YES

The TRS could be proven terminating. The proof took 1045 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (139ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4 (46ms).
 | – Problem 3 was processed with processor PolynomialLinearRange4 (34ms).
 | – Problem 4 was processed with processor PolynomialLinearRange4 (270ms).
 |    | – Problem 5 was processed with processor PolynomialLinearRange4 (189ms).
 |    |    | – Problem 6 was processed with processor DependencyGraph (17ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

U101#(true, y, x)gcd#(s(x), minus(y, x))gcd#(s(x), s(y))U101#(less(x, y), y, x)
U101#(true, y, x)T(x)U91#(true, y, x)T(x)
U91#(true, y, x)minus#(x, y)gcd#(s(x), s(y))less#(x, y)
U91#(true, y, x)T(y)gcd#(s(x), s(y))U91#(less(y, x), y, x)
minus#(s(x), s(y))minus#(x, y)less#(s(x), s(y))less#(x, y)
gcd#(s(x), s(y))less#(y, x)U101#(true, y, x)T(y)
U101#(true, y, x)minus#(y, x)U91#(true, y, x)gcd#(minus(x, y), s(y))

Rewrite Rules

less(x, 0)falseless(0, s(x))true
less(s(x), s(y))less(x, y)minus(0, s(y))0
minus(x, 0)xminus(s(x), s(y))minus(x, y)
gcd(x, x)xgcd(s(x), 0)s(x)
gcd(0, s(y))s(y)gcd(s(x), s(y))U91(less(y, x), y, x)
U91(true, y, x)gcd(minus(x, y), s(y))gcd(s(x), s(y))U101(less(x, y), y, x)
U101(true, y, x)gcd(s(x), minus(y, x))

Original Signature

Termination of terms over the following signature is verified: 0, minus, s, false, true, less, gcd

Strategy

Context-sensitive strategy:
μ(true) = μ(T) = μ(0) = μ(false) = ∅
μ(U101#) = μ(U91#) = μ(s) = μ(U91) = μ(U101) = {1}
μ(minus) = μ(minus#) = μ(less#) = μ(gcd#) = μ(less) = μ(gcd) = {1, 2}


The following SCCs where found

minus#(s(x), s(y)) → minus#(x, y)

less#(s(x), s(y)) → less#(x, y)

U101#(true, y, x) → gcd#(s(x), minus(y, x))gcd#(s(x), s(y)) → U101#(less(x, y), y, x)
gcd#(s(x), s(y)) → U91#(less(y, x), y, x)U91#(true, y, x) → gcd#(minus(x, y), s(y))

Problem 2: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

minus#(s(x), s(y))minus#(x, y)

Rewrite Rules

less(x, 0)falseless(0, s(x))true
less(s(x), s(y))less(x, y)minus(0, s(y))0
minus(x, 0)xminus(s(x), s(y))minus(x, y)
gcd(x, x)xgcd(s(x), 0)s(x)
gcd(0, s(y))s(y)gcd(s(x), s(y))U91(less(y, x), y, x)
U91(true, y, x)gcd(minus(x, y), s(y))gcd(s(x), s(y))U101(less(x, y), y, x)
U101(true, y, x)gcd(s(x), minus(y, x))

Original Signature

Termination of terms over the following signature is verified: 0, minus, s, false, true, less, gcd

Strategy

Context-sensitive strategy:
μ(true) = μ(T) = μ(0) = μ(false) = ∅
μ(U101#) = μ(U91#) = μ(s) = μ(U91) = μ(U101) = {1}
μ(minus) = μ(minus#) = μ(less#) = μ(gcd#) = μ(less) = μ(gcd) = {1, 2}


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

minus#(s(x), s(y))minus#(x, y)

Problem 3: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

less#(s(x), s(y))less#(x, y)

Rewrite Rules

less(x, 0)falseless(0, s(x))true
less(s(x), s(y))less(x, y)minus(0, s(y))0
minus(x, 0)xminus(s(x), s(y))minus(x, y)
gcd(x, x)xgcd(s(x), 0)s(x)
gcd(0, s(y))s(y)gcd(s(x), s(y))U91(less(y, x), y, x)
U91(true, y, x)gcd(minus(x, y), s(y))gcd(s(x), s(y))U101(less(x, y), y, x)
U101(true, y, x)gcd(s(x), minus(y, x))

Original Signature

Termination of terms over the following signature is verified: 0, minus, s, false, true, less, gcd

Strategy

Context-sensitive strategy:
μ(true) = μ(T) = μ(0) = μ(false) = ∅
μ(U101#) = μ(U91#) = μ(s) = μ(U91) = μ(U101) = {1}
μ(minus) = μ(minus#) = μ(less#) = μ(gcd#) = μ(less) = μ(gcd) = {1, 2}


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

less#(s(x), s(y))less#(x, y)

Problem 4: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

U101#(true, y, x)gcd#(s(x), minus(y, x))gcd#(s(x), s(y))U101#(less(x, y), y, x)
gcd#(s(x), s(y))U91#(less(y, x), y, x)U91#(true, y, x)gcd#(minus(x, y), s(y))

Rewrite Rules

less(x, 0)falseless(0, s(x))true
less(s(x), s(y))less(x, y)minus(0, s(y))0
minus(x, 0)xminus(s(x), s(y))minus(x, y)
gcd(x, x)xgcd(s(x), 0)s(x)
gcd(0, s(y))s(y)gcd(s(x), s(y))U91(less(y, x), y, x)
U91(true, y, x)gcd(minus(x, y), s(y))gcd(s(x), s(y))U101(less(x, y), y, x)
U101(true, y, x)gcd(s(x), minus(y, x))

Original Signature

Termination of terms over the following signature is verified: 0, minus, s, false, true, less, gcd

Strategy

Context-sensitive strategy:
μ(true) = μ(T) = μ(0) = μ(false) = ∅
μ(U101#) = μ(U91#) = μ(s) = μ(U91) = μ(U101) = {1}
μ(minus) = μ(minus#) = μ(less#) = μ(gcd#) = μ(less) = μ(gcd) = {1, 2}


Polynomial Interpretation

Standard Usable rules

minus(s(x), s(y))minus(x, y)less(x, 0)false
U91(true, y, x)gcd(minus(x, y), s(y))gcd(0, s(y))s(y)
gcd(s(x), s(y))U101(less(x, y), y, x)minus(0, s(y))0
minus(x, 0)xless(0, s(x))true
gcd(s(x), 0)s(x)gcd(s(x), s(y))U91(less(y, x), y, x)
U101(true, y, x)gcd(s(x), minus(y, x))gcd(x, x)x
less(s(x), s(y))less(x, y)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

U101#(true, y, x)gcd#(s(x), minus(y, x))gcd#(s(x), s(y))U101#(less(x, y), y, x)

Problem 5: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

gcd#(s(x), s(y))U91#(less(y, x), y, x)U91#(true, y, x)gcd#(minus(x, y), s(y))

Rewrite Rules

less(x, 0)falseless(0, s(x))true
less(s(x), s(y))less(x, y)minus(0, s(y))0
minus(x, 0)xminus(s(x), s(y))minus(x, y)
gcd(x, x)xgcd(s(x), 0)s(x)
gcd(0, s(y))s(y)gcd(s(x), s(y))U91(less(y, x), y, x)
U91(true, y, x)gcd(minus(x, y), s(y))gcd(s(x), s(y))U101(less(x, y), y, x)
U101(true, y, x)gcd(s(x), minus(y, x))

Original Signature

Termination of terms over the following signature is verified: minus, 0, s, true, false, less, gcd

Strategy

Context-sensitive strategy:
μ(true) = μ(T) = μ(0) = μ(false) = ∅
μ(U101#) = μ(U91#) = μ(s) = μ(U91) = μ(U101) = {1}
μ(minus) = μ(minus#) = μ(less#) = μ(gcd#) = μ(less) = μ(gcd) = {1, 2}


Polynomial Interpretation

Standard Usable rules

minus(s(x), s(y))minus(x, y)less(x, 0)false
U91(true, y, x)gcd(minus(x, y), s(y))gcd(0, s(y))s(y)
gcd(s(x), s(y))U101(less(x, y), y, x)minus(0, s(y))0
minus(x, 0)xless(0, s(x))true
gcd(s(x), 0)s(x)gcd(s(x), s(y))U91(less(y, x), y, x)
U101(true, y, x)gcd(s(x), minus(y, x))gcd(x, x)x
less(s(x), s(y))less(x, y)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

U91#(true, y, x)gcd#(minus(x, y), s(y))

Problem 6: DependencyGraph



Dependency Pair Problem

Dependency Pairs

gcd#(s(x), s(y))U91#(less(y, x), y, x)

Rewrite Rules

less(x, 0)falseless(0, s(x))true
less(s(x), s(y))less(x, y)minus(0, s(y))0
minus(x, 0)xminus(s(x), s(y))minus(x, y)
gcd(x, x)xgcd(s(x), 0)s(x)
gcd(0, s(y))s(y)gcd(s(x), s(y))U91(less(y, x), y, x)
U91(true, y, x)gcd(minus(x, y), s(y))gcd(s(x), s(y))U101(less(x, y), y, x)
U101(true, y, x)gcd(s(x), minus(y, x))

Original Signature

Termination of terms over the following signature is verified: 0, minus, s, false, true, less, gcd

Strategy

Context-sensitive strategy:
μ(true) = μ(T) = μ(0) = μ(false) = ∅
μ(U101#) = μ(U91#) = μ(s) = μ(U91) = μ(U101) = {1}
μ(minus) = μ(minus#) = μ(less#) = μ(gcd#) = μ(less) = μ(gcd) = {1, 2}


There are no SCCs!