h#(f(c), f(c))g#(f(l), c, U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))
h#(f(c), f(c))g#(e, U121(c, c), f(l))h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(e), f(l), U121(k, k))h#(f(c), f(c))g#(f(c), f(c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))h#(f(c), f(c))g#(e, f(e), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(f(c), e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), e, f(m))h#(f(e), f(e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(U121(e, e), l, f(l))h#(f(c), f(c))g#(U121(e, c), f(c), f(m))
A#h#(f(m), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(k))A#g#(U121(e, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))h#(f(c), f(c))g#(U121(e, c), l, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(c, c)g#(l, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), U121(e, e), f(l))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(f(e), f(e))g#(f(e), e, f(m))A#g#(U121(e, c), U121(c, c), f(m))
A#g#(U121(c, c), c, U121(k, k))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
h#(c, c)g#(l, e, U121(k, k))h#(c, c)g#(l, l, f(k))
h#(c, c)g#(e, c, f(l))h#(f(c), f(c))g#(f(l), l, f(m))
h#(f(c), f(c))g#(e, f(e), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(m))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → g#(U121(e, c), c, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U121(e, c), l, f(k)) 
g#(c, c, f(k)) 
g#(U121(e, c), c, f(l)) 
g#(U121(e, c), c, f(m)) 
g#(U121(e, c), e, f(k)) 
g#(U121(e, c), c, U121(k, k)) 
Thus, the rule A# → g#(U121(e, c), c, f(k)) is replaced by the following rules:
A# → g#(U121(e, c), l, f(k))A# → g#(c, c, f(k))
A# → g#(U121(e, c), c, f(l))A# → g#(U121(e, c), c, U121(k, k))
A# → g#(U121(e, c), c, f(m))A# → g#(U121(e, c), e, f(k))

Problem 120: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(l, l)
h#(f(c), f(c))g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(e, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, l, U121(k, k))A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(e, l, f(l))h#(f(c), f(c))g#(e, U121(e, c), f(m))
h#(f(c), f(c))g#(e, l, f(m))h#(f(c), f(c))g#(c, e, f(l))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(l, c, U121(k, k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))h#(f(c), f(c))g#(f(c), f(c), f(m))
h#(f(e), f(e))g#(e, U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(l, l, U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))
h#(c, c)g#(e, e, f(m))h#(d, d)g#(d, d, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))h#(c, c)g#(c, l, f(l))
h#(c, c)g#(e, l, f(l))A#g#(U121(e, c), e, f(k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), c, f(k))
A#g#(U121(e, c), c, f(m))h#(f(c), f(c))g#(f(l), l, U121(k, k))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))h#(c, c)g#(c, l, f(m))
h#(f(c), f(c))g#(f(l), U121(e, c), f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(m))
h#(c, c)g#(l, l, f(m))h#(U121(e, c), U121(e, c))g#(c, c, f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), f(l))h#(f(c), f(c))g#(f(e), e, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, e), f(m))h#(f(c), f(c))g#(e, f(c), U121(k, k))
h#(f(c), f(c))g#(l, U121(e, e), f(k))h#(f(c), f(c))g#(U121(c, c), f(e), f(l))
h#(f(c), f(c))g#(c, f(l), f(l))h#(U121(e, c), U121(e, c))g#(e, c, f(m))
h#(f(c), f(c))g#(c, U121(c, c), f(m))h#(U121(e, e), U121(e, e))g#(e, e, f(m))
h#(f(c), f(c))g#(f(l), e, f(k))h#(f(c), f(c))g#(f(l), c, f(m))
h#(f(c), f(c))g#(e, c, f(m))h#(f(c), f(c))g#(f(l), U121(e, e), f(l))
h#(f(c), f(c))g#(e, e, f(k))h#(f(e), f(e))g#(f(e), e, f(k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(l))A#h#(e, e)
h#(c, c)g#(c, e, f(l))h#(f(c), f(c))g#(e, e, U121(k, k))
A#g#(U121(c, c), c, f(l))h#(d, d)g#(m, d, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), f(l))A#h#(f(c), f(c))
h#(f(c), f(c))g#(e, f(e), f(l))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U121(e, e), l, U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(k))
A#g#(U121(e, c), U121(c, c), U121(k, k))A#g#(c, U121(c, c), f(k))
h#(f(c), f(c))g#(e, U121(e, e), f(l))h#(f(c), f(c))g#(c, U121(c, c), U121(k, k))
h#(f(c), f(c))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(e, e), f(m))
A#g#(U121(e, c), l, f(k))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(c, l, f(m))h#(f(c), f(c))g#(U121(e, c), l, U121(k, k))
h#(f(e), f(e))g#(U121(e, e), e, U121(m, m))h#(U121(e, c), U121(e, c))g#(c, U121(e, c), f(k))
h#(f(c), f(c))g#(f(c), U121(e, c), f(k))h#(f(c), f(c))g#(f(e), U121(c, c), f(k))
h#(c, c)g#(l, e, f(l))h#(f(c), f(c))g#(c, l, f(l))
h#(d, d)g#(m, m, f(l))h#(f(c), f(c))g#(l, e, f(l))
h#(f(c), f(c))g#(U121(c, c), f(l), f(m))h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(m, m))
A#g#(U121(c, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(m))h#(f(c), f(c))g#(f(e), U121(e, e), f(m))
h#(f(c), f(c))g#(e, U121(e, e), f(m))h#(c, c)g#(e, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, c, f(k))
h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))h#(c, c)g#(c, l, f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(l))A#h#(c, c)
h#(l, l)g#(l, l, U121(k, k))h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, e, f(m))A#g#(U121(c, c), c, f(m))
A#g#(U121(c, c), e, f(k))h#(f(c), f(c))g#(c, f(c), f(k))
h#(f(c), f(c))g#(e, f(l), f(m))h#(f(c), f(c))g#(l, f(e), f(m))
h#(f(c), f(c))g#(e, f(e), f(m))h#(f(c), f(c))g#(f(l), f(l), f(m))
h#(m, m)g#(m, m, f(m))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))A#g#(U121(e, c), U121(e, c), f(k))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(d, d)g#(m, d, f(k))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(l, l)g#(l, l, f(m))
h#(f(c), f(c))g#(f(l), U121(c, c), f(l))A#g#(U121(c, c), l, f(k))
h#(f(c), f(c))g#(U121(e, e), e, f(k))h#(f(c), f(c))g#(U121(e, e), c, f(m))
A#g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, U121(e, c), f(k))
h#(e, e)g#(e, e, f(l))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, c, f(m))h#(f(c), f(c))g#(f(c), U121(c, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(l))h#(f(c), f(c))g#(f(l), U121(e, e), f(k))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), l, f(m))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))A#g#(c, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), f(e), f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), e, f(k))h#(f(c), f(c))g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))h#(f(c), f(c))g#(f(l), c, U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(m))h#(f(c), f(c))g#(e, U121(c, c), f(l))
A#g#(U121(e, c), c, U121(k, k))h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))A#h#(f(m), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(f(e), f(e))g#(U121(e, e), f(e), f(m))h#(c, c)g#(l, e, f(m))
h#(f(c), f(c))g#(U121(c, c), e, f(m))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), U121(e, e), f(l))h#(f(c), f(c))g#(e, U121(e, e), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(c, c)g#(l, l, U121(k, k))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
A#g#(c, c, f(k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))h#(c, c)g#(l, l, f(k))
h#(c, c)g#(e, c, f(l))h#(f(c), f(c))g#(f(l), l, f(m))
h#(f(c), f(c))g#(e, f(e), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(c), f(c))g#(c, U121(e, c), f(l))
A#g#(U121(e, c), c, f(l))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(m))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, U121(e, c), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, c, f(l))g#(e, U121(e, c), U121(l, l))
Thus, the rule h#(f(c), f(c)) → g#(e, U121(e, c), f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, c, f(l))

Problem 121: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(l, l)
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(U121(e, e), f(e), f(m))
h#(f(c), f(c))g#(U121(c, c), f(e), f(m))h#(f(c), f(c))g#(f(e), U121(c, c), f(m))
h#(f(c), f(c))g#(f(l), f(c), f(m))h#(f(e), f(e))g#(e, U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(k, k))h#(f(c), f(c))g#(l, l, U121(k, k))
h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))h#(d, d)g#(d, d, f(m))
h#(c, c)g#(e, e, f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))
h#(c, c)g#(e, l, f(l))h#(c, c)g#(c, l, f(l))
A#g#(U121(e, c), e, f(k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), c, f(k))A#g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(l, f(e), f(k))h#(c, c)g#(c, l, f(m))
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))h#(c, c)g#(l, l, f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(m))h#(f(c), f(c))g#(f(l), U121(e, c), f(l))
h#(U121(e, c), U121(e, c))g#(c, c, f(m))h#(f(c), f(c))g#(U121(e, e), f(e), f(l))
h#(f(c), f(c))g#(f(e), e, U121(k, k))h#(f(c), f(c))g#(l, U121(e, e), f(m))
h#(f(c), f(c))g#(e, f(c), U121(k, k))h#(f(c), f(c))g#(l, U121(e, e), f(k))
h#(f(c), f(c))g#(U121(c, c), f(e), f(l))h#(f(c), f(c))g#(c, f(l), f(l))
h#(U121(e, c), U121(e, c))g#(e, c, f(m))h#(f(c), f(c))g#(c, U121(c, c), f(m))
h#(U121(e, e), U121(e, e))g#(e, e, f(m))h#(f(c), f(c))g#(f(l), e, f(k))
h#(f(c), f(c))g#(f(l), c, f(m))h#(f(c), f(c))g#(e, e, f(k))
h#(f(c), f(c))g#(e, c, f(m))h#(f(c), f(c))g#(f(l), U121(e, e), f(l))
h#(f(e), f(e))g#(f(e), e, f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(l))
A#h#(e, e)h#(c, c)g#(c, e, f(l))
h#(f(c), f(c))g#(e, e, U121(k, k))A#g#(U121(c, c), c, f(l))
h#(d, d)g#(m, d, U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(e, e), f(l))
A#h#(f(c), f(c))h#(f(c), f(c))g#(e, f(e), f(l))
A#h#(f(e), f(e))h#(f(c), f(c))g#(U121(e, e), l, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(k))A#g#(U121(e, c), U121(c, c), U121(k, k))
A#g#(c, U121(c, c), f(k))h#(f(c), f(c))g#(e, U121(e, e), f(l))
h#(f(c), f(c))g#(c, U121(c, c), U121(k, k))h#(f(c), f(c))g#(f(l), f(l), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), f(m))A#g#(U121(e, c), l, f(k))
A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(c, l, f(m))
h#(f(c), f(c))g#(U121(e, c), l, U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, U121(m, m))
h#(U121(e, c), U121(e, c))g#(c, U121(e, c), f(k))h#(f(c), f(c))g#(f(c), U121(e, c), f(k))
h#(f(c), f(c))g#(f(e), U121(c, c), f(k))h#(c, c)g#(l, e, f(l))
h#(f(c), f(c))g#(c, l, f(l))h#(d, d)g#(m, m, f(l))
h#(f(c), f(c))g#(l, e, f(l))h#(f(c), f(c))g#(U121(c, c), f(l), f(m))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(m, m))A#g#(U121(c, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(c, c), f(l))h#(f(c), f(c))g#(f(l), U121(e, e), f(m))
h#(f(c), f(c))g#(f(e), U121(e, e), f(m))h#(f(c), f(c))g#(e, U121(e, e), f(m))
h#(c, c)g#(e, l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, c, f(k))h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))
h#(c, c)g#(c, l, f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(l))
A#h#(c, c)h#(l, l)g#(l, l, U121(k, k))
h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))h#(U121(e, c), U121(e, c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, f(c), f(k))A#g#(U121(c, c), c, f(m))
h#(f(c), f(c))g#(e, f(l), f(m))h#(f(c), f(c))g#(l, f(e), f(m))
A#g#(U121(c, c), e, f(k))h#(f(c), f(c))g#(e, f(e), f(m))
h#(m, m)g#(m, m, f(m))h#(f(c), f(c))g#(f(l), f(l), f(m))
h#(f(c), f(c))g#(f(e), f(l), f(l))h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))
A#g#(U121(e, c), U121(e, c), f(k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(d, d)g#(m, d, f(k))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(l, l)g#(l, l, f(m))h#(f(c), f(c))g#(f(l), U121(c, c), f(l))
A#g#(U121(c, c), l, f(k))h#(f(c), f(c))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(U121(e, e), c, f(m))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(l, U121(e, c), f(k))h#(e, e)g#(e, e, f(l))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(l, c, f(m))
h#(f(c), f(c))g#(f(c), U121(c, c), f(m))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))
h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), l, f(m))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))
A#g#(c, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), f(e), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))h#(f(c), f(c))g#(U121(e, c), e, f(k))
h#(f(c), f(c))g#(U121(e, c), c, f(m))h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))
h#(f(c), f(c))g#(f(l), c, U121(k, k))A#h#(m, m)
h#(f(c), f(c))g#(e, U121(c, c), f(m))h#(f(c), f(c))g#(f(c), U121(e, e), f(m))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(m))h#(f(c), f(c))g#(e, U121(c, c), f(l))
A#g#(U121(e, c), c, U121(k, k))h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))A#h#(f(m), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(f(e), f(e))g#(U121(e, e), f(e), f(m))h#(c, c)g#(l, e, f(m))
h#(f(c), f(c))g#(U121(c, c), e, f(m))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), U121(e, e), f(l))h#(f(c), f(c))g#(e, U121(e, e), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(c, c)g#(l, l, U121(k, k))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
A#g#(c, c, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))h#(c, c)g#(l, l, f(k))
h#(c, c)g#(e, c, f(l))h#(f(c), f(c))g#(f(l), l, f(m))
h#(f(c), f(c))g#(e, f(e), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(c), f(c))g#(c, U121(e, c), f(l))
A#g#(U121(e, c), c, f(l))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(m))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U121(e, e), f(e), f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U121(e, e), U121(e, e), f(m)) 
g#(U121(e, e), f(e), U121(m, m)) 
g#(e, f(e), f(m)) 
Thus, the rule h#(f(c), f(c)) → g#(U121(e, e), f(e), f(m)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U121(e, e), f(e), U121(m, m))h#(f(c), f(c)) → g#(e, f(e), f(m))
h#(f(c), f(c)) → g#(U121(e, e), U121(e, e), f(m))

Problem 122: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#g#(l, e, f(m))A#h#(f(l), f(l))
A#h#(l, l)A#h#(U121(e, e), U121(e, e))
A#g#(U121(e, c), e, U121(m, m))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), c, f(k))h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))
h#(c, c)g#(c, l, f(m))h#(f(c), f(c))g#(f(l), U121(e, c), f(l))
h#(c, c)g#(l, l, f(m))h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(m))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(k, k))A#g#(U121(e, c), c, U121(m, m))
h#(U121(e, c), U121(e, c))g#(c, c, f(m))h#(f(c), f(c))g#(U121(e, e), f(e), f(l))
h#(f(c), f(c))g#(f(e), e, U121(k, k))h#(f(c), f(c))g#(e, f(c), U121(k, k))
h#(f(c), f(c))g#(l, U121(e, e), f(m))h#(f(c), f(c))g#(U121(c, c), f(e), f(l))
h#(f(c), f(c))g#(l, U121(e, e), f(k))h#(f(c), f(c))g#(c, f(l), f(l))
h#(U121(e, c), U121(e, c))g#(e, c, f(m))h#(f(c), f(c))g#(c, U121(c, c), f(m))
h#(U121(e, e), U121(e, e))g#(e, e, f(m))h#(f(c), f(c))g#(f(l), e, f(k))
h#(f(c), f(c))g#(f(l), c, f(m))h#(f(c), f(c))g#(e, e, f(k))
h#(f(c), f(c))g#(e, c, f(m))h#(f(c), f(c))g#(f(l), U121(e, e), f(l))
h#(f(e), f(e))g#(f(e), e, f(k))h#(U121(e, c), U121(e, c))g#(e, e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(l))A#h#(e, e)
h#(c, c)g#(c, e, f(l))h#(f(c), f(c))g#(e, e, U121(k, k))
h#(f(e), f(e))g#(e, e, U121(k, k))A#g#(U121(c, c), c, f(l))
h#(d, d)g#(m, d, U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(e, e), f(l))
A#h#(f(c), f(c))A#g#(c, l, f(m))
h#(f(c), f(c))g#(e, f(e), f(l))A#g#(U121(e, c), e, f(l))
A#h#(f(e), f(e))h#(f(c), f(c))g#(U121(e, e), l, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(k))A#g#(U121(e, c), U121(c, c), U121(k, k))
A#g#(c, U121(c, c), f(k))h#(f(c), f(c))g#(e, U121(e, e), f(l))
h#(f(c), f(c))g#(c, U121(c, c), U121(k, k))h#(f(c), f(c))g#(f(l), f(l), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), f(m))A#g#(U121(e, c), l, f(k))
A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(c, l, f(m))
h#(f(c), f(c))g#(U121(e, c), l, U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, U121(m, m))
h#(U121(e, c), U121(e, c))g#(c, U121(e, c), f(k))h#(f(c), f(c))g#(f(c), U121(e, c), f(k))
h#(f(c), f(c))g#(f(e), U121(c, c), f(k))h#(U121(e, c), U121(e, c))g#(e, l, U121(k, k))
h#(c, c)g#(l, e, f(l))h#(f(c), f(c))g#(c, l, f(l))
h#(d, d)g#(m, m, f(l))h#(f(c), f(c))g#(l, e, f(l))
h#(f(c), f(c))g#(U121(c, c), f(l), f(m))h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(m, m))
A#g#(U121(c, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(m))h#(f(c), f(c))g#(f(e), U121(e, e), f(m))
h#(f(c), f(c))g#(e, U121(e, e), f(m))h#(c, c)g#(e, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, c, f(k))
h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))h#(c, c)g#(c, l, f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(l))A#h#(c, c)
h#(l, l)g#(l, l, U121(k, k))h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, e, f(m))A#g#(U121(c, c), e, f(k))
h#(f(c), f(c))g#(c, f(c), f(k))A#g#(U121(c, c), c, f(m))
h#(f(c), f(c))g#(e, f(l), f(m))h#(f(c), f(c))g#(l, f(e), f(m))
h#(f(c), f(c))g#(e, f(e), f(m))h#(m, m)g#(m, m, f(m))
h#(f(c), f(c))g#(f(e), f(l), f(l))h#(f(c), f(c))g#(f(l), f(l), f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))
A#g#(U121(e, c), U121(e, c), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(d, d)g#(m, d, f(k))
h#(f(c), f(c))g#(f(l), f(l), f(k))A#g#(U121(e, c), e, U121(k, k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(l, l)g#(l, l, f(m))h#(f(c), f(c))g#(f(l), U121(c, c), f(l))
A#g#(U121(c, c), l, f(k))h#(f(c), f(c))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(U121(e, e), c, f(m))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))
A#g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, U121(e, c), f(k))
h#(e, e)g#(e, e, f(l))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, c, f(m))h#(f(c), f(c))g#(f(c), U121(c, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(l))h#(f(c), f(c))g#(f(l), U121(e, e), f(k))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), l, f(m))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))A#g#(c, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), f(e), f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), e, f(k))h#(f(c), f(c))g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))h#(f(c), f(c))g#(f(l), c, U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, e), f(m))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(m))h#(f(c), f(c))g#(e, U121(c, c), f(l))
A#g#(U121(e, c), c, U121(k, k))h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))A#g#(c, e, f(k))
A#g#(c, c, f(m))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))A#h#(f(m), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(f(e), f(e))g#(U121(e, e), f(e), f(m))h#(c, c)g#(l, e, f(m))
h#(f(c), f(c))g#(U121(c, c), e, f(m))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), U121(e, e), f(l))h#(f(c), f(c))g#(e, U121(e, e), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(e, e, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(c, c)g#(l, l, U121(k, k))
h#(f(e), f(e))g#(f(e), e, f(m))A#g#(U121(e, c), U121(c, c), f(m))
A#g#(U121(c, c), c, U121(k, k))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(c, c)g#(l, e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
h#(c, c)g#(l, l, f(k))h#(c, c)g#(e, c, f(l))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))A#g#(U121(e, c), c, f(l))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(m))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → g#(l, e, f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(l, e, U121(m, m))
Thus, the rule A# → g#(l, e, f(m)) is deleted.

Problem 123: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(l, l)
h#(f(c), f(c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(c, U121(e, e), U121(k, k))
A#h#(U121(e, e), U121(e, e))A#g#(U121(e, c), c, U121(m, m))
h#(U121(e, c), U121(e, c))g#(c, e, f(k))h#(U121(e, c), U121(e, c))g#(c, c, f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), f(l))h#(f(c), f(c))g#(f(e), e, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, e), f(m))h#(f(c), f(c))g#(e, f(c), U121(k, k))
h#(f(c), f(c))g#(l, U121(e, e), f(k))h#(f(c), f(c))g#(U121(c, c), f(e), f(l))
h#(f(c), f(c))g#(c, f(l), f(l))h#(U121(e, c), U121(e, c))g#(e, c, f(m))
h#(f(c), f(c))g#(c, U121(c, c), f(m))h#(U121(e, e), U121(e, e))g#(e, e, f(m))
h#(f(c), f(c))g#(f(l), c, f(m))h#(f(c), f(c))g#(f(l), e, f(k))
h#(f(c), f(c))g#(f(l), U121(e, e), f(l))h#(f(c), f(c))g#(e, c, f(m))
h#(f(c), f(c))g#(e, e, f(k))h#(f(e), f(e))g#(f(e), e, f(k))
h#(U121(e, c), U121(e, c))g#(e, e, U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(l))
A#h#(e, e)h#(c, c)g#(c, e, f(l))
h#(f(c), f(c))g#(e, e, U121(k, k))h#(f(e), f(e))g#(e, e, U121(k, k))
A#g#(U121(c, c), c, f(l))h#(d, d)g#(m, d, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), f(l))A#h#(f(c), f(c))
A#g#(c, l, f(m))h#(f(c), f(c))g#(e, f(e), f(l))
A#g#(U121(e, c), e, f(l))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U121(e, e), l, U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(k))
A#g#(c, U121(c, c), f(k))h#(f(c), f(c))g#(e, U121(e, e), f(l))
A#g#(U121(e, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(c, U121(c, c), U121(k, k))
h#(f(c), f(c))g#(f(l), f(l), U121(k, k))A#h#(U121(e, c), U121(e, c))
A#g#(U121(e, c), l, f(k))h#(f(c), f(c))g#(U121(c, c), U121(e, e), f(m))
h#(f(c), f(c))g#(U121(e, c), l, U121(k, k))h#(f(c), f(c))g#(c, l, f(m))
h#(f(e), f(e))g#(U121(e, e), e, U121(m, m))h#(U121(e, c), U121(e, c))g#(c, U121(e, c), f(k))
h#(f(c), f(c))g#(f(c), U121(e, c), f(k))h#(f(c), f(c))g#(f(e), U121(c, c), f(k))
h#(U121(e, c), U121(e, c))g#(e, l, U121(k, k))h#(c, c)g#(l, e, f(l))
h#(U121(e, c), U121(e, c))g#(c, e, f(l))h#(f(c), f(c))g#(c, l, f(l))
h#(d, d)g#(m, m, f(l))h#(f(c), f(c))g#(l, e, f(l))
h#(f(c), f(c))g#(U121(c, c), f(l), f(m))h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(m, m))
A#g#(U121(c, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(l))
h#(U121(e, c), U121(e, c))g#(e, l, f(m))h#(f(c), f(c))g#(f(l), U121(e, e), f(m))
h#(f(c), f(c))g#(f(e), U121(e, e), f(m))h#(f(c), f(c))g#(e, U121(e, e), f(m))
h#(c, c)g#(e, l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, c, f(k))h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))
h#(c, c)g#(c, l, f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(l))
A#h#(c, c)h#(l, l)g#(l, l, U121(k, k))
h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))h#(U121(e, c), U121(e, c))g#(c, e, f(m))
A#g#(U121(c, c), e, f(k))h#(f(c), f(c))g#(c, f(c), f(k))
A#g#(U121(c, c), c, f(m))h#(f(c), f(c))g#(e, f(l), f(m))
h#(f(c), f(c))g#(l, f(e), f(m))h#(f(c), f(c))g#(e, f(e), f(m))
h#(f(c), f(c))g#(f(l), f(l), f(m))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(m, m)g#(m, m, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))
h#(f(c), f(c))g#(f(c), f(e), f(k))A#g#(U121(e, c), U121(e, c), f(k))
h#(d, d)g#(m, d, f(k))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))A#g#(U121(e, c), e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(l, l)g#(l, l, f(m))h#(f(c), f(c))g#(f(l), U121(c, c), f(l))
A#g#(U121(c, c), l, f(k))h#(f(c), f(c))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(U121(e, e), c, f(m))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))
A#g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, U121(e, c), f(k))
h#(e, e)g#(e, e, f(l))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, c, f(m))h#(f(c), f(c))g#(f(c), U121(c, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(l))h#(f(c), f(c))g#(f(l), U121(e, e), f(k))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), l, f(m))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))A#g#(c, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), f(e), f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), e, f(k))h#(f(c), f(c))g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))h#(f(c), f(c))g#(f(l), c, U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, e), f(m))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(m))h#(f(c), f(c))g#(e, U121(c, c), f(l))
A#g#(U121(e, c), c, U121(k, k))h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))A#g#(c, e, f(k))
A#g#(c, c, f(m))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))h#(U121(e, c), U121(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))A#h#(f(m), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(U121(e, c), U121(e, c))g#(c, c, f(k))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(c, c)g#(l, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), U121(e, e), f(l))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(e, e, f(m))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))h#(c, c)g#(l, l, f(k))
h#(c, c)g#(e, c, f(l))h#(f(c), f(c))g#(e, f(e), f(k))
h#(f(c), f(c))g#(f(l), l, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(c), f(c))g#(c, U121(e, c), f(l))
A#g#(U121(e, c), c, f(l))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))h#(c, c)g#(l, c, f(l))
h#(c, c)g#(c, l, U121(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(c, e, U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, e, U121(k, k))g#(c, e, U121(l, k))
g#(l, e, U121(k, k))g#(c, e, U121(m, k))
Thus, the rule h#(f(c), f(c)) → g#(c, e, U121(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, e, U121(k, k))h#(f(c), f(c)) → g#(l, e, U121(k, k))

Problem 124: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(l, l)
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(e, e, f(m))h#(f(c), f(c))g#(f(l), c, f(m))
h#(f(c), f(c))g#(f(l), e, f(k))h#(f(c), f(c))g#(e, e, f(k))
h#(f(c), f(c))g#(e, c, f(m))h#(f(c), f(c))g#(f(l), U121(e, e), f(l))
h#(f(e), f(e))g#(f(e), e, f(k))h#(U121(e, c), U121(e, c))g#(e, e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), f(l))A#h#(e, e)
h#(c, c)g#(c, e, f(l))h#(f(c), f(c))g#(e, e, U121(k, k))
A#g#(U121(c, c), c, f(l))h#(f(e), f(e))g#(e, e, U121(k, k))
h#(d, d)g#(m, d, U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(e, e), f(l))
A#h#(f(c), f(c))A#g#(c, l, f(m))
h#(f(c), f(c))g#(e, f(e), f(l))A#g#(U121(e, c), e, f(l))
A#h#(f(e), f(e))h#(f(c), f(c))g#(U121(e, e), l, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(k))A#g#(c, U121(c, c), f(k))
h#(f(c), f(c))g#(e, U121(e, e), f(l))A#g#(U121(e, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(c, U121(c, c), U121(k, k))h#(f(c), f(c))g#(f(l), f(l), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), f(m))A#h#(U121(e, c), U121(e, c))
A#g#(U121(e, c), l, f(k))h#(f(c), f(c))g#(U121(e, c), l, U121(k, k))
h#(f(c), f(c))g#(c, l, f(m))h#(f(e), f(e))g#(U121(e, e), e, U121(m, m))
h#(U121(e, c), U121(e, c))g#(c, U121(e, c), f(k))h#(f(c), f(c))g#(f(c), U121(e, c), f(k))
h#(f(c), f(c))g#(f(e), U121(c, c), f(k))h#(U121(e, c), U121(e, c))g#(e, l, U121(k, k))
h#(c, c)g#(l, e, f(l))h#(f(c), f(c))g#(c, l, f(l))
h#(U121(e, c), U121(e, c))g#(c, e, f(l))h#(d, d)g#(m, m, f(l))
h#(f(c), f(c))g#(l, e, f(l))h#(f(c), f(c))g#(U121(c, c), f(l), f(m))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(m, m))A#g#(U121(c, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(c, c), f(l))h#(U121(e, c), U121(e, c))g#(e, l, f(m))
h#(f(c), f(c))g#(f(l), U121(e, e), f(m))h#(f(c), f(c))g#(f(e), U121(e, e), f(m))
h#(f(c), f(c))g#(e, U121(e, e), f(m))h#(c, c)g#(e, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, c, f(k))
h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))h#(c, c)g#(c, l, f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(l))A#h#(c, c)
h#(l, l)g#(l, l, U121(k, k))h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, e, f(m))A#g#(U121(c, c), e, f(k))
h#(f(c), f(c))g#(c, f(c), f(k))A#g#(U121(c, c), c, f(m))
h#(f(c), f(c))g#(e, f(l), f(m))h#(f(c), f(c))g#(l, f(e), f(m))
h#(f(c), f(c))g#(e, f(e), f(m))h#(f(c), f(c))g#(f(l), f(l), f(m))
h#(f(c), f(c))g#(f(e), f(l), f(l))h#(m, m)g#(m, m, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))h#(f(c), f(c))g#(f(c), f(e), f(k))
A#g#(U121(e, c), U121(e, c), f(k))h#(d, d)g#(m, d, f(k))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))A#g#(U121(e, c), e, U121(k, k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(l, l)g#(l, l, f(m))
h#(f(c), f(c))g#(f(l), U121(c, c), f(l))A#g#(U121(c, c), l, f(k))
h#(f(c), f(c))g#(U121(e, e), c, f(m))h#(f(c), f(c))g#(U121(e, e), e, f(k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(l, U121(e, c), f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(l, e, f(k))
h#(U121(e, c), U121(e, c))g#(l, c, f(m))h#(f(c), f(c))g#(f(c), U121(c, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(l))h#(f(c), f(c))g#(f(l), U121(e, e), f(k))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), l, f(m))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))A#g#(c, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), f(e), f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), e, f(k))h#(f(c), f(c))g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))h#(f(c), f(c))g#(f(l), c, U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, e), f(m))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(m))h#(f(c), f(c))g#(e, U121(c, c), f(l))
A#g#(U121(e, c), c, U121(k, k))h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))A#g#(c, e, f(k))
A#g#(c, c, f(m))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))h#(U121(e, c), U121(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))A#h#(f(m), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(U121(e, c), U121(e, c))g#(c, c, f(k))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(c, c)g#(l, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), U121(e, e), f(l))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(e, e, f(m))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))h#(c, c)g#(l, l, f(k))
h#(c, c)g#(e, c, f(l))h#(f(c), f(c))g#(e, f(e), f(k))
h#(f(c), f(c))g#(f(l), l, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))A#g#(U121(e, c), c, f(l))
A#g#(U121(e, c), U121(e, c), f(m))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))h#(c, c)g#(l, c, f(l))
h#(c, c)g#(c, l, U121(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, U121(e, c), U121(m, m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(l, c, U121(m, m))
Thus, the rule h#(f(c), f(c)) → g#(l, U121(e, c), U121(m, m)) is deleted.

Problem 125: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(l, l)
h#(f(c), f(c))g#(e, l, U121(k, k))A#h#(U121(e, e), U121(e, e))
A#h#(e, e)A#h#(f(c), f(c))
A#h#(f(e), f(e))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(k))
A#g#(c, U121(c, c), f(k))h#(f(c), f(c))g#(e, U121(e, e), f(l))
A#g#(e, l, f(l))h#(f(c), f(c))g#(c, U121(c, c), U121(k, k))
A#g#(U121(e, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(f(l), f(l), U121(k, k))
A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(U121(c, c), U121(e, e), f(m))
A#g#(U121(e, c), l, f(k))h#(f(c), f(c))g#(c, l, f(m))
h#(f(c), f(c))g#(U121(e, c), l, U121(k, k))h#(f(c), f(c))g#(f(e), U121(c, c), f(k))
h#(f(c), f(c))g#(f(c), U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), e, U121(m, m))
h#(U121(e, c), U121(e, c))g#(c, U121(e, c), f(k))h#(U121(e, c), U121(e, c))g#(e, l, U121(k, k))
h#(c, c)g#(l, e, f(l))h#(f(c), f(c))g#(c, l, f(l))
h#(U121(e, c), U121(e, c))g#(c, e, f(l))h#(d, d)g#(m, m, f(l))
h#(f(c), f(c))g#(l, e, f(l))h#(f(c), f(c))g#(U121(c, c), f(l), f(m))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(m, m))A#g#(U121(c, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(c, c), f(l))h#(U121(e, c), U121(e, c))g#(e, l, f(m))
h#(f(c), f(c))g#(f(l), U121(e, e), f(m))h#(f(c), f(c))g#(f(e), U121(e, e), f(m))
h#(f(c), f(c))g#(e, U121(e, e), f(m))h#(c, c)g#(e, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))A#g#(l, l, f(m))
h#(f(c), f(c))g#(l, c, f(k))A#h#(c, c)
h#(l, l)g#(l, l, U121(k, k))h#(c, c)g#(c, l, f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(l))h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(c, e, f(m))h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))
A#g#(U121(c, c), e, f(k))h#(f(c), f(c))g#(c, f(c), f(k))
A#g#(U121(c, c), c, f(m))h#(f(c), f(c))g#(e, f(l), f(m))
h#(f(c), f(c))g#(l, f(e), f(m))h#(f(c), f(c))g#(e, f(e), f(m))
h#(f(c), f(c))g#(f(l), f(l), f(m))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(m, m)g#(m, m, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))
h#(f(c), f(c))g#(f(c), f(e), f(k))A#g#(U121(e, c), U121(e, c), f(k))
h#(d, d)g#(m, d, f(k))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))
A#g#(U121(e, c), e, U121(k, k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(l, l)g#(l, l, f(m))h#(f(c), f(c))g#(f(l), U121(c, c), f(l))
A#g#(U121(c, c), l, f(k))h#(f(c), f(c))g#(U121(e, e), c, f(m))
h#(f(c), f(c))g#(U121(e, e), e, f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))
A#g#(U121(c, c), U121(c, c), U121(k, k))h#(e, e)g#(e, e, f(l))
h#(f(c), f(c))g#(l, U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, e, f(k))h#(U121(e, c), U121(e, c))g#(l, c, f(m))
h#(f(c), f(c))g#(f(c), U121(c, c), f(m))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))
h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), l, f(m))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))
A#g#(c, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), f(e), f(m))
h#(f(c), f(c))g#(U121(e, c), e, f(k))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), c, f(m))h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(f(l), c, U121(k, k))
h#(f(c), f(c))g#(e, U121(c, c), f(m))h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))
h#(f(c), f(c))g#(f(c), U121(e, e), f(m))h#(f(l), f(l))g#(f(l), f(l), U121(k, k))
h#(f(c), f(c))g#(l, e, f(k))h#(f(c), f(c))g#(l, c, f(m))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(c, l, U121(k, k))h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))h#(f(c), f(c))g#(f(e), U121(e, c), f(m))
h#(f(c), f(c))g#(e, U121(c, c), f(l))A#g#(U121(e, c), c, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))
h#(U121(e, c), U121(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))A#g#(c, e, f(k))
A#g#(c, c, f(m))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))h#(U121(e, c), U121(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))A#h#(f(m), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(U121(e, c), U121(e, c))g#(c, c, f(k))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(c, c)g#(l, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), U121(e, e), f(l))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(U121(e, c), U121(e, c))g#(l, c, f(l))
A#g#(e, e, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(f(e), f(e))g#(f(e), e, f(m))A#g#(U121(e, c), U121(c, c), f(m))
A#g#(U121(c, c), c, U121(k, k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))
A#g#(c, c, f(k))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(c, c)g#(l, e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
h#(c, c)g#(l, l, f(k))h#(c, c)g#(e, c, f(l))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(c, U121(e, c), f(l))
A#g#(U121(e, c), c, f(l))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(f(l), e, f(m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))h#(c, c)g#(l, c, f(l))
h#(c, c)g#(c, l, U121(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, l, U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, l, U121(l, k))
 g#(e, l, U121(m, k))
Thus, the rule h#(f(c), f(c)) → g#(e, l, U121(k, k)) is deleted.

Problem 126: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(e, U121(c, c), f(k))A#h#(f(l), f(l))
A#h#(l, l)A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(l, U121(c, c), f(k))h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), l, f(l))h#(f(c), f(c))g#(c, e, f(l))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(l, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))h#(f(c), f(c))g#(c, U121(e, c), f(k))
h#(f(c), f(c))g#(c, U121(c, c), f(m))h#(f(c), f(c))g#(e, c, f(m))
h#(f(c), f(c))g#(e, e, f(k))A#h#(e, e)
h#(f(c), f(c))g#(e, e, U121(k, k))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#g#(U121(e, c), U121(c, c), U121(k, k))
A#g#(c, U121(c, c), f(k))A#g#(e, l, f(l))
h#(f(c), f(c))g#(e, U121(e, e), f(l))h#(f(c), f(c))g#(c, U121(c, c), U121(k, k))
h#(f(c), f(c))g#(f(l), f(l), U121(k, k))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), f(m))A#g#(U121(e, c), l, f(k))
h#(f(c), f(c))g#(U121(e, c), l, U121(k, k))h#(f(c), f(c))g#(c, l, f(m))
h#(f(c), f(c))g#(f(c), U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), e, U121(m, m))
h#(U121(e, c), U121(e, c))g#(c, U121(e, c), f(k))h#(f(c), f(c))g#(f(e), U121(c, c), f(k))
h#(U121(e, c), U121(e, c))g#(e, l, U121(k, k))h#(c, c)g#(l, e, f(l))
h#(f(c), f(c))g#(c, l, f(l))h#(U121(e, c), U121(e, c))g#(c, e, f(l))
h#(d, d)g#(m, m, f(l))h#(f(c), f(c))g#(l, e, f(l))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(c, c), f(l), f(m))
A#g#(U121(c, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(l))
h#(U121(e, c), U121(e, c))g#(e, l, f(m))h#(f(c), f(c))g#(f(l), U121(e, e), f(m))
h#(f(c), f(c))g#(f(e), U121(e, e), f(m))h#(f(c), f(c))g#(e, U121(e, e), f(m))
h#(c, c)g#(e, l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))
A#g#(l, l, f(m))h#(f(c), f(c))g#(l, c, f(k))
h#(c, c)g#(c, l, f(k))h#(l, l)g#(l, l, U121(k, k))
A#h#(c, c)h#(f(c), f(c))g#(f(c), U121(c, c), f(l))
h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, e, f(m))A#g#(U121(c, c), e, f(k))
h#(f(c), f(c))g#(c, f(c), f(k))A#g#(U121(c, c), c, f(m))
h#(f(c), f(c))g#(e, f(l), f(m))h#(f(c), f(c))g#(l, f(e), f(m))
h#(f(c), f(c))g#(e, f(e), f(m))h#(f(c), f(c))g#(f(l), f(l), f(m))
h#(f(c), f(c))g#(f(e), f(l), f(l))h#(m, m)g#(m, m, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))h#(f(c), f(c))g#(f(c), f(e), f(k))
A#g#(U121(e, c), U121(e, c), f(k))h#(d, d)g#(m, d, f(k))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))A#g#(U121(e, c), e, U121(k, k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(l, l)g#(l, l, f(m))
h#(f(c), f(c))g#(f(l), U121(c, c), f(l))A#g#(U121(c, c), l, f(k))
h#(f(c), f(c))g#(U121(e, e), c, f(m))h#(f(c), f(c))g#(U121(e, e), e, f(k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(l, U121(e, c), f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(l, e, f(k))
h#(U121(e, c), U121(e, c))g#(l, c, f(m))h#(f(c), f(c))g#(f(c), U121(c, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(l))h#(f(c), f(c))g#(f(l), U121(e, e), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))
h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), l, f(m))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), f(m))
A#g#(c, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), e, f(k))h#(f(c), f(c))g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))h#(f(c), f(c))g#(f(l), c, U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, e), f(m))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(m))h#(f(c), f(c))g#(e, U121(c, c), f(l))
A#g#(U121(e, c), c, U121(k, k))h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))h#(U121(e, c), U121(e, c))g#(e, l, f(l))
h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(f(e), f(l), U121(k, k))h#(f(c), f(c))g#(f(c), f(c), U121(k, k))
A#g#(c, e, f(k))A#g#(c, c, f(m))
h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))h#(f(c), f(c))g#(e, f(e), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(f(c), e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), e, f(m))h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))
h#(U121(e, c), U121(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(U121(e, e), l, f(l))h#(f(c), f(c))g#(U121(e, c), f(c), f(m))
A#h#(f(m), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(k))A#g#(U121(e, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))h#(f(c), f(c))g#(U121(e, c), l, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(U121(e, c), U121(e, c))g#(c, c, f(k))
h#(f(e), f(e))g#(U121(e, e), f(e), f(m))h#(c, c)g#(l, e, f(m))
h#(f(c), f(c))g#(U121(c, c), e, f(m))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), U121(e, e), f(l))h#(f(c), f(c))g#(e, U121(e, e), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))
h#(U121(e, c), U121(e, c))g#(l, c, f(l))A#g#(e, e, f(m))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))h#(c, c)g#(l, l, f(k))
h#(c, c)g#(e, c, f(l))h#(f(c), f(c))g#(e, f(e), f(k))
h#(f(c), f(c))g#(f(l), l, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))A#g#(U121(e, c), c, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(f(l), e, f(m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, U121(c, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, U121(c, c), f(l))g#(e, U121(l, c), f(k))
g#(e, U121(c, c), U121(k, k)) 
g#(e, U121(e, c), f(k)) 
g#(e, U121(c, c), f(m)) 
Thus, the rule h#(f(c), f(c)) → g#(e, U121(c, c), f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, U121(c, c), f(m))h#(f(c), f(c)) → g#(e, U121(c, c), U121(k, k))
h#(f(c), f(c)) → g#(e, U121(e, c), f(k))h#(f(c), f(c)) → g#(e, U121(c, c), f(l))

Problem 127: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(l, l)
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(c, U121(e, c), f(k))
h#(f(c), f(c))g#(l, l, U121(k, k))h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(c, U121(c, c), f(m))h#(f(c), f(c))g#(e, c, f(m))
h#(f(c), f(c))g#(e, e, f(k))A#h#(e, e)
h#(f(c), f(c))g#(e, e, U121(k, k))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#g#(c, U121(c, c), f(k))
A#g#(e, l, f(l))A#g#(U121(e, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(c, U121(c, c), U121(k, k))h#(f(c), f(c))g#(e, U121(e, e), f(l))
h#(f(c), f(c))g#(f(l), f(l), U121(k, k))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), f(m))A#g#(U121(e, c), l, f(k))
h#(f(c), f(c))g#(c, l, f(m))h#(f(c), f(c))g#(U121(e, c), l, U121(k, k))
h#(f(c), f(c))g#(f(c), U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), e, U121(m, m))
h#(U121(e, c), U121(e, c))g#(c, U121(e, c), f(k))h#(f(c), f(c))g#(f(e), U121(c, c), f(k))
h#(U121(e, c), U121(e, c))g#(e, l, U121(k, k))h#(c, c)g#(l, e, f(l))
h#(f(c), f(c))g#(c, l, f(l))h#(U121(e, c), U121(e, c))g#(c, e, f(l))
h#(d, d)g#(m, m, f(l))h#(f(c), f(c))g#(l, e, f(l))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(c, c), f(l), f(m))
A#g#(U121(c, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(l))
h#(U121(e, c), U121(e, c))g#(e, l, f(m))h#(f(c), f(c))g#(f(l), U121(e, e), f(m))
h#(f(c), f(c))g#(f(e), U121(e, e), f(m))h#(f(c), f(c))g#(e, U121(e, e), f(m))
h#(c, c)g#(e, l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))
A#g#(l, l, f(m))h#(f(c), f(c))g#(l, c, f(k))
h#(c, c)g#(c, l, f(k))h#(l, l)g#(l, l, U121(k, k))
h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))h#(f(c), f(c))g#(f(c), U121(c, c), f(l))
A#h#(c, c)h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, e, f(m))A#g#(U121(c, c), e, f(k))
h#(f(c), f(c))g#(c, f(c), f(k))A#g#(U121(c, c), c, f(m))
h#(f(c), f(c))g#(e, f(l), f(m))h#(f(c), f(c))g#(l, f(e), f(m))
h#(f(c), f(c))g#(e, f(e), f(m))h#(f(c), f(c))g#(f(l), f(l), f(m))
h#(f(c), f(c))g#(f(e), f(l), f(l))h#(m, m)g#(m, m, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))h#(f(c), f(c))g#(f(c), f(e), f(k))
A#g#(U121(e, c), U121(e, c), f(k))h#(d, d)g#(m, d, f(k))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))A#g#(U121(e, c), e, U121(k, k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(l, l)g#(l, l, f(m))
h#(f(c), f(c))g#(f(l), U121(c, c), f(l))A#g#(U121(c, c), l, f(k))
h#(f(c), f(c))g#(U121(e, e), c, f(m))h#(f(c), f(c))g#(U121(e, e), e, f(k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(l, U121(e, c), f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(l, c, f(m))
h#(U121(e, c), U121(e, c))g#(l, e, f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(l))h#(f(c), f(c))g#(f(l), U121(e, e), f(k))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), l, f(m))h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), f(m))
A#g#(c, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), e, f(k))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))h#(f(c), f(c))g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))h#(f(c), f(c))g#(f(l), c, U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, e), f(m))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(m))h#(f(c), f(c))g#(e, U121(c, c), f(l))
A#g#(U121(e, c), c, U121(k, k))h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))h#(U121(e, c), U121(e, c))g#(e, l, f(l))
h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(f(e), f(l), U121(k, k))h#(f(c), f(c))g#(f(c), f(c), U121(k, k))
A#g#(c, e, f(k))A#g#(c, c, f(m))
h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))h#(f(c), f(c))g#(e, f(e), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(f(c), e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), e, f(m))h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))
h#(U121(e, c), U121(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(U121(e, e), l, f(l))h#(f(c), f(c))g#(U121(e, c), f(c), f(m))
A#h#(f(m), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(k))A#g#(U121(e, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))h#(f(c), f(c))g#(U121(e, c), l, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(U121(e, c), U121(e, c))g#(c, c, f(k))
h#(f(e), f(e))g#(U121(e, e), f(e), f(m))h#(c, c)g#(l, e, f(m))
h#(f(c), f(c))g#(U121(c, c), e, f(m))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), U121(e, e), f(l))h#(f(c), f(c))g#(e, U121(e, e), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))
h#(U121(e, c), U121(e, c))g#(l, c, f(l))A#g#(e, e, f(m))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))h#(c, c)g#(l, l, f(k))
h#(c, c)g#(e, c, f(l))h#(f(c), f(c))g#(e, f(e), f(k))
h#(f(c), f(c))g#(f(l), l, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))A#g#(U121(e, c), c, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(f(l), e, f(m))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(c, U121(e, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, U121(e, c), f(k)) 
g#(c, U121(e, c), U121(k, k)) 
g#(c, U121(e, c), f(m)) 
g#(c, c, f(k)) 
g#(c, U121(e, c), f(l)) 
g#(l, U121(e, c), f(k)) 
Thus, the rule h#(f(c), f(c)) → g#(c, U121(e, c), f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(c, c, f(k))h#(f(c), f(c)) → g#(c, U121(e, c), f(l))
h#(f(c), f(c)) → g#(c, U121(e, c), U121(k, k))h#(f(c), f(c)) → g#(l, U121(e, c), f(k))
h#(f(c), f(c)) → g#(c, U121(e, c), f(m))h#(f(c), f(c)) → g#(e, U121(e, c), f(k))

Problem 128: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(l, l)
h#(f(c), f(c))g#(e, e, f(m))A#h#(U121(e, e), U121(e, e))
A#h#(e, e)h#(f(c), f(c))g#(e, e, U121(k, k))
A#h#(f(c), f(c))A#h#(f(e), f(e))
A#g#(c, U121(c, c), f(k))h#(f(c), f(c))g#(c, U121(c, c), U121(k, k))
A#g#(U121(e, c), U121(c, c), U121(k, k))A#g#(e, l, f(l))
h#(f(c), f(c))g#(e, U121(e, e), f(l))h#(f(c), f(c))g#(f(l), f(l), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), f(m))A#g#(U121(e, c), l, f(k))
A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(U121(e, c), l, U121(k, k))
h#(f(c), f(c))g#(c, l, f(m))h#(U121(e, c), U121(e, c))g#(c, U121(e, c), f(k))
h#(f(c), f(c))g#(f(c), U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), e, U121(m, m))
h#(f(c), f(c))g#(f(e), U121(c, c), f(k))h#(U121(e, c), U121(e, c))g#(e, l, U121(k, k))
h#(c, c)g#(l, e, f(l))h#(f(c), f(c))g#(c, l, f(l))
h#(U121(e, c), U121(e, c))g#(c, e, f(l))h#(d, d)g#(m, m, f(l))
h#(f(c), f(c))g#(l, e, f(l))h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(c, c), f(l), f(m))A#g#(U121(c, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(c, c), f(l))h#(U121(e, c), U121(e, c))g#(e, l, f(m))
h#(f(c), f(c))g#(f(l), U121(e, e), f(m))h#(f(c), f(c))g#(f(e), U121(e, e), f(m))
h#(f(c), f(c))g#(e, U121(e, e), f(m))h#(c, c)g#(e, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))A#g#(l, l, f(m))
h#(f(c), f(c))g#(l, c, f(k))h#(l, l)g#(l, l, U121(k, k))
h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))h#(c, c)g#(c, l, f(k))
A#h#(c, c)h#(f(c), f(c))g#(f(c), U121(c, c), f(l))
h#(U121(e, c), U121(e, c))g#(c, e, f(m))h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))
A#g#(U121(c, c), e, f(k))h#(f(c), f(c))g#(c, f(c), f(k))
A#g#(U121(c, c), c, f(m))h#(f(c), f(c))g#(e, f(l), f(m))
h#(f(c), f(c))g#(l, f(e), f(m))h#(f(c), f(c))g#(e, f(e), f(m))
h#(f(c), f(c))g#(f(l), f(l), f(m))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(m, m)g#(m, m, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))
h#(f(c), f(c))g#(f(c), f(e), f(k))A#g#(U121(e, c), U121(e, c), f(k))
h#(d, d)g#(m, d, f(k))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))
A#g#(U121(e, c), e, U121(k, k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(l, l)g#(l, l, f(m))h#(f(c), f(c))g#(f(l), U121(c, c), f(l))
A#g#(U121(c, c), l, f(k))h#(f(c), f(c))g#(U121(e, e), c, f(m))
h#(f(c), f(c))g#(U121(e, e), e, f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))
A#g#(U121(c, c), U121(c, c), U121(k, k))h#(e, e)g#(e, e, f(l))
h#(f(c), f(c))g#(l, U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, c, f(m))h#(U121(e, c), U121(e, c))g#(l, e, f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(m))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), l, f(m))
h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))
A#g#(c, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), f(e), f(m))
h#(f(c), f(c))g#(U121(e, c), e, f(k))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), c, f(m))h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(f(l), c, U121(k, k))
h#(f(c), f(c))g#(e, U121(c, c), f(m))h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))
h#(f(c), f(c))g#(f(c), U121(e, e), f(m))h#(f(l), f(l))g#(f(l), f(l), U121(k, k))
h#(f(c), f(c))g#(l, e, f(k))h#(f(c), f(c))g#(l, c, f(m))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(c, l, U121(k, k))h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))h#(f(c), f(c))g#(f(e), U121(e, c), f(m))
h#(f(c), f(c))g#(e, U121(c, c), f(l))A#g#(U121(e, c), c, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))
h#(U121(e, c), U121(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))A#g#(c, e, f(k))
A#g#(c, c, f(m))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))h#(U121(e, c), U121(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))A#h#(f(m), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(U121(e, c), U121(e, c))g#(c, c, f(k))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(c, c)g#(l, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), U121(e, e), f(l))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(U121(e, c), U121(e, c))g#(l, c, f(l))
A#g#(e, e, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(f(e), f(e))g#(f(e), e, f(m))A#g#(U121(e, c), U121(c, c), f(m))
A#g#(U121(c, c), c, U121(k, k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))
A#g#(c, c, f(k))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(c, c)g#(l, e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
h#(c, c)g#(l, l, f(k))h#(c, c)g#(e, c, f(l))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(c, U121(e, c), f(l))
A#g#(U121(e, c), c, f(l))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(m))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(f(l), e, f(m))h#(c, c)g#(l, c, f(l))
h#(c, c)g#(c, l, U121(k, k))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, e, f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U121(m, m))
Thus, the rule h#(f(c), f(c)) → g#(e, e, f(m)) is deleted.

Problem 129: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#g#(l, U121(e, c), U121(m, m))
A#h#(l, l)A#h#(U121(e, e), U121(e, e))
A#h#(e, e)A#g#(l, e, f(l))
A#g#(l, c, f(m))A#g#(c, U121(c, c), f(m))
A#g#(l, e, f(k))A#g#(e, l, U121(k, k))
A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(c, U121(c, c), U121(k, k))A#g#(U121(e, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(e, U121(e, e), f(l))A#g#(e, l, f(l))
A#g#(e, e, f(k))h#(f(c), f(c))g#(f(l), f(l), U121(k, k))
A#g#(e, c, f(m))A#h#(U121(e, c), U121(e, c))
A#g#(U121(e, c), l, f(k))h#(f(c), f(c))g#(U121(c, c), U121(e, e), f(m))
h#(f(c), f(c))g#(U121(e, c), l, U121(k, k))h#(f(c), f(c))g#(c, l, f(m))
h#(f(c), f(c))g#(f(e), U121(c, c), f(k))h#(f(c), f(c))g#(f(c), U121(e, c), f(k))
h#(f(e), f(e))g#(U121(e, e), e, U121(m, m))h#(U121(e, c), U121(e, c))g#(c, U121(e, c), f(k))
A#g#(e, e, U121(k, k))h#(U121(e, c), U121(e, c))g#(e, l, U121(k, k))
h#(c, c)g#(l, e, f(l))h#(U121(e, c), U121(e, c))g#(c, e, f(l))
h#(f(c), f(c))g#(c, l, f(l))h#(d, d)g#(m, m, f(l))
h#(f(c), f(c))g#(l, e, f(l))h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(c, c), f(l), f(m))A#g#(U121(c, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(c, c), f(l))h#(U121(e, c), U121(e, c))g#(e, l, f(m))
h#(f(c), f(c))g#(f(l), U121(e, e), f(m))h#(f(c), f(c))g#(f(e), U121(e, e), f(m))
h#(f(c), f(c))g#(e, U121(e, e), f(m))h#(c, c)g#(e, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))A#g#(l, l, f(m))
h#(f(c), f(c))g#(l, c, f(k))A#h#(c, c)
h#(f(c), f(c))g#(f(c), U121(c, c), f(l))h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))
h#(l, l)g#(l, l, U121(k, k))h#(c, c)g#(c, l, f(k))
h#(U121(e, c), U121(e, c))g#(c, e, f(m))h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))
h#(f(c), f(c))g#(c, f(c), f(k))A#g#(U121(c, c), e, f(k))
h#(f(c), f(c))g#(l, f(e), f(m))h#(f(c), f(c))g#(e, f(l), f(m))
A#g#(U121(c, c), c, f(m))h#(f(c), f(c))g#(e, f(e), f(m))
h#(f(c), f(c))g#(f(l), f(l), f(m))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(m, m)g#(m, m, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))
h#(f(c), f(c))g#(f(c), f(e), f(k))A#g#(U121(e, c), U121(e, c), f(k))
h#(d, d)g#(m, d, f(k))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))
A#g#(U121(e, c), e, U121(k, k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(l, l)g#(l, l, f(m))h#(f(c), f(c))g#(f(l), U121(c, c), f(l))
A#g#(U121(c, c), l, f(k))A#g#(c, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(e, e), c, f(m))h#(f(c), f(c))g#(U121(e, e), e, f(k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(l, U121(e, c), f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(l, c, f(m))
h#(U121(e, c), U121(e, c))g#(l, e, f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(l))h#(f(c), f(c))g#(f(l), U121(e, e), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), l, f(m))h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), f(m))
A#g#(c, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), e, f(k))
h#(f(c), f(c))g#(U121(e, c), c, f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))
A#g#(e, U121(c, c), f(m))h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(f(l), c, U121(k, k))
h#(f(c), f(c))g#(e, U121(c, c), f(m))h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))
h#(f(c), f(c))g#(f(c), U121(e, e), f(m))h#(f(l), f(l))g#(f(l), f(l), U121(k, k))
h#(f(c), f(c))g#(l, e, f(k))h#(f(c), f(c))g#(l, c, f(m))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(c, l, U121(k, k))h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))h#(f(c), f(c))g#(f(e), U121(e, c), f(m))
h#(f(c), f(c))g#(e, U121(c, c), f(l))A#g#(U121(e, c), c, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))
h#(U121(e, c), U121(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))A#g#(c, e, f(k))
A#g#(c, c, f(m))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))h#(U121(e, c), U121(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))A#h#(f(m), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(U121(e, c), U121(e, c))g#(c, c, f(k))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(c, c)g#(l, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), U121(e, e), f(l))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(U121(e, c), U121(e, c))g#(l, c, f(l))
A#g#(e, e, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(f(e), f(e))g#(f(e), e, f(m))A#g#(U121(e, c), U121(c, c), f(m))
A#g#(U121(c, c), c, U121(k, k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))
A#g#(c, c, f(k))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(c, c)g#(l, e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
A#g#(e, U121(e, c), U121(k, k))A#g#(e, U121(e, c), U121(m, m))
A#g#(l, U121(c, c), f(l))h#(c, c)g#(l, l, f(k))
h#(c, c)g#(e, c, f(l))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(c, U121(e, c), f(l))
A#g#(U121(e, c), c, f(l))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(m))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(f(l), e, f(m))A#g#(l, l, f(k))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
A#g#(e, U121(e, c), f(l))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → g#(l, U121(e, c), U121(m, m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(l, c, U121(m, m))
Thus, the rule A# → g#(l, U121(e, c), U121(m, m)) is deleted.

Problem 130: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(l, l)
A#g#(l, l, f(l))A#h#(U121(e, e), U121(e, e))
A#g#(e, l, f(m))A#g#(l, l, U121(k, k))
A#g#(U121(e, c), l, f(l))A#h#(e, e)
A#g#(e, l, U121(k, k))A#h#(f(c), f(c))
A#g#(c, l, f(m))A#h#(f(e), f(e))
A#g#(e, l, f(l))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(c, l, f(m))h#(f(c), f(c))g#(U121(e, c), l, U121(k, k))
h#(f(c), f(c))g#(f(e), U121(c, c), f(k))h#(U121(e, c), U121(e, c))g#(c, U121(e, c), f(k))
h#(f(e), f(e))g#(U121(e, e), e, U121(m, m))h#(f(c), f(c))g#(f(c), U121(e, c), f(k))
A#g#(e, e, U121(k, k))h#(U121(e, c), U121(e, c))g#(e, l, U121(k, k))
h#(c, c)g#(l, e, f(l))h#(f(c), f(c))g#(c, l, f(l))
h#(U121(e, c), U121(e, c))g#(c, e, f(l))h#(d, d)g#(m, m, f(l))
h#(f(c), f(c))g#(l, e, f(l))h#(f(c), f(c))g#(U121(c, c), f(l), f(m))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(m, m))A#g#(U121(c, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(c, c), f(l))h#(U121(e, c), U121(e, c))g#(e, l, f(m))
h#(f(c), f(c))g#(f(l), U121(e, e), f(m))h#(f(c), f(c))g#(f(e), U121(e, e), f(m))
h#(f(c), f(c))g#(e, U121(e, e), f(m))h#(c, c)g#(e, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))A#g#(l, l, f(m))
h#(f(c), f(c))g#(l, c, f(k))h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))
h#(l, l)g#(l, l, U121(k, k))A#h#(c, c)
h#(f(c), f(c))g#(f(c), U121(c, c), f(l))h#(c, c)g#(c, l, f(k))
h#(U121(e, c), U121(e, c))g#(c, e, f(m))h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))
A#g#(U121(c, c), e, f(k))h#(f(c), f(c))g#(c, f(c), f(k))
A#g#(U121(c, c), c, f(m))h#(f(c), f(c))g#(e, f(l), f(m))
h#(f(c), f(c))g#(l, f(e), f(m))h#(f(c), f(c))g#(e, f(e), f(m))
h#(f(c), f(c))g#(f(l), f(l), f(m))h#(m, m)g#(m, m, f(m))
h#(f(c), f(c))g#(f(e), f(l), f(l))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))
h#(f(c), f(c))g#(f(c), f(e), f(k))A#g#(U121(e, c), U121(e, c), f(k))
h#(d, d)g#(m, d, f(k))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))
A#g#(U121(e, c), e, U121(k, k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(l, l)g#(l, l, f(m))h#(f(c), f(c))g#(f(l), U121(c, c), f(l))
A#g#(U121(c, c), l, f(k))A#g#(c, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(e, e), c, f(m))h#(f(c), f(c))g#(U121(e, e), e, f(k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(l, U121(e, c), f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(l, c, f(m))
h#(U121(e, c), U121(e, c))g#(l, e, f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(l))h#(f(c), f(c))g#(f(l), U121(e, e), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), l, f(m))h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), f(m))
A#g#(c, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))h#(f(c), f(c))g#(U121(e, c), e, f(k))
A#g#(e, U121(c, c), f(m))h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))
h#(f(c), f(c))g#(f(l), c, U121(k, k))A#h#(m, m)
h#(f(c), f(c))g#(e, U121(c, c), f(m))h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, e), f(m))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(c, l, U121(k, k))h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))h#(f(c), f(c))g#(f(e), U121(e, c), f(m))
h#(f(c), f(c))g#(e, U121(c, c), f(l))A#g#(U121(e, c), c, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))
h#(U121(e, c), U121(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))A#g#(c, e, f(k))
A#g#(c, c, f(m))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))h#(U121(e, c), U121(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))A#h#(f(m), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(U121(e, c), U121(e, c))g#(c, c, f(k))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(c, c)g#(l, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), U121(e, e), f(l))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(U121(e, c), U121(e, c))g#(l, c, f(l))
A#g#(e, e, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(f(e), f(e))g#(f(e), e, f(m))A#g#(U121(e, c), U121(c, c), f(m))
A#g#(U121(c, c), c, U121(k, k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))
A#g#(c, c, f(k))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(c, c)g#(l, e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
A#g#(e, U121(e, c), U121(k, k))A#g#(e, U121(e, c), U121(m, m))
A#g#(l, U121(c, c), f(l))h#(c, c)g#(l, l, f(k))
h#(c, c)g#(e, c, f(l))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(c, U121(e, c), f(l))
A#g#(U121(e, c), c, f(l))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(m))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(f(l), e, f(m))A#g#(l, l, f(k))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))A#g#(U121(e, c), U121(e, c), f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → g#(l, l, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(l, l, U121(l, l))
Thus, the rule A# → g#(l, l, f(l)) is deleted.

Problem 131: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(l, l)
h#(f(c), f(c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(e, l, U121(k, k))
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(f(l), l, f(k))
h#(f(c), f(c))g#(f(l), c, f(l))h#(f(c), f(c))g#(f(c), U121(e, c), f(m))
h#(f(c), f(c))g#(l, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(f(l), U121(e, c), f(l))
h#(f(c), f(c))g#(f(c), c, f(k))h#(f(c), f(c))g#(f(e), e, U121(k, k))
h#(f(c), f(c))g#(f(l), c, f(m))h#(f(c), f(c))g#(f(l), e, f(k))
A#h#(e, e)h#(f(c), f(c))g#(e, e, U121(k, k))
A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U121(e, e), l, U121(k, k))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(U121(e, c), l, U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, c), f(l))
h#(f(e), f(e))g#(U121(e, e), e, U121(m, m))h#(U121(e, c), U121(e, c))g#(c, U121(e, c), f(k))
h#(f(c), f(c))g#(f(e), U121(c, c), f(k))h#(U121(e, c), U121(e, c))g#(e, l, U121(k, k))
A#g#(e, e, U121(k, k))h#(c, c)g#(l, e, f(l))
h#(U121(e, c), U121(e, c))g#(c, e, f(l))h#(f(c), f(c))g#(c, l, f(l))
h#(d, d)g#(m, m, f(l))h#(f(c), f(c))g#(l, e, f(l))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(c, c), f(l), f(m))
A#g#(U121(c, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(l))
h#(U121(e, c), U121(e, c))g#(e, l, f(m))h#(f(c), f(c))g#(f(l), U121(e, e), f(m))
h#(f(c), f(c))g#(f(e), U121(e, e), f(m))h#(f(c), f(c))g#(e, U121(e, e), f(m))
h#(c, c)g#(e, l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))
A#g#(l, l, f(m))h#(f(c), f(c))g#(l, c, f(k))
h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))h#(f(c), f(c))g#(f(c), U121(c, c), f(l))
h#(c, c)g#(c, l, f(k))A#h#(c, c)
h#(l, l)g#(l, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(c, e, f(m))
h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))A#g#(U121(c, c), e, f(k))
h#(f(c), f(c))g#(l, f(e), f(m))h#(f(c), f(c))g#(e, f(l), f(m))
h#(f(c), f(c))g#(c, f(c), f(k))A#g#(U121(c, c), c, f(m))
h#(f(c), f(c))g#(e, f(e), f(m))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(m, m)g#(m, m, f(m))h#(f(c), f(c))g#(f(l), f(l), f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))h#(f(c), f(c))g#(f(c), f(e), f(k))
A#g#(U121(e, c), U121(e, c), f(k))h#(d, d)g#(m, d, f(k))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))A#g#(U121(e, c), e, U121(k, k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(l, l)g#(l, l, f(m))
h#(f(c), f(c))g#(f(l), U121(c, c), f(l))A#g#(U121(c, c), l, f(k))
A#g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, e), c, f(m))
h#(f(c), f(c))g#(U121(e, e), e, f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))
A#g#(U121(c, c), U121(c, c), U121(k, k))h#(e, e)g#(e, e, f(l))
h#(f(c), f(c))g#(l, U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, c, f(m))h#(U121(e, c), U121(e, c))g#(l, e, f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(m))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), l, f(m))
h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))
A#g#(c, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), f(e), f(m))
h#(f(c), f(c))g#(U121(e, c), c, f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), e, f(k))A#g#(e, U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))A#h#(m, m)
h#(f(c), f(c))g#(f(l), c, U121(k, k))h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))h#(f(l), f(l))g#(f(l), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), U121(e, e), f(m))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(m))h#(f(c), f(c))g#(e, U121(c, c), f(l))
A#g#(U121(e, c), c, U121(k, k))h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))h#(U121(e, c), U121(e, c))g#(e, l, f(l))
h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(f(e), f(l), U121(k, k))h#(f(c), f(c))g#(f(c), f(c), U121(k, k))
A#g#(c, e, f(k))A#g#(c, c, f(m))
h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))h#(f(c), f(c))g#(e, f(e), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(f(c), e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), e, f(m))h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))
h#(U121(e, c), U121(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(U121(e, e), l, f(l))h#(f(c), f(c))g#(U121(e, c), f(c), f(m))
A#h#(f(m), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(k))A#g#(U121(e, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))h#(f(c), f(c))g#(U121(e, c), l, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(U121(e, c), U121(e, c))g#(c, c, f(k))
h#(f(e), f(e))g#(U121(e, e), f(e), f(m))h#(c, c)g#(l, e, f(m))
h#(f(c), f(c))g#(U121(c, c), e, f(m))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), U121(e, e), f(l))h#(f(c), f(c))g#(e, U121(e, e), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))
h#(U121(e, c), U121(e, c))g#(l, c, f(l))A#g#(e, e, f(m))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))A#g#(e, U121(e, c), U121(k, k))
A#g#(e, U121(e, c), U121(m, m))A#g#(l, U121(c, c), f(l))
h#(c, c)g#(l, l, f(k))h#(c, c)g#(e, c, f(l))
A#g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(f(c), f(c))g#(f(l), l, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))A#g#(U121(e, c), c, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(f(l), e, f(m))
A#g#(l, l, f(k))h#(c, c)g#(l, c, f(l))
h#(c, c)g#(c, l, U121(k, k))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(f(c), f(l), f(k))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))A#g#(U121(c, c), U121(c, c), f(m))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))A#g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(c, e, U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, e, U121(k, k))g#(c, e, U121(l, k))
g#(l, e, U121(k, k))g#(c, e, U121(m, k))
Thus, the rule h#(f(c), f(c)) → g#(c, e, U121(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, e, U121(k, k))h#(f(c), f(c)) → g#(l, e, U121(k, k))

Problem 132: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(l, l)
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(f(c), l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, f(l))h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))
h#(f(c), f(c))g#(f(c), l, f(k))h#(f(c), f(c))g#(f(e), c, f(l))
h#(f(c), f(c))g#(f(l), l, f(k))h#(f(c), f(c))g#(f(l), c, f(l))
h#(f(c), f(c))g#(c, e, f(l))h#(f(c), f(c))g#(l, c, U121(k, k))
h#(f(c), f(c))g#(f(e), c, f(k))h#(f(c), f(c))g#(f(e), e, U121(k, k))
h#(f(c), f(c))g#(f(l), c, f(m))h#(f(c), f(c))g#(f(l), e, f(k))
A#h#(e, e)h#(f(c), f(c))g#(e, e, U121(k, k))
A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U121(e, e), l, U121(k, k))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(U121(e, c), l, U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, c), f(l))
h#(U121(e, c), U121(e, c))g#(c, U121(e, c), f(k))h#(f(c), f(c))g#(f(e), U121(c, c), f(k))
h#(f(e), f(e))g#(U121(e, e), e, U121(m, m))A#g#(e, e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, l, U121(k, k))h#(c, c)g#(l, e, f(l))
h#(f(c), f(c))g#(c, l, f(l))h#(U121(e, c), U121(e, c))g#(c, e, f(l))
h#(f(c), f(c))g#(l, e, f(l))h#(d, d)g#(m, m, f(l))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(c, c), f(l), f(m))
A#g#(U121(c, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(l))
h#(U121(e, c), U121(e, c))g#(e, l, f(m))h#(f(c), f(c))g#(f(l), U121(e, e), f(m))
h#(f(c), f(c))g#(f(e), U121(e, e), f(m))h#(f(c), f(c))g#(e, U121(e, e), f(m))
h#(c, c)g#(e, l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))
A#g#(l, l, f(m))h#(f(c), f(c))g#(l, c, f(k))
h#(c, c)g#(c, l, f(k))h#(l, l)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(l))h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))
A#h#(c, c)h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, e, f(m))A#g#(U121(c, c), c, f(m))
h#(f(c), f(c))g#(c, f(c), f(k))h#(f(c), f(c))g#(e, f(l), f(m))
A#g#(U121(c, c), e, f(k))h#(f(c), f(c))g#(l, f(e), f(m))
h#(f(c), f(c))g#(e, f(e), f(m))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(m, m)g#(m, m, f(m))h#(f(c), f(c))g#(f(l), f(l), f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))h#(f(c), f(c))g#(f(c), f(e), f(k))
A#g#(U121(e, c), U121(e, c), f(k))h#(d, d)g#(m, d, f(k))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))A#g#(U121(e, c), e, U121(k, k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(l, l)g#(l, l, f(m))
h#(f(c), f(c))g#(f(l), U121(c, c), f(l))A#g#(U121(c, c), l, f(k))
A#g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, e), c, f(m))
h#(f(c), f(c))g#(U121(e, e), e, f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))
A#g#(U121(c, c), U121(c, c), U121(k, k))h#(e, e)g#(e, e, f(l))
h#(f(c), f(c))g#(l, U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, c, f(m))h#(U121(e, c), U121(e, c))g#(l, e, f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(m))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), l, f(m))
h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))
A#g#(c, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), f(e), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))h#(f(c), f(c))g#(U121(e, c), e, f(k))
h#(f(c), f(c))g#(U121(e, c), c, f(m))A#g#(e, U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))h#(f(c), f(c))g#(f(l), c, U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))h#(f(l), f(l))g#(f(l), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), U121(e, e), f(m))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(c), f(c))g#(f(c), U121(e, c), U121(m, m))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))h#(f(c), f(c))g#(f(e), U121(e, c), f(m))
h#(f(c), f(c))g#(e, U121(c, c), f(l))A#g#(U121(e, c), c, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(f(c), c, f(m))
h#(U121(e, c), U121(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))A#g#(c, e, f(k))
A#g#(c, c, f(m))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))h#(U121(e, c), U121(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))A#h#(f(m), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(U121(e, c), U121(e, c))g#(c, c, f(k))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(c, c)g#(l, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), U121(e, e), f(l))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(U121(e, c), U121(e, c))g#(l, c, f(l))
A#g#(e, e, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(f(c), f(c))g#(U121(c, c), c, f(k))
h#(f(e), f(e))g#(f(e), e, f(m))A#g#(U121(e, c), U121(c, c), f(m))
A#g#(U121(c, c), c, U121(k, k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))
A#g#(c, c, f(k))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(c, c)g#(l, e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
A#g#(e, U121(e, c), U121(k, k))A#g#(e, U121(e, c), U121(m, m))
A#g#(l, U121(c, c), f(l))h#(c, c)g#(l, l, f(k))
h#(c, c)g#(e, c, f(l))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(c, U121(e, c), f(l))
A#g#(U121(e, c), c, f(l))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(m))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(f(l), e, f(m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))A#g#(l, l, f(k))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(f(c), f(l), f(k))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(U121(c, c), U121(c, c), f(m))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(c), l, U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(f(l), l, U121(k, k))g#(f(c), l, U121(m, k))
g#(U121(c, c), l, U121(k, k))g#(f(c), l, U121(l, k))
g#(f(e), l, U121(k, k)) 
Thus, the rule h#(f(c), f(c)) → g#(f(c), l, U121(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(f(e), l, U121(k, k))h#(f(c), f(c)) → g#(U121(c, c), l, U121(k, k))
h#(f(c), f(c)) → g#(f(l), l, U121(k, k))

Problem 133: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))h#(f(c), f(c))g#(e, l, f(k))
h#(f(c), f(c))g#(e, c, f(k))A#h#(l, l)
h#(f(c), f(c))g#(U121(e, e), c, U121(k, k))A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))
h#(f(c), f(c))g#(f(e), l, f(l))h#(f(c), f(c))g#(e, l, f(m))
h#(f(c), f(c))g#(f(e), c, f(l))h#(f(c), f(c))g#(l, l, U121(k, k))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(f(e), e, U121(k, k))
h#(f(c), f(c))g#(f(l), c, f(m))h#(f(c), f(c))g#(f(l), e, f(k))
A#h#(e, e)h#(f(c), f(c))g#(e, e, U121(k, k))
A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U121(e, e), l, U121(k, k))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(U121(e, c), l, U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, c), f(l))
h#(f(e), f(e))g#(U121(e, e), e, U121(m, m))h#(f(c), f(c))g#(f(e), U121(c, c), f(k))
h#(U121(e, c), U121(e, c))g#(c, U121(e, c), f(k))h#(U121(e, c), U121(e, c))g#(e, l, U121(k, k))
A#g#(e, e, U121(k, k))h#(c, c)g#(l, e, f(l))
h#(f(c), f(c))g#(c, l, f(l))h#(U121(e, c), U121(e, c))g#(c, e, f(l))
h#(f(c), f(c))g#(l, e, f(l))h#(d, d)g#(m, m, f(l))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(c, c), f(l), f(m))
A#g#(U121(c, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(l))
h#(U121(e, c), U121(e, c))g#(e, l, f(m))h#(f(c), f(c))g#(f(e), c, f(m))
h#(f(c), f(c))g#(f(e), e, f(k))h#(f(c), f(c))g#(f(l), U121(e, e), f(m))
h#(f(c), f(c))g#(f(e), U121(e, e), f(m))h#(f(c), f(c))g#(e, U121(e, e), f(m))
h#(c, c)g#(e, l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))
A#g#(l, l, f(m))h#(f(c), f(c))g#(l, c, f(k))
h#(c, c)g#(c, l, f(k))A#h#(c, c)
h#(l, l)g#(l, l, U121(k, k))h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))
h#(f(c), f(c))g#(f(c), U121(c, c), f(l))h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, e, f(m))h#(f(c), f(c))g#(c, f(c), f(k))
A#g#(U121(c, c), c, f(m))h#(f(c), f(c))g#(e, f(l), f(m))
A#g#(U121(c, c), e, f(k))h#(f(c), f(c))g#(l, f(e), f(m))
h#(f(c), f(c))g#(e, f(e), f(m))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(m, m)g#(m, m, f(m))h#(f(c), f(c))g#(f(l), f(l), f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))h#(f(c), f(c))g#(f(c), f(e), f(k))
A#g#(U121(e, c), U121(e, c), f(k))h#(d, d)g#(m, d, f(k))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))A#g#(U121(e, c), e, U121(k, k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(l, l)g#(l, l, f(m))
h#(f(c), f(c))g#(f(l), U121(c, c), f(l))A#g#(U121(c, c), l, f(k))
A#g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, e), c, f(m))
h#(f(c), f(c))g#(U121(e, e), e, f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))
A#g#(U121(c, c), U121(c, c), U121(k, k))h#(e, e)g#(e, e, f(l))
h#(f(c), f(c))g#(l, U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, c, f(m))h#(U121(e, c), U121(e, c))g#(l, e, f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(m))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), l, f(m))
h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), f(m))A#g#(c, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, f(m))h#(f(c), f(c))g#(U121(e, c), e, f(k))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))A#g#(e, U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))A#h#(m, m)
h#(f(c), f(c))g#(f(l), c, U121(k, k))h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))h#(f(l), f(l))g#(f(l), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), U121(e, e), f(m))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(c), f(c))g#(f(c), U121(e, c), U121(m, m))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))h#(f(c), f(c))g#(f(e), U121(e, c), f(m))
h#(f(c), f(c))g#(e, U121(c, c), f(l))A#g#(U121(e, c), c, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(f(c), c, f(m))
h#(U121(e, c), U121(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))A#g#(c, e, f(k))
A#g#(c, c, f(m))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))h#(U121(e, c), U121(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))A#h#(f(m), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(U121(e, c), U121(e, c))g#(c, c, f(k))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(c, c)g#(l, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), U121(e, e), f(l))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(f(e), l, f(m))
h#(U121(e, c), U121(e, c))g#(l, c, f(l))A#g#(e, e, f(m))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))h#(f(c), f(c))g#(U121(c, c), l, f(l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), c, f(k))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))A#g#(e, U121(e, c), U121(k, k))
A#g#(e, U121(e, c), U121(m, m))A#g#(l, U121(c, c), f(l))
h#(c, c)g#(l, l, f(k))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(c, c)g#(e, c, f(l))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))A#g#(U121(e, c), c, f(l))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(m))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(f(l), e, f(m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))A#g#(l, l, f(k))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(f(c), f(l), f(k))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(U121(c, c), U121(c, c), f(m))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, l, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, l, U121(k, k)) 
g#(e, l, f(l)) 
g#(e, l, f(m)) 
Thus, the rule h#(f(c), f(c)) → g#(e, l, f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, l, f(m))h#(f(c), f(c)) → g#(e, l, U121(k, k))
h#(f(c), f(c)) → g#(e, l, f(l))

Problem 134: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(l, l)
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(f(l), c, f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(l))h#(f(c), f(c))g#(c, e, f(l))
h#(f(c), f(c))g#(f(l), U121(e, c), f(l))A#h#(e, e)
A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(f(e), U121(e, c), f(l))
h#(f(c), f(c))g#(f(e), U121(c, c), f(k))h#(U121(e, c), U121(e, c))g#(c, U121(e, c), f(k))
h#(f(e), f(e))g#(U121(e, e), e, U121(m, m))h#(U121(e, c), U121(e, c))g#(e, l, U121(k, k))
A#g#(e, e, U121(k, k))h#(c, c)g#(l, e, f(l))
h#(f(c), f(c))g#(c, l, f(l))h#(U121(e, c), U121(e, c))g#(c, e, f(l))
h#(d, d)g#(m, m, f(l))h#(f(c), f(c))g#(l, e, f(l))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(c, c), f(l), f(m))
A#g#(U121(c, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(l))
h#(U121(e, c), U121(e, c))g#(e, l, f(m))h#(f(c), f(c))g#(f(e), e, f(k))
h#(f(c), f(c))g#(f(e), c, f(m))h#(f(c), f(c))g#(f(l), U121(e, e), f(m))
h#(f(c), f(c))g#(f(e), U121(e, e), f(m))h#(f(c), f(c))g#(e, U121(e, e), f(m))
h#(c, c)g#(e, l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))
A#g#(l, l, f(m))h#(f(c), f(c))g#(l, c, f(k))
h#(l, l)g#(l, l, U121(k, k))A#h#(c, c)
h#(c, c)g#(c, l, f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(l))
h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(c, e, f(m))
h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))h#(f(c), f(c))g#(l, f(e), f(m))
h#(f(c), f(c))g#(e, f(l), f(m))A#g#(U121(c, c), c, f(m))
h#(f(c), f(c))g#(c, f(c), f(k))A#g#(U121(c, c), e, f(k))
h#(f(c), f(c))g#(e, f(e), f(m))h#(f(c), f(c))g#(f(l), f(l), f(m))
h#(m, m)g#(m, m, f(m))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))h#(f(c), f(c))g#(f(c), f(e), f(k))
A#g#(U121(e, c), U121(e, c), f(k))h#(d, d)g#(m, d, f(k))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))A#g#(U121(e, c), e, U121(k, k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(l, l)g#(l, l, f(m))
h#(f(c), f(c))g#(f(l), U121(c, c), f(l))A#g#(U121(c, c), l, f(k))
A#g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, e), c, f(m))
h#(f(c), f(c))g#(U121(e, e), e, f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))
A#g#(U121(c, c), U121(c, c), U121(k, k))h#(e, e)g#(e, e, f(l))
h#(f(c), f(c))g#(l, U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, c, f(m))h#(U121(e, c), U121(e, c))g#(l, e, f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(m))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), l, f(m))
h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), f(m))A#g#(c, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))h#(f(c), f(c))g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(e, c), e, f(k))A#g#(e, U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))h#(f(c), f(c))g#(f(l), c, U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, e), f(m))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(l, c, f(m))
h#(f(c), f(c))g#(l, e, f(k))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(c), f(c))g#(f(c), U121(e, c), U121(m, m))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))h#(f(c), f(c))g#(f(e), U121(e, c), f(m))
h#(f(c), f(c))g#(e, U121(c, c), f(l))A#g#(U121(e, c), c, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(f(c), c, f(m))
h#(U121(e, c), U121(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))A#g#(c, e, f(k))
A#g#(c, c, f(m))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))h#(U121(e, c), U121(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))A#h#(f(m), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(U121(e, c), U121(e, c))g#(c, c, f(k))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(c, c)g#(l, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), U121(e, e), f(l))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(f(e), l, f(m))
h#(U121(e, c), U121(e, c))g#(l, c, f(l))A#g#(e, e, f(m))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))h#(f(c), f(c))g#(U121(c, c), l, f(l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), c, f(k))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))A#g#(e, U121(e, c), U121(k, k))
A#g#(e, U121(e, c), U121(m, m))A#g#(l, U121(c, c), f(l))
h#(c, c)g#(l, l, f(k))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(c, c)g#(e, c, f(l))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(f(l), e, f(l))
A#g#(U121(e, c), c, f(l))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(f(l), e, f(m))A#g#(l, l, f(k))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))A#g#(U121(e, c), U121(e, c), f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(l), c, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(f(l), l, f(l))g#(f(l), c, U121(l, l))
g#(f(l), e, f(l))g#(U121(l, l), c, f(l))
Thus, the rule h#(f(c), f(c)) → g#(f(l), c, f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(f(l), e, f(l))h#(f(c), f(c)) → g#(f(l), l, f(l))

Problem 135: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(l, l)
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))h#(f(c), f(c))g#(e, l, f(m))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(c, c), f(m))h#(f(c), f(c))g#(U121(e, e), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))h#(f(c), f(c))g#(f(e), e, U121(k, k))
h#(f(c), f(c))g#(e, e, f(k))h#(f(c), f(c))g#(e, c, f(m))
A#h#(e, e)h#(f(c), f(c))g#(e, e, U121(k, k))
A#h#(f(c), f(c))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U121(e, e), l, U121(k, k))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(f(e), U121(c, c), f(l))h#(U121(e, c), U121(e, c))g#(c, U121(e, c), f(k))
h#(f(e), f(e))g#(U121(e, e), e, U121(m, m))A#g#(e, e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, l, U121(k, k))h#(c, c)g#(l, e, f(l))
h#(U121(e, c), U121(e, c))g#(c, e, f(l))h#(f(c), f(c))g#(c, l, f(l))
h#(d, d)g#(m, m, f(l))h#(f(c), f(c))g#(l, e, f(l))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(c, c), f(l), f(m))
A#g#(U121(c, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(l))
h#(U121(e, c), U121(e, c))g#(e, l, f(m))h#(f(c), f(c))g#(f(e), e, f(k))
h#(f(c), f(c))g#(f(e), c, f(m))h#(f(c), f(c))g#(f(l), U121(e, e), f(m))
h#(f(c), f(c))g#(f(e), U121(e, e), f(m))h#(f(c), f(c))g#(e, U121(e, e), f(m))
h#(c, c)g#(e, l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))
A#g#(l, l, f(m))h#(f(c), f(c))g#(l, c, f(k))
h#(l, l)g#(l, l, U121(k, k))h#(c, c)g#(c, l, f(k))
h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))h#(f(c), f(c))g#(f(c), U121(c, c), f(l))
A#h#(c, c)h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, e, f(m))h#(f(c), f(c))g#(c, f(c), f(k))
A#g#(U121(c, c), c, f(m))A#g#(U121(c, c), e, f(k))
h#(f(c), f(c))g#(e, f(l), f(m))h#(f(c), f(c))g#(l, f(e), f(m))
h#(f(c), f(c))g#(e, f(e), f(m))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(m, m)g#(m, m, f(m))h#(f(c), f(c))g#(f(l), f(l), f(m))
h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))h#(f(c), f(c))g#(f(c), f(e), f(k))
A#g#(U121(e, c), U121(e, c), f(k))h#(d, d)g#(m, d, f(k))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))A#g#(U121(e, c), e, U121(k, k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(l, l)g#(l, l, f(m))
h#(f(c), f(c))g#(f(l), U121(c, c), f(l))A#g#(U121(c, c), l, f(k))
A#g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, e), c, f(m))
h#(f(c), f(c))g#(U121(e, e), e, f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))
A#g#(U121(c, c), U121(c, c), U121(k, k))h#(e, e)g#(e, e, f(l))
h#(f(c), f(c))g#(l, U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, c, f(m))h#(U121(e, c), U121(e, c))g#(l, e, f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(m))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), l, f(m))
h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))
A#g#(c, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), f(e), f(m))
h#(f(c), f(c))g#(U121(e, c), e, f(k))h#(f(c), f(c))g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))A#g#(e, U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))A#h#(m, m)
h#(f(c), f(c))g#(f(l), c, U121(k, k))h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, e), f(m))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(c), f(c))g#(f(c), U121(e, c), U121(m, m))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))h#(f(c), f(c))g#(f(e), U121(e, c), f(m))
h#(f(c), f(c))g#(e, U121(c, c), f(l))A#g#(U121(e, c), c, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(f(c), c, f(m))
h#(U121(e, c), U121(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))A#g#(c, e, f(k))
A#g#(c, c, f(m))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))h#(U121(e, c), U121(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))A#h#(f(m), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(U121(e, c), U121(e, c))g#(c, c, f(k))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(c, c)g#(l, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), U121(e, e), f(l))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(f(e), l, f(m))
h#(U121(e, c), U121(e, c))g#(l, c, f(l))A#g#(e, e, f(m))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))h#(f(c), f(c))g#(U121(c, c), l, f(l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), c, f(k))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))A#g#(e, U121(e, c), U121(k, k))
A#g#(e, U121(e, c), U121(m, m))A#g#(l, U121(c, c), f(l))
h#(c, c)g#(l, l, f(k))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(c, c)g#(e, c, f(l))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))A#g#(U121(e, c), c, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(f(l), e, f(m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))A#g#(l, l, f(k))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(l, U121(e, e), f(l))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U121(e, e), e, U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, e, U121(k, k))g#(U121(e, e), e, U121(l, k))
 g#(U121(e, e), e, U121(m, k))
Thus, the rule h#(f(c), f(c)) → g#(U121(e, e), e, U121(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, e, U121(k, k))

Problem 136: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(l, l)
A#h#(U121(e, e), U121(e, e))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))
h#(U121(e, c), U121(e, c))g#(l, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, c, f(m))h#(U121(e, c), U121(e, c))g#(e, c, f(l))
h#(U121(e, c), U121(e, c))g#(e, e, U121(k, k))A#h#(e, e)
A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(U121(e, c), U121(e, c))h#(f(e), f(e))g#(U121(e, e), e, U121(m, m))
A#g#(e, e, U121(k, k))h#(U121(e, c), U121(e, c))g#(e, l, U121(k, k))
h#(c, c)g#(l, e, f(l))h#(U121(e, c), U121(e, c))g#(c, e, f(l))
h#(f(c), f(c))g#(c, l, f(l))h#(f(c), f(c))g#(l, e, f(l))
h#(d, d)g#(m, m, f(l))h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(c, c), f(l), f(m))A#g#(U121(c, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(c, c), f(l))h#(U121(e, c), U121(e, c))g#(e, l, f(m))
h#(f(c), f(c))g#(f(e), e, f(k))h#(f(c), f(c))g#(f(e), c, f(m))
h#(f(c), f(c))g#(f(l), U121(e, e), f(m))h#(f(c), f(c))g#(f(e), U121(e, e), f(m))
h#(f(c), f(c))g#(e, U121(e, e), f(m))h#(c, c)g#(e, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))A#g#(l, l, f(m))
h#(f(c), f(c))g#(l, c, f(k))h#(l, l)g#(l, l, U121(k, k))
h#(c, c)g#(c, l, f(k))h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))
h#(f(c), f(c))g#(f(c), U121(c, c), f(l))A#h#(c, c)
h#(U121(e, c), U121(e, c))g#(c, e, f(m))h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))
A#g#(U121(c, c), e, f(k))h#(f(c), f(c))g#(e, f(l), f(m))
A#g#(U121(c, c), c, f(m))h#(f(c), f(c))g#(l, f(e), f(m))
h#(f(c), f(c))g#(c, f(c), f(k))h#(f(c), f(c))g#(e, f(e), f(m))
h#(f(c), f(c))g#(f(l), f(l), f(m))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(m, m)g#(m, m, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))
h#(f(c), f(c))g#(f(c), f(e), f(k))A#g#(U121(e, c), U121(e, c), f(k))
h#(d, d)g#(m, d, f(k))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))
A#g#(U121(e, c), e, U121(k, k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(l, l)g#(l, l, f(m))h#(f(c), f(c))g#(f(l), U121(c, c), f(l))
A#g#(U121(c, c), l, f(k))A#g#(c, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(e, e), c, f(m))h#(f(c), f(c))g#(U121(e, e), e, f(k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(l, U121(e, c), f(k))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, c, f(m))h#(U121(e, c), U121(e, c))g#(l, e, f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(m))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), l, f(m))
h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))
A#g#(c, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), f(e), f(m))
h#(f(c), f(c))g#(U121(e, c), e, f(k))h#(f(c), f(c))g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))A#g#(e, U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))h#(f(c), f(c))g#(f(l), c, U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, e), f(m))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(l, c, f(m))
h#(f(c), f(c))g#(l, e, f(k))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(c), f(c))g#(f(c), U121(e, c), U121(m, m))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))h#(f(c), f(c))g#(f(e), U121(e, c), f(m))
h#(f(c), f(c))g#(e, U121(c, c), f(l))A#g#(U121(e, c), c, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(f(c), c, f(m))
h#(U121(e, c), U121(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))A#g#(c, e, f(k))
A#g#(c, c, f(m))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(k))
h#(U121(e, c), U121(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(U121(e, e), l, f(l))h#(f(c), f(c))g#(U121(e, c), f(c), f(m))
A#h#(f(m), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(k))A#g#(U121(e, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))h#(f(c), f(c))g#(U121(e, c), l, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(U121(e, c), U121(e, c))g#(c, c, f(k))
h#(f(e), f(e))g#(U121(e, e), f(e), f(m))h#(c, c)g#(l, e, f(m))
h#(f(c), f(c))g#(U121(c, c), e, f(m))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), U121(e, e), f(l))h#(f(c), f(c))g#(e, U121(e, e), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(e), l, f(m))h#(U121(e, c), U121(e, c))g#(l, c, f(l))
A#g#(e, e, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(f(c), f(c))g#(U121(c, c), c, f(k))
h#(f(e), f(e))g#(f(e), e, f(m))A#g#(U121(e, c), U121(c, c), f(m))
A#g#(U121(c, c), c, U121(k, k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))
A#g#(c, c, f(k))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(c, c)g#(l, e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
A#g#(e, U121(e, c), U121(k, k))A#g#(e, U121(e, c), U121(m, m))
A#g#(l, U121(c, c), f(l))h#(c, c)g#(l, l, f(k))
h#(f(c), f(c))g#(U121(c, c), l, f(m))h#(c, c)g#(e, c, f(l))
A#g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(f(c), f(c))g#(f(l), l, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(e), f(e))g#(e, e, f(l))
A#g#(U121(e, c), c, f(l))h#(f(c), f(c))g#(c, U121(e, c), f(l))
A#g#(U121(e, c), U121(e, c), f(m))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(f(l), e, f(m))
A#g#(l, l, f(k))h#(c, c)g#(l, c, f(l))
h#(c, c)g#(c, l, U121(k, k))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(U121(c, c), U121(c, c), f(m))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))A#g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U121(e, c), U121(e, c)) → g#(e, U121(e, c), f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, U121(e, c), U121(m, m)) 
g#(e, c, f(m)) 
Thus, the rule h#(U121(e, c), U121(e, c)) → g#(e, U121(e, c), f(m)) is replaced by the following rules:
h#(U121(e, c), U121(e, c)) → g#(e, U121(e, c), U121(m, m))h#(U121(e, c), U121(e, c)) → g#(e, c, f(m))

Problem 137: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(e, e)A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(e, U121(e, e), f(m))
h#(c, c)g#(e, l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))
A#g#(l, l, f(m))h#(f(c), f(c))g#(l, c, f(k))
h#(c, c)g#(c, l, f(k))h#(l, l)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(l))A#h#(c, c)
h#(U121(e, e), U121(e, e))g#(e, U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(c, e, f(m))
h#(U121(e, e), U121(e, e))g#(e, e, U121(k, k))h#(f(c), f(c))g#(c, f(c), f(k))
h#(f(c), f(c))g#(l, f(e), f(m))A#g#(U121(c, c), c, f(m))
A#g#(U121(c, c), e, f(k))h#(f(c), f(c))g#(e, f(l), f(m))
h#(f(c), f(c))g#(e, f(e), f(m))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(f(c), f(c))g#(f(l), f(l), f(m))h#(m, m)g#(m, m, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))
A#h#(l, l)h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))
A#g#(U121(e, c), U121(e, c), f(k))h#(f(c), f(c))g#(f(c), f(e), f(k))
h#(d, d)g#(m, d, f(k))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))A#g#(U121(e, c), e, U121(k, k))
h#(f(c), f(c))g#(f(l), U121(c, c), f(l))h#(l, l)g#(l, l, f(m))
A#g#(U121(c, c), l, f(k))A#g#(c, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(e, e), c, f(m))h#(f(c), f(c))g#(U121(e, e), e, f(k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(l, U121(e, c), f(k))h#(e, e)g#(e, e, f(l))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, c, f(m))h#(U121(e, c), U121(e, c))g#(l, e, f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(m))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), l, f(m))
h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))
A#g#(c, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), f(e), f(m))
h#(f(c), f(c))g#(U121(e, c), e, f(k))h#(f(c), f(c))g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))A#g#(e, U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))h#(f(c), f(c))g#(f(l), c, U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, e), f(m))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(c), f(c))g#(f(c), U121(e, c), U121(m, m))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))h#(f(c), f(c))g#(e, U121(c, c), f(l))
h#(f(c), f(c))g#(f(e), U121(e, c), f(m))A#g#(U121(e, c), c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), f(m))A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(f(c), c, f(m))h#(f(c), f(c))g#(f(c), e, f(k))
h#(U121(e, c), U121(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(f(e), f(l), U121(k, k))A#g#(c, e, f(k))
A#g#(c, c, f(m))h#(f(c), f(c))g#(e, f(e), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(k))
h#(U121(e, c), U121(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(U121(e, e), l, f(l))h#(f(c), f(c))g#(U121(e, c), f(c), f(m))
A#h#(f(m), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(k))A#g#(U121(e, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))h#(f(c), f(c))g#(U121(e, c), l, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(U121(e, c), U121(e, c))g#(c, c, f(k))
h#(f(e), f(e))g#(U121(e, e), f(e), f(m))h#(c, c)g#(l, e, f(m))
h#(f(c), f(c))g#(U121(c, c), e, f(m))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), U121(e, e), f(l))h#(f(c), f(c))g#(e, U121(e, e), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(e), l, f(m))h#(U121(e, c), U121(e, c))g#(l, c, f(l))
A#g#(e, e, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), c, f(k))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))A#g#(e, U121(e, c), U121(k, k))
A#g#(e, U121(e, c), U121(m, m))A#g#(l, U121(c, c), f(l))
h#(c, c)g#(l, l, f(k))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(c, c)g#(e, c, f(l))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))A#g#(U121(e, c), c, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(f(l), e, f(m))A#g#(l, l, f(k))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))A#g#(e, U121(e, c), f(l))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(m))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U121(e, e), U121(e, e), f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, U121(e, e), f(m)) 
g#(U121(e, e), U121(e, e), U121(m, m)) 
g#(U121(e, e), e, f(m)) 
Thus, the rule h#(f(c), f(c)) → g#(U121(e, e), U121(e, e), f(m)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U121(e, e), e, f(m))h#(f(c), f(c)) → g#(e, U121(e, e), f(m))
h#(f(c), f(c)) → g#(U121(e, e), U121(e, e), U121(m, m))

Problem 138: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(e, e)A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(U121(e, c), U121(e, c))A#h#(c, c)
h#(f(c), f(c))g#(l, f(e), f(m))h#(f(c), f(c))g#(c, f(c), f(k))
h#(f(c), f(c))g#(e, f(e), f(m))h#(m, m)g#(m, m, f(m))
h#(f(c), f(c))g#(f(l), f(l), f(m))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))
A#h#(l, l)A#g#(U121(e, c), U121(e, c), f(k))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))
A#g#(U121(c, c), l, f(m))h#(d, d)g#(m, d, f(k))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))h#(f(d), f(d))g#(f(d), f(d), f(k))
A#g#(U121(e, c), e, U121(k, k))h#(l, l)g#(l, l, f(m))
h#(f(c), f(c))g#(f(l), U121(c, c), f(l))A#g#(U121(c, c), l, f(k))
A#g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, e), c, f(m))
h#(f(c), f(c))g#(U121(e, e), e, f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))
A#g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, U121(e, c), f(k))
h#(e, e)g#(e, e, f(l))h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(l, c, f(m))
h#(U121(e, c), U121(e, c))g#(l, e, f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(l))h#(f(c), f(c))g#(f(l), U121(e, e), f(k))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), l, f(m))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))A#g#(c, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), f(e), f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), c, f(m))h#(f(c), f(c))g#(U121(e, c), e, f(k))
A#g#(e, U121(c, c), f(m))h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(f(l), c, U121(k, k))
h#(f(c), f(c))g#(e, U121(c, c), f(m))h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, e), f(m))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(c, l, U121(k, k))h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))
h#(f(c), f(c))g#(f(c), U121(e, c), U121(m, m))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))
A#g#(U121(e, c), e, f(m))h#(f(c), f(c))g#(f(e), U121(e, c), f(m))
h#(f(c), f(c))g#(e, U121(c, c), f(l))A#g#(U121(e, c), c, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(f(c), e, f(k))
h#(f(c), f(c))g#(f(c), c, f(m))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(U121(e, c), U121(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(e, f(e), U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
A#g#(c, e, f(k))A#g#(c, c, f(m))
h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(k))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))h#(f(e), f(e))g#(U121(e, e), e, f(l))
h#(U121(e, c), U121(e, c))g#(c, c, f(l))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#h#(f(m), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(f(c), f(c))g#(U121(e, c), l, f(k))
h#(U121(e, c), U121(e, c))g#(c, c, f(k))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(c, c)g#(l, e, f(m))A#h#(f(d), f(d))
h#(f(c), f(c))g#(U121(c, c), e, f(m))h#(f(c), f(c))g#(f(e), U121(e, e), f(l))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(c), f(c))g#(e, U121(e, e), f(k))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
A#g#(c, e, f(l))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))A#g#(e, e, f(m))
h#(U121(e, c), U121(e, c))g#(l, c, f(l))h#(f(c), f(c))g#(f(e), l, f(m))
h#(f(c), f(c))g#(c, c, f(l))A#h#(d, d)
h#(f(c), f(c))g#(U121(c, c), l, f(l))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(U121(c, c), c, f(k))
h#(f(e), f(e))g#(f(e), e, f(m))A#g#(U121(e, c), U121(c, c), f(m))
A#g#(U121(c, c), c, U121(k, k))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
A#g#(c, c, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))h#(c, c)g#(l, e, U121(k, k))
A#g#(e, U121(e, c), U121(k, k))A#g#(e, U121(e, c), U121(m, m))
h#(c, c)g#(l, l, f(k))A#g#(l, U121(c, c), f(l))
h#(f(c), f(c))g#(f(l), c, f(l))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(f(c), f(c))g#(U121(e, c), l, f(l))h#(c, c)g#(e, c, f(l))
h#(f(c), f(c))g#(c, e, f(l))h#(f(c), f(c))g#(f(l), l, f(m))
h#(f(c), f(c))g#(e, f(e), f(k))A#g#(l, U121(e, c), U121(k, k))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))A#g#(U121(e, c), c, f(l))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(m))h#(f(c), f(c))g#(l, c, U121(k, k))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), f(l))h#(f(c), f(c))g#(f(l), e, f(m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))A#g#(l, l, f(k))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(U121(e, c), U121(e, c), f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
h#(f(c), f(c))g#(l, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(c, c)g#(e, l, f(l))
h#(c, c)g#(c, l, f(l))h#(c, c)g#(e, c, U121(k, k))
A#g#(U121(e, c), e, f(k))A#g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(e), e, f(m))
h#(f(c), f(c))g#(e, c, f(l))h#(c, c)g#(c, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(c, f(c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(c, f(c), f(l)) 
g#(c, f(c), U121(k, k)) 
g#(c, f(e), f(k)) 
g#(e, f(c), f(k)) 
g#(c, f(c), f(m)) 
g#(c, U121(c, c), f(k)) 
g#(c, f(l), f(k)) 
g#(l, f(c), f(k)) 
Thus, the rule h#(f(c), f(c)) → g#(c, f(c), f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(c, f(e), f(k))h#(f(c), f(c)) → g#(c, f(c), U121(k, k))
h#(f(c), f(c)) → g#(c, f(c), f(l))h#(f(c), f(c)) → g#(e, f(c), f(k))
h#(f(c), f(c)) → g#(c, U121(c, c), f(k))h#(f(c), f(c)) → g#(c, f(c), f(m))
h#(f(c), f(c)) → g#(c, f(l), f(k))h#(f(c), f(c)) → g#(l, f(c), f(k))

Problem 139: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))h#(f(c), f(c))g#(c, e, f(k))
h#(f(c), f(c))g#(e, c, U121(k, k))A#h#(l, l)
h#(f(c), f(c))g#(e, l, U121(k, k))h#(f(c), f(c))g#(c, c, U121(k, k))
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(e, l, f(l))
h#(f(c), f(c))g#(e, U121(e, c), f(k))h#(f(c), f(c))g#(e, l, f(m))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(l, l, U121(k, k))
h#(c, c)g#(c, l, f(l))h#(c, c)g#(e, l, f(l))
A#g#(U121(e, c), c, f(m))A#g#(U121(e, c), e, f(k))
h#(f(c), f(c))g#(f(e), e, f(m))h#(c, c)g#(c, l, f(m))
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))h#(f(c), f(c))g#(e, f(c), U121(k, k))
h#(f(c), f(c))g#(c, f(e), U121(k, k))A#g#(e, e, f(l))
h#(f(c), f(c))g#(c, U121(c, c), f(m))h#(f(c), f(c))g#(e, c, f(m))
h#(f(c), f(c))g#(e, e, f(k))A#h#(e, e)
A#g#(l, e, f(l))h#(f(c), f(c))g#(e, e, U121(k, k))
h#(f(c), f(c))g#(l, f(c), f(k))h#(f(c), f(c))g#(c, f(l), f(k))
A#h#(f(c), f(c))h#(f(c), f(c))g#(c, f(c), f(l))
A#h#(f(e), f(e))h#(f(c), f(c))g#(c, U121(c, c), U121(k, k))
A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(c, l, f(m))
h#(f(c), f(c))g#(c, l, f(l))h#(f(c), f(c))g#(l, e, f(l))
h#(f(c), f(c))g#(l, U121(c, c), f(l))h#(f(c), f(c))g#(c, f(e), f(k))
h#(f(c), f(c))g#(e, f(c), f(k))h#(f(c), f(c))g#(l, c, f(k))
A#h#(c, c)h#(f(c), f(c))g#(l, f(e), f(m))
h#(f(c), f(c))g#(e, f(e), f(m))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(f(c), f(c))g#(f(l), f(l), f(m))h#(m, m)g#(m, m, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))h#(f(c), f(c))g#(f(c), f(e), f(k))
A#g#(U121(e, c), U121(e, c), f(k))A#g#(U121(c, c), l, f(m))
h#(d, d)g#(m, d, f(k))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(f(c), f(c))g#(f(e), f(e), f(k))A#g#(U121(e, c), e, U121(k, k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))
h#(l, l)g#(l, l, f(m))h#(f(c), f(c))g#(f(l), U121(c, c), f(l))
A#g#(U121(c, c), l, f(k))A#g#(c, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(e, e), e, f(k))h#(f(c), f(c))g#(U121(e, e), c, f(m))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(l, U121(e, c), f(k))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, e, f(k))h#(U121(e, c), U121(e, c))g#(l, c, f(m))
h#(f(c), f(c))g#(f(c), U121(c, c), f(m))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), l, f(m))
h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), f(m))A#g#(c, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), e, f(k))h#(f(c), f(c))g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))A#g#(e, U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))h#(f(c), f(c))g#(f(l), c, U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, e), f(m))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(c), f(c))g#(f(c), U121(e, c), U121(m, m))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))h#(f(c), f(c))g#(e, U121(c, c), f(l))
h#(f(c), f(c))g#(f(e), U121(e, c), f(m))A#g#(U121(e, c), c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(f(c), c, f(m))
h#(U121(e, c), U121(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(c), f(c), U121(k, k))
h#(f(c), f(c))g#(f(e), f(l), U121(k, k))A#g#(c, c, f(m))
A#g#(c, e, f(k))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))h#(U121(e, c), U121(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, c), f(c), f(m))
h#(f(c), f(c))g#(U121(e, e), l, f(l))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))A#h#(f(m), f(m))
h#(f(c), f(c))g#(f(e), U121(e, c), f(k))A#g#(U121(e, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))h#(f(c), f(c))g#(U121(e, c), l, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(U121(e, c), U121(e, c))g#(c, c, f(k))
h#(f(c), f(c))g#(c, f(c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(c, c)g#(l, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), U121(e, e), f(l))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(f(e), l, f(m))
h#(U121(e, c), U121(e, c))g#(l, c, f(l))A#g#(e, e, f(m))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))h#(f(c), f(c))g#(U121(c, c), l, f(l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), c, f(k))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))A#g#(e, U121(e, c), U121(k, k))
A#g#(e, U121(e, c), U121(m, m))A#g#(l, U121(c, c), f(l))
h#(c, c)g#(l, l, f(k))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(c, c)g#(e, c, f(l))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))A#g#(U121(e, c), c, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(f(l), e, f(m))A#g#(l, l, f(k))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))A#g#(U121(e, c), U121(e, c), f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(c, e, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(c, e, U121(k, k)) 
g#(l, e, f(k)) 
g#(c, e, f(m)) 
g#(c, e, f(l)) 
g#(e, e, f(k)) 
Thus, the rule h#(f(c), f(c)) → g#(c, e, f(k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(l, e, f(k))h#(f(c), f(c)) → g#(c, e, f(m))
h#(f(c), f(c)) → g#(c, e, f(l))h#(f(c), f(c)) → g#(e, e, f(k))
h#(f(c), f(c)) → g#(c, e, U121(k, k))

Problem 140: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(l, l)
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(f(e), e, f(m))
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))h#(c, c)g#(c, l, f(m))
A#g#(U121(e, c), c, U121(m, m))h#(f(c), f(c))g#(c, f(e), U121(k, k))
h#(f(c), f(c))g#(e, f(c), U121(k, k))A#g#(e, e, f(l))
h#(f(c), f(c))g#(c, U121(c, c), f(m))h#(f(c), f(c))g#(e, e, f(k))
h#(f(c), f(c))g#(e, c, f(m))A#h#(e, e)
A#g#(l, e, f(l))h#(f(c), f(c))g#(e, e, U121(k, k))
h#(f(c), f(c))g#(c, f(l), f(k))h#(f(c), f(c))g#(l, f(c), f(k))
A#h#(f(c), f(c))h#(f(c), f(c))g#(c, f(c), f(l))
A#g#(c, l, f(m))A#h#(f(e), f(e))
A#g#(U121(e, c), e, f(l))h#(f(c), f(c))g#(c, U121(c, c), U121(k, k))
A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(c, l, f(m))
h#(f(c), f(c))g#(c, l, f(l))h#(f(c), f(c))g#(l, e, f(l))
h#(f(c), f(c))g#(l, U121(c, c), f(l))h#(f(c), f(c))g#(c, f(e), f(k))
h#(f(c), f(c))g#(e, f(c), f(k))h#(f(c), f(c))g#(l, c, f(k))
A#h#(c, c)h#(f(c), f(c))g#(l, f(e), f(m))
h#(f(c), f(c))g#(e, f(e), f(m))h#(m, m)g#(m, m, f(m))
h#(f(c), f(c))g#(f(e), f(l), f(l))h#(f(c), f(c))g#(f(l), f(l), f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))
h#(f(c), f(c))g#(f(c), f(e), f(k))A#g#(U121(e, c), U121(e, c), f(k))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))A#g#(U121(c, c), l, f(m))
h#(d, d)g#(m, d, f(k))h#(f(c), f(c))g#(f(l), f(l), f(k))
A#g#(U121(e, c), e, U121(k, k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))
h#(l, l)g#(l, l, f(m))h#(f(c), f(c))g#(f(l), U121(c, c), f(l))
A#g#(U121(c, c), l, f(k))A#g#(c, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(e, e), e, f(k))h#(f(c), f(c))g#(U121(e, e), c, f(m))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(l, U121(e, c), f(k))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, e, f(k))h#(U121(e, c), U121(e, c))g#(l, c, f(m))
h#(f(c), f(c))g#(f(c), U121(c, c), f(m))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), l, f(m))
h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), f(m))A#g#(c, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), e, f(k))h#(f(c), f(c))g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))A#g#(e, U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))h#(f(c), f(c))g#(f(l), c, U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, e), f(m))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(c), f(c))g#(f(c), U121(e, c), U121(m, m))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))h#(f(c), f(c))g#(f(e), U121(e, c), f(m))
h#(f(c), f(c))g#(e, U121(c, c), f(l))A#g#(U121(e, c), c, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(f(c), c, f(m))
h#(U121(e, c), U121(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(c), f(c), U121(k, k))
h#(f(c), f(c))g#(f(e), f(l), U121(k, k))A#g#(c, c, f(m))
A#g#(c, e, f(k))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))h#(U121(e, c), U121(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, c), f(c), f(m))
h#(f(c), f(c))g#(U121(e, e), l, f(l))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))A#h#(f(m), f(m))
h#(f(c), f(c))g#(f(e), U121(e, c), f(k))A#g#(U121(e, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))h#(f(c), f(c))g#(U121(e, c), l, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(U121(e, c), U121(e, c))g#(c, c, f(k))
h#(f(c), f(c))g#(c, f(c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(c, c)g#(l, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), U121(e, e), f(l))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(f(e), l, f(m))
h#(U121(e, c), U121(e, c))g#(l, c, f(l))A#g#(e, e, f(m))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))h#(f(c), f(c))g#(U121(c, c), l, f(l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), c, f(k))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))A#g#(e, U121(e, c), U121(k, k))
A#g#(e, U121(e, c), U121(m, m))A#g#(l, U121(c, c), f(l))
h#(c, c)g#(l, l, f(k))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(c, c)g#(e, c, f(l))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))A#g#(U121(e, c), c, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(f(l), e, f(m))A#g#(l, l, f(k))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(e), e, f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U121(e, e), e, f(m))g#(f(e), e, U121(m, m))
Thus, the rule h#(f(c), f(c)) → g#(f(e), e, f(m)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U121(e, e), e, f(m))

Problem 141: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))h#(f(c), f(c))g#(l, f(e), U121(k, k))
A#h#(l, l)h#(f(c), f(c))g#(e, f(l), f(l))
h#(f(c), f(c))g#(l, f(c), f(m))A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(l, U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, U121(c, c), f(k))
h#(f(c), f(c))g#(l, f(l), U121(k, k))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(l, f(l), f(k))h#(f(c), f(c))g#(l, f(c), f(l))
A#h#(e, e)A#h#(f(c), f(c))
h#(f(c), f(c))g#(c, f(c), f(l))A#g#(c, l, f(m))
A#g#(U121(e, c), e, f(l))A#h#(f(e), f(e))
h#(f(c), f(c))g#(c, U121(c, c), U121(k, k))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(c, l, f(m))h#(f(c), f(c))g#(c, l, f(l))
h#(f(c), f(c))g#(l, e, f(l))h#(f(c), f(c))g#(l, U121(c, c), f(l))
h#(f(c), f(c))g#(e, f(c), f(k))h#(f(c), f(c))g#(c, f(e), f(k))
h#(f(c), f(c))g#(l, c, f(k))A#h#(c, c)
h#(f(c), f(c))g#(l, f(e), f(m))h#(f(c), f(c))g#(e, f(l), f(m))
h#(f(c), f(c))g#(e, f(e), f(m))h#(f(c), f(c))g#(f(l), f(l), f(m))
h#(m, m)g#(m, m, f(m))h#(f(c), f(c))g#(f(e), f(l), f(l))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))
h#(f(c), f(c))g#(f(c), f(e), f(k))A#g#(U121(e, c), U121(e, c), f(k))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))A#g#(U121(c, c), l, f(m))
h#(d, d)g#(m, d, f(k))h#(f(c), f(c))g#(f(l), f(l), f(k))
A#g#(U121(e, c), e, U121(k, k))h#(f(d), f(d))g#(f(d), f(d), f(k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))
h#(f(c), f(c))g#(f(l), U121(c, c), f(l))h#(l, l)g#(l, l, f(m))
A#g#(U121(c, c), l, f(k))A#g#(c, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(e, e), e, f(k))h#(f(c), f(c))g#(U121(e, e), c, f(m))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(l, U121(e, c), f(k))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, e, f(k))h#(U121(e, c), U121(e, c))g#(l, c, f(m))
h#(f(c), f(c))g#(f(c), U121(c, c), f(m))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), l, f(m))
h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), f(m))A#g#(c, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), e, f(k))h#(f(c), f(c))g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))A#g#(e, U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))h#(f(c), f(c))g#(f(l), c, U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, e), f(m))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(c), f(c))g#(f(c), U121(e, c), U121(m, m))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))h#(f(c), f(c))g#(f(e), U121(e, c), f(m))
h#(f(c), f(c))g#(e, U121(c, c), f(l))A#g#(U121(e, c), c, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))
h#(f(c), f(c))g#(f(c), c, f(m))h#(f(c), f(c))g#(f(c), e, f(k))
h#(U121(e, c), U121(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(c), f(c), U121(k, k))
h#(f(c), f(c))g#(f(e), f(l), U121(k, k))h#(f(c), f(c))g#(e, f(e), U121(k, k))
A#g#(c, c, f(m))A#g#(c, e, f(k))
h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))h#(U121(e, c), U121(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, c), f(c), f(m))
h#(f(c), f(c))g#(U121(e, e), l, f(l))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))A#h#(f(m), f(m))
h#(f(c), f(c))g#(f(e), U121(e, c), f(k))A#g#(U121(e, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))h#(f(c), f(c))g#(U121(e, c), l, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(U121(e, c), U121(e, c))g#(c, c, f(k))
h#(f(c), f(c))g#(c, f(c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(c, c)g#(l, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), U121(e, e), f(l))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(f(e), l, f(m))
h#(U121(e, c), U121(e, c))g#(l, c, f(l))A#g#(e, e, f(m))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))h#(f(c), f(c))g#(U121(c, c), l, f(l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), c, f(k))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))A#g#(e, U121(e, c), U121(k, k))
A#g#(e, U121(e, c), U121(m, m))A#g#(l, U121(c, c), f(l))
h#(c, c)g#(l, l, f(k))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(c, c)g#(e, c, f(l))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))A#g#(U121(e, c), c, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(f(l), e, f(m))A#g#(l, l, f(k))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, f(e), U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, U121(e, e), U121(k, k))g#(l, f(e), U121(m, k))
 g#(l, f(e), U121(l, k))
Thus, the rule h#(f(c), f(c)) → g#(l, f(e), U121(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(l, U121(e, e), U121(k, k))

Problem 142: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(e, e)A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(c, l, f(l))
h#(f(c), f(c))g#(l, e, f(l))h#(f(c), f(c))g#(l, U121(c, c), f(l))
h#(f(c), f(c))g#(c, f(e), f(k))h#(f(c), f(c))g#(e, f(c), f(k))
A#g#(l, l, f(m))h#(f(c), f(c))g#(l, c, f(k))
A#h#(c, c)h#(f(c), f(c))g#(e, f(l), f(m))
h#(f(c), f(c))g#(l, f(e), f(m))h#(f(c), f(c))g#(e, f(e), f(m))
h#(f(c), f(c))g#(f(l), f(l), f(m))h#(m, m)g#(m, m, f(m))
h#(f(c), f(c))g#(f(e), f(l), f(l))h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))
A#h#(l, l)h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))
h#(f(c), f(c))g#(f(c), f(e), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))
A#g#(U121(e, c), U121(e, c), f(k))A#g#(U121(c, c), l, f(m))
h#(d, d)g#(m, d, f(k))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(f(d), f(d))g#(f(d), f(d), f(k))A#g#(U121(e, c), e, U121(k, k))
h#(l, l)g#(l, l, f(m))h#(f(c), f(c))g#(f(l), U121(c, c), f(l))
A#g#(U121(c, c), l, f(k))A#g#(c, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(e, e), e, f(k))h#(f(c), f(c))g#(U121(e, e), c, f(m))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(l, U121(e, c), f(k))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, e, f(k))h#(U121(e, c), U121(e, c))g#(l, c, f(m))
h#(f(c), f(c))g#(f(c), U121(c, c), f(m))h#(f(c), f(c))g#(l, l, f(m))
h#(f(c), f(c))g#(f(e), e, f(l))h#(f(c), f(c))g#(f(l), U121(e, e), f(k))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), l, f(m))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))A#g#(c, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), f(e), f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), c, f(m))h#(f(c), f(c))g#(U121(e, c), e, f(k))
A#g#(e, U121(c, c), f(m))h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(f(l), c, U121(k, k))
h#(f(c), f(c))g#(e, U121(c, c), f(m))h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))
h#(f(c), f(c))g#(e, f(l), f(l))h#(f(c), f(c))g#(l, f(e), f(l))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, e), f(m))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(c, l, U121(k, k))h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))
h#(f(c), f(c))g#(f(c), U121(e, c), U121(m, m))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))
h#(f(c), f(c))g#(e, U121(c, c), f(l))h#(f(c), f(c))g#(f(e), U121(e, c), f(m))
A#g#(U121(e, c), c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))
h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(f(c), c, f(m))
h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))h#(U121(e, c), U121(e, c))g#(e, l, f(l))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(c), f(c), U121(k, k))
h#(f(c), f(c))g#(f(e), f(l), U121(k, k))A#g#(c, c, f(m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
A#g#(c, e, f(k))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(l, U121(c, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(k))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))h#(f(e), f(e))g#(U121(e, e), e, f(l))
h#(U121(e, c), U121(e, c))g#(c, c, f(l))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#h#(f(m), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(f(c), f(c))g#(U121(e, c), l, f(k))
h#(U121(e, c), U121(e, c))g#(c, c, f(k))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(f(c), f(c))g#(c, f(c), f(m))h#(c, c)g#(l, e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(U121(c, c), e, f(m))
h#(f(c), f(c))g#(f(e), U121(e, e), f(l))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))A#g#(c, e, f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
A#g#(e, e, f(m))h#(U121(e, c), U121(e, c))g#(l, c, f(l))
h#(f(c), f(c))g#(f(e), l, f(m))h#(f(c), f(c))g#(c, c, f(l))
A#h#(d, d)h#(f(c), f(c))g#(U121(c, c), l, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), c, f(k))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))A#g#(c, c, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
h#(c, c)g#(l, e, U121(k, k))A#g#(e, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, l, f(m))A#g#(e, U121(e, c), U121(m, m))
h#(c, c)g#(l, l, f(k))A#g#(l, U121(c, c), f(l))
h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(c, c)g#(e, c, f(l))h#(f(c), f(c))g#(f(l), l, f(m))
h#(f(c), f(c))g#(e, f(e), f(k))A#g#(l, U121(e, c), U121(k, k))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))A#g#(U121(e, c), c, f(l))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(m))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(f(l), e, f(m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))A#g#(l, l, f(k))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
A#g#(U121(c, c), U121(c, c), f(m))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(c, l, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, l, f(l))g#(c, l, U121(l, l))
g#(e, l, f(l)) 
Thus, the rule h#(f(c), f(c)) → g#(c, l, f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, l, f(l))h#(f(c), f(c)) → g#(l, l, f(l))

Problem 143: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(l, l)
h#(f(c), f(c))g#(l, f(e), f(l))A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))
h#(f(c), f(c))g#(c, e, f(l))h#(f(c), f(c))g#(l, f(e), f(k))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(e, f(c), U121(k, k))
h#(f(c), f(c))g#(l, U121(e, e), f(m))h#(f(c), f(c))g#(l, U121(e, e), f(k))
A#g#(e, e, f(l))h#(f(c), f(c))g#(e, c, f(m))
h#(f(c), f(c))g#(e, e, f(k))A#h#(e, e)
A#g#(l, e, f(l))h#(f(c), f(c))g#(e, e, U121(k, k))
A#h#(f(c), f(c))h#(f(c), f(c))g#(e, f(e), f(l))
A#h#(f(e), f(e))h#(f(c), f(c))g#(e, U121(e, e), f(l))
A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(e, U121(e, e), f(m))
A#g#(l, l, f(m))h#(f(c), f(c))g#(l, c, f(k))
A#h#(c, c)h#(f(c), f(c))g#(e, f(l), f(m))
h#(f(c), f(c))g#(l, f(e), f(m))h#(f(c), f(c))g#(e, f(e), f(m))
h#(f(c), f(c))g#(f(e), f(l), f(l))h#(m, m)g#(m, m, f(m))
h#(f(c), f(c))g#(f(l), f(l), f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))A#g#(U121(e, c), U121(e, c), f(k))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))h#(f(c), f(c))g#(f(c), f(e), f(k))
A#g#(U121(c, c), l, f(m))h#(d, d)g#(m, d, f(k))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(d), f(d))g#(f(d), f(d), f(k))
A#g#(U121(e, c), e, U121(k, k))h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(f(c), f(c))g#(f(l), U121(c, c), f(l))
h#(l, l)g#(l, l, f(m))A#g#(U121(c, c), l, f(k))
A#g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(U121(e, e), c, f(m))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))
A#g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, U121(e, c), f(k))
h#(e, e)g#(e, e, f(l))h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(l, c, f(m))
h#(U121(e, c), U121(e, c))g#(l, e, f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(l))h#(f(c), f(c))g#(f(l), U121(e, e), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), l, f(m))h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))A#g#(c, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), f(e), f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), c, f(m))h#(f(c), f(c))g#(U121(e, c), e, f(k))
A#g#(e, U121(c, c), f(m))h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(f(l), c, U121(k, k))
h#(f(c), f(c))g#(e, U121(c, c), f(m))h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, e), f(m))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(c, l, U121(k, k))h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))
h#(f(c), f(c))g#(f(c), U121(e, c), U121(m, m))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))
h#(f(c), f(c))g#(e, U121(c, c), f(l))h#(f(c), f(c))g#(f(e), U121(e, c), f(m))
A#g#(U121(e, c), c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))
h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(f(c), c, f(m))
h#(f(c), f(c))g#(f(c), e, f(k))h#(U121(e, c), U121(e, c))g#(e, l, f(l))
h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
A#g#(c, e, f(k))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))A#g#(c, c, f(m))
h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))
h#(f(c), f(c))g#(U121(e, e), l, f(l))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))h#(U121(e, c), U121(e, c))g#(c, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#h#(f(m), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(f(c), f(c))g#(U121(e, c), l, f(k))
h#(U121(e, c), U121(e, c))g#(c, c, f(k))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(f(c), f(c))g#(c, f(c), f(m))h#(c, c)g#(l, e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(U121(c, c), e, f(m))
h#(f(c), f(c))g#(f(e), U121(e, e), f(l))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))A#g#(e, e, f(m))
h#(U121(e, c), U121(e, c))g#(l, c, f(l))h#(f(c), f(c))g#(f(e), l, f(m))
h#(f(c), f(c))g#(c, c, f(l))A#h#(d, d)
h#(f(c), f(c))g#(U121(c, c), l, f(l))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(U121(c, c), c, f(k))
h#(f(e), f(e))g#(f(e), e, f(m))A#g#(U121(e, c), U121(c, c), f(m))
A#g#(U121(c, c), c, U121(k, k))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
A#g#(c, c, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))h#(c, c)g#(l, e, U121(k, k))
A#g#(e, U121(e, c), U121(k, k))A#g#(e, U121(e, c), U121(m, m))
h#(c, c)g#(l, l, f(k))A#g#(l, U121(c, c), f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(m))h#(c, c)g#(e, c, f(l))
h#(f(c), f(c))g#(f(l), l, f(m))h#(f(c), f(c))g#(e, f(e), f(k))
A#g#(l, U121(e, c), U121(k, k))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(c), f(c))g#(c, U121(e, c), f(l))
A#g#(U121(e, c), c, f(l))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(f(l), e, f(m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
A#g#(l, l, f(k))h#(c, c)g#(l, c, f(l))
h#(c, c)g#(c, l, U121(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))A#g#(U121(c, c), U121(c, c), f(m))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, f(e), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, U121(e, e), f(l))g#(l, f(e), U121(l, l))
Thus, the rule h#(f(c), f(c)) → g#(l, f(e), f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(l, U121(e, e), f(l))

Problem 144: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(e, e)A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(U121(e, c), U121(e, c))A#h#(c, c)
h#(f(c), f(c))g#(U121(e, e), f(l), U121(m, m))A#h#(l, l)
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(f(c), f(e), f(k))
A#g#(U121(e, c), U121(e, c), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))
A#g#(U121(c, c), l, f(m))h#(d, d)g#(m, d, f(k))
h#(f(c), f(c))g#(f(l), f(l), f(k))A#g#(U121(e, c), e, U121(k, k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(f(c), f(c))g#(f(l), U121(c, c), f(l))
h#(l, l)g#(l, l, f(m))A#g#(U121(c, c), l, f(k))
A#g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(U121(e, e), c, f(m))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))
A#g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(e, e, f(m))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(l, U121(e, c), f(k))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, e, f(k))h#(U121(e, c), U121(e, c))g#(l, c, f(m))
h#(f(c), f(c))g#(f(c), U121(c, c), f(m))h#(f(c), f(c))g#(l, l, f(m))
h#(f(c), f(c))g#(f(e), e, f(l))h#(f(c), f(c))g#(f(l), U121(e, e), f(k))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), l, f(m))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))A#g#(c, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), f(e), f(m))h#(f(c), f(c))g#(U121(e, c), e, f(k))
h#(f(c), f(c))g#(U121(e, c), c, f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))
A#g#(e, U121(c, c), f(m))h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))
h#(f(c), f(c))g#(f(l), c, U121(k, k))A#h#(m, m)
h#(f(c), f(c))g#(e, U121(c, c), f(m))h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))
h#(f(c), f(c))g#(e, f(l), f(l))h#(f(c), f(c))g#(f(c), U121(e, e), f(m))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(c), f(c))g#(f(c), U121(e, c), U121(m, m))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))h#(f(c), f(c))g#(f(e), U121(e, c), f(m))
h#(f(c), f(c))g#(e, U121(c, c), f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(k, k))
A#g#(U121(e, c), c, U121(k, k))h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(f(c), c, f(m))
h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))h#(U121(e, c), U121(e, c))g#(e, l, f(l))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))h#(f(c), f(c))g#(e, f(e), U121(k, k))
A#g#(c, c, f(m))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
A#g#(c, e, f(k))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(k))h#(f(c), f(c))g#(U121(e, c), f(c), f(m))
h#(U121(e, c), U121(e, c))g#(c, c, f(l))h#(f(e), f(e))g#(U121(e, e), e, f(l))
A#h#(f(m), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(k))A#g#(U121(e, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))h#(f(c), f(c))g#(U121(e, c), l, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(U121(e, c), U121(e, c))g#(c, c, f(k))
h#(f(c), f(c))g#(c, f(c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(c, c)g#(l, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), U121(e, e), f(l))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(f(e), l, f(m))
h#(U121(e, c), U121(e, c))g#(l, c, f(l))A#g#(e, e, f(m))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))h#(f(c), f(c))g#(U121(c, c), l, f(l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), c, f(k))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))A#g#(e, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, l, f(m))A#g#(e, U121(e, c), U121(m, m))
A#g#(l, U121(c, c), f(l))h#(c, c)g#(l, l, f(k))
h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(c, c)g#(e, c, f(l))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))A#g#(U121(e, c), c, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(l, c, U121(k, k))
A#g#(U121(e, c), U121(e, c), f(m))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(f(l), e, f(m))
A#g#(l, l, f(k))h#(c, c)g#(l, c, f(l))
h#(c, c)g#(c, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(f(c), f(c))g#(l, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U121(e, e), U121(e, e)) → g#(U121(e, e), e, U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, e, U121(k, k))g#(U121(e, e), e, U121(l, k))
 g#(U121(e, e), e, U121(m, k))
Thus, the rule h#(U121(e, e), U121(e, e)) → g#(U121(e, e), e, U121(k, k)) is replaced by the following rules:
h#(U121(e, e), U121(e, e)) → g#(e, e, U121(k, k))

Problem 145: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(k, k))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(f(l), U121(e, e), f(m))h#(f(c), f(c))g#(c, f(e), f(k))
A#h#(c, c)A#h#(l, l)
A#g#(U121(e, c), U121(e, c), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(m))
A#g#(U121(c, c), l, f(m))h#(d, d)g#(m, d, f(k))
h#(f(c), f(c))g#(f(l), f(l), f(k))A#g#(U121(e, c), e, U121(k, k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))
h#(f(c), f(c))g#(f(e), f(e), f(k))h#(l, l)g#(l, l, f(m))
h#(f(c), f(c))g#(f(l), U121(c, c), f(l))A#g#(U121(c, c), l, f(k))
A#g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(U121(e, e), c, f(m))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))
A#g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, U121(e, c), f(k))
h#(e, e)g#(e, e, f(l))h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(l, e, f(k))
h#(U121(e, c), U121(e, c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(c, c), e, U121(k, k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(m))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))
h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, e), f(k))
h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), l, f(m))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))A#g#(c, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), f(e), f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), c, f(m))h#(f(c), f(c))g#(U121(e, c), e, f(k))
A#g#(e, U121(c, c), f(m))h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(f(l), c, U121(k, k))
h#(f(c), f(c))g#(e, U121(c, c), f(m))h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, e), f(m))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(c, l, U121(k, k))h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))
h#(f(c), f(c))g#(U121(c, c), e, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(f(c), f(e), f(l))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))h#(f(c), f(c))g#(e, U121(c, c), f(l))
h#(f(c), f(c))g#(f(e), U121(e, c), f(m))h#(f(c), f(c))g#(l, U121(e, e), U121(k, k))
A#g#(U121(e, c), c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))
h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(l, e, U121(k, k))
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(f(c), c, f(m))
h#(f(c), f(c))g#(f(c), e, f(k))h#(U121(e, c), U121(e, c))g#(e, l, f(l))
h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), U121(e, e), f(l))h#(f(c), f(c))g#(e, f(e), U121(k, k))
A#g#(c, c, f(m))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
A#g#(c, e, f(k))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(k))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))h#(U121(e, c), U121(e, c))g#(c, c, f(l))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#h#(f(m), f(m))A#g#(U121(e, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))h#(f(c), f(c))g#(U121(e, c), l, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(U121(e, c), U121(e, c))g#(c, c, f(k))
h#(f(e), f(e))g#(U121(e, e), f(e), f(m))h#(f(c), f(c))g#(c, f(c), f(m))
h#(c, c)g#(l, e, f(m))A#h#(f(d), f(d))
h#(f(c), f(c))g#(U121(c, c), e, f(m))h#(f(c), f(c))g#(c, U121(e, e), f(k))
h#(f(c), f(c))g#(f(e), U121(e, e), f(l))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(f(c), f(c))g#(f(c), f(e), U121(k, k))h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
A#g#(e, e, f(m))h#(U121(e, c), U121(e, c))g#(l, c, f(l))
h#(f(c), f(c))g#(f(e), l, f(m))h#(f(c), f(c))g#(c, c, f(l))
A#h#(d, d)h#(f(c), f(c))g#(U121(c, c), l, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), c, f(k))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
A#g#(c, c, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))h#(c, c)g#(l, e, U121(k, k))
A#g#(e, U121(e, c), U121(k, k))h#(f(c), f(c))g#(e, l, f(m))
A#g#(e, U121(e, c), U121(m, m))h#(c, c)g#(l, l, f(k))
A#g#(l, U121(c, c), f(l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(f(c), f(c))g#(c, e, f(l))h#(c, c)g#(e, c, f(l))
h#(f(c), f(c))g#(f(l), l, f(m))h#(f(c), f(c))g#(e, f(e), f(k))
A#g#(l, U121(e, c), U121(k, k))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(U121(c, c), f(e), f(m))h#(f(c), f(c))g#(f(c), f(e), f(m))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(c), f(c))g#(c, U121(e, c), f(l))
A#g#(U121(e, c), c, f(l))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(l, c, U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(m))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(f(l), e, f(m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))A#g#(l, l, f(k))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, l, U121(k, k))A#g#(U121(c, c), U121(c, c), f(m))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U121(e, c), U121(e, e), U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U121(e, c), e, U121(k, k))g#(U121(e, c), U121(e, e), U121(l, k))
g#(c, U121(e, e), U121(k, k))g#(U121(e, c), U121(e, e), U121(m, k))
Thus, the rule h#(f(c), f(c)) → g#(U121(e, c), U121(e, e), U121(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U121(e, c), e, U121(k, k))h#(f(c), f(c)) → g#(c, U121(e, e), U121(k, k))

Problem 146: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(l, l)
h#(f(c), f(c))g#(f(l), e, U121(k, k))A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(c, U121(e, e), f(m))h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(c, f(e), f(m))A#g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(e, l, f(m))h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(c, e, f(l))
h#(f(c), f(c))g#(U121(c, c), f(e), f(m))h#(f(c), f(c))g#(f(c), f(e), f(m))
h#(f(c), f(c))g#(l, c, U121(k, k))h#(f(c), f(c))g#(l, l, U121(k, k))
A#g#(l, c, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))
A#g#(U121(e, c), c, f(m))A#g#(U121(e, c), e, f(k))
h#(f(c), f(c))g#(l, f(e), f(k))A#g#(e, c, f(k))
h#(f(c), f(c))g#(l, U121(e, e), f(k))A#g#(l, l, U121(k, k))
A#g#(l, U121(e, c), f(m))h#(f(c), f(c))g#(e, e, f(k))
h#(f(c), f(c))g#(f(l), U121(e, e), f(l))A#h#(e, e)
A#g#(l, e, f(k))A#g#(l, c, f(m))
h#(f(c), f(c))g#(e, e, U121(k, k))h#(f(c), f(c))g#(f(e), f(e), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), f(l))A#h#(f(c), f(c))
A#h#(f(e), f(e))h#(f(c), f(c))g#(e, U121(e, e), f(l))
A#g#(e, c, f(m))A#g#(U121(e, c), l, f(k))
A#h#(U121(e, c), U121(e, c))A#h#(c, c)
A#g#(U121(c, c), l, f(m))h#(d, d)g#(m, d, f(k))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))A#g#(U121(e, c), e, U121(k, k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(l, l)g#(l, l, f(m))
h#(f(c), f(c))g#(f(l), U121(c, c), f(l))A#g#(U121(c, c), l, f(k))
A#g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, e), c, f(m))
h#(f(c), f(c))g#(U121(e, e), e, f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))
A#g#(U121(c, c), U121(c, c), U121(k, k))h#(e, e)g#(e, e, f(l))
h#(f(c), f(c))g#(l, U121(e, c), f(k))h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(l, c, f(m))
h#(U121(e, c), U121(e, c))g#(l, e, f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(l))h#(f(c), f(c))g#(f(l), U121(e, e), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))
h#(f(c), f(c))g#(f(e), U121(e, e), f(k))h#(f(c), f(c))g#(U121(e, e), l, f(m))
h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), f(m))A#g#(c, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), e, f(k))h#(f(c), f(c))g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))A#g#(e, U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))h#(f(c), f(c))g#(f(l), c, U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, e), f(m))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(c), f(c))g#(f(c), f(e), f(l))
h#(f(c), f(c))g#(f(c), U121(e, c), U121(m, m))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(m))h#(f(c), f(c))g#(e, U121(c, c), f(l))
A#g#(U121(e, c), c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))
h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(f(c), e, f(k))
h#(f(c), f(c))g#(f(c), c, f(m))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(U121(e, c), U121(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))h#(f(c), f(c))g#(l, l, f(l))
A#g#(c, e, f(k))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
A#g#(c, c, f(m))h#(f(c), f(c))g#(e, f(e), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))
h#(U121(e, c), U121(e, c))g#(c, c, f(l))h#(f(c), f(c))g#(U121(e, c), f(c), f(m))
h#(f(c), f(c))g#(U121(e, e), l, f(l))h#(f(e), f(e))g#(U121(e, e), e, f(l))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(k))h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))
A#h#(f(m), f(m))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(f(c), f(c))g#(U121(e, c), l, f(k))
h#(U121(e, c), U121(e, c))g#(c, c, f(k))h#(f(c), f(c))g#(c, f(c), f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(m))h#(c, c)g#(l, e, f(m))
h#(f(c), f(c))g#(U121(c, c), e, f(m))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), U121(e, e), f(l))h#(f(c), f(c))g#(e, U121(e, e), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(e), l, f(m))h#(U121(e, c), U121(e, c))g#(l, c, f(l))
A#g#(e, e, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(f(c), f(c))g#(U121(c, c), c, f(k))
h#(f(e), f(e))g#(f(e), e, f(m))A#g#(U121(e, c), U121(c, c), f(m))
A#g#(U121(c, c), c, U121(k, k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))
A#g#(c, c, f(k))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(c, c)g#(l, e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
A#g#(e, U121(e, c), U121(k, k))A#g#(e, U121(e, c), U121(m, m))
A#g#(l, U121(c, c), f(l))h#(c, c)g#(l, l, f(k))
h#(f(c), f(c))g#(U121(c, c), l, f(m))h#(c, c)g#(e, c, f(l))
A#g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(f(c), f(c))g#(f(l), l, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(e), f(e))g#(e, e, f(l))
A#g#(U121(e, c), c, f(l))h#(f(c), f(c))g#(c, U121(e, c), f(l))
A#g#(U121(e, c), U121(e, c), f(m))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(f(l), e, f(m))
A#g#(l, l, f(k))h#(c, c)g#(l, c, f(l))
h#(c, c)g#(c, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))A#g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(l), e, U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(U121(l, l), e, U121(k, k))
 g#(f(l), e, U121(l, k))
 g#(f(l), e, U121(m, k))
Thus, the rule h#(f(c), f(c)) → g#(f(l), e, U121(k, k)) is deleted.

Problem 147: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(l, l)
h#(f(c), f(c))g#(l, f(e), f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(k, k))
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(k, k))
A#g#(e, c, f(k))A#g#(U121(e, c), c, U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(m))h#(f(c), f(c))g#(l, U121(e, e), f(k))
A#g#(l, l, U121(k, k))A#g#(l, U121(e, c), f(m))
h#(f(c), f(c))g#(e, e, f(k))h#(f(c), f(c))g#(f(l), U121(e, e), f(l))
A#h#(e, e)A#g#(l, c, f(m))
A#g#(l, e, f(k))A#g#(l, e, f(l))
h#(f(c), f(c))g#(e, e, U121(k, k))h#(f(c), f(c))g#(f(e), f(e), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), f(l))A#h#(f(c), f(c))
A#g#(c, l, f(m))h#(f(c), f(c))g#(e, f(e), f(l))
A#h#(f(e), f(e))A#g#(U121(e, c), e, f(l))
h#(f(c), f(c))g#(e, U121(e, e), f(l))A#g#(e, c, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), f(m))A#g#(U121(e, c), l, f(k))
A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(l, e, f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(m))h#(f(c), f(c))g#(f(e), U121(e, e), f(m))
h#(f(c), f(c))g#(e, U121(e, e), f(m))A#h#(c, c)
h#(f(c), f(c))g#(l, f(e), f(m))h#(f(c), f(c))g#(e, f(e), f(m))
A#g#(U121(c, c), l, f(m))h#(d, d)g#(m, d, f(k))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))A#g#(U121(e, c), e, U121(k, k))
h#(f(d), f(d))g#(f(d), f(d), f(k))h#(f(c), f(c))g#(f(l), U121(c, c), f(l))
h#(l, l)g#(l, l, f(m))A#g#(U121(c, c), l, f(k))
A#g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(U121(e, e), c, f(m))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))
A#g#(U121(c, c), U121(c, c), U121(k, k))h#(e, e)g#(e, e, f(l))
h#(f(c), f(c))g#(l, U121(e, c), f(k))h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(l, c, f(m))
h#(U121(e, c), U121(e, c))g#(l, e, f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(l))h#(f(c), f(c))g#(f(l), U121(e, e), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))
h#(f(c), f(c))g#(f(e), U121(e, e), f(k))h#(f(c), f(c))g#(U121(e, e), l, f(m))
h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), f(m))A#g#(c, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), e, f(k))h#(f(c), f(c))g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))A#g#(e, U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))h#(f(c), f(c))g#(f(l), c, U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, e), f(m))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(c), f(c))g#(f(c), f(e), f(l))
h#(f(c), f(c))g#(f(c), U121(e, c), U121(m, m))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(m))h#(f(c), f(c))g#(e, U121(c, c), f(l))
A#g#(U121(e, c), c, U121(k, k))h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))h#(f(c), f(c))g#(f(c), e, f(k))
h#(f(c), f(c))g#(f(c), c, f(m))h#(U121(e, c), U121(e, c))g#(e, l, f(l))
h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))h#(f(c), f(c))g#(l, l, f(l))
A#g#(c, e, f(k))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
A#g#(c, c, f(m))h#(f(c), f(c))g#(e, f(e), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))
h#(U121(e, c), U121(e, c))g#(c, c, f(l))h#(f(c), f(c))g#(U121(e, c), f(c), f(m))
h#(f(c), f(c))g#(U121(e, e), l, f(l))h#(f(e), f(e))g#(U121(e, e), e, f(l))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(k))h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))
A#h#(f(m), f(m))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(f(c), f(c))g#(U121(e, c), l, f(k))
h#(U121(e, c), U121(e, c))g#(c, c, f(k))h#(f(c), f(c))g#(c, f(c), f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(m))h#(c, c)g#(l, e, f(m))
h#(f(c), f(c))g#(U121(c, c), e, f(m))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), U121(e, e), f(l))h#(f(c), f(c))g#(e, U121(e, e), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(e), l, f(m))h#(U121(e, c), U121(e, c))g#(l, c, f(l))
A#g#(e, e, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(f(c), f(c))g#(U121(c, c), c, f(k))
h#(f(e), f(e))g#(f(e), e, f(m))A#g#(U121(e, c), U121(c, c), f(m))
A#g#(U121(c, c), c, U121(k, k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))
A#g#(c, c, f(k))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(c, c)g#(l, e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
A#g#(e, U121(e, c), U121(k, k))A#g#(e, U121(e, c), U121(m, m))
A#g#(l, U121(c, c), f(l))h#(c, c)g#(l, l, f(k))
h#(f(c), f(c))g#(U121(c, c), l, f(m))h#(c, c)g#(e, c, f(l))
A#g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(f(c), f(c))g#(f(l), l, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(e), f(e))g#(e, e, f(l))
A#g#(U121(e, c), c, f(l))h#(f(c), f(c))g#(c, U121(e, c), f(l))
A#g#(U121(e, c), U121(e, c), f(m))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(f(l), e, f(m))
A#g#(l, l, f(k))h#(c, c)g#(l, c, f(l))
h#(c, c)g#(c, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))A#g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, f(e), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, U121(e, e), f(l))g#(l, f(e), U121(l, l))
Thus, the rule h#(f(c), f(c)) → g#(l, f(e), f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(l, U121(e, e), f(l))

Problem 148: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(e, e)A#h#(f(l), f(l))
A#h#(f(c), f(c))A#h#(f(e), f(e))
A#g#(e, e, f(k))A#g#(e, c, f(m))
A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(U121(c, c), U121(e, e), f(m))
A#g#(U121(e, c), l, f(k))A#g#(e, e, U121(k, k))
h#(f(c), f(c))g#(l, e, f(l))h#(f(c), f(c))g#(f(l), U121(e, e), f(m))
h#(f(c), f(c))g#(f(e), U121(e, e), f(m))h#(f(c), f(c))g#(e, U121(e, e), f(m))
A#g#(l, l, f(m))A#h#(c, c)
h#(f(c), f(c))g#(l, f(e), f(m))h#(f(c), f(c))g#(e, f(e), f(m))
A#h#(l, l)A#g#(U121(c, c), l, f(m))
h#(d, d)g#(m, d, f(k))h#(f(c), f(c))g#(f(l), f(l), f(k))
h#(U121(e, c), U121(e, c))g#(l, e, U121(k, k))h#(f(d), f(d))g#(f(d), f(d), f(k))
A#g#(U121(e, c), e, U121(k, k))h#(f(c), f(c))g#(f(e), f(e), f(k))
h#(f(c), f(c))g#(f(l), U121(c, c), f(l))h#(l, l)g#(l, l, f(m))
A#g#(U121(c, c), l, f(k))A#g#(c, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(e, e), e, f(k))h#(f(c), f(c))g#(U121(e, e), c, f(m))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(e, e)g#(e, e, f(l))h#(f(c), f(c))g#(l, U121(e, c), f(k))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, c, f(m))h#(U121(e, c), U121(e, c))g#(l, e, f(k))
h#(f(c), f(c))g#(f(c), U121(c, c), f(m))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))h#(f(c), f(c))g#(f(e), U121(e, e), f(k))
h#(f(c), f(c))g#(U121(e, e), l, f(m))h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), f(m))
A#g#(c, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), e, f(k))
h#(f(c), f(c))g#(U121(e, c), c, f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))
A#g#(e, U121(c, c), f(m))h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))
h#(f(c), f(c))g#(f(l), c, U121(k, k))A#h#(m, m)
h#(f(c), f(c))g#(e, U121(c, c), f(m))h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))
h#(f(c), f(c))g#(f(c), U121(e, e), f(m))h#(f(l), f(l))g#(f(l), f(l), U121(k, k))
h#(f(c), f(c))g#(l, e, f(k))h#(f(c), f(c))g#(l, c, f(m))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(c, l, U121(k, k))h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))
h#(f(c), f(c))g#(U121(c, c), e, f(l))h#(f(c), f(c))g#(f(c), f(e), f(l))
h#(f(c), f(c))g#(f(c), U121(e, c), U121(m, m))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(m))h#(f(c), f(c))g#(e, U121(c, c), f(l))
A#g#(U121(e, c), c, U121(k, k))h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(f(c), c, f(m))h#(f(c), f(c))g#(f(c), e, f(k))
h#(U121(e, c), U121(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(e), f(l), U121(k, k))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))A#g#(c, c, f(m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))A#g#(c, e, f(k))
h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), e, f(m))h#(f(c), f(c))g#(f(c), e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))h#(U121(e, c), U121(e, c))g#(c, c, f(l))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))A#h#(f(m), f(m))
h#(f(c), f(c))g#(f(e), U121(e, c), f(k))A#g#(U121(e, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(f(c), f(c))g#(U121(e, c), l, f(k))h#(U121(e, c), U121(e, c))g#(c, c, f(k))
h#(f(c), f(c))g#(c, f(c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(c, c)g#(l, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), U121(e, e), f(l))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))A#g#(c, e, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(e), l, f(m))h#(U121(e, c), U121(e, c))g#(l, c, f(l))
A#g#(e, e, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(f(c), f(c))g#(U121(c, c), c, f(k))
h#(f(e), f(e))g#(f(e), e, f(m))A#g#(U121(e, c), U121(c, c), f(m))
A#g#(U121(c, c), c, U121(k, k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))
A#g#(c, c, f(k))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(c, c)g#(l, e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
A#g#(e, U121(e, c), U121(k, k))A#g#(e, U121(e, c), U121(m, m))
A#g#(l, U121(c, c), f(l))h#(c, c)g#(l, l, f(k))
h#(f(c), f(c))g#(U121(c, c), l, f(m))h#(c, c)g#(e, c, f(l))
A#g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(f(c), f(c))g#(f(l), l, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(e), f(e))g#(e, e, f(l))
A#g#(U121(e, c), c, f(l))h#(f(c), f(c))g#(c, U121(e, c), f(l))
A#g#(U121(e, c), U121(e, c), f(m))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(f(l), e, f(m))
A#g#(l, l, f(k))h#(c, c)g#(l, c, f(l))
h#(c, c)g#(c, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))A#g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(c), l, f(l))A#g#(e, l, f(m))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → g#(e, c, f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, l, f(m))g#(e, c, U121(m, m))
g#(e, e, f(m)) 
Thus, the rule A# → g#(e, c, f(m)) is replaced by the following rules:
A# → g#(e, e, f(m))A# → g#(e, l, f(m))

Problem 149: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(d), f(d))g#(f(m), f(m), f(l))A#h#(e, e)
A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
h#(f(d), f(d))g#(f(d), f(m), U121(k, k))A#h#(c, c)
A#h#(l, l)h#(l, l)g#(l, l, f(m))
h#(f(c), f(c))g#(f(l), U121(c, c), f(l))A#g#(U121(c, c), l, f(k))
A#g#(c, U121(e, c), f(l))h#(d, d)g#(m, m, f(k))
h#(f(c), f(c))g#(U121(e, e), c, f(m))h#(f(c), f(c))g#(U121(e, e), e, f(k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))A#g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(e, e, f(m))h#(f(c), f(c))g#(l, U121(e, c), f(k))
h#(e, e)g#(e, e, f(l))A#g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, e, f(k))h#(U121(e, c), U121(e, c))g#(l, c, f(m))
h#(f(c), f(c))g#(f(c), U121(c, c), f(m))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))h#(f(c), f(c))g#(f(e), U121(e, e), f(k))
h#(f(c), f(c))g#(U121(e, e), l, f(m))h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))h#(f(d), f(d))g#(f(d), f(m), f(k))
h#(f(c), f(c))g#(U121(e, c), f(e), f(m))A#g#(c, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))h#(f(c), f(c))g#(U121(e, c), e, f(k))
h#(f(c), f(c))g#(U121(e, c), c, f(m))h#(f(d), f(d))g#(f(m), f(m), f(m))
A#g#(e, U121(c, c), f(m))h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(f(l), c, U121(k, k))
h#(f(c), f(c))g#(e, U121(c, c), f(m))h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))
h#(f(l), f(l))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, e), f(m))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(e), f(k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(c), f(c))g#(U121(c, c), e, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(c), f(e), f(l))
h#(f(c), f(c))g#(f(c), U121(e, c), U121(m, m))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))
A#g#(U121(e, c), l, f(m))h#(f(c), f(c))g#(f(e), U121(e, c), f(m))
h#(f(c), f(c))g#(e, U121(c, c), f(l))h#(f(c), f(c))g#(f(e), U121(e, e), U121(m, m))
A#g#(U121(e, c), c, U121(k, k))h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))h#(f(d), f(d))g#(f(m), f(m), U121(k, k))
h#(f(d), f(d))g#(f(d), f(d), f(m))h#(f(c), f(c))g#(f(e), f(e), f(m))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), f(m))A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(f(c), c, f(m))h#(f(c), f(c))g#(f(c), e, f(k))
h#(U121(e, c), U121(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(e), f(l), U121(k, k))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))A#g#(c, c, f(m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))A#g#(c, e, f(k))
h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(d), f(d))g#(f(d), f(d), f(l))h#(f(c), f(c))g#(f(e), f(e), f(l))
h#(f(c), f(c))g#(U121(e, e), e, f(m))h#(f(c), f(c))g#(f(c), e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))h#(U121(e, c), U121(e, c))g#(c, c, f(l))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(U121(e, e), l, f(l))h#(f(c), f(c))g#(U121(e, c), f(c), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#h#(f(m), f(m))A#g#(U121(e, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))h#(f(c), f(c))g#(U121(e, c), l, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(U121(e, c), U121(e, c))g#(c, c, f(k))
h#(f(c), f(c))g#(c, f(c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(c, c)g#(l, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(f(e), U121(e, e), f(l))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(f(d), f(d))g#(f(m), f(d), f(l))
h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))
A#g#(c, e, f(l))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(f(e), l, f(m))
h#(U121(e, c), U121(e, c))g#(l, c, f(l))A#g#(e, e, f(m))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))h#(f(c), f(c))g#(U121(c, c), l, f(l))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), c, f(k))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))A#g#(e, U121(e, c), U121(k, k))
A#g#(e, U121(e, c), U121(m, m))A#g#(l, U121(c, c), f(l))
h#(c, c)g#(l, l, f(k))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(c, c)g#(e, c, f(l))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))A#g#(U121(e, c), c, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(f(l), e, f(m))A#g#(l, l, f(k))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
A#g#(c, l, f(l))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(f(e), e, f(m))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(c), l, f(l))
A#g#(e, l, f(m))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(d), f(d)) → g#(f(m), f(m), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(U121(m, m), f(m), f(l))
 g#(f(m), f(m), U121(l, l))
 g#(f(m), U121(m, m), f(l))
Thus, the rule h#(f(d), f(d)) → g#(f(m), f(m), f(l)) is deleted.

Problem 150: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
A#h#(c, c)h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(l, c, f(m))
h#(U121(e, c), U121(e, c))g#(l, e, f(k))h#(f(c), f(c))g#(f(c), U121(c, c), f(m))
h#(f(c), f(c))g#(l, l, f(m))h#(f(c), f(c))g#(f(e), e, f(l))
h#(f(c), f(c))g#(f(l), U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(m, m))h#(f(c), f(c))g#(f(e), U121(e, e), f(k))
h#(f(c), f(c))g#(U121(e, e), l, f(m))h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(m))h#(f(d), f(d))g#(f(d), f(m), f(k))
A#g#(c, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), f(e), f(m))
h#(f(c), f(c))g#(l, U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(e, c), e, f(k))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))
h#(f(d), f(d))g#(f(m), f(m), f(m))A#g#(e, U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))A#h#(m, m)
h#(f(c), f(c))g#(f(l), c, U121(k, k))h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))h#(f(l), f(l))g#(f(l), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), U121(e, e), f(m))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(e), f(k))
h#(f(c), f(c))g#(c, l, U121(k, k))h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))
h#(f(c), f(c))g#(U121(c, c), e, f(l))h#(f(c), f(c))g#(f(c), f(e), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(c), U121(e, c), U121(m, m))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))A#g#(U121(e, c), l, f(m))
h#(f(c), f(c))g#(f(e), U121(e, c), f(m))h#(f(c), f(c))g#(e, U121(c, c), f(l))
h#(f(c), f(c))g#(f(e), U121(e, e), U121(m, m))A#g#(e, c, f(l))
A#g#(U121(e, c), c, U121(k, k))h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))h#(f(d), f(d))g#(f(m), f(m), U121(k, k))
h#(f(d), f(d))g#(f(d), f(d), f(m))h#(f(c), f(c))g#(f(e), f(e), f(m))
A#g#(U121(c, c), l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), f(m))
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(f(c), c, f(m))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(U121(e, e), e, f(l))
h#(U121(e, c), U121(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(e), f(l), U121(k, k))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))A#g#(c, c, f(m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))A#g#(c, e, f(k))
h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(d), f(d))g#(f(d), f(d), f(l))h#(f(c), f(c))g#(f(e), f(e), f(l))
h#(f(c), f(c))g#(U121(e, e), e, f(m))h#(f(c), f(c))g#(f(c), e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))A#g#(U121(e, c), U121(e, c), U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, c, f(l))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(k))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))A#h#(f(m), f(m))
h#(f(c), f(c))g#(f(e), U121(e, c), f(k))h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(f(c), f(c))g#(l, U121(e, c), f(m))h#(U121(e, c), U121(e, c))g#(e, c, U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, c, f(k))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(f(c), f(c))g#(c, f(c), f(m))h#(c, c)g#(l, e, f(m))
h#(f(c), f(c))g#(U121(c, c), e, f(m))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), U121(e, e), f(l))h#(f(c), f(c))g#(e, U121(e, e), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(f(d), f(d))g#(f(m), f(d), f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))A#g#(c, e, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(e), l, f(m))h#(U121(e, c), U121(e, c))g#(l, c, f(l))
A#g#(e, e, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), c, f(k))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))A#g#(e, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, l, f(m))A#g#(e, U121(e, c), U121(m, m))
A#g#(l, U121(c, c), f(l))h#(c, c)g#(l, l, f(k))
h#(f(c), f(c))g#(f(l), c, f(l))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(c, c)g#(e, c, f(l))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))A#g#(U121(e, c), c, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, c, U121(k, k))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(f(l), e, f(m))
A#g#(l, l, f(k))h#(c, c)g#(l, c, f(l))
h#(c, c)g#(c, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(l))h#(f(c), f(c))g#(l, l, U121(k, k))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
A#g#(l, c, f(l))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))A#g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))A#g#(c, l, f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(f(e), e, f(m))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(c), l, f(l))A#g#(e, l, f(m))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U121(e, c), U121(e, c)) → g#(l, U121(e, c), f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, c, f(k)) 
g#(l, U121(e, c), f(m)) 
g#(l, U121(e, c), f(l)) 
g#(l, U121(e, c), U121(k, k)) 
Thus, the rule h#(U121(e, c), U121(e, c)) → g#(l, U121(e, c), f(k)) is replaced by the following rules:
h#(U121(e, c), U121(e, c)) → g#(l, U121(e, c), f(l))h#(U121(e, c), U121(e, c)) → g#(l, c, f(k))
h#(U121(e, c), U121(e, c)) → g#(l, U121(e, c), U121(k, k))h#(U121(e, c), U121(e, c)) → g#(l, U121(e, c), f(m))

Problem 151: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
A#h#(c, c)h#(f(c), f(c))g#(c, c, f(m))
h#(f(c), f(c))g#(U121(e, c), l, f(m))h#(f(c), f(c))g#(l, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(e, c), e, f(k))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(k))
A#g#(e, U121(c, c), f(m))h#(U121(e, c), U121(e, c))g#(l, l, f(m))
h#(f(d), f(d))g#(f(m), f(m), f(m))h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(f(l), c, U121(k, k))
h#(f(c), f(c))g#(e, U121(c, c), f(m))h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))
h#(f(c), f(c))g#(f(c), U121(e, e), f(m))h#(f(l), f(l))g#(f(l), f(l), U121(k, k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))
h#(U121(e, c), U121(e, c))g#(l, e, f(m))h#(f(c), f(c))g#(U121(e, e), f(e), f(k))
h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(m, m))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(c), f(c))g#(f(l), e, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), e, f(l))h#(f(c), f(c))g#(U121(e, e), U121(e, e), f(k))
h#(f(c), f(c))g#(f(c), f(e), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(c), U121(e, c), U121(m, m))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(m))A#g#(U121(e, c), l, f(m))
h#(f(c), f(c))g#(e, U121(c, c), f(l))h#(f(c), f(c))g#(f(e), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), U121(e, e), U121(m, m))A#g#(e, c, f(l))
A#g#(U121(e, c), c, U121(k, k))h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))h#(f(d), f(d))g#(f(m), f(m), U121(k, k))
h#(f(c), f(c))g#(f(e), f(e), f(m))h#(f(d), f(d))g#(f(d), f(d), f(m))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(l))h#(U121(e, c), U121(e, c))g#(l, e, f(l))
A#g#(U121(c, c), l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), f(m))
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(f(c), c, f(m))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(U121(e, e), e, f(l))
h#(U121(e, c), U121(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(e, U121(e, c), U121(m, m))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(c), f(c), U121(k, k))
A#g#(c, c, f(m))h#(f(c), f(c))g#(e, f(e), U121(k, k))
A#g#(c, e, f(k))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))h#(f(d), f(d))g#(f(d), f(d), f(l))
h#(f(c), f(c))g#(f(e), f(e), f(l))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))
A#g#(U121(e, c), U121(e, c), U121(k, k))h#(U121(e, c), U121(e, c))g#(c, c, f(l))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(U121(e, e), l, f(l))h#(f(c), f(c))g#(U121(e, c), f(c), f(m))
A#h#(f(m), f(m))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))A#g#(U121(e, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))h#(f(c), f(c))g#(U121(e, c), l, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(f(c), f(c))g#(U121(e, c), f(e), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, c), f(m))h#(U121(e, c), U121(e, c))g#(e, c, U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, c, f(k))h#(f(c), f(c))g#(c, f(c), f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(m))h#(U121(e, c), U121(e, c))g#(l, c, f(k))
h#(c, c)g#(l, e, f(m))A#h#(f(d), f(d))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(c, c), e, f(m))
h#(f(c), f(c))g#(f(e), U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(m))
h#(f(d), f(d))g#(f(d), f(m), f(m))h#(f(c), f(c))g#(e, U121(e, e), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(f(d), f(d))g#(f(m), f(d), f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))A#g#(c, e, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(e), l, f(m))h#(U121(e, c), U121(e, c))g#(l, c, f(l))
A#g#(e, e, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(l))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(f(c), f(c))g#(e, U121(e, c), f(m))h#(f(c), f(c))g#(U121(c, c), c, f(k))
h#(f(e), f(e))g#(f(e), e, f(m))A#g#(U121(e, c), U121(c, c), f(m))
A#g#(U121(c, c), c, U121(k, k))h#(f(c), f(c))g#(c, f(e), f(m))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))A#g#(e, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, l, f(m))A#g#(e, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(c, c), f(m))A#g#(l, U121(c, c), f(l))
h#(c, c)g#(l, l, f(k))h#(f(c), f(c))g#(f(l), c, f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(m))h#(c, c)g#(e, c, f(l))
h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))A#g#(U121(e, c), c, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(f(e), U121(c, c), f(m))
h#(f(c), f(c))g#(f(c), U121(e, c), f(m))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, c, U121(k, k))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(f(l), e, f(m))
A#g#(l, l, f(k))h#(c, c)g#(l, c, f(l))
h#(f(e), f(e))g#(e, U121(e, e), f(l))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(U121(e, c), U121(e, c), f(l))
h#(f(c), f(c))g#(l, l, U121(k, k))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))A#g#(l, c, f(l))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
A#g#(c, l, f(l))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(c, c)g#(e, c, U121(k, k))
A#g#(c, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(f(e), e, f(m))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(c), l, f(l))A#g#(e, l, f(m))
h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(c, c, f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, c, f(m))g#(c, c, U121(m, m))
g#(c, e, f(m)) 
g#(c, l, f(m)) 
g#(e, c, f(m)) 
Thus, the rule h#(f(c), f(c)) → g#(c, c, f(m)) is replaced by the following rules:
h#(f(c), f(c)) → g#(c, l, f(m))h#(f(c), f(c)) → g#(l, c, f(m))
h#(f(c), f(c)) → g#(c, e, f(m))h#(f(c), f(c)) → g#(e, c, f(m))

Problem 152: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(U121(e, e), f(e), f(l))A#g#(e, e, f(l))
h#(f(c), f(c))g#(e, c, f(m))h#(f(c), f(c))g#(e, e, f(k))
h#(f(c), f(c))g#(e, e, U121(k, k))A#h#(f(l), f(l))
A#h#(f(c), f(c))A#g#(c, l, f(m))
A#h#(f(e), f(e))A#g#(e, l, f(l))
A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(U121(e, c), l, U121(k, k))
h#(f(c), f(c))g#(c, l, f(m))h#(f(c), f(c))g#(l, e, f(l))
h#(f(c), f(c))g#(f(e), U121(e, e), f(m))h#(f(c), f(c))g#(l, c, f(k))
A#h#(c, c)h#(f(c), f(c))g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(e, c), e, f(k))A#g#(e, U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))h#(f(c), f(c))g#(f(l), c, U121(k, k))
A#h#(m, m)h#(f(c), f(c))g#(e, U121(c, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))h#(f(l), f(l))g#(f(l), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), U121(e, e), f(m))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))
h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))h#(f(c), f(c))g#(U121(e, e), U121(e, e), f(k))
h#(f(c), f(c))g#(f(c), f(e), f(l))h#(f(c), f(c))g#(f(c), U121(e, c), U121(m, m))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))h#(f(c), f(c))g#(e, U121(c, c), f(l))
h#(f(c), f(c))g#(f(e), U121(e, c), f(m))A#g#(U121(e, c), c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(l))h#(U121(e, c), U121(e, c))g#(l, e, f(l))
A#g#(U121(c, c), l, U121(k, k))h#(f(c), f(c))g#(c, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), f(m))h#(f(c), f(c))g#(l, e, U121(k, k))
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(f(c), c, f(m))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))h#(U121(e, c), U121(e, c))g#(e, l, f(l))
h#(f(c), f(c))g#(e, U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(f(e), f(l), U121(k, k))h#(f(c), f(c))g#(f(c), f(c), U121(k, k))
A#g#(c, c, f(m))A#g#(c, e, f(k))
h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))h#(f(c), f(c))g#(e, f(e), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(f(d), f(d))g#(f(d), f(d), f(l))
h#(f(c), f(c))g#(f(e), f(e), f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))
h#(U121(e, c), U121(e, c))g#(c, c, f(l))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(k))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))A#g#(U121(e, c), U121(e, c), U121(k, k))
A#h#(f(m), f(m))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(e), f(m))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(m, m))h#(f(c), f(c))g#(l, U121(e, c), f(m))
h#(U121(e, c), U121(e, c))g#(e, c, U121(k, k))h#(U121(e, c), U121(e, c))g#(c, c, f(k))
h#(f(c), f(c))g#(c, f(c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(U121(e, c), U121(e, c))g#(l, c, f(k))h#(f(c), f(c))g#(e, l, f(l))
h#(c, c)g#(l, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(m))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(c), f(c))g#(e, U121(e, e), f(k))
h#(f(d), f(d))g#(f(d), f(m), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(f(c), f(c))g#(U121(e, c), c, f(l))h#(f(d), f(d))g#(f(m), f(d), f(l))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))A#g#(c, e, f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
A#g#(e, e, f(m))h#(U121(e, c), U121(e, c))g#(l, c, f(l))
h#(f(c), f(c))g#(f(e), l, f(m))h#(f(c), f(c))g#(c, c, f(l))
A#h#(d, d)h#(f(c), f(c))g#(U121(c, c), l, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(e, U121(e, c), f(m))h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), c, f(k))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))A#g#(c, c, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))h#(f(c), f(c))g#(c, f(e), f(m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
h#(c, c)g#(l, e, U121(k, k))A#g#(e, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, l, f(m))A#g#(e, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(c, c), f(m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(c, c)g#(l, l, f(k))A#g#(l, U121(c, c), f(l))
h#(f(c), f(c))g#(f(l), c, f(l))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))h#(c, c)g#(e, c, f(l))
h#(f(c), f(c))g#(c, e, f(l))h#(f(c), f(c))g#(f(l), l, f(m))
h#(f(c), f(c))g#(e, f(e), f(k))A#g#(l, U121(e, c), U121(k, k))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(c), f(c))g#(c, U121(e, c), f(l))
A#g#(U121(e, c), c, f(l))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(f(e), U121(c, c), f(m))h#(f(c), f(c))g#(f(c), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(l, c, U121(k, k))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))
h#(f(c), f(c))g#(f(l), e, f(m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(k))A#g#(l, l, f(k))
h#(c, c)g#(l, c, f(l))h#(f(e), f(e))g#(e, U121(e, e), f(l))
h#(c, c)g#(c, l, U121(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))A#g#(U121(c, c), U121(c, c), f(m))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))h#(f(c), f(c))g#(l, l, U121(k, k))
A#g#(l, c, f(l))A#g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))A#g#(c, l, f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(c, c)g#(e, c, U121(k, k))A#g#(c, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(e), e, f(m))
h#(f(c), f(c))g#(e, c, f(l))A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → g#(U121(c, c), l, U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U121(e, c), l, U121(k, k))g#(U121(c, c), l, U121(l, k))
 g#(U121(l, c), l, U121(k, k))
 g#(U121(c, c), l, U121(m, k))
Thus, the rule A# → g#(U121(c, c), l, U121(k, k)) is replaced by the following rules:
A# → g#(U121(e, c), l, U121(k, k))

Problem 153: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(l), f(l))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
A#h#(c, c)h#(f(c), f(c))g#(e, e, f(m))
h#(f(c), f(c))g#(U121(e, c), l, f(m))h#(f(c), f(c))g#(l, l, f(m))
A#g#(e, U121(c, c), f(m))h#(f(c), f(c))g#(U121(e, e), f(e), U121(k, k))
h#(f(c), f(c))g#(f(l), c, U121(k, k))A#h#(m, m)
h#(f(c), f(c))g#(e, U121(c, c), f(m))h#(U121(e, c), U121(e, c))g#(c, e, U121(k, k))
h#(f(c), f(c))g#(f(c), U121(e, e), f(m))h#(f(l), f(l))g#(f(l), f(l), U121(k, k))
h#(f(c), f(c))g#(l, c, f(m))h#(f(c), f(c))g#(l, e, f(k))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))h#(f(e), f(e))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(c, l, U121(k, k))h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))
h#(f(c), f(c))g#(f(c), f(e), f(l))h#(f(c), f(c))g#(f(c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))
h#(f(c), f(c))g#(e, U121(c, c), f(l))h#(f(c), f(c))g#(f(e), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), U121(e, e), U121(m, m))A#g#(U121(e, c), c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(l, e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), f(m))
h#(f(c), f(c))g#(f(c), c, f(m))A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(f(c), e, f(k))h#(f(c), f(c))g#(U121(e, e), e, f(l))
h#(U121(e, c), U121(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(e), f(l), U121(k, k))h#(f(c), f(c))g#(f(c), f(c), U121(k, k))
h#(f(c), f(c))g#(e, U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(e, f(e), U121(k, k))A#g#(c, e, f(k))
A#g#(c, c, f(m))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(f(c), e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), e, f(m))h#(f(d), f(d))g#(f(d), f(d), f(l))
h#(f(c), f(c))g#(f(e), f(e), f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))
h#(U121(e, c), U121(e, c))g#(c, c, f(l))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(k))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))A#g#(U121(e, c), U121(e, c), U121(k, k))
A#h#(f(m), f(m))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(e), f(m))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(m, m))h#(U121(e, c), U121(e, c))g#(e, c, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, c), f(m))h#(U121(e, c), U121(e, c))g#(c, c, f(k))
h#(f(c), f(c))g#(c, f(c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(f(c), f(c))g#(e, l, f(l))h#(U121(e, c), U121(e, c))g#(l, c, f(k))
h#(c, c)g#(l, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(m))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(d), f(d))g#(f(d), f(m), f(m))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(c), f(c))g#(U121(e, c), c, f(l))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(f(d), f(d))g#(f(m), f(d), f(l))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))A#g#(c, e, f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(e, e, f(m))
h#(f(c), f(c))g#(f(e), l, f(m))h#(U121(e, c), U121(e, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))A#h#(d, d)
h#(f(c), f(c))g#(U121(c, c), l, f(l))h#(f(c), f(c))g#(c, c, f(l))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(e, U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), c, f(k))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(f(c), f(c))g#(c, f(e), f(m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))A#g#(e, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, l, f(m))A#g#(e, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(m))
A#g#(l, U121(c, c), f(l))h#(c, c)g#(l, l, f(k))
h#(f(c), f(c))g#(f(l), c, f(l))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(c, c)g#(e, c, f(l))h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))
h#(f(c), f(c))g#(c, e, f(l))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(e), f(e))g#(e, e, f(l))
A#g#(U121(e, c), c, f(l))h#(f(c), f(c))g#(c, U121(e, c), f(l))
h#(f(c), f(c))g#(f(c), U121(e, c), f(m))h#(f(c), f(c))g#(f(e), U121(c, c), f(m))
A#g#(U121(e, c), U121(e, c), f(m))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(l, c, U121(k, k))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))
h#(f(c), f(c))g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(f(l), e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), f(k))A#g#(l, l, f(k))
h#(c, c)g#(l, c, f(l))h#(f(e), f(e))g#(e, U121(e, e), f(l))
h#(c, c)g#(c, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(f(c), f(c))g#(l, l, U121(k, k))
A#g#(l, c, f(l))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))A#g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))A#g#(c, l, f(l))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(c, c)g#(e, c, U121(k, k))A#g#(c, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(e), e, f(m))
h#(f(c), f(c))g#(e, c, f(l))A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, e, f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U121(m, m))
Thus, the rule h#(f(c), f(c)) → g#(e, e, f(m)) is deleted.

Problem 154: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(U121(e, c), l, U121(m, m))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
A#h#(c, c)h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(c), f(e), f(l))h#(f(c), f(c))g#(f(c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(m))h#(f(c), f(c))g#(e, U121(c, c), f(l))
h#(f(c), f(c))g#(f(e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), U121(k, k))
A#g#(U121(e, c), c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))
h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), f(m))
h#(f(c), f(c))g#(l, e, U121(k, k))h#(f(c), f(c))g#(f(c), e, f(k))
h#(f(c), f(c))g#(f(c), c, f(m))A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(U121(e, e), e, f(l))h#(U121(e, c), U121(e, c))g#(e, l, f(l))
h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))h#(f(c), f(c))g#(e, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(e, f(e), U121(k, k))
A#g#(c, e, f(k))A#g#(c, c, f(m))
h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(l, U121(c, c), U121(k, k))h#(f(c), f(c))g#(f(e), f(e), f(l))
h#(f(c), f(c))g#(U121(e, e), e, f(m))h#(f(c), f(c))g#(f(c), e, U121(k, k))
h#(f(d), f(d))g#(f(d), f(d), f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(l))A#g#(U121(e, c), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), l, f(l))h#(U121(e, c), U121(e, c))g#(c, c, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(k))A#h#(f(m), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(e), f(m))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(m, m))h#(U121(e, c), U121(e, c))g#(e, c, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, c), f(m))h#(U121(e, c), U121(e, c))g#(c, c, f(k))
h#(f(c), f(c))g#(c, f(c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(f(c), f(c))g#(e, l, f(l))h#(U121(e, c), U121(e, c))g#(l, c, f(k))
h#(c, c)g#(l, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(m))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(d), f(d))g#(f(d), f(m), f(m))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(c), f(c))g#(U121(e, c), c, f(l))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(f(d), f(d))g#(f(m), f(d), f(l))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))A#g#(c, e, f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(e, e, f(m))
h#(f(c), f(c))g#(f(e), l, f(m))h#(U121(e, c), U121(e, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))h#(f(c), f(c))g#(l, f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), e, f(m))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(f(c), f(c))g#(U121(c, c), l, f(l))
h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(e, U121(e, c), f(m))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), c, f(k))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))
A#g#(c, c, f(k))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(f(c), f(c))g#(c, f(e), f(m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))
h#(c, c)g#(l, e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
A#g#(e, U121(e, c), U121(k, k))h#(f(c), f(c))g#(e, l, f(m))
A#g#(e, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(c, c), f(m))A#g#(l, U121(c, c), f(l))
h#(c, c)g#(l, l, f(k))h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(f(l), c, f(l))h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), l, f(m))h#(c, c)g#(e, c, f(l))
h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))h#(f(c), f(c))g#(c, e, f(l))
A#g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(f(c), f(c))g#(f(l), l, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))A#g#(U121(e, c), c, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(f(c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), U121(c, c), f(m))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, c, U121(k, k))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(f(l), e, f(m))h#(f(c), f(c))g#(c, U121(e, c), f(k))
A#g#(l, l, f(k))h#(c, c)g#(l, c, f(l))
h#(f(e), f(e))g#(e, U121(e, e), f(l))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(f(c), f(c))g#(l, l, U121(k, k))A#g#(l, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))A#g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))A#g#(c, l, f(l))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(c, c)g#(e, c, U121(k, k))A#g#(c, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(m))h#(f(c), f(c))g#(e, c, f(l))
A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U121(e, c), l, U121(m, m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(c, l, U121(m, m))
Thus, the rule h#(f(c), f(c)) → g#(U121(e, c), l, U121(m, m)) is deleted.

Problem 155: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#g#(c, e, U121(k, k))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
A#h#(c, c)A#g#(c, l, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(e, e), U121(e, e), f(m))
h#(f(c), f(c))g#(l, e, U121(k, k))h#(f(c), f(c))g#(f(c), e, f(k))
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(f(c), c, f(m))
h#(f(c), f(c))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(U121(e, c), U121(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(e, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(f(e), f(l), U121(k, k))h#(f(c), f(c))g#(f(c), f(c), U121(k, k))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(f(c), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))A#g#(c, c, f(m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))A#g#(c, e, f(k))
h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(l, U121(c, c), U121(k, k))
h#(f(c), f(c))g#(f(e), f(e), f(l))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(f(c), f(c))g#(f(c), e, U121(k, k))h#(f(d), f(d))g#(f(d), f(d), f(l))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))h#(f(e), f(e))g#(U121(e, e), e, f(l))
A#g#(U121(e, c), U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(U121(e, c), U121(e, c))g#(c, c, f(l))h#(f(c), f(c))g#(U121(e, c), f(c), f(m))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(k))h#(f(c), f(c))g#(U121(e, e), f(e), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#h#(f(m), f(m))A#g#(U121(e, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))h#(f(c), f(c))g#(U121(e, c), l, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(f(c), f(c))g#(U121(e, c), f(e), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, c), f(m))h#(U121(e, c), U121(e, c))g#(e, c, U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, c, f(k))h#(f(c), f(c))g#(c, f(c), f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(m))h#(f(c), f(c))g#(e, l, f(l))
h#(U121(e, c), U121(e, c))g#(l, c, f(k))h#(c, c)g#(l, e, f(m))
h#(f(c), f(c))g#(U121(c, c), e, f(m))A#h#(f(d), f(d))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(m))h#(f(c), f(c))g#(f(e), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(d), f(d))g#(f(d), f(m), f(m))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(c), f(c))g#(U121(e, c), c, f(l))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(f(d), f(d))g#(f(m), f(d), f(l))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))A#g#(c, e, f(l))
h#(f(e), f(e))g#(e, e, f(m))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(e, e, f(m))h#(f(c), f(c))g#(f(e), l, f(m))
h#(U121(e, c), U121(e, c))g#(l, c, f(l))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
h#(f(c), f(c))g#(l, f(l), U121(k, k))h#(f(c), f(c))g#(f(c), e, f(m))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(l))h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))
h#(f(c), f(c))g#(e, U121(e, c), f(m))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(U121(c, c), c, f(k))
h#(f(e), f(e))g#(f(e), e, f(m))A#g#(U121(e, c), U121(c, c), f(m))
A#g#(U121(c, c), c, U121(k, k))h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(f(c), f(c))g#(c, f(e), f(m))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))A#g#(e, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, l, f(m))A#g#(e, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(m))
A#g#(l, U121(c, c), f(l))h#(c, c)g#(l, l, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(f(l), c, f(l))
h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(m))h#(c, c)g#(e, c, f(l))
h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))h#(f(c), f(c))g#(c, e, f(l))
A#g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(f(c), f(c))g#(f(l), l, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))A#g#(U121(e, c), c, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(f(c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), U121(c, c), f(m))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, c, U121(k, k))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(f(l), e, f(m))h#(f(c), f(c))g#(c, U121(e, c), f(k))
A#g#(l, l, f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))
h#(c, c)g#(l, c, f(l))h#(f(e), f(e))g#(e, U121(e, e), f(l))
h#(c, c)g#(c, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(f(c), f(c))g#(l, l, U121(k, k))
A#g#(l, c, f(l))h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
A#g#(c, l, f(l))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(c, c)g#(e, c, U121(k, k))
A#g#(c, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(l), l, U121(k, k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(e), e, f(m))
h#(f(c), f(c))g#(e, c, f(l))A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → g#(c, e, U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, e, U121(k, k))g#(c, e, U121(l, k))
g#(l, e, U121(k, k))g#(c, e, U121(m, k))
Thus, the rule A# → g#(c, e, U121(k, k)) is replaced by the following rules:
A# → g#(l, e, U121(k, k))A# → g#(e, e, U121(k, k))

Problem 156: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(U121(e, c), U121(e, c))A#h#(c, c)
h#(f(c), f(c))g#(e, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, U121(k, k))
h#(f(c), f(c))g#(f(e), e, f(l))h#(f(c), f(c))g#(U121(e, c), e, f(k))
h#(f(c), f(c))g#(f(l), e, U121(k, k))h#(f(c), f(c))g#(U121(c, c), e, f(l))
h#(f(c), f(c))g#(f(c), e, f(l))A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(l, U121(e, e), U121(m, m))
h#(U121(e, c), U121(e, c))g#(e, l, f(l))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(f(c), f(c), U121(k, k))h#(f(c), f(c))g#(e, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(f(e), f(l), U121(k, k))h#(f(c), f(c))g#(f(c), U121(e, e), f(l))
h#(f(c), f(c))g#(e, f(e), U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
A#g#(c, c, f(m))A#g#(c, e, f(k))
h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))h#(f(d), f(d))g#(f(d), f(d), f(l))
h#(f(c), f(c))g#(f(e), f(e), f(l))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(f(c), f(c))g#(l, U121(c, c), U121(k, k))h#(f(c), f(c))g#(f(c), e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))h#(f(e), f(e))g#(U121(e, e), e, f(l))
A#g#(U121(e, c), U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(U121(e, c), U121(e, c))g#(c, c, f(l))h#(f(c), f(c))g#(U121(e, c), f(c), f(m))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(k))h#(f(c), f(c))g#(U121(e, e), f(e), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
A#h#(f(m), f(m))A#g#(U121(e, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))h#(f(c), f(c))g#(U121(e, c), l, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(U121(e, c), U121(e, c))g#(e, c, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, c), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), U121(m, m))
h#(U121(e, c), U121(e, c))g#(c, c, f(k))h#(U121(e, c), U121(e, c))g#(l, c, f(k))
h#(f(c), f(c))g#(e, l, f(l))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(f(c), f(c))g#(c, f(c), f(m))h#(c, c)g#(l, e, f(m))
h#(f(c), f(c))g#(U121(c, c), e, f(m))A#h#(f(d), f(d))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(m))h#(f(c), f(c))g#(f(e), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(d), f(d))g#(f(d), f(m), f(m))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(c), f(c))g#(U121(e, c), c, f(l))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(f(d), f(d))g#(f(m), f(d), f(l))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))A#g#(c, e, f(l))
h#(f(e), f(e))g#(e, e, f(m))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(e, e, f(m))h#(f(c), f(c))g#(f(e), l, f(m))
h#(U121(e, c), U121(e, c))g#(l, c, f(l))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
h#(f(c), f(c))g#(l, f(l), U121(k, k))h#(f(c), f(c))g#(f(c), e, f(m))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(l))h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))
h#(f(c), f(c))g#(e, U121(e, c), f(m))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(U121(c, c), c, f(k))
h#(f(e), f(e))g#(f(e), e, f(m))A#g#(U121(e, c), U121(c, c), f(m))
A#g#(U121(c, c), c, U121(k, k))h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(f(c), f(c))g#(c, f(e), f(m))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
h#(c, c)g#(l, e, U121(k, k))A#g#(e, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, l, f(m))A#g#(e, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(m))
A#g#(l, U121(c, c), f(l))h#(c, c)g#(l, l, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(f(l), c, f(l))
h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(m))h#(c, c)g#(e, c, f(l))
h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))h#(f(c), f(c))g#(c, e, f(l))
A#g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(f(c), f(c))g#(f(l), l, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))A#g#(U121(e, c), c, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(f(c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), U121(c, c), f(m))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, c, U121(k, k))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(f(l), e, f(m))h#(f(c), f(c))g#(c, U121(e, c), f(k))
A#g#(l, l, f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))
h#(c, c)g#(l, c, f(l))h#(f(e), f(e))g#(e, U121(e, e), f(l))
h#(c, c)g#(c, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(f(c), f(c))g#(l, l, U121(k, k))
A#g#(l, c, f(l))h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
A#g#(c, l, f(l))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(c, c)g#(e, c, U121(k, k))
A#g#(c, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(l), l, U121(k, k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(e), e, f(m))
h#(f(c), f(c))g#(e, c, f(l))A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, e, f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U121(m, m))
Thus, the rule h#(f(c), f(c)) → g#(e, e, f(m)) is deleted.

Problem 157: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(U121(c, c), f(l), U121(k, k))A#h#(f(c), f(c))
A#h#(f(e), f(e))h#(f(c), f(c))g#(f(l), f(l), U121(k, k))
A#h#(U121(e, c), U121(e, c))A#h#(c, c)
h#(f(c), f(c))g#(U121(e, c), f(c), U121(k, k))h#(f(c), f(c))g#(f(l), U121(c, c), U121(k, k))
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(f(e), f(l), U121(k, k))
h#(f(c), f(c))g#(e, U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, l, f(l))
h#(f(c), f(c))g#(f(c), U121(e, e), f(l))A#g#(c, c, f(m))
h#(f(c), f(c))g#(e, f(e), U121(k, k))A#g#(c, e, f(k))
h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(l, U121(c, c), U121(k, k))h#(f(c), f(c))g#(f(c), e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), e, f(m))h#(f(d), f(d))g#(f(d), f(d), f(l))
h#(f(c), f(c))g#(f(e), f(e), f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))
h#(U121(e, c), U121(e, c))g#(c, c, f(l))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, c), f(c), f(m))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(k))A#g#(U121(e, c), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(e), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(k))A#h#(f(m), f(m))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(k))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(f(c), f(c))g#(l, U121(e, c), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), U121(m, m))
h#(U121(e, c), U121(e, c))g#(e, c, U121(k, k))h#(f(c), f(c))g#(f(e), c, U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, c, f(k))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(U121(e, c), U121(e, c))g#(l, c, f(k))h#(f(c), f(c))g#(e, l, f(l))
h#(f(c), f(c))g#(c, f(c), f(m))h#(c, c)g#(l, e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(U121(c, c), e, f(m))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(f(e), U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(m))h#(f(c), f(c))g#(f(e), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(d), f(d))g#(f(d), f(m), f(m))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(c), f(c))g#(U121(e, c), c, f(l))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(f(d), f(d))g#(f(m), f(d), f(l))
h#(f(c), f(c))g#(f(c), f(e), U121(k, k))h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
A#g#(c, e, f(l))h#(f(c), f(c))g#(U121(e, e), f(c), U121(k, k))
h#(f(e), f(e))g#(e, e, f(m))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(e, e, f(m))h#(f(c), f(c))g#(f(e), l, f(m))
h#(U121(e, c), U121(e, c))g#(l, c, f(l))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
h#(f(c), f(c))g#(f(c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), e, f(m))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(f(c), f(c))g#(U121(c, c), l, f(l))
h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(e, U121(e, c), f(m))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), c, f(k))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))
A#g#(c, c, f(k))h#(f(c), f(c))g#(c, f(e), f(m))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
h#(c, c)g#(l, e, U121(k, k))A#g#(e, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, l, f(m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(c, c), f(m))A#g#(e, U121(e, c), U121(m, m))
A#g#(l, U121(c, c), f(l))h#(c, c)g#(l, l, f(k))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(f(l), c, f(l))
h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), l, f(m))h#(c, c)g#(e, c, f(l))
h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))h#(f(c), f(c))g#(c, e, f(l))
A#g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(f(c), f(c))g#(f(l), l, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))A#g#(U121(e, c), c, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(f(c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), U121(c, c), f(m))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, c, U121(k, k))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(f(l), e, f(m))h#(f(c), f(c))g#(c, U121(e, c), f(k))
A#g#(l, l, f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))
h#(c, c)g#(l, c, f(l))h#(f(e), f(e))g#(e, U121(e, e), f(l))
h#(c, c)g#(c, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(f(c), f(c))g#(l, l, U121(k, k))
A#g#(l, c, f(l))h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
A#g#(c, l, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
A#g#(c, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(l), l, U121(k, k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(e), e, f(m))
h#(f(c), f(c))g#(e, c, f(l))A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U121(c, c), f(l), U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U121(e, c), f(l), U121(k, k))g#(U121(c, c), f(l), U121(m, k))
 g#(U121(c, c), f(l), U121(l, k))
 g#(U121(c, c), U121(l, l), U121(k, k))
 g#(U121(l, c), f(l), U121(k, k))
Thus, the rule h#(f(c), f(c)) → g#(U121(c, c), f(l), U121(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U121(e, c), f(l), U121(k, k))

Problem 158: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#g#(e, e, f(l))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
A#g#(e, e, U121(k, k))A#h#(c, c)
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(U121(e, e), f(c), U121(m, m))
A#g#(c, c, f(m))h#(f(c), f(c))g#(e, f(e), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, e), U121(k, k))h#(f(c), f(c))g#(f(c), e, U121(k, k))
h#(f(c), f(c))g#(l, U121(c, c), U121(k, k))h#(f(c), f(c))g#(f(e), f(e), f(l))
h#(f(d), f(d))g#(f(d), f(d), f(l))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), l, f(l))h#(U121(e, c), U121(e, c))g#(c, c, f(l))
A#g#(U121(e, c), U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), f(c), f(m))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(k))h#(f(c), f(c))g#(U121(e, e), l, f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, e), f(e), f(m))
A#h#(f(m), f(m))h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))
h#(f(c), f(c))g#(f(e), U121(e, c), f(k))A#g#(U121(e, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))h#(f(c), f(c))g#(U121(e, c), l, f(k))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(f(c), f(c))g#(l, U121(e, c), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(m, m))h#(U121(e, c), U121(e, c))g#(e, c, U121(k, k))
h#(f(c), f(c))g#(f(e), c, U121(k, k))h#(U121(e, c), U121(e, c))g#(c, c, f(k))
h#(f(e), f(e))g#(U121(e, e), f(e), f(m))h#(U121(e, c), U121(e, c))g#(l, c, f(k))
h#(f(c), f(c))g#(e, l, f(l))h#(f(c), f(c))g#(c, f(c), f(m))
h#(c, c)g#(l, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(k, k))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(m))h#(f(c), f(c))g#(f(e), U121(e, e), f(l))
h#(f(c), f(c))g#(f(e), U121(e, c), U121(m, m))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(d), f(d))g#(f(d), f(m), f(m))
h#(f(c), f(c))g#(U121(e, c), c, f(l))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(f(d), f(d))g#(f(m), f(d), f(l))h#(f(c), f(c))g#(f(c), f(e), U121(k, k))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))A#g#(c, e, f(l))
h#(f(c), f(c))g#(U121(e, e), f(c), U121(k, k))h#(f(e), f(e))g#(e, e, f(m))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(e, e, f(m))
h#(f(c), f(c))g#(f(e), l, f(m))h#(U121(e, c), U121(e, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))h#(f(c), f(c))g#(f(c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(l, f(l), U121(k, k))h#(f(c), f(c))g#(f(c), e, f(m))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(l))h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))
h#(f(c), f(c))g#(e, U121(e, c), f(m))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(U121(c, c), c, f(k))
h#(f(e), f(e))g#(f(e), e, f(m))A#g#(U121(e, c), U121(c, c), f(m))
A#g#(U121(c, c), c, U121(k, k))h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(f(c), f(c))g#(c, f(e), f(m))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))h#(c, c)g#(l, e, U121(k, k))
A#g#(e, U121(e, c), U121(k, k))h#(f(c), f(c))g#(e, l, f(m))
h#(f(c), f(c))g#(l, U121(c, c), f(m))A#g#(e, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))h#(c, c)g#(l, l, f(k))
A#g#(l, U121(c, c), f(l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))h#(f(c), f(c))g#(f(l), c, f(l))
h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(c, c)g#(e, c, f(l))h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))
h#(f(c), f(c))g#(c, e, f(l))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(e), f(e))g#(e, e, f(l))
A#g#(U121(e, c), c, f(l))h#(f(c), f(c))g#(c, U121(e, c), f(l))
h#(f(c), f(c))g#(f(c), U121(e, c), f(m))h#(f(c), f(c))g#(f(e), U121(c, c), f(m))
A#g#(U121(e, c), U121(e, c), f(m))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(l, c, U121(k, k))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))
h#(f(c), f(c))g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(f(l), e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), f(k))A#g#(l, l, f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))h#(c, c)g#(l, c, f(l))
h#(f(e), f(e))g#(e, U121(e, e), f(l))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(f(c), f(c))g#(l, l, U121(k, k))A#g#(l, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))A#g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))A#g#(c, l, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))A#g#(c, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(m))h#(f(c), f(c))g#(e, c, f(l))
A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → g#(e, e, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U121(l, l))
Thus, the rule A# → g#(e, e, f(l)) is deleted.

Problem 159: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(U121(e, c), U121(e, c))g#(e, c, f(m))h#(U121(e, c), U121(e, c))g#(e, c, f(l))
h#(U121(e, c), U121(e, c))g#(e, e, U121(k, k))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
h#(U121(e, c), U121(e, c))g#(e, l, f(k))h#(U121(e, c), U121(e, c))g#(e, e, f(l))
A#h#(c, c)h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(k, k))
A#h#(U121(e, e), U121(e, e))A#g#(U121(e, c), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), f(c), f(m))h#(U121(e, c), U121(e, c))g#(c, c, f(l))
h#(f(c), f(c))g#(U121(e, e), l, f(l))h#(f(c), f(c))g#(U121(e, e), f(e), f(m))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))A#h#(f(m), f(m))
h#(f(c), f(c))g#(f(e), U121(e, c), f(k))A#g#(U121(e, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))g#(d, x, x)h#(U121(c, c), U121(c, c))
h#(f(c), f(c))g#(U121(e, c), l, f(k))h#(U121(e, c), U121(e, c))g#(e, c, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, c), f(m))h#(f(c), f(c))g#(f(e), c, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(m, m))h#(U121(e, c), U121(e, c))g#(c, c, f(k))
h#(f(e), f(e))g#(U121(e, e), f(e), f(m))h#(U121(e, c), U121(e, c))g#(l, c, f(k))
h#(f(c), f(c))g#(c, f(c), f(m))h#(f(c), f(c))g#(e, l, f(l))
h#(c, c)g#(l, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(k, k))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(m))h#(f(c), f(c))g#(f(e), U121(e, e), f(l))
h#(f(c), f(c))g#(f(e), U121(e, c), U121(m, m))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(d), f(d))g#(f(d), f(m), f(m))
h#(f(c), f(c))g#(U121(e, c), c, f(l))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(f(d), f(d))g#(f(m), f(d), f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(f(c), f(e), U121(k, k))
A#g#(c, e, f(l))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), f(c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))
h#(f(e), f(e))g#(e, e, f(m))A#g#(e, e, f(m))
h#(f(c), f(c))g#(f(e), l, f(m))h#(U121(e, c), U121(e, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))h#(f(c), f(c))g#(f(c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(l, f(l), U121(k, k))h#(f(c), f(c))g#(f(c), e, f(m))
A#h#(d, d)h#(f(c), f(c))g#(c, c, f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(l))h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))
h#(f(c), f(c))g#(e, U121(e, c), f(m))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(U121(c, c), c, f(k))
h#(f(e), f(e))g#(f(e), e, f(m))A#g#(U121(e, c), U121(c, c), f(m))
A#g#(U121(c, c), c, U121(k, k))h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(f(c), f(c))g#(c, f(e), f(m))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))h#(c, c)g#(l, e, U121(k, k))
A#g#(e, U121(e, c), U121(k, k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(e, l, f(m))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(c, c), f(m))A#g#(e, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))h#(c, c)g#(l, l, f(k))
A#g#(l, U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))h#(f(c), f(c))g#(f(l), c, f(l))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(f(c), f(c))g#(c, e, f(l))h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))
h#(c, c)g#(e, c, f(l))h#(f(c), f(c))g#(f(l), l, f(m))
A#g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, e), e, U121(m, m))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))A#g#(U121(e, c), c, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(f(c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), U121(c, c), f(m))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, c, U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))
h#(f(c), f(c))g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(f(l), e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), f(k))A#g#(l, l, f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))h#(c, c)g#(l, c, f(l))
h#(f(e), f(e))g#(e, U121(e, e), f(l))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(f(c), f(c))g#(l, l, U121(k, k))A#g#(l, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))A#g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))A#g#(c, l, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))A#g#(c, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(m))h#(f(c), f(c))g#(e, c, f(l))
A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U121(e, c), U121(e, c)) → g#(e, c, f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, l, f(m))g#(e, c, U121(m, m))
g#(e, e, f(m)) 
Thus, the rule h#(U121(e, c), U121(e, c)) → g#(e, c, f(m)) is replaced by the following rules:
h#(U121(e, c), U121(e, c)) → g#(e, l, f(m))h#(U121(e, c), U121(e, c)) → g#(e, e, f(m))

Problem 160: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(U121(e, c), U121(e, c))g#(c, l, f(l))h#(U121(e, c), U121(e, c))g#(e, c, f(l))
A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(U121(e, c), U121(e, c))h#(U121(e, c), U121(e, c))g#(c, e, f(l))
A#h#(c, c)A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(U121(e, e), f(e), f(m))h#(f(c), f(c))g#(f(e), U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))A#h#(f(m), f(m))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(f(c), f(c))g#(U121(e, c), l, f(k))
h#(U121(e, c), U121(e, c))g#(e, c, U121(k, k))h#(f(c), f(c))g#(l, U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), c, U121(k, k))h#(f(c), f(c))g#(U121(e, c), f(e), U121(m, m))
h#(U121(e, c), U121(e, c))g#(c, c, f(k))h#(f(c), f(c))g#(e, l, f(l))
h#(U121(e, c), U121(e, c))g#(l, c, f(k))h#(f(c), f(c))g#(c, f(c), f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(m))h#(c, c)g#(l, e, f(m))
h#(f(c), f(c))g#(U121(c, c), e, f(m))A#h#(f(d), f(d))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(k, k))h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), U121(e, e), f(l))h#(f(c), f(c))g#(f(e), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(c), f(c))g#(e, U121(e, e), f(k))
h#(f(d), f(d))g#(f(d), f(m), f(m))h#(f(c), f(c))g#(U121(e, c), c, f(l))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(f(d), f(d))g#(f(m), f(d), f(l))
h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), f(e), U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
A#g#(c, e, f(l))h#(f(c), f(c))g#(U121(e, e), f(c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(f(e), f(e))g#(e, e, f(m))
h#(f(c), f(c))g#(f(e), l, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
A#g#(e, e, f(m))h#(U121(e, c), U121(e, c))g#(l, c, f(l))
h#(f(c), f(c))g#(f(c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), e, f(m))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(f(c), f(c))g#(U121(c, c), l, f(l))
h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(e, U121(e, c), f(m))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), c, f(k))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))
A#g#(c, c, f(k))h#(f(c), f(c))g#(c, f(e), f(m))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
h#(c, c)g#(l, e, U121(k, k))A#g#(e, U121(e, c), U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(e, l, f(m))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(m))
A#g#(e, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(c, c)g#(l, l, f(k))A#g#(l, U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))
h#(f(c), f(c))g#(f(l), c, f(l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(m))h#(c, c)g#(e, c, f(l))
h#(f(c), f(c))g#(c, e, f(l))h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))
h#(f(c), f(c))g#(f(l), l, f(m))h#(f(c), f(c))g#(e, f(e), f(k))
A#g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), f(c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, e), e, U121(m, m))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(e), f(e))g#(e, e, f(l))A#g#(U121(e, c), c, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(f(c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), U121(c, c), f(m))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, c, U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))
h#(f(c), f(c))g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(f(l), e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), f(k))A#g#(l, l, f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))h#(c, c)g#(l, c, f(l))
h#(f(e), f(e))g#(e, U121(e, e), f(l))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(f(c), f(c))g#(l, l, U121(k, k))A#g#(l, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))A#g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))A#g#(c, l, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))A#g#(c, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(m))h#(f(c), f(c))g#(e, c, f(l))
A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U121(e, c), U121(e, c)) → g#(c, l, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, l, f(l))g#(c, l, U121(l, l))
g#(e, l, f(l)) 
Thus, the rule h#(U121(e, c), U121(e, c)) → g#(c, l, f(l)) is replaced by the following rules:
h#(U121(e, c), U121(e, c)) → g#(e, l, f(l))h#(U121(e, c), U121(e, c)) → g#(l, l, f(l))

Problem 161: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))h#(f(c), f(c))g#(e, e, f(l))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
A#h#(c, c)A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(e, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(f(c), f(c))g#(U121(e, e), l, f(l))h#(f(c), f(c))g#(U121(e, c), f(e), U121(k, k))
A#g#(U121(e, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(l))
g#(d, x, x)h#(U121(c, c), U121(c, c))h#(f(c), f(c))g#(U121(e, c), l, f(k))
h#(f(c), f(c))g#(l, U121(e, c), f(m))h#(U121(e, c), U121(e, c))g#(e, c, U121(k, k))
h#(f(c), f(c))g#(f(e), c, U121(k, k))h#(f(c), f(c))g#(U121(e, c), f(e), U121(m, m))
h#(U121(e, c), U121(e, c))g#(c, c, f(k))h#(U121(e, c), U121(e, c))g#(l, c, f(k))
h#(f(c), f(c))g#(c, f(c), f(m))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
h#(f(c), f(c))g#(e, l, f(l))h#(c, c)g#(l, e, f(m))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(c, c), e, f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(e, U121(e, c), f(k))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(m))h#(f(c), f(c))g#(f(e), U121(e, e), f(l))
h#(f(c), f(c))g#(f(e), U121(e, c), U121(m, m))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(d), f(d))g#(f(d), f(m), f(m))
h#(f(c), f(c))g#(U121(e, c), c, f(l))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(f(d), f(d))g#(f(m), f(d), f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(f(c), f(e), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))A#g#(c, e, f(l))
h#(f(c), f(c))g#(U121(e, e), f(c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, f(k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(f(e), f(e))g#(e, e, f(m))
A#g#(e, e, f(m))h#(f(c), f(c))g#(f(e), l, f(m))
h#(U121(e, c), U121(e, c))g#(l, c, f(l))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
h#(f(c), f(c))g#(f(c), U121(c, c), U121(k, k))A#h#(d, d)
h#(f(c), f(c))g#(f(c), e, f(m))h#(f(c), f(c))g#(l, f(l), U121(k, k))
h#(f(c), f(c))g#(c, c, f(l))h#(f(c), f(c))g#(U121(c, c), l, f(l))
h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(e, U121(e, c), f(m))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), c, f(k))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))
A#g#(c, c, f(k))h#(f(c), f(c))g#(c, f(e), f(m))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
h#(c, c)g#(l, e, U121(k, k))A#g#(e, U121(e, c), U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(e, l, f(m))
h#(f(c), f(c))g#(f(e), c, f(l))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(c, c), f(m))A#g#(e, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))h#(c, c)g#(l, l, f(k))
A#g#(l, U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))h#(f(c), f(c))g#(f(l), c, f(l))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(c, c)g#(e, c, f(l))h#(f(c), f(c))g#(c, e, f(l))
h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))h#(f(c), f(c))g#(f(l), l, f(m))
h#(f(c), f(c))g#(e, f(e), f(k))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, c), f(c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(c), f(c))g#(U121(e, e), e, U121(m, m))h#(f(c), f(c))g#(f(c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), U121(c, c), f(m))A#g#(U121(e, c), c, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))h#(f(e), f(e))g#(e, e, f(l))
A#g#(U121(e, c), U121(e, c), f(m))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(l, c, U121(k, k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(f(l), e, f(m))h#(f(c), f(c))g#(c, U121(e, c), f(k))
h#(f(c), f(c))g#(f(e), c, f(k))A#g#(l, l, f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))h#(c, c)g#(l, c, f(l))
h#(f(e), f(e))g#(e, U121(e, e), f(l))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(f(c), f(c))g#(l, l, U121(k, k))A#g#(l, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))A#g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))A#g#(c, l, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))A#g#(c, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(m))h#(f(c), f(c))g#(e, c, f(l))
A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, e, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U121(l, l))
Thus, the rule h#(f(c), f(c)) → g#(e, e, f(l)) is deleted.

Problem 162: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(U121(e, c), U121(e, c))A#h#(c, c)
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(l, U121(e, c), f(m))
h#(U121(e, c), U121(e, c))g#(c, c, f(k))h#(f(c), f(c))g#(e, l, f(l))
h#(f(c), f(c))g#(c, f(c), f(m))h#(U121(e, c), U121(e, c))g#(l, c, f(k))
h#(f(e), f(e))g#(U121(e, e), f(e), f(m))h#(c, c)g#(l, e, f(m))
g#(d, x, x)h#(c, l)h#(f(c), f(c))g#(U121(c, c), e, f(m))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(k, k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(f(e), U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(m))
h#(f(c), f(c))g#(e, U121(e, c), f(k))h#(f(d), f(d))g#(f(d), f(m), f(m))
h#(f(c), f(c))g#(f(e), U121(e, c), U121(m, m))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(f(c), f(c))g#(U121(e, c), c, f(l))h#(f(d), f(d))g#(f(m), f(d), f(l))
h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), f(e), U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
A#g#(c, e, f(l))h#(f(c), f(c))g#(U121(e, e), f(c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, f(k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))
h#(f(e), f(e))g#(e, e, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
A#g#(e, e, f(m))h#(f(c), f(c))g#(f(e), l, f(m))
h#(U121(e, c), U121(e, c))g#(l, c, f(l))h#(f(c), f(c))g#(f(c), e, f(m))
h#(f(c), f(c))g#(f(c), U121(c, c), U121(k, k))A#h#(d, d)
h#(f(c), f(c))g#(c, c, f(l))h#(f(c), f(c))g#(U121(c, c), l, f(l))
g#(d, x, x)h#(U121(e, c), c)h#(f(c), f(c))g#(l, f(l), U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(f(c), f(c))g#(e, U121(e, c), f(m))
h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), c, f(k))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))
A#g#(c, c, f(k))h#(f(c), f(c))g#(c, f(e), f(m))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
h#(c, c)g#(l, e, U121(k, k))A#g#(e, U121(e, c), U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(e, l, f(m))
h#(f(c), f(c))g#(f(e), c, f(l))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(c, c), f(m))A#g#(e, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))h#(c, c)g#(l, l, f(k))
A#g#(l, U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))h#(f(c), f(c))g#(f(l), c, f(l))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(U121(e, c), l, f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(m))h#(c, c)g#(e, c, f(l))
h#(f(c), f(c))g#(c, e, f(l))h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))
h#(f(c), f(c))g#(f(l), l, f(m))h#(f(c), f(c))g#(e, f(e), f(k))
A#g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(c), f(c))g#(U121(e, e), e, U121(m, m))
g#(d, x, x)h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(c, U121(e, c), f(l))
h#(f(c), f(c))g#(f(c), U121(e, c), f(m))h#(f(e), f(e))g#(e, e, f(l))
A#g#(U121(e, c), c, f(l))h#(f(c), f(c))g#(f(e), U121(c, c), f(m))
A#g#(U121(e, c), U121(e, c), f(m))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(l, c, U121(k, k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(f(l), e, f(m))h#(f(c), f(c))g#(c, U121(e, c), f(k))
h#(f(c), f(c))g#(f(e), c, f(k))A#g#(l, l, f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))h#(c, c)g#(l, c, f(l))
h#(f(e), f(e))g#(e, U121(e, e), f(l))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(f(c), f(c))g#(l, l, U121(k, k))A#g#(l, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))A#g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))A#g#(c, l, f(l))
A#g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
g#(d, x, x)h#(U121(e, c), U121(c, c))A#g#(c, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(m))g#(d, x, x)h#(U121(c, c), e)
h#(f(c), f(c))g#(e, c, f(l))A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, U121(e, c), f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, U121(e, c), U121(m, m)) 
g#(l, c, f(m)) 
Thus, the rule h#(f(c), f(c)) → g#(l, U121(e, c), f(m)) is replaced by the following rules:
h#(f(c), f(c)) → g#(l, c, f(m))h#(f(c), f(c)) → g#(l, U121(e, c), U121(m, m))

Problem 163: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(U121(e, c), U121(e, c))A#h#(c, c)
h#(U121(e, c), U121(e, c))g#(l, l, f(l))h#(U121(e, c), U121(e, c))g#(l, e, f(l))
A#h#(U121(e, e), U121(e, e))h#(U121(e, c), U121(e, c))g#(e, l, f(l))
h#(U121(e, c), U121(e, c))g#(e, c, U121(k, k))h#(f(c), f(c))g#(e, l, f(l))
h#(f(e), f(e))g#(U121(e, e), f(e), f(m))h#(U121(e, c), U121(e, c))g#(l, c, f(k))
h#(f(c), f(c))g#(c, f(c), f(m))h#(c, c)g#(l, e, f(m))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), U121(k, k))A#h#(f(d), f(d))
h#(f(c), f(c))g#(U121(c, c), e, f(m))g#(d, x, x)h#(c, l)
h#(f(c), f(c))g#(f(e), U121(e, e), f(l))h#(f(c), f(c))g#(e, U121(e, c), f(k))
h#(U121(e, c), U121(e, c))g#(l, U121(e, c), f(m))h#(f(d), f(d))g#(f(d), f(m), f(m))
h#(f(c), f(c))g#(e, U121(e, e), f(k))h#(f(c), f(c))g#(f(l), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), U121(e, c), U121(m, m))h#(f(e), f(e))g#(U121(e, e), f(e), f(k))
h#(f(c), f(c))g#(U121(e, c), c, f(l))h#(f(d), f(d))g#(f(m), f(d), f(l))
h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), f(e), U121(k, k))h#(U121(e, c), U121(e, c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))A#g#(c, e, f(l))
h#(f(c), f(c))g#(U121(e, e), f(c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, f(k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(f(e), f(e))g#(e, e, f(m))
h#(f(c), f(c))g#(f(e), l, f(m))A#g#(e, e, f(m))
h#(U121(e, c), U121(e, c))g#(l, c, f(l))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
h#(f(c), f(c))g#(f(c), e, f(m))h#(f(c), f(c))g#(f(c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(l, f(l), U121(k, k))A#h#(d, d)
g#(d, x, x)h#(U121(e, c), c)h#(f(c), f(c))g#(U121(c, c), l, f(l))
h#(f(c), f(c))g#(c, c, f(l))h#(f(c), f(c))g#(e, U121(e, c), f(m))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(f(c), f(c))g#(U121(c, c), c, f(k))
h#(f(e), f(e))g#(f(e), e, f(m))A#g#(U121(e, c), U121(c, c), f(m))
A#g#(U121(c, c), c, U121(k, k))h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(f(c), f(c))g#(c, f(e), f(m))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))h#(c, c)g#(l, e, U121(k, k))
A#g#(e, U121(e, c), U121(k, k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(e, l, f(m))h#(f(c), f(c))g#(f(e), c, f(l))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(m))
A#g#(e, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(c, c)g#(l, l, f(k))A#g#(l, U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))
h#(f(c), f(c))g#(f(l), c, f(l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(l))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(c, c)g#(e, c, f(l))h#(f(c), f(c))g#(c, e, f(l))
h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))h#(f(c), f(c))g#(e, f(e), f(k))
A#g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(m, m))h#(f(c), f(c))g#(U121(e, e), e, U121(m, m))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(c), f(c))g#(f(e), U121(c, c), f(m))
h#(f(c), f(c))g#(f(c), U121(e, c), f(m))g#(d, x, x)h#(U121(e, c), U121(e, c))
A#g#(U121(e, c), c, f(l))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(l, c, U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))
h#(f(c), f(c))g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(f(l), e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), f(k))h#(f(c), f(c))g#(f(e), c, f(k))
A#g#(l, l, f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))
h#(c, c)g#(l, c, f(l))h#(f(e), f(e))g#(e, U121(e, e), f(l))
h#(c, c)g#(c, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(f(c), f(c))g#(l, l, U121(k, k))
A#g#(l, c, f(l))h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
A#g#(c, l, f(l))A#g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))
g#(d, x, x)h#(U121(e, c), U121(c, c))A#g#(c, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(m))h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))
g#(d, x, x)h#(U121(c, c), e)h#(f(c), f(c))g#(e, c, f(l))
A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U121(e, c), U121(e, c)) → g#(l, l, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(l, l, U121(l, l))
Thus, the rule h#(U121(e, c), U121(e, c)) → g#(l, l, f(l)) is deleted.

Problem 164: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))h#(f(c), f(c))g#(e, e, f(l))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
A#h#(c, c)A#h#(U121(e, e), U121(e, e))
A#h#(f(d), f(d))h#(f(c), f(c))g#(e, U121(e, c), f(k))
h#(f(c), f(c))g#(f(l), U121(e, c), f(m))h#(f(c), f(c))g#(f(e), U121(e, c), U121(m, m))
h#(f(d), f(d))g#(f(d), f(m), f(m))h#(f(c), f(c))g#(e, U121(e, e), f(k))
h#(f(e), f(e))g#(U121(e, e), f(e), f(k))h#(f(c), f(c))g#(U121(e, c), c, f(l))
h#(f(d), f(d))g#(f(m), f(d), f(l))h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(f(c), f(e), U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))
h#(U121(e, c), U121(e, c))g#(c, l, U121(k, k))A#g#(c, e, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), f(c), U121(k, k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), c, f(k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(f(e), f(e))g#(e, e, f(m))
h#(f(c), f(c))g#(f(e), l, f(m))A#g#(e, e, f(m))
h#(U121(e, c), U121(e, c))g#(l, c, f(l))h#(f(c), f(c))g#(U121(e, c), f(c), f(l))
h#(f(c), f(c))g#(f(c), e, f(m))h#(f(c), f(c))g#(f(c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(l, f(l), U121(k, k))A#h#(d, d)
g#(d, x, x)h#(U121(e, c), c)h#(f(c), f(c))g#(U121(c, c), l, f(l))
h#(f(c), f(c))g#(c, c, f(l))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(e, U121(e, c), f(m))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(f(c), f(c))g#(U121(c, c), c, f(k))
h#(f(e), f(e))g#(f(e), e, f(m))A#g#(U121(e, c), U121(c, c), f(m))
A#g#(U121(c, c), c, U121(k, k))h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))
A#g#(c, c, f(k))h#(f(c), f(c))g#(e, f(c), f(m))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))h#(f(c), f(c))g#(c, f(e), f(m))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
h#(c, c)g#(l, e, U121(k, k))A#g#(e, U121(e, c), U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(e, l, f(m))
h#(f(c), f(c))g#(f(e), c, f(l))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(c, c), f(m))A#g#(e, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))h#(c, c)g#(l, l, f(k))
A#g#(l, U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))h#(f(c), f(c))g#(f(l), c, f(l))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(U121(e, c), l, f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(m))h#(c, c)g#(e, c, f(l))
h#(f(c), f(c))g#(c, e, f(l))h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))
h#(f(c), f(c))g#(e, f(e), f(k))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(f(l), l, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, c), f(c), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), e, U121(m, m))h#(f(c), f(c))g#(f(l), e, f(l))
A#g#(U121(e, c), c, f(l))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(f(e), U121(c, c), f(m))h#(f(c), f(c))g#(c, U121(e, c), f(l))
h#(f(c), f(c))g#(f(c), U121(e, c), f(m))g#(d, x, x)h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, c, U121(k, k))
A#g#(U121(e, c), U121(e, c), f(m))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))h#(f(c), f(c))g#(f(l), e, f(m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(c, U121(e, c), f(k))
h#(f(c), f(c))g#(f(e), c, f(k))A#g#(l, l, f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))h#(c, c)g#(l, c, f(l))
h#(f(e), f(e))g#(e, U121(e, e), f(l))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(l, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(f(c), f(c))g#(l, l, U121(k, k))
A#g#(l, c, f(l))h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
A#g#(c, l, f(l))A#g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))
g#(d, x, x)h#(U121(e, c), U121(c, c))A#g#(c, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(m))h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))
g#(d, x, x)h#(U121(c, c), e)h#(f(c), f(c))g#(e, c, f(l))
A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, e, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U121(l, l))
Thus, the rule h#(f(c), f(c)) → g#(e, e, f(l)) is deleted.

Problem 165: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(e), f(e))g#(e, e, f(k))A#h#(f(c), f(c))
h#(f(e), f(e))g#(e, U121(e, e), f(m))A#h#(f(e), f(e))
A#h#(U121(e, c), U121(e, c))A#h#(c, c)
h#(f(e), f(e))g#(e, f(e), f(m))A#h#(U121(e, e), U121(e, e))
h#(f(e), f(e))g#(U121(e, e), e, f(l))h#(f(e), f(e))g#(U121(e, e), f(e), f(m))
A#h#(f(d), f(d))h#(f(c), f(c))g#(U121(e, c), c, f(l))
h#(f(d), f(d))g#(f(m), f(d), f(l))h#(f(c), f(c))g#(f(c), f(e), U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))h#(f(e), f(e))g#(e, U121(e, e), U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, l, U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
A#g#(c, e, f(l))h#(f(c), f(c))g#(U121(e, e), f(c), U121(k, k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), c, f(k))
h#(f(e), f(e))g#(e, e, f(m))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))h#(f(c), f(c))g#(f(e), l, f(m))
A#g#(e, e, f(m))h#(U121(e, c), U121(e, c))g#(l, c, f(l))
h#(f(c), f(c))g#(f(c), e, f(m))h#(f(c), f(c))g#(f(c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(l, f(l), U121(k, k))A#h#(d, d)
g#(d, x, x)h#(U121(e, c), c)h#(f(c), f(c))g#(U121(c, c), l, f(l))
h#(f(c), f(c))g#(c, c, f(l))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(e, U121(e, c), f(m))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(f(c), f(c))g#(U121(c, c), c, f(k))
h#(f(e), f(e))g#(f(e), e, f(m))A#g#(U121(e, c), U121(c, c), f(m))
A#g#(U121(c, c), c, U121(k, k))h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))
A#g#(c, c, f(k))h#(f(c), f(c))g#(e, f(c), f(m))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(f(c), f(c))g#(c, f(e), f(m))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))A#g#(e, U121(e, c), U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(e, l, f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(l))h#(f(c), f(c))g#(f(e), c, f(l))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(m))
A#g#(e, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(c, c)g#(l, l, f(k))A#g#(l, U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))
h#(f(c), f(c))g#(f(l), c, f(l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(l))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(c, c)g#(e, c, f(l))h#(f(c), f(c))g#(c, e, f(l))
h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))h#(f(c), f(c))g#(e, f(e), f(k))
A#g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(m, m))h#(f(c), f(c))g#(U121(e, e), e, U121(m, m))
h#(f(c), f(c))g#(f(l), e, f(l))A#g#(U121(e, c), c, f(l))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(f(e), U121(c, c), f(m))
h#(f(c), f(c))g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(f(c), U121(e, c), f(m))
g#(d, x, x)h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(l, c, U121(k, k))A#g#(U121(e, c), U121(e, c), f(m))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(k))h#(f(c), f(c))g#(f(l), e, f(m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(c, U121(e, c), f(k))
A#g#(l, l, f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))
h#(f(e), f(e))g#(e, U121(e, e), f(l))h#(c, c)g#(l, c, f(l))
h#(c, c)g#(c, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(l, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(f(c), f(c))g#(l, l, U121(k, k))A#g#(l, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))A#g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))A#g#(c, l, f(l))
A#g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))g#(d, x, x)h#(U121(e, c), U121(c, c))
A#g#(c, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(l), l, U121(k, k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(e), e, f(m))
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))g#(d, x, x)h#(U121(c, c), e)
h#(f(c), f(c))g#(e, c, f(l))A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(e), f(e)) → g#(e, e, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, e, f(l)) 
g#(e, e, U121(k, k)) 
g#(e, e, f(m)) 
Thus, the rule h#(f(e), f(e)) → g#(e, e, f(k)) is replaced by the following rules:
h#(f(e), f(e)) → g#(e, e, f(l))h#(f(e), f(e)) → g#(e, e, f(m))
h#(f(e), f(e)) → g#(e, e, U121(k, k))

Problem 166: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(U121(e, c), U121(e, c))A#h#(c, c)
h#(f(c), f(c))g#(l, U121(e, e), U121(k, k))h#(f(c), f(c))g#(l, e, U121(k, k))
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(e, f(e), U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), e, U121(m, m))h#(f(c), f(c))g#(U121(c, c), U121(c, c), f(l))
A#g#(c, e, f(l))h#(U121(e, c), U121(e, c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(c), U121(k, k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), c, f(k))h#(f(e), f(e))g#(e, e, f(m))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(U121(e, c), U121(e, c))g#(l, c, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))h#(f(c), f(c))g#(f(e), l, f(m))
A#g#(e, e, f(m))h#(f(c), f(c))g#(l, f(l), U121(k, k))
A#h#(d, d)h#(f(c), f(c))g#(U121(c, c), l, f(l))
h#(f(c), f(c))g#(f(c), e, f(m))h#(f(c), f(c))g#(f(c), U121(c, c), U121(k, k))
g#(d, x, x)h#(U121(e, c), c)h#(f(c), f(c))g#(c, c, f(l))
h#(c, c)g#(l, l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))
h#(f(c), f(c))g#(e, U121(e, c), f(m))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), c, f(k))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))A#g#(c, c, f(k))
h#(f(c), f(c))g#(e, f(c), f(m))h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(f(c), f(c))g#(c, f(e), f(m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))
h#(c, c)g#(l, e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
A#g#(e, U121(e, c), U121(k, k))h#(f(c), f(c))g#(e, l, f(m))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(l))h#(f(e), f(e))g#(U121(e, e), f(e), f(l))
h#(f(c), f(c))g#(f(e), c, f(l))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(c, c), f(m))A#g#(e, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))h#(c, c)g#(l, l, f(k))
A#g#(l, U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))h#(f(c), f(c))g#(f(l), c, f(l))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(U121(e, c), l, f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(m))h#(c, c)g#(e, c, f(l))
h#(f(c), f(c))g#(c, e, f(l))h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))
h#(f(c), f(c))g#(e, f(e), f(k))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(f(l), l, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, c), f(c), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), e, U121(m, m))h#(f(c), f(c))g#(f(l), e, f(l))
A#g#(U121(e, c), c, f(l))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(f(e), U121(c, c), f(m))h#(f(c), f(c))g#(c, U121(e, c), f(l))
h#(f(c), f(c))g#(f(c), U121(e, c), f(m))g#(d, x, x)h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, c, U121(k, k))
A#g#(U121(e, c), U121(e, c), f(m))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))h#(f(c), f(c))g#(c, U121(e, c), f(k))
h#(f(c), f(c))g#(f(e), c, f(k))h#(f(c), f(c))g#(f(l), e, f(m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))A#g#(l, l, f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))h#(f(e), f(e))g#(e, U121(e, e), f(l))
h#(c, c)g#(l, c, f(l))h#(U121(e, c), U121(e, c))g#(l, l, U121(k, k))
h#(c, c)g#(c, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
A#h#(f(d), f(m))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(f(c), f(c))g#(l, l, U121(k, k))A#g#(l, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))A#g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))A#g#(c, l, f(l))
A#g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))g#(d, x, x)h#(U121(e, c), U121(c, c))
A#g#(c, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(l), l, U121(k, k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(e), e, f(m))
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))g#(d, x, x)h#(U121(c, c), e)
h#(f(c), f(c))g#(e, c, f(l))A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, U121(e, e), U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, e, U121(k, k))g#(l, U121(e, e), U121(l, k))
 g#(l, U121(e, e), U121(m, k))
Thus, the rule h#(f(c), f(c)) → g#(l, U121(e, e), U121(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(l, e, U121(k, k))

Problem 167: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(U121(e, c), U121(e, c))A#h#(c, c)
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(U121(e, e), e, f(m))
h#(f(c), f(c))g#(U121(e, e), l, f(l))h#(f(c), f(c))g#(e, l, f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(k, k))h#(f(e), f(e))g#(e, e, f(m))
A#g#(e, e, f(m))h#(f(c), f(c))g#(f(e), l, f(m))
h#(f(c), f(c))g#(U121(e, c), f(c), f(l))h#(U121(e, c), U121(e, c))g#(l, c, f(l))
h#(f(c), f(c))g#(f(c), e, f(m))h#(f(c), f(c))g#(U121(c, c), l, f(l))
g#(d, x, x)h#(U121(e, c), c)h#(f(c), f(c))g#(l, f(l), U121(k, k))
h#(f(c), f(c))g#(f(c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(c, c, f(l))
A#h#(d, d)h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), f(m))
h#(f(c), f(c))g#(e, U121(e, c), f(m))h#(f(c), f(c))g#(U121(c, c), c, f(k))
h#(f(e), f(e))g#(f(e), e, f(m))A#g#(U121(e, c), U121(c, c), f(m))
A#g#(U121(c, c), c, U121(k, k))h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))
A#g#(c, c, f(k))h#(f(c), f(c))g#(e, f(c), f(m))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(f(c), f(c))g#(c, f(e), f(m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))A#g#(e, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, l, f(m))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(l))
h#(f(e), f(e))g#(U121(e, e), f(e), f(l))h#(f(c), f(c))g#(f(e), c, f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))A#g#(e, U121(e, c), U121(m, m))
A#g#(l, U121(c, c), f(l))h#(c, c)g#(l, l, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))
h#(f(c), f(c))g#(f(l), c, f(l))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(l))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(c, c)g#(e, c, f(l))h#(f(c), f(c))g#(c, e, f(l))
h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))h#(f(c), f(c))g#(e, f(e), f(k))
A#g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(m, m))h#(f(c), f(c))g#(U121(e, e), e, U121(m, m))
h#(f(c), f(c))g#(f(l), e, f(l))A#g#(U121(e, c), c, f(l))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(f(e), U121(c, c), f(m))
h#(f(c), f(c))g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(f(c), U121(e, c), f(m))
g#(d, x, x)h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(l, c, U121(k, k))A#g#(U121(e, c), U121(e, c), f(m))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(k))h#(f(c), f(c))g#(f(e), c, f(k))
h#(f(c), f(c))g#(f(l), e, f(m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
A#g#(l, l, f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))
h#(c, c)g#(l, c, f(l))h#(f(e), f(e))g#(e, U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, l, U121(k, k))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))A#h#(f(d), f(m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
A#g#(U121(e, c), U121(e, c), f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))h#(f(c), f(c))g#(l, l, U121(k, k))
A#g#(l, c, f(l))h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
A#g#(c, l, f(l))A#g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))
g#(d, x, x)h#(U121(e, c), U121(c, c))A#g#(c, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(m))h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))
g#(d, x, x)h#(U121(c, c), e)h#(f(c), f(c))g#(e, c, f(l))
A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U121(e, e), e, f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U121(e, e), e, U121(m, m)) 
g#(e, e, f(m)) 
Thus, the rule h#(f(c), f(c)) → g#(U121(e, e), e, f(m)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U121(e, e), e, U121(m, m))h#(f(c), f(c)) → g#(e, e, f(m))

Problem 168: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(U121(c, c), U121(e, c), U121(k, k))h#(f(c), f(c))g#(f(c), c, U121(k, k))
A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(U121(e, c), U121(e, c))A#h#(c, c)
h#(f(c), f(c))g#(f(e), U121(e, c), U121(k, k))h#(f(c), f(c))g#(f(l), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(f(l), U121(c, c), U121(k, k))A#h#(U121(e, e), U121(e, e))
g#(d, x, x)h#(U121(e, c), c)h#(f(c), f(c))g#(l, f(l), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), l, f(l))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(f(c), f(c))g#(e, U121(e, c), f(m))
h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(U121(c, c), c, f(k))
h#(f(e), f(e))g#(f(e), e, f(m))A#g#(U121(e, c), U121(c, c), f(m))
A#g#(U121(c, c), c, U121(k, k))h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))
A#g#(c, c, f(k))h#(f(c), f(c))g#(c, f(e), f(m))
h#(f(c), f(c))g#(f(l), f(e), U121(k, k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(e, f(c), f(m))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))A#g#(e, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, l, f(m))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(l))
h#(f(e), f(e))g#(U121(e, e), f(e), f(l))h#(f(c), f(c))g#(f(e), c, f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))A#g#(e, U121(e, c), U121(m, m))
h#(c, c)g#(l, l, f(k))A#g#(l, U121(c, c), f(l))
h#(f(c), f(c))g#(f(l), c, f(l))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(f(c), f(c))g#(U121(e, c), l, f(l))h#(c, c)g#(e, c, f(l))
h#(f(c), f(c))g#(c, e, f(l))h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))
h#(f(c), f(c))g#(e, f(e), f(k))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(f(l), l, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, c), f(c), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), e, U121(m, m))h#(f(c), f(c))g#(f(l), e, f(l))
A#g#(U121(e, c), c, f(l))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(f(e), U121(c, c), f(m))h#(f(c), f(c))g#(c, U121(e, c), f(l))
h#(f(c), f(c))g#(f(c), U121(e, c), f(m))g#(d, x, x)h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, c, U121(k, k))
A#g#(U121(e, c), U121(e, c), f(m))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))
A#h#(m, d)h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(k))h#(f(c), f(c))g#(f(e), c, f(k))
h#(f(c), f(c))g#(f(l), e, f(m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
A#g#(l, l, f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))
h#(c, c)g#(l, c, f(l))h#(f(e), f(e))g#(e, U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, l, U121(k, k))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))A#h#(f(d), f(m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, l, U121(k, k))
A#g#(U121(c, c), U121(c, c), f(m))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(l, c, f(l))h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))A#g#(c, l, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))A#g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))
g#(d, x, x)h#(U121(e, c), U121(c, c))A#g#(c, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(m))h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))
g#(d, x, x)h#(U121(c, c), e)h#(f(c), f(c))g#(e, c, f(l))
A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U121(c, c), U121(e, c), U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U121(c, c), c, U121(k, k))g#(U121(c, c), U121(e, c), U121(l, k))
g#(U121(e, c), U121(e, c), U121(k, k))g#(U121(l, c), U121(e, c), U121(k, k))
 g#(U121(c, c), U121(e, c), U121(m, k))
Thus, the rule h#(f(c), f(c)) → g#(U121(c, c), U121(e, c), U121(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U121(e, c), U121(e, c), U121(k, k))h#(f(c), f(c)) → g#(U121(c, c), c, U121(k, k))

Problem 169: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(f(e), l, U121(k, k))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
A#h#(c, c)h#(f(c), f(c))g#(U121(c, c), l, U121(k, k))
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(l, f(l), U121(k, k))
h#(f(c), f(c))g#(U121(c, c), l, f(l))g#(d, x, x)h#(U121(e, c), c)
h#(f(c), f(c))g#(c, U121(e, c), f(m))h#(f(c), f(c))g#(e, U121(e, c), f(m))
h#(f(c), f(c))g#(U121(e, e), e, U121(k, k))h#(c, c)g#(l, l, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), c, f(k))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))A#g#(c, c, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))h#(f(c), f(c))g#(c, f(e), f(m))
h#(f(c), f(c))g#(e, f(c), f(m))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))
h#(c, c)g#(l, e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
A#g#(e, U121(e, c), U121(k, k))h#(f(c), f(c))g#(e, l, f(m))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(l))h#(f(e), f(e))g#(U121(e, e), f(e), f(l))
h#(f(c), f(c))g#(f(e), c, f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(c, c), f(m))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))
A#g#(e, U121(e, c), U121(m, m))h#(c, c)g#(l, l, f(k))
A#g#(l, U121(c, c), f(l))h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(f(l), c, f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(l))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(c, c)g#(e, c, f(l))h#(f(c), f(c))g#(c, e, f(l))
h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))h#(f(c), f(c))g#(e, f(e), f(k))
A#g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(m, m))h#(f(c), f(c))g#(U121(e, e), e, U121(m, m))
h#(f(c), f(c))g#(f(l), e, f(l))A#g#(U121(e, c), c, f(l))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(f(e), U121(c, c), f(m))
h#(f(c), f(c))g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(f(c), U121(e, c), f(m))
g#(d, x, x)h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(l, c, U121(k, k))A#g#(U121(e, c), U121(e, c), f(m))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))A#h#(m, d)
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))h#(f(c), f(c))g#(c, U121(e, c), f(k))
h#(f(c), f(c))g#(f(e), c, f(k))h#(f(c), f(c))g#(f(l), e, f(m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))A#g#(l, l, f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))h#(c, c)g#(l, c, f(l))
h#(f(e), f(e))g#(e, U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(l, l, U121(k, k))
h#(c, c)g#(c, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
A#h#(f(d), f(m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
A#g#(U121(c, c), U121(c, c), f(m))h#(f(c), f(c))g#(l, l, U121(k, k))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(l, c, f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))A#g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))A#g#(c, l, f(l))
A#g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))g#(d, x, x)h#(U121(e, c), U121(c, c))
A#g#(c, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(l), l, U121(k, k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(e), e, f(m))
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))g#(d, x, x)h#(U121(c, c), e)
h#(f(c), f(c))g#(e, c, f(l))A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(e), l, U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U121(e, e), l, U121(k, k))g#(f(e), l, U121(m, k))
 g#(f(e), l, U121(l, k))
Thus, the rule h#(f(c), f(c)) → g#(f(e), l, U121(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U121(e, e), l, U121(k, k))

Problem 170: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))h#(f(c), f(c))g#(e, e, f(l))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(e, l, f(k))h#(f(c), f(c))g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), c, f(l))h#(f(c), f(c))g#(l, c, f(k))
A#h#(c, c)h#(f(c), f(c))g#(c, e, f(k))
h#(f(c), f(c))g#(c, c, f(m))g#(d, x, x)h#(c, c)
h#(f(c), f(c))g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(c, c), l, f(k))
h#(f(c), f(c))g#(e, e, f(m))h#(f(c), f(c))g#(U121(c, c), e, U121(k, k))
h#(f(c), f(c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(e, c), e, f(k))h#(f(c), f(c))g#(c, l, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), e, f(l))h#(f(c), f(c))g#(c, c, U121(k, k))
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(U121(e, c), l, f(k))
h#(f(c), f(c))g#(U121(c, c), e, f(m))h#(f(c), f(c))g#(U121(e, c), c, f(l))
h#(f(c), f(c))g#(c, c, f(l))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(f(c), f(c))g#(c, f(e), f(m))h#(f(c), f(c))g#(e, f(c), f(m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))h#(c, c)g#(l, e, U121(k, k))
A#g#(e, U121(e, c), U121(k, k))h#(f(c), f(c))g#(e, l, f(m))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(l))h#(f(e), f(e))g#(U121(e, e), f(e), f(l))
h#(f(c), f(c))g#(f(e), c, f(l))A#g#(e, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(m))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))h#(c, c)g#(l, l, f(k))
A#g#(l, U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(e, f(c), f(l))h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(f(l), c, f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(l))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))h#(f(c), f(c))g#(c, e, f(l))
h#(c, c)g#(e, c, f(l))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(f(l), l, f(m))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(m, m))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(c), f(c))g#(U121(e, e), e, U121(m, m))A#g#(U121(e, c), c, f(l))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(f(e), U121(c, c), f(m))
h#(f(c), f(c))g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(f(c), U121(e, c), f(m))
g#(d, x, x)h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(l, c, U121(k, k))A#g#(U121(e, c), U121(e, c), f(m))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))A#h#(m, d)
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))h#(f(c), f(c))g#(c, U121(e, c), f(k))
h#(f(c), f(c))g#(f(e), c, f(k))h#(f(c), f(c))g#(f(l), e, f(m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))A#g#(l, l, f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))h#(c, c)g#(l, c, f(l))
h#(f(e), f(e))g#(e, U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(l, l, U121(k, k))
h#(c, c)g#(c, l, U121(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))A#h#(f(d), f(m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, l, U121(k, k))A#g#(U121(c, c), U121(c, c), f(m))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(l, c, f(l))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))A#g#(c, l, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))A#g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))g#(d, x, x)h#(U121(e, c), U121(c, c))
A#g#(c, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(l), l, U121(k, k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(e), e, f(m))
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))g#(d, x, x)h#(U121(c, c), e)
h#(f(c), f(c))g#(e, c, f(l))A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, e, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U121(l, l))
Thus, the rule h#(f(c), f(c)) → g#(e, e, f(l)) is deleted.

Problem 171: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(U121(e, c), U121(e, c))A#h#(c, c)
g#(d, x, x)h#(c, c)h#(f(c), f(c))g#(l, l, f(m))
h#(f(c), f(c))g#(l, e, f(k))h#(f(c), f(c))g#(l, c, f(m))
h#(f(c), f(c))g#(c, l, U121(k, k))h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))
h#(f(c), f(c))g#(U121(c, c), e, f(l))h#(f(c), f(c))g#(c, c, U121(k, k))
h#(f(c), f(c))g#(l, e, U121(k, k))A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(l, l, f(l))h#(f(c), f(c))g#(U121(e, c), l, f(k))
h#(f(c), f(c))g#(e, l, f(l))h#(f(c), f(c))g#(U121(c, c), e, f(m))
h#(f(c), f(c))g#(U121(e, c), c, f(l))h#(f(c), f(c))g#(c, c, f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(l))h#(f(e), f(e))g#(f(e), e, f(m))
A#g#(U121(e, c), U121(c, c), f(m))A#g#(U121(c, c), c, U121(k, k))
h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))A#g#(c, c, f(k))
h#(f(c), f(c))g#(c, f(e), f(m))h#(f(c), f(c))g#(e, f(c), f(m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))h#(c, c)g#(l, e, U121(k, k))
A#g#(e, U121(e, c), U121(k, k))h#(f(c), f(c))g#(e, l, f(m))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(l))h#(f(e), f(e))g#(U121(e, e), f(e), f(l))
h#(f(c), f(c))g#(f(e), c, f(l))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(m))
A#g#(e, U121(e, c), U121(m, m))A#g#(l, U121(c, c), f(l))
h#(c, c)g#(l, l, f(k))h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(f(l), c, f(l))h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), l, f(l))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))h#(f(c), f(c))g#(c, e, f(l))
h#(c, c)g#(e, c, f(l))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(f(l), l, f(m))h#(f(c), f(c))g#(e, f(e), f(k))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(m, m))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(c), f(c))g#(U121(e, e), e, U121(m, m))A#g#(U121(e, c), c, f(l))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(f(e), U121(c, c), f(m))
h#(f(c), f(c))g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(f(c), U121(e, c), f(m))
g#(d, x, x)h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(l, c, U121(k, k))A#g#(U121(e, c), U121(e, c), f(m))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))A#h#(m, d)
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))h#(f(c), f(c))g#(c, U121(e, c), f(k))
h#(f(c), f(c))g#(f(e), c, f(k))h#(f(c), f(c))g#(f(l), e, f(m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))A#g#(l, l, f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))h#(c, c)g#(l, c, f(l))
h#(f(e), f(e))g#(e, U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(l, l, U121(k, k))
h#(c, c)g#(c, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
A#h#(f(d), f(m))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(f(c), f(c))g#(l, l, U121(k, k))A#g#(l, c, f(l))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))A#g#(c, l, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))A#g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))g#(d, x, x)h#(U121(e, c), U121(c, c))
A#g#(c, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(l), l, U121(k, k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(e), e, f(m))
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))g#(d, x, x)h#(U121(c, c), e)
h#(f(c), f(c))g#(e, c, f(l))A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, l, f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(l, l, U121(m, m))
Thus, the rule h#(f(c), f(c)) → g#(l, l, f(m)) is deleted.

Problem 172: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#g#(l, U121(e, c), f(m))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
A#g#(U121(e, c), U121(c, c), U121(m, m))A#h#(c, c)
g#(d, x, x)h#(c, c)A#g#(e, U121(c, c), f(m))
A#g#(c, U121(e, c), f(m))A#h#(U121(e, e), U121(e, e))
A#g#(U121(c, c), c, U121(k, k))h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))
h#(f(c), f(c))g#(c, f(e), f(m))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
A#g#(c, c, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(e, f(c), f(m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))h#(c, c)g#(l, e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))A#g#(e, U121(e, c), U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(e, l, f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(l))h#(f(c), f(c))g#(f(e), c, f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(c, c), f(m))A#g#(e, U121(e, c), U121(m, m))
A#g#(l, U121(c, c), f(l))h#(c, c)g#(l, l, f(k))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(f(l), c, f(l))h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), l, f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(m))h#(f(c), f(c))g#(c, e, f(l))
h#(c, c)g#(e, c, f(l))h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))
h#(f(c), f(c))g#(e, f(e), f(k))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(f(l), l, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(m, m))
h#(f(c), f(c))g#(c, l, f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(c), f(c))g#(U121(e, e), e, U121(m, m))
h#(f(e), f(e))g#(e, e, f(l))A#g#(U121(e, c), c, f(l))
h#(f(c), f(c))g#(f(e), U121(c, c), f(m))h#(f(c), f(c))g#(c, U121(e, c), f(l))
h#(f(c), f(c))g#(f(c), U121(e, c), f(m))g#(d, x, x)h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, c, U121(k, k))
A#g#(U121(e, c), U121(e, c), f(m))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))
A#h#(m, d)h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(k))h#(f(c), f(c))g#(f(e), c, f(k))
h#(f(c), f(c))g#(f(l), e, f(m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
A#g#(l, l, f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))
h#(c, c)g#(l, c, f(l))h#(f(e), f(e))g#(e, U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, l, U121(k, k))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))A#h#(f(d), f(m))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(f(c), f(c))g#(l, l, U121(k, k))
A#g#(l, c, f(l))A#g#(e, U121(e, c), f(l))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
A#g#(c, l, f(l))A#g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
h#(c, c)g#(e, c, U121(k, k))A#g#(c, c, U121(k, k))
g#(d, x, x)h#(U121(e, c), U121(c, c))h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(m))h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))
g#(d, x, x)h#(U121(c, c), e)h#(f(c), f(c))g#(e, c, f(l))
A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → g#(l, U121(e, c), f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, U121(e, c), U121(m, m)) 
g#(l, c, f(m)) 
Thus, the rule A# → g#(l, U121(e, c), f(m)) is replaced by the following rules:
A# → g#(l, c, f(m))A# → g#(l, U121(e, c), U121(m, m))

Problem 173: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(U121(e, c), U121(e, c))A#h#(c, c)
g#(d, x, x)h#(c, c)A#h#(U121(e, e), U121(e, e))
h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))h#(f(c), f(c))g#(e, f(c), f(m))
A#g#(c, c, f(k))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), U121(m, m))h#(f(c), f(c))g#(c, f(e), f(m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))
h#(c, c)g#(l, e, U121(k, k))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
A#g#(e, U121(e, c), U121(k, k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(l))
A#g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(e, l, f(m))
h#(f(e), f(e))g#(U121(e, e), f(e), f(l))h#(f(c), f(c))g#(f(e), c, f(l))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))A#g#(e, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(c, c), f(m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))
A#g#(l, U121(c, c), f(l))h#(c, c)g#(l, l, f(k))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(f(l), c, f(l))h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), l, f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(m))h#(f(c), f(c))g#(c, e, f(l))
h#(c, c)g#(e, c, f(l))h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))
h#(f(c), f(c))g#(e, f(e), f(k))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(f(l), l, f(m))h#(f(c), f(c))g#(U121(e, c), f(c), U121(m, m))
h#(f(c), f(c))g#(c, l, f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(U121(e, e), e, U121(m, m))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(c), f(c))g#(f(e), U121(c, c), f(m))h#(f(e), f(e))g#(e, e, f(l))
A#g#(U121(e, c), c, f(l))h#(f(c), f(c))g#(c, U121(e, c), f(l))
h#(f(c), f(c))g#(f(c), U121(e, c), f(m))g#(d, x, x)h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, c, U121(k, k))
A#g#(U121(e, c), U121(e, c), f(m))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))
A#h#(m, d)h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(k))h#(f(c), f(c))g#(f(e), c, f(k))
h#(f(c), f(c))g#(f(l), e, f(m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
A#g#(l, l, f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))
h#(c, c)g#(l, c, f(l))h#(f(e), f(e))g#(e, U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, l, U121(k, k))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))A#h#(f(d), f(m))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(f(c), f(c))g#(l, l, U121(k, k))
A#g#(l, c, f(l))A#g#(e, U121(e, c), f(l))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
A#g#(c, l, f(l))A#g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))A#g#(c, c, U121(k, k))
h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))g#(d, x, x)h#(U121(e, c), U121(c, c))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(m))h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))
g#(d, x, x)h#(U121(c, c), e)h#(f(c), f(c))g#(e, c, f(l))
A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, U121(e, e), U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, e, U121(k, k))g#(e, U121(e, e), U121(m, k))
 g#(e, U121(e, e), U121(l, k))
Thus, the rule h#(f(c), f(c)) → g#(e, U121(e, e), U121(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, e, U121(k, k))

Problem 174: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#g#(l, e, f(l))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
A#g#(l, l, f(m))A#h#(c, c)
g#(d, x, x)h#(c, c)A#g#(l, c, U121(k, k))
A#g#(e, c, f(l))A#h#(U121(e, e), U121(e, e))
A#g#(c, c, f(m))A#g#(c, e, f(k))
A#g#(c, e, f(l))A#g#(e, e, f(m))
h#(f(c), f(c))g#(e, f(c), f(m))h#(f(c), f(c))g#(f(l), f(e), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))h#(c, c)g#(l, e, U121(k, k))
A#g#(e, U121(e, c), U121(k, k))A#g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(e, l, f(m))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(l))
h#(f(e), f(e))g#(U121(e, e), f(e), f(l))h#(f(c), f(c))g#(f(e), c, f(l))
A#g#(e, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(m))
h#(c, c)g#(l, l, f(k))A#g#(l, U121(c, c), f(l))
h#(f(c), f(c))g#(c, f(e), f(l))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(f(l), c, f(l))h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))
h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))h#(f(c), f(c))g#(U121(e, c), l, f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(m))h#(f(c), f(c))g#(c, e, f(l))
h#(c, c)g#(e, c, f(l))h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))
h#(f(c), f(c))g#(e, f(e), f(k))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(f(l), l, f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(m, m))h#(f(c), f(c))g#(c, l, f(k))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(c), f(c))g#(U121(e, e), e, U121(m, m))
g#(d, x, x)h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(f(e), U121(c, c), f(m))
A#g#(U121(e, c), c, f(l))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(f(c), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, c, U121(k, k))
A#g#(U121(e, c), U121(e, c), f(m))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))
A#h#(m, d)h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(k))h#(f(c), f(c))g#(f(e), c, f(k))
h#(f(c), f(c))g#(f(l), e, f(m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
A#g#(l, l, f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))
h#(c, c)g#(l, c, f(l))h#(f(e), f(e))g#(e, U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, l, U121(k, k))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))A#h#(f(d), f(m))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(f(c), f(c))g#(l, l, U121(k, k))
A#g#(l, c, f(l))A#g#(e, U121(e, c), f(l))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
A#g#(c, l, f(l))A#g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))
g#(d, x, x)h#(U121(e, c), U121(c, c))A#g#(c, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(f(l), l, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(m))h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))
g#(d, x, x)h#(U121(c, c), e)h#(f(c), f(c))g#(e, c, f(l))
A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → g#(l, e, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(l, e, U121(l, l))
Thus, the rule A# → g#(l, e, f(l)) is deleted.

Problem 175: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(U121(e, c), l, U121(k, k))
A#h#(c, c)g#(d, x, x)h#(c, c)
h#(f(c), f(c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(c, c, U121(k, k))
A#h#(U121(e, e), U121(e, e))h#(f(c), f(c))g#(U121(e, e), c, U121(m, m))
h#(c, c)g#(l, e, U121(k, k))A#g#(e, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, l, f(m))A#g#(c, U121(e, c), U121(m, m))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(l))h#(f(e), f(e))g#(U121(e, e), f(e), f(l))
h#(f(c), f(c))g#(f(e), c, f(l))h#(f(c), f(c))g#(U121(e, e), U121(c, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(c, c), f(m))
A#g#(e, U121(e, c), U121(m, m))h#(c, c)g#(l, l, f(k))
A#g#(l, U121(c, c), f(l))h#(f(c), f(c))g#(f(l), c, f(l))
h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(U121(e, c), l, f(l))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(f(c), f(c))g#(c, e, f(l))h#(c, c)g#(e, c, f(l))
h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))h#(f(c), f(c))g#(e, f(e), f(k))
A#g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, c), f(c), U121(m, m))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, e), e, U121(m, m))
h#(f(c), f(c))g#(f(l), e, f(l))g#(d, x, x)h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(c, U121(e, c), f(l))A#g#(U121(e, c), c, f(l))
h#(f(c), f(c))g#(f(e), U121(c, c), f(m))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(f(c), U121(e, c), f(m))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(l, c, U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))A#h#(m, d)
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))h#(f(c), f(c))g#(c, U121(e, c), f(k))
h#(f(c), f(c))g#(f(e), c, f(k))h#(f(c), f(c))g#(f(l), e, f(m))
h#(f(c), f(c))g#(c, U121(c, c), f(l))A#g#(l, l, f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))h#(c, c)g#(l, c, f(l))
h#(f(e), f(e))g#(e, U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(l, l, U121(k, k))
h#(c, c)g#(c, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
A#h#(f(d), f(m))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(f(c), f(c))g#(l, l, U121(k, k))A#g#(l, c, f(l))
A#g#(e, U121(e, c), f(l))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))A#g#(c, l, f(l))
A#g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
A#g#(c, c, U121(k, k))h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))
g#(d, x, x)h#(U121(e, c), U121(c, c))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(e), e, f(m))
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))g#(d, x, x)h#(U121(c, c), e)
h#(f(c), f(c))g#(e, c, f(l))A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U121(e, c), l, U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(c, l, U121(k, k))g#(U121(e, c), l, U121(l, k))
 g#(U121(e, c), l, U121(m, k))
Thus, the rule h#(f(c), f(c)) → g#(U121(e, c), l, U121(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(c, l, U121(k, k))

Problem 176: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, e), U121(e, e))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
h#(c, c)g#(l, l, f(k))A#g#(l, U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(c, c), U121(k, k))h#(f(c), f(c))g#(e, f(c), f(l))
h#(f(c), f(c))g#(e, U121(c, c), U121(k, k))h#(f(c), f(c))g#(c, f(e), f(l))
h#(f(c), f(c))g#(f(l), c, f(l))h#(f(c), f(c))g#(U121(e, c), l, f(l))
h#(f(c), f(c))g#(U121(c, c), l, f(m))h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))
h#(c, c)g#(e, c, f(l))h#(f(c), f(c))g#(c, e, f(l))
A#g#(l, U121(e, c), U121(k, k))h#(f(c), f(c))g#(f(l), l, f(m))
h#(f(c), f(c))g#(e, f(e), f(k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))
h#(f(c), f(c))g#(c, l, f(k))h#(f(c), f(c))g#(f(l), e, f(l))
h#(f(c), f(c))g#(U121(e, e), e, U121(m, m))h#(f(c), f(c))g#(l, e, f(m))
g#(d, x, x)h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(c, U121(e, c), f(l))
A#g#(U121(e, c), c, f(l))h#(f(c), f(c))g#(f(e), U121(c, c), f(m))
h#(f(e), f(e))g#(e, e, f(l))h#(f(c), f(c))g#(f(c), U121(e, c), f(m))
A#h#(c, c)A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(l, c, U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
g#(d, x, x)h#(c, c)h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))
A#h#(m, d)h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))
h#(f(c), f(c))g#(c, U121(e, c), f(k))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(f(l), e, f(m))h#(f(c), f(c))g#(f(e), c, f(k))
A#g#(l, l, f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))
h#(c, c)g#(l, c, f(l))h#(f(e), f(e))g#(e, U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, l, U121(k, k))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))A#h#(f(d), f(m))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(f(c), f(c))g#(l, l, U121(k, k))
A#g#(l, c, f(l))A#g#(e, U121(e, c), f(l))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
A#g#(c, l, f(l))A#g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))A#g#(c, c, U121(k, k))
h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))g#(d, x, x)h#(U121(e, c), U121(c, c))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(l), l, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(e), e, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(c), l, f(l))
g#(d, x, x)h#(U121(c, c), e)A#g#(e, l, f(m))
h#(f(c), f(c))g#(e, c, f(l))h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(c, c) → g#(l, l, f(k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, l, f(l)) 
g#(l, l, U121(k, k)) 
g#(l, l, f(m)) 
Thus, the rule h#(c, c) → g#(l, l, f(k)) is replaced by the following rules:
h#(c, c) → g#(l, l, f(m))h#(c, c) → g#(l, l, U121(k, k))
h#(c, c) → g#(l, l, f(l))

Problem 177: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, e), U121(e, e))A#h#(f(c), f(c))
A#h#(f(e), f(e))h#(f(c), f(c))g#(e, U121(e, e), f(l))
h#(f(c), f(c))g#(e, U121(e, e), f(k))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(e, U121(e, e), U121(k, k))A#g#(l, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(f(l), l, f(m))h#(f(c), f(c))g#(c, l, f(k))
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, f(l))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), f(c), U121(m, m))h#(f(c), f(c))g#(U121(e, e), e, U121(m, m))
h#(f(c), f(c))g#(f(l), e, f(l))h#(f(e), f(e))g#(e, e, f(l))
h#(f(c), f(c))g#(l, e, f(m))h#(f(c), f(c))g#(f(e), U121(c, c), f(m))
A#g#(U121(e, c), c, f(l))h#(f(c), f(c))g#(c, U121(e, c), f(l))
g#(d, x, x)h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(f(c), U121(e, c), f(m))
A#h#(c, c)h#(f(c), f(c))g#(l, c, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))A#g#(U121(e, c), U121(e, c), f(m))
g#(d, x, x)h#(c, c)h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))
A#h#(m, d)h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))
h#(f(c), f(c))g#(e, f(e), f(m))h#(f(c), f(c))g#(c, U121(e, c), f(k))
h#(f(c), f(c))g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(f(l), e, f(m))
h#(f(c), f(c))g#(f(e), c, f(k))h#(f(c), f(c))g#(e, c, U121(k, k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))A#g#(l, l, f(k))
h#(c, c)g#(l, c, f(l))h#(f(e), f(e))g#(e, U121(e, e), f(l))
h#(c, c)g#(c, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(l, l, U121(k, k))
h#(f(c), f(c))g#(l, U121(e, e), f(l))A#h#(f(d), f(m))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(f(c), f(c))g#(l, l, U121(k, k))
A#g#(l, c, f(l))A#g#(e, U121(e, c), f(l))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
A#g#(c, l, f(l))A#g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(c, c)g#(e, l, f(l))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(U121(e, c), l, f(m))A#g#(c, c, U121(k, k))
h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))g#(d, x, x)h#(U121(e, c), U121(c, c))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(l), l, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(f(c), f(c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(e), e, f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(c), l, f(l))g#(d, x, x)h#(U121(c, c), e)
A#g#(e, l, f(m))h#(f(c), f(c))g#(e, c, f(l))
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, U121(e, e), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, e, f(l))g#(e, U121(e, e), U121(l, l))
Thus, the rule h#(f(c), f(c)) → g#(e, U121(e, e), f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, e, f(l))

Problem 178: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, e), U121(e, e))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(f(e), U121(c, c), f(m))h#(f(c), f(c))g#(f(c), U121(e, c), f(m))
h#(f(e), f(e))g#(e, e, f(l))g#(d, x, x)h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(c, U121(e, c), f(l))A#g#(U121(e, c), c, f(l))
A#h#(c, c)h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(m))h#(f(c), f(c))g#(l, c, U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))g#(d, x, x)h#(c, c)
A#h#(m, d)h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(k))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(e, f(e), f(m))h#(f(c), f(c))g#(c, U121(e, c), f(k))
h#(f(c), f(c))g#(f(l), e, f(m))h#(f(c), f(c))g#(e, c, U121(k, k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))A#g#(l, l, f(k))
h#(c, c)g#(l, c, f(l))h#(f(e), f(e))g#(e, U121(e, e), f(l))
h#(c, c)g#(c, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(l, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
A#h#(f(d), f(m))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(f(c), f(c))g#(l, l, U121(k, k))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(l, c, f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))A#g#(e, U121(e, c), f(l))
h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))A#g#(c, l, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))A#g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(c, c)g#(e, l, f(l))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, e, f(m))h#(f(c), f(c))g#(U121(e, c), l, f(m))
A#g#(c, c, U121(k, k))h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))
g#(d, x, x)h#(U121(e, c), U121(c, c))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(f(c), f(c))g#(c, e, U121(k, k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(e), e, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(c), l, f(l))
g#(d, x, x)h#(U121(c, c), e)A#g#(e, l, f(m))
h#(f(c), f(c))g#(e, c, f(l))h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(e), U121(c, c), f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(f(e), U121(e, c), f(m))g#(f(e), U121(l, c), f(m))
g#(U121(e, e), U121(c, c), f(m))g#(f(e), U121(c, c), U121(m, m))
Thus, the rule h#(f(c), f(c)) → g#(f(e), U121(c, c), f(m)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U121(e, e), U121(c, c), f(m))h#(f(c), f(c)) → g#(f(e), U121(e, c), f(m))

Problem 179: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, e), U121(e, e))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(f(c), l, f(m))h#(f(c), f(c))g#(f(c), e, f(m))
h#(f(c), f(c))g#(e, U121(e, c), f(m))h#(f(c), f(c))g#(f(e), c, f(m))
h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(c, c), l, f(m))
h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))h#(f(c), f(c))g#(f(l), l, f(m))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(m, m))h#(f(c), f(c))g#(c, U121(e, c), f(l))
g#(d, x, x)h#(U121(e, c), U121(e, c))h#(f(e), f(e))g#(e, e, f(l))
A#h#(c, c)h#(f(c), f(c))g#(c, c, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))A#g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(l, c, U121(k, k))g#(d, x, x)h#(c, c)
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))A#h#(m, d)
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(c, U121(e, c), f(k))
h#(f(c), f(c))g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(e, f(e), f(m))
h#(f(c), f(c))g#(f(e), c, f(k))h#(f(c), f(c))g#(f(l), e, f(m))
h#(f(c), f(c))g#(e, c, U121(k, k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))
A#g#(l, l, f(k))h#(c, c)g#(l, c, f(l))
h#(f(e), f(e))g#(e, U121(e, e), f(l))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(l, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))A#h#(f(d), f(m))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(U121(e, c), U121(e, c), f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(f(c), f(c))g#(l, l, U121(k, k))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(l, c, f(l))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))A#g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(e, e), c, f(m))A#g#(c, l, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))A#g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(c, c)g#(e, l, f(l))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, e, f(m))h#(f(c), f(c))g#(U121(e, c), l, f(m))
A#g#(c, c, U121(k, k))h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))
g#(d, x, x)h#(U121(e, c), U121(c, c))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(f(c), f(c))g#(c, e, U121(k, k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(e), e, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(c), l, f(l))
g#(d, x, x)h#(U121(c, c), e)A#g#(e, l, f(m))
h#(f(c), f(c))g#(e, c, f(l))h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(c), l, f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(f(l), l, f(m))g#(f(c), l, U121(m, m))
g#(f(e), l, f(m)) 
g#(U121(c, c), l, f(m)) 
Thus, the rule h#(f(c), f(c)) → g#(f(c), l, f(m)) is replaced by the following rules:
h#(f(c), f(c)) → g#(f(e), l, f(m))h#(f(c), f(c)) → g#(U121(c, c), l, f(m))
h#(f(c), f(c)) → g#(f(l), l, f(m))

Problem 180: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, e), U121(e, e))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
g#(d, x, x)h#(U121(e, c), U121(e, c))A#h#(c, c)
h#(f(c), f(c))g#(U121(c, c), U121(c, c), U121(k, k))A#g#(U121(e, c), U121(e, c), f(m))
g#(d, x, x)h#(c, c)h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))
A#h#(m, d)h#(f(c), f(c))g#(c, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(k))h#(f(c), f(c))g#(f(l), e, f(m))
h#(f(c), f(c))g#(e, f(e), f(m))h#(f(c), f(c))g#(c, U121(e, c), f(k))
h#(f(c), f(c))g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(e, c, U121(k, k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))A#g#(l, l, f(k))
h#(f(e), f(e))g#(e, U121(e, e), f(l))h#(c, c)g#(l, c, f(l))
h#(c, c)g#(c, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(l, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
A#h#(f(d), f(m))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(f(c), f(c))g#(l, l, U121(k, k))
A#g#(l, c, f(l))h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
h#(f(c), f(c))g#(U121(e, e), c, f(m))A#g#(c, l, f(l))
A#g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(c, c)g#(e, l, f(l))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))h#(f(c), f(c))g#(e, e, f(m))
h#(f(c), f(c))g#(U121(e, c), l, f(m))A#g#(c, c, U121(k, k))
h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))g#(d, x, x)h#(U121(e, c), U121(c, c))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(l), l, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(f(c), f(c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(e), e, f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(c), l, f(l))g#(d, x, x)h#(U121(c, c), e)
A#g#(e, l, f(m))h#(f(c), f(c))g#(e, c, f(l))
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U121(c, c), U121(c, c), U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(U121(e, c), U121(c, c), U121(k, k))g#(U121(c, c), U121(l, c), U121(k, k))
g#(U121(c, c), U121(e, c), U121(k, k))g#(U121(c, c), U121(c, c), U121(m, k))
 g#(U121(c, c), U121(c, c), U121(l, k))
 g#(U121(l, c), U121(c, c), U121(k, k))
Thus, the rule h#(f(c), f(c)) → g#(U121(c, c), U121(c, c), U121(k, k)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U121(e, c), U121(c, c), U121(k, k))h#(f(c), f(c)) → g#(U121(c, c), U121(e, c), U121(k, k))

Problem 181: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#g#(l, c, f(m))A#h#(U121(e, e), U121(e, e))
A#h#(f(c), f(c))A#g#(c, l, f(m))
A#g#(l, U121(e, c), U121(m, m))A#h#(f(e), f(e))
A#g#(e, c, f(m))A#h#(U121(e, c), U121(e, c))
A#g#(U121(e, c), U121(e, c), U121(m, m))A#g#(e, e, f(m))
A#g#(c, U121(e, c), U121(m, m))A#g#(e, U121(e, c), U121(m, m))
A#g#(l, l, f(m))g#(d, x, x)h#(U121(e, c), U121(e, c))
A#h#(c, c)g#(d, x, x)h#(c, c)
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), f(m))A#h#(m, d)
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(l))
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(f(l), e, f(m))h#(f(c), f(c))g#(e, f(e), f(m))
h#(f(c), f(c))g#(c, U121(e, c), f(k))h#(f(c), f(c))g#(f(e), c, f(k))
h#(f(c), f(c))g#(e, c, U121(k, k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))
A#g#(l, l, f(k))h#(f(e), f(e))g#(e, U121(e, e), f(l))
h#(c, c)g#(l, c, f(l))h#(U121(e, c), U121(e, c))g#(l, l, U121(k, k))
h#(c, c)g#(c, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))A#h#(f(d), f(m))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(f(c), f(c))g#(l, l, U121(k, k))A#g#(l, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))A#g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, e), c, f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
A#g#(c, l, f(l))A#g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))h#(c, c)g#(e, l, f(l))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, e, f(m))A#g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(e, c), l, f(m))A#g#(c, c, U121(k, k))
h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))g#(d, x, x)h#(U121(e, c), U121(c, c))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(l), l, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(c, c), e, U121(k, k))h#(f(c), f(c))g#(c, e, U121(k, k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(e), e, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(c), l, f(l))
g#(d, x, x)h#(U121(c, c), e)A#g#(e, l, f(m))
h#(f(c), f(c))g#(e, c, f(l))h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → g#(l, c, f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, e, f(m))g#(l, c, U121(m, m))
g#(l, l, f(m)) 
Thus, the rule A# → g#(l, c, f(m)) is replaced by the following rules:
A# → g#(l, l, f(m))A# → g#(l, e, f(m))

Problem 182: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, e), U121(e, e))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(l, e, f(l))h#(f(c), f(c))g#(c, e, f(l))
g#(d, x, x)h#(U121(e, c), U121(e, c))A#h#(c, c)
g#(d, x, x)h#(c, c)h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(e, f(e), f(m))h#(f(c), f(c))g#(c, U121(e, c), f(k))
h#(f(c), f(c))g#(f(l), e, f(m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(k))h#(f(c), f(c))g#(e, c, U121(k, k))
A#g#(l, l, f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))
h#(c, c)g#(l, c, f(l))h#(f(e), f(e))g#(e, U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, l, U121(k, k))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))A#h#(f(d), f(m))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(f(c), f(c))g#(l, l, U121(k, k))
A#g#(l, c, f(l))h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, e), c, f(m))
A#g#(c, l, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))A#g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(c, c)g#(e, l, f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(c, c)g#(e, c, U121(k, k))
A#g#(U121(e, c), c, f(m))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, e, f(m))h#(f(c), f(c))g#(U121(e, c), l, f(m))
A#g#(c, c, U121(k, k))h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))
g#(d, x, x)h#(U121(e, c), U121(c, c))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(f(c), f(c))g#(U121(c, c), e, U121(k, k))
h#(f(c), f(c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(e), e, f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(c), l, f(l))g#(d, x, x)h#(U121(c, c), e)
A#g#(e, l, f(m))h#(f(c), f(c))g#(e, c, f(l))
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, e, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(l, e, U121(l, l))
Thus, the rule h#(f(c), f(c)) → g#(l, e, f(l)) is deleted.

Problem 183: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, e), U121(e, e))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(c, l, f(l))h#(f(c), f(c))g#(e, l, f(m))
h#(f(c), f(c))g#(l, l, f(k))h#(f(c), f(c))g#(l, e, f(m))
h#(f(c), f(c))g#(c, U121(e, c), f(l))g#(d, x, x)h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(l, c, f(k))A#h#(c, c)
h#(f(c), f(c))g#(c, e, f(k))h#(f(c), f(c))g#(c, c, f(m))
h#(f(c), f(c))g#(l, c, U121(k, k))g#(d, x, x)h#(c, c)
h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(f(e), c, f(k))h#(f(c), f(c))g#(e, f(e), f(m))
h#(f(c), f(c))g#(f(l), e, f(m))h#(f(c), f(c))g#(e, c, U121(k, k))
A#g#(l, l, f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))
h#(c, c)g#(l, c, f(l))h#(f(e), f(e))g#(e, U121(e, e), f(l))
h#(c, c)g#(c, l, U121(k, k))h#(U121(e, c), U121(e, c))g#(l, l, U121(k, k))
A#h#(f(d), f(m))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(U121(c, c), U121(c, c), f(m))h#(f(c), f(c))g#(l, l, U121(k, k))
A#g#(l, c, f(l))h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))A#g#(c, l, f(l))
h#(f(c), f(c))g#(U121(e, e), c, f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))A#g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(c, c)g#(e, l, f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(f(c), f(c))g#(e, e, f(m))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))A#g#(U121(e, c), c, f(m))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(l, U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), l, f(m))A#g#(c, c, U121(k, k))
g#(d, x, x)h#(U121(e, c), U121(c, c))h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(f(l), l, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(c, c), e, U121(k, k))h#(f(c), f(c))g#(c, e, U121(k, k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(f(e), e, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(c), l, f(l))
g#(d, x, x)h#(U121(c, c), e)A#g#(e, l, f(m))
h#(f(c), f(c))g#(e, c, f(l))h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(c, l, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, l, f(l))g#(c, l, U121(l, l))
g#(e, l, f(l)) 
Thus, the rule h#(f(c), f(c)) → g#(c, l, f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(e, l, f(l))h#(f(c), f(c)) → g#(l, l, f(l))

Problem 184: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, e), U121(e, e))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(l, e, f(m))g#(d, x, x)h#(U121(e, c), U121(e, c))
A#h#(c, c)g#(d, x, x)h#(c, c)
h#(f(c), f(c))g#(c, e, f(m))h#(f(c), f(c))g#(c, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(e, f(e), f(m))h#(f(c), f(c))g#(f(e), c, f(k))
h#(f(c), f(c))g#(f(l), e, f(m))h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(e, c, U121(k, k))A#g#(l, l, f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))h#(f(e), f(e))g#(e, U121(e, e), f(l))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(l, l, U121(k, k))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
A#h#(f(d), f(m))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(f(c), f(c))g#(l, l, U121(k, k))A#g#(l, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))A#g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
A#g#(c, l, f(l))h#(f(c), f(c))g#(U121(e, e), c, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))
A#g#(c, U121(c, c), f(l))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(c, c)g#(e, l, f(l))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, e, f(m))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
h#(c, c)g#(e, c, U121(k, k))A#g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(l, U121(e, c), f(k))h#(f(c), f(c))g#(U121(e, c), l, f(m))
A#g#(c, c, U121(k, k))g#(d, x, x)h#(U121(e, c), U121(c, c))
h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(f(c), f(c))g#(U121(c, c), e, U121(k, k))
h#(f(c), f(c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(e), e, f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(c), l, f(l))g#(d, x, x)h#(U121(c, c), e)
A#g#(e, l, f(m))h#(f(c), f(c))g#(e, c, f(l))
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, e, f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(l, e, U121(m, m))
Thus, the rule h#(f(c), f(c)) → g#(l, e, f(m)) is deleted.

Problem 185: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, e), U121(e, e))A#h#(f(c), f(c))
h#(f(c), f(c))g#(e, e, f(l))h#(f(c), f(c))g#(U121(e, e), l, f(l))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
h#(f(c), f(c))g#(f(e), l, f(l))h#(f(c), f(c))g#(e, c, f(k))
g#(d, x, x)h#(U121(e, c), U121(e, c))A#h#(c, c)
g#(d, x, x)h#(c, c)h#(f(c), f(c))g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(f(l), e, f(m))h#(f(c), f(c))g#(e, c, U121(k, k))
h#(f(c), f(c))g#(f(e), l, f(k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(m))
A#g#(l, l, f(k))h#(f(e), f(e))g#(e, U121(e, e), f(l))
h#(c, c)g#(l, c, f(l))h#(c, c)g#(c, l, U121(k, k))
h#(U121(e, c), U121(e, c))g#(l, l, U121(k, k))A#h#(f(d), f(m))
h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, U121(e, e), f(l))
h#(f(c), f(c))g#(f(c), f(l), f(k))h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))
h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))A#g#(U121(e, c), U121(e, c), f(l))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(U121(c, c), U121(c, c), f(m))
h#(f(c), f(c))g#(l, l, U121(k, k))A#g#(l, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))A#g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, e), e, f(k))A#g#(c, l, f(l))
h#(f(c), f(c))g#(U121(e, e), c, f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))A#g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), c, U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(c, c)g#(e, l, f(l))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, e, f(m))A#g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(l, U121(e, c), f(k))h#(f(c), f(c))g#(U121(e, c), l, f(m))
A#g#(c, c, U121(k, k))g#(d, x, x)h#(U121(e, c), U121(c, c))
h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(f(c), f(c))g#(U121(c, c), e, U121(k, k))
h#(f(c), f(c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(e), e, f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(c), l, f(l))g#(d, x, x)h#(U121(c, c), e)
A#g#(e, l, f(m))h#(f(c), f(c))g#(e, c, f(l))
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, e, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U121(l, l))
Thus, the rule h#(f(c), f(c)) → g#(e, e, f(l)) is deleted.

Problem 186: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#g#(l, l, U121(k, k))A#h#(U121(e, e), U121(e, e))
A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(U121(e, c), U121(e, c))A#g#(l, l, f(m))
g#(d, x, x)h#(U121(e, c), U121(e, c))A#h#(c, c)
g#(d, x, x)h#(c, c)h#(f(c), f(c))g#(f(e), l, f(k))
h#(c, c)g#(l, c, f(l))h#(f(e), f(e))g#(e, U121(e, e), f(l))
h#(U121(e, c), U121(e, c))g#(l, l, U121(k, k))h#(c, c)g#(c, l, U121(k, k))
A#h#(f(d), f(m))h#(U121(e, c), U121(e, c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, U121(e, e), f(l))h#(f(c), f(c))g#(f(c), f(l), f(k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
A#g#(U121(e, c), U121(e, c), f(l))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
h#(f(c), f(c))g#(l, l, U121(k, k))A#g#(U121(c, c), U121(c, c), f(m))
A#g#(l, c, f(l))h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))
A#g#(e, U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, e), e, f(k))
A#g#(c, l, f(l))h#(f(c), f(c))g#(U121(e, e), c, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))
A#g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), c, U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(c, c)g#(e, l, f(l))A#g#(U121(e, c), c, f(m))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, e, f(m))h#(f(e), f(e))g#(U121(e, e), e, f(m))
h#(f(c), f(c))g#(l, U121(e, c), f(k))h#(f(c), f(c))g#(U121(e, c), l, f(m))
g#(d, x, x)h#(U121(e, c), U121(c, c))A#g#(c, c, U121(k, k))
h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(f(c), f(c))g#(U121(c, c), e, U121(k, k))
h#(f(c), f(c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(e), e, f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(c), l, f(l))g#(d, x, x)h#(U121(c, c), e)
A#g#(e, l, f(m))h#(f(c), f(c))g#(e, c, f(l))
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → g#(l, l, U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(l, l, U121(m, k))
 g#(l, l, U121(l, k))
Thus, the rule A# → g#(l, l, U121(k, k)) is deleted.

Problem 187: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, e), U121(e, e))A#h#(f(c), f(c))
h#(f(c), f(c))g#(f(c), f(l), f(l))A#h#(f(e), f(e))
h#(f(c), f(c))g#(f(l), f(l), U121(k, k))h#(f(c), f(c))g#(f(c), f(l), f(m))
A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(l, f(l), U121(k, k))
h#(f(c), f(c))g#(e, f(l), U121(k, k))h#(f(c), f(c))g#(U121(c, c), f(l), f(m))
h#(f(c), f(c))g#(U121(e, c), f(l), f(k))g#(d, x, x)h#(U121(e, c), U121(e, c))
A#h#(c, c)g#(d, x, x)h#(c, c)
h#(f(c), f(c))g#(l, U121(e, e), f(l))A#h#(f(d), f(m))
h#(f(c), f(c))g#(f(l), f(l), f(k))h#(U121(e, e), U121(e, e))g#(U121(e, e), U121(e, e), U121(k, k))
h#(U121(e, c), U121(e, c))g#(e, U121(e, c), U121(m, m))A#g#(U121(e, c), U121(e, c), f(l))
h#(f(c), f(c))g#(l, l, U121(k, k))A#g#(U121(c, c), U121(c, c), f(m))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(l, c, f(l))
h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))A#g#(e, U121(e, c), f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))A#g#(c, l, f(l))
h#(f(c), f(c))g#(U121(e, e), c, f(m))h#(f(c), f(c))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))A#g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), c, U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(c, c)g#(e, l, f(l))
h#(f(c), f(c))g#(f(e), f(l), f(k))A#g#(U121(e, c), c, f(m))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, e, f(m))h#(f(c), f(c))g#(l, U121(e, c), f(k))
h#(f(c), f(c))g#(U121(e, c), l, f(m))h#(f(e), f(e))g#(U121(e, e), e, f(m))
h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))A#g#(c, c, U121(k, k))
g#(d, x, x)h#(U121(e, c), U121(c, c))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(f(c), f(c))g#(U121(c, c), e, U121(k, k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(c, e, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(e), e, f(m))g#(d, x, x)h#(U121(c, c), e)
A#g#(e, l, f(m))h#(f(c), f(c))g#(e, c, f(l))
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))h#(f(c), f(c))g#(l, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(c), f(l), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(f(e), f(l), f(l))g#(f(c), U121(l, l), f(l))
g#(U121(c, c), f(l), f(l))g#(f(c), f(l), U121(l, l))
g#(f(l), f(l), f(l)) 
Thus, the rule h#(f(c), f(c)) → g#(f(c), f(l), f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(U121(c, c), f(l), f(l))h#(f(c), f(c)) → g#(f(l), f(l), f(l))
h#(f(c), f(c)) → g#(f(e), f(l), f(l))

Problem 188: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, e), U121(e, e))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
h#(U121(e, e), U121(e, e))g#(e, U121(e, e), U121(k, k))g#(d, x, x)h#(U121(e, c), U121(e, c))
A#h#(c, c)g#(d, x, x)h#(c, c)
h#(U121(e, e), U121(e, e))g#(U121(e, e), e, U121(k, k))A#g#(U121(e, c), U121(e, c), f(l))
h#(f(c), f(c))g#(l, l, U121(k, k))A#g#(U121(c, c), U121(c, c), f(m))
h#(U121(e, e), U121(e, e))g#(e, e, f(l))A#g#(l, c, f(l))
A#g#(e, U121(e, c), f(l))h#(U121(e, c), U121(e, c))g#(c, l, f(k))
h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), e, f(k))A#g#(c, l, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, e), c, f(m))
A#g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(U121(e, e), c, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(c, c)g#(e, l, f(l))
h#(f(c), f(c))g#(f(e), f(l), f(k))A#g#(U121(e, c), c, f(m))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, e, f(m))h#(f(c), f(c))g#(l, U121(e, c), f(k))
h#(f(e), f(e))g#(U121(e, e), e, f(m))h#(f(c), f(c))g#(U121(e, c), l, f(m))
A#g#(c, c, U121(k, k))g#(d, x, x)h#(U121(e, c), U121(c, c))
h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(f(l), l, U121(k, k))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(f(c), f(c))g#(U121(c, c), e, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(c, e, U121(k, k))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(f(e), e, f(m))
g#(d, x, x)h#(U121(c, c), e)A#g#(e, l, f(m))
h#(f(c), f(c))g#(e, c, f(l))h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(U121(e, e), U121(e, e)) → g#(e, U121(e, e), U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(e, e, U121(k, k))g#(e, U121(e, e), U121(m, k))
 g#(e, U121(e, e), U121(l, k))
Thus, the rule h#(U121(e, e), U121(e, e)) → g#(e, U121(e, e), U121(k, k)) is replaced by the following rules:
h#(U121(e, e), U121(e, e)) → g#(e, e, U121(k, k))

Problem 189: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, e), U121(e, e))A#h#(f(c), f(c))
A#h#(f(e), f(e))A#h#(U121(e, c), U121(e, c))
A#g#(U121(e, c), U121(e, c), U121(m, m))A#g#(l, l, f(m))
g#(d, x, x)h#(U121(e, c), U121(e, c))A#h#(c, c)
A#g#(U121(e, c), U121(e, c), f(m))g#(d, x, x)h#(c, c)
A#g#(U121(c, c), c, f(m))h#(U121(e, e), U121(e, e))g#(e, e, f(l))
A#g#(l, c, f(l))h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))
A#g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))A#g#(e, U121(e, c), f(l))
A#g#(c, l, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
h#(f(c), f(c))g#(U121(e, e), e, f(k))h#(f(c), f(c))g#(U121(e, e), c, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))A#g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), c, U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(c, c)g#(e, l, f(l))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(f(c), f(c))g#(f(e), f(l), f(k))A#g#(U121(e, c), c, f(m))
h#(c, c)g#(e, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))
h#(f(c), f(c))g#(e, e, f(m))h#(f(c), f(c))g#(l, U121(e, c), f(k))
h#(f(e), f(e))g#(U121(e, e), e, f(m))h#(f(c), f(c))g#(U121(e, c), l, f(m))
A#g#(c, c, U121(k, k))g#(d, x, x)h#(U121(e, c), U121(c, c))
h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(f(c), f(c))g#(U121(c, c), e, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(e), e, f(m))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(c, e, U121(k, k))
g#(d, x, x)h#(U121(c, c), e)A#g#(e, l, f(m))
h#(f(c), f(c))g#(e, c, f(l))h#(f(c), f(c))g#(l, l, f(m))
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → g#(U121(e, c), U121(e, c), U121(m, m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(c, U121(e, c), U121(m, m)) 
g#(U121(e, c), c, U121(m, m)) 
Thus, the rule A# → g#(U121(e, c), U121(e, c), U121(m, m)) is replaced by the following rules:
A# → g#(c, U121(e, c), U121(m, m))A# → g#(U121(e, c), c, U121(m, m))

Problem 190: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#g#(l, l, f(l))A#g#(l, e, f(l))
A#h#(f(c), f(c))A#h#(f(e), f(e))
A#h#(U121(e, c), U121(e, c))g#(d, x, x)h#(U121(e, c), U121(e, c))
A#h#(c, c)g#(d, x, x)h#(c, c)
A#g#(e, U121(e, c), f(l))h#(f(e), f(e))g#(U121(e, e), e, U121(k, k))
h#(U121(e, c), U121(e, c))g#(c, l, f(k))h#(f(c), f(c))g#(U121(e, c), U121(e, e), f(m))
A#g#(c, U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(U121(e, e), c, f(m))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))
A#g#(c, l, f(l))h#(f(c), f(c))g#(U121(e, e), c, U121(k, k))
A#g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(c, c)g#(e, l, f(l))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(f(c), f(c))g#(f(e), f(l), f(k))
h#(c, c)g#(e, c, U121(k, k))A#g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))h#(f(c), f(c))g#(e, e, f(m))
h#(f(c), f(c))g#(l, U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), e, f(m))
h#(f(c), f(c))g#(U121(e, c), l, f(m))A#g#(c, c, U121(k, k))
g#(d, x, x)h#(U121(e, c), U121(c, c))h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(f(l), l, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(c, c), e, U121(k, k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(c, e, U121(k, k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(m))g#(d, x, x)h#(U121(c, c), e)
A#g#(e, l, f(m))h#(f(c), f(c))g#(e, c, f(l))
h#(f(c), f(c))g#(l, l, f(m))h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → g#(l, l, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(l, l, U121(l, l))
Thus, the rule A# → g#(l, l, f(l)) is deleted.

Problem 191: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(e, U121(e, e), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))h#(f(c), f(c))g#(l, e, f(m))
g#(d, x, x)h#(U121(e, c), U121(e, c))A#h#(c, c)
g#(d, x, x)h#(c, c)h#(f(c), f(c))g#(c, e, f(m))
A#h#(f(c), f(c))A#g#(l, c, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(l))h#(f(c), f(c))g#(U121(e, e), c, f(m))
A#g#(c, l, f(l))h#(f(c), f(c))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))A#g#(c, U121(c, c), f(l))
h#(f(c), f(c))g#(U121(e, e), c, U121(k, k))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(c, c)g#(e, l, f(l))h#(f(e), f(e))g#(U121(e, e), e, f(k))
h#(f(c), f(c))g#(e, e, f(m))A#g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(f(e), f(l), f(k))h#(f(c), f(c))g#(U121(e, c), l, f(m))
h#(f(e), f(e))g#(U121(e, e), e, f(m))h#(f(c), f(c))g#(l, U121(e, c), f(k))
A#g#(c, c, U121(k, k))g#(d, x, x)h#(U121(e, c), U121(c, c))
h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))A#h#(f(e), f(e))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(f(l), l, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(c, c), e, U121(k, k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, f(l), f(k))h#(f(c), f(c))g#(c, e, U121(k, k))
h#(f(c), f(c))g#(f(l), f(c), f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(e), e, f(m))h#(f(c), f(c))g#(e, c, f(l))
h#(f(c), f(c))g#(l, l, f(m))A#g#(e, l, f(m))
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))g#(d, x, x)h#(U121(c, c), e)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(e, U121(e, e), U121(m, m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U121(m, m))
Thus, the rule h#(f(c), f(c)) → g#(e, U121(e, e), U121(m, m)) is deleted.

Problem 192: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(l, e, f(l))
g#(d, x, x)h#(U121(e, c), U121(e, c))h#(f(c), f(c))g#(c, U121(e, c), f(l))
A#h#(c, c)g#(d, x, x)h#(c, c)
h#(f(c), f(c))g#(l, l, f(l))A#h#(f(c), f(c))
h#(f(c), f(c))g#(e, e, f(l))h#(f(c), f(c))g#(l, c, f(l))
h#(f(c), f(c))g#(U121(e, e), c, U121(k, k))h#(f(c), f(c))g#(U121(c, c), U121(e, e), U121(k, k))
A#g#(c, U121(c, c), f(l))h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))
h#(f(e), f(e))g#(U121(e, e), e, f(k))h#(c, c)g#(e, l, f(l))
h#(f(c), f(c))g#(e, e, f(m))A#g#(U121(e, c), c, f(m))
h#(f(c), f(c))g#(f(e), f(l), f(k))h#(c, c)g#(e, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(m))
h#(f(c), f(c))g#(U121(e, c), l, f(m))h#(f(c), f(c))g#(l, U121(e, c), f(k))
A#g#(c, c, U121(k, k))g#(d, x, x)h#(U121(e, c), U121(c, c))
h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
h#(f(c), f(c))g#(U121(e, e), l, U121(m, m))A#h#(f(e), f(e))
h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))h#(f(c), f(c))g#(e, l, f(l))
h#(f(c), f(c))g#(U121(c, c), e, U121(k, k))h#(f(c), f(c))g#(f(e), e, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))g#(d, x, x)h#(U121(c, c), e)
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))A#g#(e, l, f(m))
h#(f(c), f(c))g#(l, l, f(m))h#(f(c), f(c))g#(e, c, f(l))
A#g#(e, l, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, e, f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(l, e, U121(l, l))
Thus, the rule h#(f(c), f(c)) → g#(l, e, f(l)) is deleted.

Problem 193: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, c), U121(e, c))g#(d, x, x)h#(U121(e, c), U121(e, c))
A#h#(c, c)g#(d, x, x)h#(c, c)
h#(f(e), f(e))g#(e, e, U121(k, k))A#h#(f(c), f(c))
h#(f(c), f(c))g#(c, U121(e, c), U121(k, k))h#(c, c)g#(e, l, f(l))
h#(f(c), f(c))g#(U121(e, e), U121(e, c), U121(k, k))h#(f(c), f(c))g#(e, e, f(m))
A#g#(U121(e, c), c, f(m))h#(f(c), f(c))g#(f(e), f(l), f(k))
h#(c, c)g#(e, c, U121(k, k))h#(f(e), f(e))g#(U121(e, e), e, f(m))
h#(f(c), f(c))g#(U121(e, c), l, f(m))h#(f(c), f(c))g#(l, U121(e, c), f(k))
A#g#(c, c, U121(k, k))g#(d, x, x)h#(U121(e, c), U121(c, c))
h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))h#(f(c), f(c))g#(U121(e, e), l, U121(m, m))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(c), f(c))g#(U121(e, e), f(l), f(k))
A#h#(f(e), f(e))h#(f(c), f(c))g#(f(l), l, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), l, U121(k, k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(f(c), f(c))g#(e, l, f(l))h#(f(c), f(c))g#(U121(c, c), e, U121(k, k))
A#g#(c, c, f(l))h#(f(c), f(c))g#(f(e), e, f(m))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(f(c), l, f(l))g#(d, x, x)h#(U121(c, c), e)
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))A#g#(e, l, f(m))
h#(f(c), f(c))g#(l, l, f(m))h#(f(c), f(c))g#(e, c, f(l))
A#g#(e, l, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(e), f(e)) → g#(e, e, U121(k, k)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U121(l, k))
 g#(e, e, U121(m, k))
Thus, the rule h#(f(e), f(e)) → g#(e, e, U121(k, k)) is deleted.

Problem 194: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, c), U121(e, c))A#g#(e, e, f(m))
g#(d, x, x)h#(U121(e, c), U121(e, c))A#g#(c, e, f(m))
A#h#(c, c)A#g#(l, c, f(m))
g#(d, x, x)h#(c, c)A#h#(f(c), f(c))
A#g#(c, l, f(m))h#(f(c), f(c))g#(U121(e, c), l, f(m))
h#(f(c), f(c))g#(l, U121(e, c), f(k))h#(f(e), f(e))g#(U121(e, e), e, f(m))
h#(f(c), f(c))g#(f(e), f(l), f(m))h#(U121(e, c), U121(e, c))g#(l, c, U121(k, k))
g#(d, x, x)h#(U121(e, c), U121(c, c))A#g#(c, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))A#h#(f(e), f(e))
h#(f(c), f(c))g#(f(l), l, U121(k, k))h#(f(c), f(c))g#(U121(e, e), l, U121(m, m))
h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(f(c), f(c))g#(e, l, f(l))h#(f(c), f(c))g#(U121(e, e), l, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), e, U121(k, k))h#(f(c), f(c))g#(f(e), e, f(m))
A#g#(c, c, f(l))h#(c, c)g#(e, e, U121(k, k))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(l), f(c), f(l))
h#(f(c), f(c))g#(f(c), l, f(l))h#(f(c), f(c))g#(c, e, U121(k, k))
h#(f(c), f(c))g#(e, f(l), f(k))g#(d, x, x)h#(U121(c, c), e)
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))A#g#(e, l, f(m))
h#(f(c), f(c))g#(l, l, f(m))h#(f(c), f(c))g#(e, c, f(l))
A#g#(e, l, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → g#(e, e, f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(e, e, U121(m, m))
Thus, the rule A# → g#(e, e, f(m)) is deleted.

Problem 195: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

g#(d, x, x)h#(U121(e, c), c)g#(d, x, x)h#(c, U121(e, c))
A#h#(c, c)g#(d, x, x)h#(c, c)
A#h#(f(c), f(c))A#h#(U121(e, c), e)
g#(d, x, x)h#(e, U121(e, c))A#g#(c, c, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), l, U121(m, m))h#(f(c), f(c))g#(U121(e, e), U121(e, e), U121(m, m))
A#h#(f(e), f(e))h#(f(c), f(c))g#(f(l), l, U121(k, k))
h#(f(c), f(c))g#(U121(e, e), f(l), f(k))h#(f(c), f(c))g#(e, l, f(l))
h#(f(c), f(c))g#(U121(e, e), l, U121(k, k))h#(f(e), f(e))g#(U121(e, e), U121(e, e), f(l))
h#(f(c), f(c))g#(U121(c, c), e, U121(k, k))h#(f(c), f(c))g#(c, e, U121(k, k))
h#(c, c)g#(e, e, U121(k, k))h#(f(c), f(c))g#(e, f(l), f(k))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(c), l, f(l))
A#h#(U121(e, c), l)h#(f(c), f(c))g#(f(e), e, f(m))
A#h#(c, U121(e, c))g#(d, x, x)h#(l, U121(e, c))
h#(f(c), f(c))g#(f(l), f(c), f(l))A#g#(c, c, f(l))
g#(d, x, x)h#(U121(c, c), e)h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))
A#g#(e, l, f(m))h#(f(c), f(c))g#(l, l, f(m))
h#(f(c), f(c))g#(e, c, f(l))A#g#(e, l, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule g#(d, x, x) → h#(U121(e, c), c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U121(e, c), l) 
h#(c, c) 
h#(U121(e, c), e) 
Thus, the rule g#(d, x, x) → h#(U121(e, c), c) is replaced by the following rules:
g#(d, x, x) → h#(U121(e, c), e)g#(d, x, x) → h#(U121(e, c), l)
g#(d, x, x) → h#(c, c)

Problem 196: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(c, c)g#(d, x, x)h#(c, c)
A#h#(f(c), f(c))A#h#(U121(e, e), f(e))
A#h#(f(e), U121(e, e))h#(f(c), f(c))g#(U121(c, c), e, U121(k, k))
g#(d, x, x)h#(l, U121(e, c))A#h#(U121(e, c), l)
h#(c, c)g#(e, e, U121(k, k))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(e, f(l), f(k))g#(d, x, x)h#(c, l)
A#g#(c, c, f(l))h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))
h#(f(c), f(c))g#(f(l), f(c), f(l))A#h#(c, U121(e, c))
h#(f(c), f(c))g#(c, e, U121(k, k))h#(f(c), f(c))g#(f(e), e, f(m))
A#g#(e, l, f(m))A#g#(e, l, f(l))
g#(d, x, x)h#(U121(c, c), e)h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))
h#(f(c), f(c))g#(l, l, f(m))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U121(e, e), f(e)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, f(e)) 
h#(U121(e, e), U121(e, e)) 
Thus, the rule A# → h#(U121(e, e), f(e)) is replaced by the following rules:
A# → h#(U121(e, e), U121(e, e))A# → h#(e, f(e))

Problem 197: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(c, c)g#(d, x, x)h#(c, c)
A#h#(f(c), f(c))h#(f(c), f(c))g#(f(l), U121(e, e), f(l))
h#(c, c)g#(e, e, U121(k, k))A#g#(c, c, f(l))
h#(f(c), f(c))g#(U121(c, c), U121(e, c), f(m))h#(f(c), f(c))g#(f(c), l, f(l))
h#(f(c), f(c))g#(f(e), e, f(m))g#(d, x, x)h#(c, l)
h#(f(c), f(c))g#(l, l, f(m))h#(f(c), f(c))g#(e, c, f(l))
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))g#(d, x, x)h#(U121(c, c), e)
A#g#(e, l, f(l))A#g#(e, l, f(m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(f(l), U121(e, e), f(l)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(f(l), e, f(l))g#(U121(l, l), U121(e, e), f(l))
 g#(f(l), U121(e, e), U121(l, l))
Thus, the rule h#(f(c), f(c)) → g#(f(l), U121(e, e), f(l)) is replaced by the following rules:
h#(f(c), f(c)) → g#(f(l), e, f(l))

Problem 198: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(f(c), f(c))h#(f(c), f(c))g#(l, c, f(m))
h#(f(c), f(c))g#(e, l, f(m))h#(f(c), f(c))g#(U121(e, c), e, f(m))
h#(f(c), f(c))g#(e, e, f(m))h#(f(c), f(c))g#(U121(e, c), c, U121(m, m))
h#(f(c), f(c))g#(U121(e, c), l, f(m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(c, c), l, f(m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), f(m))
h#(f(c), f(c))g#(U121(c, c), e, f(m))h#(f(c), f(c))g#(e, c, f(m))
A#g#(c, c, f(l))h#(f(c), f(c))g#(e, c, f(l))
A#g#(e, l, f(m))h#(f(c), f(c))g#(l, l, f(m))
g#(d, x, x)h#(U121(c, c), e)A#g#(e, l, f(l))
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(l, c, f(m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
g#(l, e, f(m))g#(l, c, U121(m, m))
g#(l, l, f(m)) 
Thus, the rule h#(f(c), f(c)) → g#(l, c, f(m)) is replaced by the following rules:
h#(f(c), f(c)) → g#(l, e, f(m))h#(f(c), f(c)) → g#(l, l, f(m))

Problem 199: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

h#(f(c), f(c))g#(U121(e, c), l, U121(m, m))A#h#(f(c), f(c))
h#(f(c), f(c))g#(l, U121(e, c), f(m))h#(f(c), f(c))g#(U121(e, c), U121(e, c), U121(m, m))
h#(f(c), f(c))g#(U121(e, c), e, U121(m, m))A#g#(c, c, f(l))
h#(f(c), f(c))g#(U121(c, c), e, f(m))h#(f(c), f(c))g#(e, c, f(m))
A#g#(e, l, f(m))h#(f(c), f(c))g#(l, l, f(m))
A#g#(e, l, f(l))g#(d, x, x)h#(U121(c, c), e)
h#(f(c), f(c))g#(l, U121(e, c), U121(m, m))h#(f(c), f(c))g#(e, c, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule h#(f(c), f(c)) → g#(U121(e, c), l, U121(m, m)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
 g#(c, l, U121(m, m))
Thus, the rule h#(f(c), f(c)) → g#(U121(e, c), l, U121(m, m)) is deleted.

Problem 200: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(e, c)A#h#(U121(c, c), f(c))
A#h#(l, U121(c, c))A#h#(U121(c, c), f(e))
A#h#(f(e), f(l))A#h#(f(c), U121(e, e))
A#h#(f(l), f(e))A#h#(f(e), f(e))
A#h#(f(c), U121(e, c))A#h#(f(e), U121(c, c))
A#h#(U121(c, c), U121(e, c))A#h#(f(l), U121(e, c))
A#h#(U121(e, c), f(l))A#h#(f(e), f(c))
A#h#(U121(e, c), c)A#h#(c, U121(e, c))
A#g#(e, l, f(l))g#(d, x, x)h#(U121(c, c), e)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, c) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, e) 
h#(e, l) 
Thus, the rule A# → h#(e, c) is replaced by the following rules:
A# → h#(e, e)A# → h#(e, l)

Problem 201: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(c, U121(e, e))A#h#(l, U121(c, c))
A#h#(U121(c, c), f(e))A#h#(f(l), f(e))
A#h#(f(c), U121(e, c))A#h#(f(e), U121(c, c))
A#h#(U121(c, c), U121(e, c))A#h#(U121(e, c), c)
A#h#(l, f(e))A#h#(e, f(l))
A#h#(e, e)A#h#(e, U121(e, e))
A#h#(U121(e, c), U121(e, e))A#h#(l, f(c))
A#h#(c, f(l))A#h#(f(c), U121(e, e))
A#h#(f(e), f(l))A#h#(l, U121(e, c))
A#h#(f(e), f(e))A#h#(f(l), U121(e, c))
A#h#(U121(e, c), f(l))A#h#(e, l)
A#h#(f(e), f(c))A#h#(c, U121(e, c))
A#g#(e, l, f(l))g#(d, x, x)h#(U121(c, c), e)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(c, U121(e, e)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, U121(e, e)) 
h#(c, e) 
h#(l, U121(e, e)) 
Thus, the rule A# → h#(c, U121(e, e)) is replaced by the following rules:
A# → h#(c, e)A# → h#(e, U121(e, e))
A# → h#(l, U121(e, e))

Problem 202: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(c, c), e)A#h#(f(c), c)
A#h#(f(l), e)A#h#(f(e), e)
A#h#(U121(e, c), U121(e, e))A#h#(U121(e, e), l)
A#h#(c, f(l))A#h#(l, f(c))
A#h#(f(c), U121(e, e))A#h#(l, c)
A#h#(f(e), f(l))A#h#(f(e), f(e))
A#h#(l, U121(e, c))A#h#(f(l), U121(e, c))
A#h#(U121(e, c), f(l))A#h#(c, U121(e, c))
A#h#(U121(e, c), l)A#h#(U121(e, e), U121(e, c))
A#h#(e, l)A#h#(f(e), f(c))
g#(d, x, x)h#(U121(c, c), e)A#g#(e, l, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U121(c, c), e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(U121(e, c), e)h#(U121(l, c), e)
Thus, the rule A# → h#(U121(c, c), e) is replaced by the following rules:
A# → h#(U121(e, c), e)

Problem 203: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(e, e)A#h#(l, e)
A#h#(U121(e, e), l)A#h#(f(l), l)
A#h#(l, f(c))A#h#(c, f(l))
A#h#(l, c)A#h#(f(c), U121(e, e))
A#h#(f(e), f(l))A#h#(f(e), f(e))
A#h#(l, U121(e, c))A#h#(f(l), U121(e, c))
A#h#(U121(e, e), e)A#h#(U121(e, c), f(l))
A#h#(f(e), f(c))A#h#(e, l)
A#h#(U121(e, e), U121(e, c))A#h#(U121(e, c), l)
A#h#(c, U121(e, c))A#g#(e, l, f(l))
g#(d, x, x)h#(U121(c, c), e)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(e, e) is deleted.

Problem 204: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, e), U121(e, e))A#h#(e, f(e))
A#h#(l, U121(e, c))A#h#(f(e), U121(e, e))
A#h#(f(l), U121(e, c))A#h#(U121(e, e), e)
A#h#(U121(e, c), f(l))A#h#(U121(e, c), l)
A#h#(c, U121(e, c))A#h#(e, l)
A#h#(f(e), f(c))A#h#(U121(e, e), U121(e, c))
A#g#(e, l, f(l))g#(d, x, x)h#(U121(c, c), e)

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(U121(e, e), U121(e, e)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
h#(e, U121(e, e)) 
h#(U121(e, e), e) 
Thus, the rule A# → h#(U121(e, e), U121(e, e)) is replaced by the following rules:
A# → h#(e, U121(e, e))A# → h#(U121(e, e), e)

Problem 205: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(e, e)A#h#(U121(e, e), l)
A#h#(U121(e, e), e)A#h#(f(e), f(c))
A#h#(e, U121(e, c))A#h#(e, l)
g#(d, x, x)h#(U121(c, c), e)A#g#(e, l, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, e) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(e, e) is deleted.

Problem 206: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

A#h#(U121(e, e), U121(e, c))A#h#(e, U121(e, c))
A#h#(e, l)g#(d, x, x)h#(U121(c, c), e)
A#g#(e, l, f(l))

Rewrite Rules

acbc
cekl
dmad
bdcl
kmAh(f(a), f(b))
h(x, x)g(x, x, f(k))g(d, x, x)A
f(x)U121(x, x)U121(e, x)x

Original Signature

Termination of terms over the following signature is verified: f, g, d, e, b, A, c, a, l, m, k, h

Strategy

Context-sensitive strategy:
μ(d) = μ(e) = μ(d#) = μ(b) = μ(c) = μ(A) = μ(a) = μ(l) = μ(a#) = μ(m) = μ(k) = μ(T) = μ(A#) = μ(k#) = μ(b#) = μ(c#) = ∅
μ(f) = μ(f#) = μ(U121#) = μ(U121) = {1}
μ(h#) = μ(h) = {1, 2}
μ(g) = μ(g#) = {1, 2, 3}


The right-hand side of the rule A# → h#(e, l) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule A# → h#(e, l) is deleted.