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Abstract

A syntactic proof of cut-elimination yields a procedure to eliminate every instance
of the cut-rule from a derivation in the sequent calculus thus leading to a cut-
free derivation. This is a central result in the proof-theory of a logic. In 1983,
Valentini [71] presented a syntactic proof of cut-elimination for the provability
logic GL for a traditional Gentzen sequent calculus built from sets, as opposed
to multisets, thus avoiding an explicit rule of contraction. From a syntactic point
of view it is more satisfying and formal to explicitly identify the applications of
the contraction rule that are hidden in such calculi. Recently it has been claimed
that the cut-elimination procedure does not terminate when applied to the corre-
sponding sequent calculus built from multisets. Here we show how to resolve this
issue in order to obtain a syntactic proof of cut-elimination for GL. The logics
Grz and Go have a syntactically similar axiomatisation to G'L which suggests
that it might be possible to extend the proof to these logics. This is borne out
by an existing proof for Grz. However, no proof has been presented for Go. We
fill this gap in the literature by presenting a proof of syntactic cut-elimination for
this logic. The transformations for Go require a deeper analysis of the derivation

structures than the proofs for the other logics.

Next we examine Kracht’s syntactic characterisation for the class of logics
that can be presented via cutfree modal and tense display calculi. Recently it has
been shown that the characterisation for modal display calculi is incorrect. In this
work we significantly extend the class of modal logics that can be presented using
cutfree modal display calculi. We utilise this result to give a proof theory for a
syntactically-specified class of superintuitionistic logics. Then we take a semantic
approach and show how to construct display calculi for superintuitionistic logics

specified by suitable frame conditions.

Finally, we introduce the natural maps between tree-hypersequent and nested
sequent calculi, and a proper subclass of labelled sequent calculi that we call la-

belled tree sequent calculi. Then we show how to embed certain labelled sequent

X



calculi into the corresponding labelled tree sequent systems. Using the existing
soundness and completeness and cut-admissibility results for the labelled sequent
calculus G3G L we then obtain the corresponding results for Poggiolesi’s [58] tree-
hypersequent calculus C'SGL, thus alleviating the need for independent proofs
and answering a question posed in that paper. Next, we generalise a scheme for
obtaining labelled tree sequent rules corresponding to modal axioms and investi-
gate the possibility of using this method to obtain modular cutfree nested sequent
systems for a large class of modal logics. Although the general result remains to
be proved, we consider some concrete cases and show that the scheme leads to

cutfree systems.
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Chapter 1

Introduction

David Hilbert [47] initiated the branch of Logic called proof theory as a part of
his investigation into the foundation of mathematics. Hilbert’s original intention
was to prove the consistency of axiomatisations for mathematics by elementary
means. This agenda called for a complete formalisation of various parts of math-
ematics. In particular, mathematical proofs as well as the steps of reasoning
employed in a logical argument were to be formalised using a proof-system called
the Hilbert calculus [16]. The Hilbert calculus consists of a number of axioms
or ‘truths’ and some number of inference rules which specify how to obtain new
‘truths’ from existing ones. The point is that a proof in the Hilbert calculus (let
us call this a derivation) is a well-defined object, as opposed to the informal and
imprecise notion employed in ordinary discourse. Indeed, most real-world math-
ematical proofs fall into the latter category, for instance, due to the omission of
‘obvious’ steps and trivial cases. By precisely formalising the notion of proof, it
became possible to undertake a serious study of proofs, or proof theory. Although
Hilbert’s original aim of an elementary proof of consistency for mathematical the-
ories was shown to be unattainable due to Godel’s [27] famous incompleteness
theorems, variations of this programme have been a driving force for the devel-
opment of proof theory [70]. Furthermore, the results and techniques of proof
theory have been fruitfully employed in areas such as automated reasoning [34]
and linguistics [14].

A drawback with the Hilbert calculus is the fact that derivations in this system
seem to lack a discernible structure, making them difficult to analyse. Moreover,
derivations in the Hilbert calculus are very different to the proofs written by
mathematicians in terms of the style of reasoning that is used. In response,

Gerhard Gentzen [25] introduced the system of natural deduction. As the name
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2 CHAPTER 1. INTRODUCTION

suggests, the formal inference rules in this system mimic (formalise) the sort of
deductive reasoning that is employed in practice. In order to study the proper-
ties of this system, Gentzen then constructed yet another proof-system called the
sequent calculus. Gentzen’s Hauptsatz or main theorem for the sequent calculus
is the cut-elimination theorem which shows how to obtain a standard form for
derivations using a special type of sequent calculus called a cutfree sequent cal-
culus. Derivations in a cutfree sequent calculus have a particularly nice structure
making cutfree calculi an excellent tool for proof-theoretical study. In addition,
the cut-elimination theorem often leads to simple proofs of consistency and inter-
polation [70]. This work established the branch of study called structural proof
theory which is concerned with the structure and properties of proofs and proof-
systems. Structural proof theory focusses on syntactic structures, which means
that it is concerned primarily with the syntax of formal systems as opposed to
the interpretation or meaning that is attached to them.

Broadly speaking, since Logic is concerned with systems of reasoning (‘logics’),
a major objective of proof theory is to construct proof-systems that formalise
these logics. Cutfree sequent calculi have been presented for a large class of
logics. Nevertheless, there are logics that have defied treatment as a cutfree
(Gentzen) sequent calculus, for example the modal logic S5 [66, 20, 36, 56]. In
part, this is due to the fact that the proofs of cut-elimination tend to be highly
sensitive to minor alterations in the form of the inference rules — this is an
important consideration because new proof-systems are most easily constructed
by the addition or alteration of existing inference rules. Many variants/refinement
proof-systems have been proposed in an effort to address the shortcomings in
Gentzen’s sequent calculus, although it should be noted that each of these systems
has its own shortcomings. Examples of proof-systems that we will encounter in
this thesis include the display calculus [5] and labelled sequent calculi [24, 52].
Structural proof-theory encompasses the study of these proof-systems as well as
the logic-specific results that can be obtained through their analysis.

The work in this thesis broadly concerns the following areas:
(i) cut-elimination for some sequent calculi,
(ii) display calculi for modal and superintuitionistic logics,
(iii) importing results from labelled sequent calculi into other proof-systems.

The common theme is that all these areas pertain to structural proof-theory,

although it goes without saying that the solutions draw from techniques in other
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fields as well.
In the following we provide a brief introduction to each problem and present
the contributions of this thesis. A historical introduction to each problem is given

in its respective chapter.

1.1 Cut-elimination for sequent calculi

Gentzen [25] introduced the sequent calculus as a tool for studying his system of
natural deduction for classical and intuitionistic logic. The sequent calculus is
built from ordered pairs (X,Y’) (these ordered pairs are called sequents and are
written X = Y') where X and Y are sets or multisets (Gentzen originally used
ordered lists) of logical formulae. The logical formulae are constructed using vari-
ables and logical symbols such as = (“not”), V (“disjunction”), A (“conjunction”)
and D (“implication”). The sequent X = Y is intended to correspond to the
formula A X D \/ Y where the notation A X (resp. \/ Y) denotes the conjunction
(disjunction) of all formulae in X (Y). The sequent calculus typically consists of
(i) a set of (‘initial’) sequents and (ii) inference rules. Each inference rule specifies
how to obtain a new sequent from an appropriate set of sequents. A derivation
is obtained by repeatedly applying the inference rules beginning with the initial
sequents. A sequent is said to be derivable if there is a derivation concluding with
that sequent. It is usual to view a logic, under a suitable interpretation for the
variables and logical symbols, in terms of some set L of logical formulae. Then
a sequent calculus is said to present the logic L if the derivable sequents in the
calculus correspond exactly to the formulae in L.

One sequent calculus inference rule that receives special attention is the cut-
rule. In the following we use the standard convention of writing X, A to mean
the set (resp. multiset) X U {A} for some set (multiset) X and formula A. The
cut-rule states that if X = Y, A and A,U =V are derivable sequents then so is
the sequent X,U = Y, V. In the usual notation for sequent calculi, the cut-rule

is presented as follows:

X=Y A AU=V
X.U=VY,V

cut

The sequents above the line are called the premises, the sequent below the line
is called the conclusion of the rule, and A is called the cut-formula. The name
“cut-rule” can be motivated by noting that in the above, the formula A has been

‘cut’ away from the premises to obtain the conclusion of the rule. The cut-rule is
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analogous to the modus ponens rule in Hilbert calculi. Not surprisingly, the pres-
ence of this rule is helpful in establishing completeness results between a sequent
calculus and the corresponding Hilbert calculus. At the same time, the presence
of the rule in the sequent calculus is undesirable as well. One reason is that the
cut-rule causes a formula (when viewed downwards from the premises) to disap-
pear, violating the so-called subformula property which states that every formula
appearing in the premise of an inference rule appears as a subformula in the
conclusion. If every inference rule in the sequent calculus obeys the subformula
property, then every formula appearing in a derivation appears as a subformula
in the final sequent. This facilitates the possibility of constructing a derivation
(should it exist) for a given sequent by beginning with this sequent and exhaus-
tively applying the inference rules backwards, from conclusion sequent to premise
sequents — this approach is often called backward proof search. The presence of
the cut-rule makes it difficult to conduct backward proof search because we would
need to deduce the cut-formula first, in order to apply the cut-rule backwards,
and it is usually not clear how to do this.

One way to have our cake and eat it too is to show that it is always possi-
ble to eliminate instances of the cut-rule from a given derivation, transforming
the given derivation into a cutfree derivation of the same sequent. A syntactic
proof of cut-elimination, or syntactic cut-elimination for short, is a proof that it
is always possible via constructive transformation to eliminate the cut-rules in
a given derivation in order to obtain a cutfree derivation of the same sequent.
This is one of the most important results in the proof theory of a logic and the
existence of such a transformation is a highly desirable property for a sequent
calculus. The first such proof was given by Gentzen [25] who recognised the im-
portance of a constructive procedure in his celebrated Hauptsatz where syntactic
cut-elimination is presented for the classical and intuitionistic sequent calculi LK
and LJ respectively. From the onset it was noted that the cut-elimination result
is highly dependent on the form and structure of the rules in the sequent calculus.
Moreover, Gentzen observed that the use of sequents built from multisets rather
than sets can create further complications — in his proof of the Hauptsatz he
introduced a new multicut rule to handle the ensuing cases.

Let us expand on some of the consequences of the cut-elimination result. A
logic is inconsistent if it contains a false or ‘absurd’ statement. If some sequent
calculus presents this logic, then there must be a derivation of the absurd state-
ment. The cut-elimination theorem tells us that if there is a derivation of the

absurd, then there must be a cutfree derivation of the absurd. In practice, for
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most sequent calculi, it is easy to check that there cannot be a cutfree proof of
the absurd, thus establishing consistency. Under these circumstances, the cut-
elimination result is at least as strong as consistency of the logic.

Gentzen’s original use of the cut-elimination result was to prove the nor-
malisation result for the natural deduction system for intuitionistic logic. The
correspondence between cut-elimination and normalisation has been extended to
many other logics. We have already noted that suitable cutfree sequent calculi
can be used for backward proof search.

If we interpret each formula in a sequent as a mathematical statement, then
an instance of the cut-rule in a derivation can be viewed as an occurrence of a
lemma within a mathematical proof. The syntactic cut-elimination theorem says
that whenever lemmata are employed in the proof of some statement there is a
constructive procedure for rewriting the proof in order to obtain a new proof,

containing no lemmata, of the same statement.

1.1.1 Cut-elimination for GL

We begin by looking at syntactic cut-elimination for provability logic GL. The
logic GL is obtained by the addition of Lob’s axiom (A D A) D OA to
the basic normal modal logic K. The history of syntactic cut-elimination for
GL is rather convoluted. In 1981, the first proof was presented by Leivant [42].
Valentini [71] found an error in that proof and presented a new proof of cut-
elimination. These proofs were presented for sequent calculi where the sequents
were built from sets as opposed to multisets. Subsequently Moen [51] claimed that
Valentini’s arguments break down when lifted to a sequent calculus for sequents
built from multisets. Because Moen used a non-constructive argument, it was not
possible to determine if the problem was with Valentini’s original proof, the proof
for a sequent calculus built from multisets, or if Moen’s claim was incorrect. The
resulting confusion and continued interest in the problem is reflected by the fact
that it has motivated several new solutions for a variety of different proof-systems
(see [8, 65, 52, 49, 58]), although none of these works address Moen’s claim.
Here, we successfully translate Valentini’s original set-based arguments for
cut-elimination to a sequent calculus built from multisets. A new transformation
is required to handle the contraction rules that need to be included in the calculus
to handle the transition from sets to multisets. Moreover, the transformation
needs to be stated precisely in order to prove that the induction measure justifying

the proof of cut-elimination is well-founded. Under these conditions, we show that
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Valentini’s argument can be applied to a sequent built from multisets. Finally,
we have identified a specific error in Moen’s work. Thus this work lays to rest
the controversy surrounding Valentini’s cut-elimination for GL.

Aside from the cut-elimination, we describe also how to use the decision and
countermodel procedure for GL (Sambin and Valentini [64]) to obtain a new
decision procedure for intuitionistic propositional logic [16]. A novelty in this work
is the usage of proof-theoretic methods to prove that the resulting countermodel

has the persistence property of intuitionistic models.

1.1.2 Extending the cut-elimination result to Go

The logics Grz (Grzegorczyk’s logic [46]) and Go [44] can be obtained by the
addition to the basic modal logic K [7] of the axiom

OOA>OA) D A) DDA (1.1)

as well as the reflexivity axiom A D A (for Grz) or the transitivity axiom
O0A D OOA (for Go) Notice the similarity in form between Lob’s axiom and
the formula (1.1). In fact, the inference rules for sequent calculi for these logics
are very similar as well. This raises the obvious question — can we exploit the
similarity of the inference rules to obtain cut-elimination procedures for Grz and
Go? For Grz there is an existing proof of syntactic cut-elimination due to Borga
and Gentilini [9]. Indeed, the transformations for that proof bear a similarity to
the proof of cut-elimination for GL. However, no proof has been presented for
Go. In this work, we will fill this gap in the literature by presenting a proof of
cut-elimination for Go. We observe that the proof for Go is significantly more
complicated than the proofs for GL and Grz, and the transformations require
a greater generality and a deeper analysis of the derivation structures than the

proofs for the other logics.

1.2 Display calculi for modal and
superintuitionistic logics

Belnap’s [5] Display Calculus is a proof-system that is capable of capturing a
large class of logics. Roughly speaking, the display calculus can be obtained from
the Gentzen sequent calculus by augmenting the logical connectives with a set

of metalevel connectives (‘structural connectives’). Inference rules specify the
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behaviour of these structural connectives as well as the logical connectives. Typ-
ically, the subformula property is enforced for inference rules introducing logical
connectives but not for inference rules dealing with structural connectives. This
lattitude with respect to structural connectives permits nice properties such as
the so-called display property, and the general cut-elimination theorem, which ap-
plies whenever the rules of the calculus satisfy some well-defined criteria. Indeed,
if we focus on extensions of a given display calculus via structural rules (these
are inference rules that do not contain logical connectives) then these criteria can
be verified directly. A logic that can be presented using suitable structural rule

extensions of the display calculus is said to be properly displayable.

Kracht [39] presented an elegant result characterising the axiomatic extensions
of the basic tense logic Kt that are properly displayable. Kracht also claimed an
analogous characterisation for axiomatic extensions of the basic modal logic K.
A counterexample to this claim has been suggested [80]. However, the validity of
the counterexample rests on the statement that the logic in question cannot be
expressed using a certain axiomatisation, and we are not aware of any existing
proof of this statement. Here, we show that the counterexample is indeed valid
by proving this non-trivial result. Next, we propose a new characterisation of ax-
iomatic extensions over K that are properly displayable. Although the complete
characterisation for properly displayable modal logics rests on a conjecture that
has yet to be proved!, even without this conjecture our work extends significantly

the class of modal logics that are properly displayable.

The logics between intuitionistic propositional logic and classical propositional
logic are called superintuitionistic logics [16]. It is well-known that the Godel
translation [27] induces a map between the class of superintuitionistic logics and
modal logics. We apply our results to construct display calculi for superintuition-
istic logics that are axiomatised by formule of a certain syntactic form. We note
that this method is limited in scope due to the difficulty of expressing a given su-
perintuitionistic logic in the required syntactic form. Next, we utilise a semantic
characterisation of properly displayable modal logics and show how to construct
display calculi for superintuitionistic logics specified by suitable semantic frame
conditions. Using this technique we are able to properly display a large class of

superintuitionistic logics.

IM. Kracht has given a ‘proof’ for the conjecture, but we have shown that his proof is
incomplete. He completely agrees with our analysis regarding this problem and concedes that
it is not clear how to obtain the result: personal correspondence by email dated 13/Dec/2010.
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1.3 Importing results from labelled

sequent calculi

Labelled sequent calculi [24, 52|, tree-hypersequent calculi [57] and nested sequent
calculi [37, 11] are examples of variant proof-systems of the Gentzen sequent cal-
culus that have been studied in recent years. Here, we identify a subclass of
labelled sequent calculi called labelled tree sequent calculi and show how to con-
struct maps between labelled tree sequent, tree-hypersequent and nested sequent
calculi. These maps allow us to translate derivations faithfully between these sys-
tems. We can exploit this translation to answer a question posed as future work
by Poggiolesi [58] concerning the relationship between the tree-hypersequent cal-
culus C'SGL for provability logic GL and the labelled sequent calculus G3GL [52]
for GL. In particular, this allows us to import results such as soundness and com-
pleteness for GL, and cut-admissibility from G3GL to C'SGL.

Next we generalise a scheme by Hein [35] for constructing labelled tree sequent
calculi for modal logics axiomatised over K using 3/4 Lemmon-Scott formulae.
Hein has conjectured that the resulting calculi have cut-elimination but does not
present a proof. Here we show that cut-elimination holds for these calculi for
some concrete modal logics, by utilising existing results [12] for nested sequent
calculi. Although we do not yet have a general proof of cut-elimination, the work
here indicates how this problem can be phrased in terms of importing results

from suitable labelled sequent calculi into labelled tree sequent calculi.

1.4 Organisation of material

The thesis is organised as follows. In Chapter 2 we present cut-elimination for
GL. In Chapter 3 we present cut-elimination for Go. In Chapter 4 we introduce
some preliminary results in correspondence theory and introduce the display cal-
culus. In Chapter 5 we present the characterisation for display calculi for modal
and tense logics. In Chapter 6 we discuss how to construct display calculi for
superintuitionistic logics. Finally, in Chapter 7 we study how to import results
for labelled sequent calculi into labelled tree sequent calculi and other notational
variant systems. In Chapter 8 we present the Conclusion. The chapters have been
organised into Parts I, IT and III. Each part is self-contained. Finally, to maintain

the flow of the text, certain proofs and results have been placed in Appendix A.



Part 1

Cut-elimination for sequent

calculi






Chapter 2

Cut-elimination for provability

logic GL resolved

In this chapter, we first introduce the provability logic GL and discuss some
problems with existing proofs of cut-elimination for GL (Section 2.1). In Sec-
tion 2.2 we formally introduce the sequent calculus GLS together with some
basic definitions and terminology. Next, we introduce the technical device we
call the stub-derivation (Section 2.3.1). Informally, a stub-derivation is obtained
from a derivation 7 by replacing one or more subderivations in 7 with a stub
(’hole’). The stub-derivation will help us to model the changing derivation under
the cut-elimination transformations. We then prove invertibility results for the
logical rules of GLS (Section 2.3.2). In Section 2.4 we present the new proof of

cut-elimination.

In the final three sections we discuss extensions of this work. In Section 2.7 we
show that the cut-elimination argument can be adapted to handle a multiplicative
LD rule instead of the additive LD rule in GLS. Section 2.8 extends our work in a
different direction. We obtain a decision/countermodel construction procedure for
intuitionistic logic, building on a decision/countermodel construction procedure
for GL described in [64]. Finally, in Section 2.9 we discuss how the cut-elimination
procedure can be adapted to sequent calculi for some other logics bearing a similar
axiomatisation to GL. The final section serves as a lead-in to Chapter 3 where a

proof of cut-elimination for Go is presented.

11
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2.1 Problems with cut-elimination for GGL

The provability logic GL is obtained by adding Lob’s axiom O(CA D A) D OA
to the standard Hilbert calculus for propositional normal modal logic K [64].
Interpreting the modal operator [JA as the provability predicate “A is provable in
Peano arithmetic”, it can be shown that GGL is complete with respect to the formal
provability interpretation in Peano arithmetic (see [68]). For an introduction to
provability logic see [69].

In 1981, Leivant [42] proposed a syntactic proof of cut-elimination for a se-
quent calculus for GL. Valentini [71] soon described a counter-example to this
proof, proposing a more complicated proof for the sequent calculus GLSy for
GL. The calculus GLSy is a sequent calculus for classical propositional logic
together with a single modal rule GLR. Valentini’s proof appears to be the first
proof of cut-elimination for a sequent calculus for GL and relies on a complicated
transformation justified by a Gentzen-style induction on the degree of the cut-
formula and the cut-height, as well as a new induction parameter — the width
of a cut-formula. Roughly speaking, the width of a cut-instance is the number
of GLR rule instances above that cut which contain a parametric ancestor of the
cut-formula in their conclusion. However, Valentini’s proof is very brief, infor-
mal and difficult to check. For example, he only considers a cut-instance where
the cut-formula is left and right principal by the GLR rule (the Sambin Normal
Form), noting that “the presence of the new parameter [width] does not affect
the [remainder of the standard cut-elimination proof]” [71]. While it is true that
the standard transformations appropriately reduce the degree and/or cut-height,
he fails to observe that these transformations can sometimes increase the width
of lower cuts, casting doubt on the validity of the induction. A careful study of
the proposed transformation is required to confirm that the proof is not affected
(see Section 2.5).

Several other solutions for cut-elimination have been proposed. Borga [§]
presented one solution, while Sasaki [65] described a proof for a sequent calculus
very similar to GLSy, relying on cut-elimination for K4. Note that only Leivant
and Valentini used traditional Gentzen-style methods involving an induction over
the degree of the cut-formula and the cut-height.

All four authors used sequents X = Y where X and Y are sets, so these calculi
did not require a rule of contraction as there is no notion of a set containing an
element multiple times (unlike a multiset where the number of occurrences is

important). Thus the following instance of the LA rule is legal in GLSy even
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though it ‘hides’ a contraction on A A B:

AANB,AX =Y
ANB, X =Y

From a syntactic viewpoint, it is more satisfying and formal to explicitly identify

the contractions that are ‘hidden’ in these set-based proofs of cut-elimination.
The appropriate formalisation to understand the reliance on contraction is to use
multisets. Gentzen [25] in his original proof of the Hauptsatz for the classical
sequent calculus LK, introduced a ‘multicut’ rule to deal with a complication
in the case of contractions above cut. Recent investigations into cut-elimination
(especially in structural proof-theory) recognise the fact that the multicut rule
combines the structural rules of contraction and cut. This is undesirable as it hin-
ders our ability to analyse the independent ‘effect’ of each rule. Syntactic proofs
of cut-elimination for classical logic without the use of additional rules such as
the multicut rule have appeared in the literature, for example see [77, 10, 6]. This
is despite the existence of numerous sequent calculi built from sets for classical
logic. Since a syntactic proof of cut-elimination for a calculus built from sets can
be used to induce cutfree derivations in the corresponding calculus, these works
indicate the independent proof-theoretical interest in how the cutfree derivations
are obtained. In particular, with syntactic cut-elimination, the interest is in direct
proofs of cut-elimination. Inducing a proof for calculi built from multisets from a
calculus built from sets is essentially equivalent to the use of the multicut rule and
hence this is considered unsatisfactory as a method of syntactic cut-elimination.
More broadly, we should note here that proof theory is concerned not just with
the logic, but also with specific proof calculi for the logic. Hence questions such
as the data structure of the sequent (lists, sets, multisets, for example), the form
of its rules (are the rules invertible? do they have the subformula property?), and
its properties (such as cut-elimination) are of great interest to the proof-theorist.

In the case of GL, it turns out that additional complications also arise when
formulating Valentini’s arguments in a multiset setting, for example, due to the
interplay between weakening and contraction rules (see Remark 2.16). Thus
the move to a proof of cut-elimination for sequents built from multisets is not
straightforward. Moen [51] attempted to lift Valentini’s set-based arguments to
obtain a proof for sequents built from multisets before concluding that this was
not possible. Specifically, he presents a concrete derivation € containing cut, and
claims that a multiset formulation of Valentini’s argument does not terminate
when applied to e. This claim has ignited the search for new proofs of purely

syntactic cut-elimination in a Gentzen-style multiset setting for G L.
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In response, Negri [52] and Mints [49] proposed two different solutions. Negri
uses a non-standard multiset sequent calculus in which sequents are built from
multisets of labelled formulae of the form = : A, where A is a traditional formula
and z is an explicit name for a state in the frame semantics [16]. She shows
that contraction is height-preserving admissible in this calculus and uses this to
handle contractions above cut in her cut-elimination argument. In our view, the
use of semantic information in the calculus deviates from a purely proof theoretic
approach. Mints [49] solves the problem using a sequent calculus similar to the
multiset-formulation of GLSy, but does not specify how to handle the case of
contractions above cut.

Recently, Poggiolesi [58] presented a proof of syntactic cut-elimination for
a tree-hypersequent calculus for GL. A tree-hypersequent is built using some
number of (Gentzen) sequents that are ordered and nested using new meta-level
symbols ‘/” and ‘;’, and yields a structure that can be read in terms of a tree.
In particular, the order of the sequents (as determined by the ‘/°, ¢’ symbols)
is important. This contrasts with hypersequents [3] which are built from some
number of traditional sequents separated by ‘/” where the order of the sequents
is not important. Poggiolesi claims that the tree-hypersequent calculus for GL
has all the advantages of Negri’s calculus and in addition does not make use of
any semantic elements. However, it appears that tree-hypersequents ‘hide’ the
labelling for frame states by making use of the ordering and nesting induced by
‘/” and ‘. In other words, the reliance on the ordering of the sequents means
that tree-hypersequents contain similarly explicit semantic information, although
disguised through the use of less suggestive symbols.

So there are two issues to consider:

1. formalise “width” more precisely to clarify Valentini’s original definition,

and check whether it is a suitable induction measure, and

2. determine whether Valentini’s arguments can be used to obtain a purely

syntactic proof of cut-elimination in a multiset setting.

Our contribution is as follows: we have successfully translated Valentini’s set-
based arguments for cut-elimination to the corresponding sequent calculus built
from multisets. To this end, we have formalised the notion of parametric ancestor
and width to correspond intuitively with Valentini’s original definition. With this
formalisation we show that Valentini’s arguments can be applied in the multiset

setting, noting that although certain transformations may increase the width
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of lower cuts, this does not affect the proof. In the case where the last rule
in either premise derivation of the cut-rule is a contraction on the cut-formula,
we avoid the multicut rule by using von Plato’s arguments [77] when the cut-
formula is not boxed, and a new argument for the case when the cut-formula is
boxed. Thus we obtain a purely syntactic proof of cut-elimination in a multiset
setting. We also believe that we have identified an error in Moen’s claim that
Valentini’s arguments (in a multiset setting) do not terminate. It appears that
Moen has not used a faithful representation of Valentini’s arguments for the
inductive case, but instead a transformation he titles Val-II(core) that is already
known to be insufficient [64]. We discuss this further in Section 2.6. Of course,
the incorrectness of Moen’s claim does not imply the correctness of Valentini’s
arguments in a multiset setting. Indeed, the whole point is that complications do
arise in the multiset setting, and that these have to be dealt with carefully.

We remind the reader that it is trivial to show that the cut-rule is redundant
for both set and multiset sequent calculus formulations for GL by proving that
the calculus without the cut-rule is sound and complete for the frame semantics
of GL. However, our purpose here is to resolve the claim about the failure of
syntactic cut-elimination based on Valentini’s arguments for the corresponding
sequent calculus built with multisets. A formalisation of the cut-elimination result
based on the proof presented here and using the proof assistant Isabelle appears
in Dawson and Goré [19].

The proof of cut-elimination presented in this chapter is based on our work

reported in [32].

2.2 Basic definitions and notation

We use the letters p, q, . .. to denote propositional variables. Formulae are defined
in the usual way [16] in terms of propositional variables, the logical constant L
and the logical connectives A (conjunction), V (disjunction), D (implication) and
O (necessity, or in this context, provability). Formulae are denoted by A, B, .. ..
Multisets of formulae are denoted by X, Y, U, V, W, GG and also as a list of comma-
separated formula enclosed in “(” and “)”. A formula A is said to be bozed if it
is of the form OB for some formula B and is not bored otherwise. The relation
‘="1s used to denote syntactic equality. Let X be the multiset (A;,...,A4,). By
a slight abuse of notation, X, B denotes the multiset (A, ..., A,, B) Also define
the multiset X to be (0A,...,0A4,). Furthermore B € X iff B = A; for some
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Initial sequents: A = A for each formula A

Logical rules:

X=Y A I A X =Y R
X A=Y © X=Y -A """
AZ,X:>Y I X:>KA1 X:>Y,A2
A AA X =y ) X =Y, A A A,
A, X=Y A X=Y X =Y A4
LV RV
AVALX =Y X =Y A VA,
X=YA BX=Y ijxBR
A>B X=Y - X=Y A>B
Modal rule: OX, X,.UA= A
OX >4 CLE
Structural rules:
_X=Y X=Y
x>y W Xov AW
AAX =Y e X=Y A A o
AXSY Xov4 &
Cut-rule: X=Y A AU=W cut

XUSY.W
Table 2.1: The sequent calculus GLS. Note: i € {1,2} in the rules LA and RV.

1 < i < n. The negation of B € X is denoted by B ¢ X. The notation (A)™ or

A™ denotes m comma-separated occurrence of A.

A sequent is a tuple (X,Y) of multisets X and Y of formulae and is written
X =Y. Sequents are denoted using S,S’. The multiset X (resp. Y') is called the
antecedent (succedent). The multiset sequent calculus we use here is called GLS
(Table 2.1). For the logical and structural rules in GLS, the multisets X and Y are
called the context. In the conclusion of each of these rules, the formula occurrence
not in the context is called the principal formula. This follows standard practice
(see [70]). For the GLR rule, each formula in 00X, X, [0A, A is called a principal
formula. The [JA in the succedent of the conclusion of the GLR rule is called
the diagonal formula (and is of course boxed). In the cut-rule, the formula A is

called the cut-formula. A rule with one premise (resp. two premises) is called a
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unary (binary) rule.

A binary rule where the context in both premises is required to be identical
is called an additive binary rule (eg: LV, RA). A binary rule where the context
in each premise need not be identical is called a multiplicative binary rule (eg:
cut). The term context-sharing (context-independent) is also used to refer to an
additive (multiplicative) rule (see [70]).

Note, we have deleted the initial sequent 1. = 1 and the l-rule that appears
in GLSy. Asobserved in [69], it is not necessary to include the symbol L although
its presence can be convenient from a semantic viewpoint. Since our interest here
is proof-theoretic we shall not require it. We have also replaced the multiplicative
LD in GLSy with an additive version. As all the other logical rules in GLS are
additive, it seems appropriate to use an additive L D. In every other respect,
the inference rules in GLS have the identical form to the rules in the calculus
GLSy. We observe that the definitions and proofs in this paper apply, with slight
amendment, to a sequent calculus built from multisets that is obtained directly
from GLSy.

A derivation (in GLS) is defined recursively with reference to Table 2.1 as:
(i) an initial sequent A = A for any formula A is a derivation, and

(ii) an application of a logical, modal, structural or cut-rule to derivations con-

cluding its premise(s) is a derivation.

This is the standard definition. Viewing a derivation as a tree, we call the root
of the tree the end-sequent of the derivation. If there is a derivation with end-
sequent X =Y we say that X = Y is derivable in GLS. Let AX (\/Y) denote
the conjunction (disjunction) of all formula occurrences in X (Y). Interpreting
the sequent X = Y as the formula AX D\/Y, from [64] we see that derivability
in GLS is sound and complete wrt G L.

We write {7}]/?X = Y to denote the following derivation, where p is a rule

with r premises:

1 T

X=v

Intuitively, the above reads “from 7; to m,. obtain X = Y via rule p”. We refer

to m,...,m as the premise derivations of p. If p is unary (binary) then r = 1

(r = 2). Rather than {7}{ and {7}}, we write, respectively, “m” and “m; m".
Let p be some rule-occurrence in a derivation 7. Then p(A) indicates that the

principal formula is A, while p*(X) denotes some number (> 0) of applications
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of p that make each formula occurrence (including multiple formula occurrences)
in the multiset X a principal formula. To identify a rule-occurrence in the text
we occasionally use subscripts, eg: GLR;, cuty.

A derivation 7 is cut-free if 7 contains no instances of the cut-rule. A cut-

instance is said to be topmost if its premise derivations are cut-free.

Definition 2.1 (n-ary GLR rule) Given a derivation T, an instance p of the
GLR rule appearing in T is n-ary if there are exactly n — 1 GLR rule instances

on the path between p and the end-sequent of T.

Let GLR(n,7) denote the number of n-ary GLR rules in 7. Next we define the

height, cut-height, and degree of a formula in the standard manner.

Definition 2.2 (height, cut-height, degree) The height s(7) of a derivation
T 15 the greatest number of successive applications of rules in it plus one. The
cut-height h of an instance of the cut-rule with premise derivations 71 and 7o is
s(m1)+8(m2). The degree deg(A) of a formula A is defined as the number of symbol

occurrences in A from {00, =, A, V, D} plus one.

2.3 Technical devices and basic results

2.3.1 Generalising the notion of derivation

To formalise the notion of width we need a more general structure than a deriva-
tion. The structure we have in mind can be obtained from a derivation 7 by
deleting a proper subderivation 7/ in 7. We call this structure a stub-derivation.
To emphasise the point of deletion we use the annotation stub.

Formally a stub-derivation (in GLS) is defined recursively with reference to
Table 2.1 as follows:

(i) an initial sequent A = A for any formula A is a stub-derivation, and

(ii) for any sequent S and stub-derivation 7, each of
(a) stub/S (b) stub w/S (c) m stub/S

is a stub-derivation, and

(iii) an application of a logical, modal, structural or cut-rule to stub-derivations

concluding its premise(s) is a stub-derivation.
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Viewing a stub-derivation 7 as a tree, we call the root of the tree the end-sequent
of the stub-derivation (denoted ES(7)). The leaves of the tree are called the top-
sequents. Clearly a derivation is a stub-derivation in which every top-sequent is
an initial sequent. Thus a stub-derivation generalises the notion of a derivation.
We use the term ‘stub-instance’ to refer to an occurrence of either stub/S or
stub 7/S or m stub/S. An sstub-derivation (read: single stub-derivation) is a
stub-derivation containing exactly one stub-instance. We write d[stub] instead of
d, to remind the reader that the structure contains exactly one stub-instance.
Let d’ be a derivation with end-sequent &', let d[stub] be an sstub-derivation

with an occurrence of one of the following:

stub/S stub 7/S 7 stub/S

and suppose that
S'/PS S ES(m)/S ES(m) §'/S

respectively is a legal instance of some logical or structural rule p. We say that
d[stub] and d’ are compatible and write d[stub] <~ d’ to denote, respectively
d’ d T /s d

s’ S S

obtained by “attaching” the tree d’ to the tree d[stub] at the node stub under
rule p. We refer to p as a binding rule for d[stub] and d'.

p

By permitting formula occurrences in a (stub-)derivation to contain * or o
decorations, we define an annotated (stub-)derivation. The forgetful map |-]
maps an annotated stub-derivation to the stub-derivation obtained by erasing all
« and o decorations. Clearly |-| maps an annotated derivation to a derivation.
A transformed (stub-)derivation 7' is a (stub-)derivation that is obtained from
some existing (stub-)derivation 7 by syntactic transformation. We write A°™ or
A*™ to mean n occurrences of the formula A° or A* respectively.

Formally a stub-derivation and an annotated stub-derivation are different
structures. Because these structures are very similar, for economy of space we will
introduce definitions and prove results for stub-derivations alone and note, when-
ever applicable, that the definitions and results can be extended to annotated

stub-derivations.

Example 2.3 Let us denote the sstub-derivation at below left by d[stub] and the
derivation at below right by d':
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stub
B=ADDB ADB=ADB
BV(ADB)=ADB
Observe that d[stub] has a stub-instance of type stub/S, withS = B = A D B,
and d' has endsequent 8’ = A, B = B. Because 8'/S is an instance of RD, the

structures d[stub] and d' are compatible. The derivation d[stub] <= d’ is:

B=0B

Lv A4B=>B MW

B= 1B

4.B= B L]‘Q/

B=>A>B 'Y A-S5B=A>DRB
BV(ADB)=ADB

LV
and the binding rule is RD.

Example 2.4 Let us denote the sstub-derivation at below left by d[stub] and the
derivation at below right by d':

o L
B=A>B -
Observe that d[stub] has a stub-instance of type stub 7/S, with S = BV (A D
B) = AD B, and d' has endsequent S' = B = A D B.
Since ' A D B = A D B/S is an instance of LV, the structures d|stub]
and d' are compatible. The derivation d[stub] <~ d' is identical to that obtained

stub ADB=ADRB
BV(ADB)=ADB

in Example 2.3, although here the binding rule is LV.

Definition 2.5 Let 7 be a stub-derivation and G a formula multiset. The an-
tecedent operator @ : stub-derivation X formula multiset — stub-derivation is
defined as follows:

Case G=(): lettT®dG =7

Case G # (): define T & G recursively on T as follows

1. initial sequent: (A= A) G = (A= A/IWV' DA G = A)
2. stub-instance:

(a) (stub/X =Y)® G = (stub/X,G=Y)
(b) (stub 7/ X =Y)®dG=(stub 7n®dG/X,G=Y)
(c) (m stub/ X =Y)dG=(rdG stub/X,G=Y)

3. unary non-GLR rule: (/X =Y)®dG=(r®G/X,G=Y)

4. GLR rule: (n/LEX = YV)@ G = (n/LEX = V) /WO X G =Y
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5. binary additive rule: (m; m/X =Y)dG=(m&GmdG/X,G=Y)

6. cut-rule: (mp m/"X =Y)eG=(mo&G m/™X,G=Y).

That & maps into the set of stub-derivations follows by inspection of the defini-
tion. Notice that the recursion terminates at an initial sequent, stub-instance or

a GLR rule. The operator ¢ will bind stronger that <.

Lemma 2.6 If d is a stub-derivation and G is a formula multiset, then d ® G
is a stub-derivation. Furthermore, if d is in fact an sstub-derivation d[stub], then
d[stub] & G is an sstub-derivation.

Proof. The result follows immediately from Definition 2.5. Q.E.D.

Example 2.7 Refer to the sstub-derivation d[stub] in Example 2.3. If G is a

non-empty formula multiset, then d[stub] & G is the stub-derivation:

stub ADB=ADB
B,G=ADB ADB,G=ADB

BV(ADB),G=AD>B

LW*(G)

By observation, we can confirm that d[stub] & G is a sstub-derivation as pre-
dicted by Lemma 2.6. Notice that d[stub] & G' and d’' (from Ezample 2.3) are not
compatible, because there is no logical or structural inference rule that can take
us from the premise sequent A, B = B to the conclusion sequent B,G = A D B.

Definition 2.5 can be extended in the obvious way to apply to annotated stub-
derivations. It is easy to verify that Lemma 2.6 holds under the uniform substi-
tution of the term “annotated (s)stub-derivation” for “(s)stub-derivation” in the
statement of the lemma.

Cut-elimination often involves tracing the “parametric ancestors” of the cut-
formula. The following definition uses the symbols o and * as annotations to help

trace the parametric ancestors.

Definition 2.8 (fc[-]: annotated derivation wrt C').

Let 7 be a cut-free derivation with endsequent X =Y, and C a formula.
1. if C is not bozed then let fo|r] = 7.

2. if C is boxed (C =0B) and OB ¢ X then let fop[t] = T.



22 CHAPTER 2. CUT-ELIMINATION FOR GL RESOLVED

3. if C is boxed (C =0OB) and OB € X. Then T must be a derivation of the
form OB = OB or {r}]//X',0B =Y.

Set fop[r] as ®op[(OB)* = OB)| or Pop[{r};/X’,(OB)* = Y] respec-
tively, where ®op (see Table 2.2 page 53) is defined on the class of cut-free

annotated derivations.

Observe that the annotation operator fo[-] is a total function mapping derivations

to annotated derivations.

Remark 2.9 Let 7 be a derivation with endsequent X =Y. If (OB € X then
the formula occurrences (OB)° and (OB)* in fop[r] are each called a paramet-
ric ancestor of the formula occurrence JB € X in the endsequent. Intuitively,
the annotation o denotes the final parametric ancestor when tracing ancestors

upwards. That 1s, the LB is introduced at that point.

Definition 2.10 Define 0°(B, 1) for a formula B and an annotated derivation
T, as the number of occurrences of the GLR rule in T whose conclusion contains

an occurrence of the annotated formula B° in the antecedent.

Lemma 2.11 Let d[stub] be an annotated sstub-derivation and G a formula mul-
tiset. Then

(a) O°(B,d[stub] & G) = 0°(B, d[stub])
(b) Let d' be a derivation such that d[stub] and d' are compatible. Then

0°(B, d[stub] = d') = 0°(B, d[stub]) + 0°(B, d')

Proof.

(a) Because 0°(B,-) counts the number of instances of the GLR rule with con-
clusion sequents containing the formula occurrence B°, the result is an im-
mediate consequence of the fact that @ does not introduce formulae into the

conclusion sequent of an instance of the GLR rule (see Definition 2.5(4)).

(b) By the definition of compatibility, the binding rule for d[stub] and d’ cannot
be GLR. Thus if an instance p of the GLR rule appears in d[stub] <~ d’, then
p must appear in one of d[stub] or d’. Also, if an instance p of the GLR rule
appears in either d[stub] or d’, then p must appear in d[stub] <+ d’. The result

follows immediately.
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Q.E.D.
Remark 2.12 Lemma 2.11(a) holds even if G contains decorated formulae.

Definition 2.13 (width) Let cuty be a topmost cut as shown below:

{m}i {o}i

X=>v.B" BU=W
XU=Y W 0
Then, the width of cuty is defined as:
9°(B, fplm]) if p=GLR (so{m}{ =m)

width(cuty) =
GLR(2,{r}1/X = Y,B) otherwise

Remark 2.14 (i) The width has been defined only for a topmost cut as this

context is sufficient for our purposes.

(11) width(cuty) is independent of the right premise derivation of cuty.

Example 2.15 Let us calculate width(cuty) in the following derivation:

{m} {o}s
0C,C,00B,0B,0B = B TD=0B
0OC,00B = UB GLE  “5p 00B = OB iW

OC vOD,00B = OB
O(Oc v OD),0C vOD,00B = OB Lw
0(OC v OD) = OOB GLR O0B,U = W
O@c vOD),U = W

cuto

Writing the left premise derivation of cuty as p/O(0C v OD) = OOB, we
get width(cuty) = 0°(0OB, fong|u]) where fons(p] is

{m}1 {o}i
0C,C,00B,0B,0B = B D =08
GLR ub = OB LW
OC, (O0B)° = OB 0D, (OOB)° — UB

OC v OD, (0OB)* = OB LV

O(0OC v OD),0C v OD, (OOB)* = OB

LW

Because fonp[p| contains only one GLR rule whose conclusion contains the

formula occurrence (OOB)° in its antecedent, we have width(cuty) = 1.

Remark 2.16 Let i be the left premise derivation of cuty from Definition 2.13.
Valentini [71, pg 473] defines the width as the cardinality of GLR®, where GLR®?

in our notation is the set of all instances p of GLR such that:
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(a) pis a2-ary GLR rule in u, and
(b) B is the diagonal formula of every 1-ary GLR rule in p below p, and

(¢) B is not introduced by weakening below p.

Applying Valentini’s original definition to the following derivation in GLS we
compute the width of cuty as 0 (due to condition (c)):

{7}
OOX, 0OX, 0OX, X, 000, 0C.0C = ©
OOX, 00X, 0000 = 00
OOX, 00X, 00, 000 = 0c
00X, 00X, 0000 = 00
Ox = oo CLE O0C,U = W
00X, U = W

GLR
LW(0OOC)
LC(O0C)

cutg

Using the definition in this paper we have width(cuty) = 1. QOur definition
considers the interplay of the weakening and contraction rules, and is required
to obtain the cut-elimination result for GLS. In GLSy however, there are no
contraction rules so Valentini’s original definition suffices.

Thus Moen is certainly justified in asking whether Valentini’s arguments can
be lifted to multiset-based sequents. However, we will see that Moen’s claims about

failure of cut-elimination in the new setting are incorrect.

2.3.2 Invertibility of the logical rules for GLS

An inference rule in the sequent calculus is called invertible if the premise se-
quents are derivable whenever the conclusion sequent is derivable. We say that a
transformation is height-preserving if the height of the transformed derivation is
< the height of the original derivation. In the following, we write A1, ..., A, to
mean an occurrence of a formula from Ay, ..., A,, when we do not wish to spec-
ify which formula it is. For example, in the sequent A, B, X = Y, the formula
occurrence A, B could be either A or B. If this occurrence appears as an initial
sequent A, B = B, for example, then it is possible to deduce that the occurrence
A, B refers to the formula occurrence B.

The following result is a generalised version of the invertibility result for the
logical rules in GLS, in the sense that we select some number of occurrences of a
formula whose main connective is non-modal, and show how to ‘decompose’ those
occurrences into the constituent subformulae. In the statement of Lemma 2.17, if

we set m = 0 we obtain an invertibility result in the ‘flavour’ of von Plato’s [77]
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proof for the calculus GOc for classical logic. Our statement differs slightly because
we use the ‘projective’ form of the rules for LA and RV so there is a single principal
formula in the premise sequent of these rules — rather than corresponding non-

projective form found in von Plato, shown below:
A B X=Y X=Y AB
ANB, X =Y X=Y AVB

Lemma 2.17 (general invertibility for logical rules) The statements that fol-

low concern derivations in GLS. For all m > 0,
(i) If (=A™, X =Y is derivable, then X =Y, A™*! is derivable.
(ii) If X =Y, (=A)™" is derivable, then A", X =Y is derivable.

(iii) If (AN B)™Y X = Y is derivable, then AL, B" ', A B ANB,X =Y
1s derivable for some I, 0 < | < m. Moreover, the transformations are

height-preserving.

(iv) If X = Y, (A A B)"! is derivable, then X = Y, A" and X = Y, B"*!

are derivable. Moreover, the transformations are height-preserving.

(v) If (AV B)"™ X =Y is derivable, then A", X =Y and B™' X =Y

are derivable. Moreover, the transformations are height-preserving.

(vi) If X = Y, (AV B)™* is derivable, then X = Y, A, B"' A,B,AV B is
derivable for some l, 0 <1 < m. Moreover, the transformations are height-

preserving.

(vii) If (A D B)™™ X =Y is derivable, then X = Y, A" and B™™ X =Y

are derivable.
(viii) If X = Y, (A D B)™! is derivable, then A™™ X =Y, B™™ is derivable.

Proof. Let us illustrate the proof for (iii) and (vii). The other cases are similar.
Proof of (iii). Suppose that 7 is a derivation of (A A B)™" X = Y. Proof

by induction on the height of 7. We need to obtain a derivation of
AB" ' A B ANB,X=Y

for some [ such that 0 <[ < m.

First suppose that 7 is the initial sequent A A B = A A B. Then there is
nothing to do since this is already in the form A, B,AA B = A A B, where
A, B, A A B is an occurrence of A A B.
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Next, consider when A A B is not principal in the lowest rule p in 7 (we show

when p is unary, the binary case is similar). Then 7 is of the form:

(AN B X' =Y
(ANB)™ 1 X =Y

Notice that it must be the case that p # GLR, since A A B cannot occur
in the conclusion sequent of a GLR rule as every formula in that sequent is
necessarily boxed. Also, we do not exclude the possibility that the sequent
(AN B)"1 X’ = Y’ is an initial sequent. Denote the height of this deriva-
tion by h + 1, so the height of the premise derivation of p is h. By the induction
hypothesis we obtain a derivation of A", B™~\, A, B,AA B, X' = Y’ of height h,
for some [, 0 < [ < m. Applying the rule p to the this sequent we obtain a
derivation of A!, B™'\, A B, AN B,X =Y of height h + 1 as required.

Finally, suppose that AA B is principal in the lowest rule p in 7. If p = LA(A)
(the case when p = LA(B) is similar) then 7 has the form

A (AAB)™ X =Y
(AAB)™ L X =V

Denote the height of this derivation by A + 1. If m = 0, then the sequent
A, (ANB)™, X = Y is simply A, X = Y and this is the required derivation
so there is nothing more to do. Else, if m > 0, by the induction hypothesis we
obtain a derivation of A, AY, B™ "1 A B, AN B, X =Y of height h, for some I,
0 <! < m —1. This is a derivation of the required form of height h, so there is
nothing more to do. The remaining possibility to consider is when p = LC(AAB).

Then 7 has the following form

{r}1
(AAB)™2 X =Y
(AAB)™1 X =Y

LC(AN B)

Denote the height of this derivation by A + 1. By the induction hypothesis
we obtain a derivation of A, B"*1=\ A B AANB,X = Y of height h, where
0<l<m+1. Ifl =0 then we can apply the rule LC(B) to obtain the sequent
B™ A, B,ANB,X =Y. Otherwise apply the rule LC(A) to obtain the sequent
Al Bmti=l A B AN B, X = Y. In each case, the derivation is of the required

form and has height h + 1 so we are done.
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Proof of (vii). Suppose that 7 is a derivation of (A D B)™™ X = Y. Proof
by induction on the height of 7. We will show how to obtain a derivation of
B™t X = Y. The transformations to X = Y, A™*! are analogous.

If 7 is the initial sequent A D B = A D B then the following derivation

suffices:

B =B
AB:BLWM)
RO

B=ADDB
Incidentally, notice that this transformation is not height-preserving.
Next, consider when A D B is not principal in the last rule p in 7 (we show

when p is unary, the binary case is similar). Then 7 is of the form:

{7}
(AD> By" X' =Y’
(ADB)" X =Y

Notice that it must be the case that p # GLR. By the induction hypothesis
we obtain a derivation of B™™! X’ = Y’. Applying the rule p to the sequent
B™tl X' = Y’ we obtain a derivation of B™*! X = Y as required.

Finally, suppose that A D B is principal in the final rule p in 7. If is the case
that p = LD(A D B) then 7 has the form

{r}i {o}1
(ANB"X =Y. A B(ANB"X=Y
(A>B)" ' X =Y -

If m = 0, then the sequent B, (A D B)™, X =Y is simply B, X = Y so there is
nothing more to do. Else, if m > 0, by the induction hypothesis applied to the
right premise of LD we obtain a derivation of B™™!, X = Y. Once again, this is
the required derivation so there is nothing more to do. The remaining possibility
to consider is when p = LC(A D B). Then 7 has the form

{7}
(ADB)™"?2 X =Y
(ADB)™ X =Y

LC(A D B)

By the induction hypothesis we obtain a derivation of B™?, X = Y. Now apply
the rule LC'(B) to obtain a derivation of B™! X = Y as required. QE.D.
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Note that the above results are not height-preserving in general. However, they
are height-preserving for (iii)—(vi). This fact will crucial for obtaining the cut-
elimination result. If we use the non-projective form of the rules for LA and RV
then the corresponding transformations will no longer be height-preserving.
Embedded inside the induction in the above proof is the notion of tracing the
formula A @ B (for @ € {A,V,D}) or =A upwards from the end-sequent. The
presence of the GLR rule does not cause a problem when tracing this formula
as it is impossible to encounter, along this path, a GLR rule instance before the
introduction rule for the principal connective in A @ B or =A. This is because
every formula in the conclusion sequent of a GLR rule is necessarily boxed.
Note that proving the result for m > 0 rather than just m = 0 actually
simplifies matters. For example, in the proof of item (vii) when the last rule p
in the derivation is LC(A D B), we applied the induction hypothesis directly. In
contrast, von Plato has to explicitly trace the formula A D B upwards from the

endsequent in order to obtain the result.

2.4 Cut-elimination for GLS

The main task for cut-elimination is to show that if X, X, B = B is cut-free
derivable in GL, then there is a cut-free derivation of [1X, X = B. This is the
content of Lemma 2.20. The cut-elimination theorem follows immediately from
this lemma.

Before proceeding with the technical details let us provide an outline of the
proof of Lemma 2.20. Let 7 be a cut-free derivation of L0X, X,[1B = B. Then
we define the width n(7) as the number of occurrences of the following schema,

where no GLR rule occurrences appear between GGLR; and the endseqent.

0G, G, (@B)", B»,0C = C
0G, (OB)" = OC

GLR,

00X, X,0B = B

If n(7) = 0 this indicates that the OB formula occurrence in the endsequent
of 7 has either been introduced by LW (CB) or can be traced to the initial
sequent [1B = [B. In the former case, the weakening rule is deleted. In the
latter case, the required result can be obtained by substituting the derivation
7/FRO0X = OB in place of the initial sequent.
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If n(7) = k + 1, each occurrence of the above schema in 7 is transformed so
that the GLR; rule occurrence is deleted. Observe that the conclusion of the

GLR; rule can almost be obtained by the derivation

0C = 0OcC
OG,0B,0C = OC Lw(0G,0B)

There is now an unwanted LJC' formula occurrence in the antecedent that has
to be removed by the appropriate transformations. After £ + 1 such transforma-
tions we obtain the base case.

We are now ready to formalise this argument. We begin with the following
decomposition lemma.

Lemma 2.18 Let 7 be a cut-free derivation of the form {r}}/*X,0B =Y and
suppose that 0°(OB, fop[r]) > 0. If

(i) p= GLR then fop|r] = {r};/“*EX, (OB)° =Y.

(i) p # GLR then we can write the annotated derivation fog|t] in the form
d[stub] <= d’ such that

0°(OB, d[stub] <= d') = 0°(OB, d[stub]) + 9°(OB, d').

Furthermore, denote the endsequent of d as U = W. Then for any mul-
tiset M, and any derivation d”’ with endsequent U, M = W, we have that
d[stub] & M and d" are compatible.

Proof. If p = GLR then it follows immediately from Definition 2.8 that fop[7] =
{r}t/GLRX (OB)° = Y.

Now suppose that p # GLR.

Because 0°(OB, fog[r]) > 0, fop[r] must have the following form, where

(1) n>1, and

(2) OG contains no annotated formulae, and
(3) GLR; is a l-ary GLR rule in fop[7], and
(4) m may contain branches:

{='}3
0G, G, (OB)", B",0A = A
0G, (OB)°" = 0A
1
X, (OB =Y

GLR,
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We remind the reader that since n is allowed to contain branches, the last
rule in 7 may be either unary or binary. We can identify the annotated deriva-
tion fop[r] with d[stub] <= d" where d[stub] (below left) is an annotated sstub-

derivation and d' (below right) is an annotated derivation:

stub {m'}
77 06.6,(0B)" B"OA= 4
X, OBy =Y OG, (OB)”" = 04

From Lemma 2.11(b) we have
9°(OB, foplr]) = 6°(0B, djstub] «+ d') = 8°(0B, d[stub]) + 8°(0B, d).

Write the endsequent of d as U = W. Since GLR; is a l-ary GLR rule in
fos|r] the path (through 7) between the leaf stub in d[stub] and the endsequent
X, (OB)* = Y of d[stub] contains no GLR rule instances. From Definition 2.5
and the compatibility of d[stub] and d’, for any multiset M and any derivation d”
with endsequent U, M = W, it follows that d[stub] & M and d” are compatible.

Q.E.D.

Definition 2.19 (rank of a cut) For a topmost cut cuty the rank rk(cuty) is
the triple (d,n,h) where d is the degree of the cut-formula, n is the width of cuty,
and h is the cut-height of cuty.

Lemma 2.20 Let 7 be the following derivation where cuty is a topmost cut:

{r}
OX,X,0B = B {o}i
GLR —ar—r
OX = OB OBU=W
OX,. U= W cuto

and suppose (%): for any derivation 0, every topmost cut in & with rank <
rk(cuty) is eliminable.
Then there is a transformed cut-free derivation 7" of X,0X = B.

Proof. Let u denote the subderivation {n}}/0X, X,00B = B of 7.

Case width(cutg) = 0 : Hence 0°(OB, fop[p]) = 0. Then the annotated
derivation fnp(p) must have final parametric ancestors of the form (OB)° = OB
or X' = Y//EWEB X' (OB)° = Y’ only.

Let OB™°) stand for an annotated occurrence of (JB where the annotation
is not known. Consider the substitution (foz[u]){0B*!?) ;= OX} obtained by

replacing every occurrence
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1. of (OB)* with 00X, and

2. of (OB)° = OB with a derivation of X = OB (the left premise derivation
of cuty), and

X =Y . X' =Y .
3. of S Er ST LW(OB) with — 07 =y LW (0X)

As the endsequent of fop[u] was OX, X, (OB)* = B we have that
(fos[u){OB™ .= OX}

is a cut-free derivation of X, X,[JX = B. Applying repeated left contraction
gives a cut-free derivation of X, X = B.
Case width(cutg) > 0 : Hence 0°(0B, foplu]) > 0. First suppose that the
last rule in g is GLR. Then p must be of the form:
{='}1
00X/, 0X’,0X’, X',00A, 0A,0A = A
O0X’,0X’,00A = OA

GLR

where X = 0X’ and B = UA.
Then the following is a derivation of OX, X = B, with deg(cut;) = deg(cuty)
and width(cut,) = 0 < width(cuty):

O0A = 0A4

LW*(A,00A
0A, A,00A4 = OA GEVR( ’ ) {m'H
0A = O0A 00X, 0X',0X', X',00A,0A0A= A
04, 00X, 0X',0X', X',0A,04 = A !
LC*(OA)
O0X',0X/,0X, X',0A = A
GLR

00X',0X’ = OA

The required derivation is obtained by using () to eliminate cut;.

If the last rule in p is not GLR, we can write fop[u] as d[stub] <= d’, where
d[stub] and d’ (below left and right respectively) are constructed as in the proof of
Lemma 2.18, son > 1, JG does not contain annotated formulae, and the path in
d[stub] through 7 from the top-sequent stub to the end-sequent OX, X, (OB)* =
B contains no occurrence of the GLR rule:

stub {m'}i
U 0G,G,(OB)", B",0A = A
0ox, X, (DB)* =B oG, (DB)On =04 GLR

By Lemma 2.18, 0°(0B, d[stub] <~ d') = 0°(OB, d[stub]) + 0°(OB, d).

Let d” be the annotated derivation
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0A =04 " n
A,0A4,0G, (OB)°" = UA LW (4,06, (OB)")

Then d[stub] @ (A,JA) and d” are compatible (Lemma 2.18). Note that
0°(0B,d) =1 and 0°(OB,d") = 0. Let Aj; be the derivation:

|d[stub] & (A, 0A) < d” | (mr
040X = OB GLE  Hx X.0B= B
O4,0X,0X,X = B
OA,0X, X = B

cut1(OB)

LC*

Let A5 be the derivation

|d[stub] @ (A, T1A) < d” | (=)
OA.0X = 0B GLE HaGop BOAS A
OA.0AOX.0G.G.B = A
OAOX.0G.G.B= A4

LC* (anl, (DB)nfl)
cuty(OB)

LC

Consider the derivation A;:

Ay Ao
04, 0X, X, 04, 0X,0G.G.B= A
OAOX,X,0G.G.= 4
OX,0G = 04

cut3(B)
Lc

GLR
For i € {1, 2}, observe that deg(cut;) = deg(cuty). Furthermore,

width(cut;) = 0°(OB, fop(|d[stub] & (A,0A) <= d"|)) Def. of width

= 0°(0B, d[stub] & (A, A) <+ d") By inspection

= 0°(0B,d ® (A,0A4)]stub]) + 0°(0B,d")  Lemma 2.11(b)
< 0°(0B,d® (A,0A)[stub]) + 0°(0OB, d")

= 0°(0B, d[stub]) + 0°(OB, d') Lemma 2.11(a)

= 9°(0B, d[stub] += d') Lemma 2.11(b)

= width(cuty)

Because deg(cut;) = deg(cuty) and the premises of both cut; and cuty are cut-
free, by appealing twice to (x) we can in turn eliminate cut; and cuty. In the
resulting derivation, since deg(cuts) < deg(cuty) we can eliminate cuts by (*).
We thus obtain a cut-free derivation Ay of X, G = LA.

Let Az be the annotated derivation

Ay

0X,0G,0B = 0OA

Clearly 0°(0B,A3) = 0. Furthermore, by Lemma 2.18, d[stub] & OX and
A3 are compatible. Recall that |-| is the forgetful map. The endsequent of
| (d[stub] & X) <~ As] is thus OX,0X, X,0B = B. Consider the derivation A4:

JoB LW*((OB)")
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| (d[stub] & OX) <= Ag]|

OB,0X,X = B Le(@x) {r}7
Ox - o obit OX,X.0B=B . ©B)
X,0X,0X = B Lov(Ox)
X,0X = B

By a similar calculation to the above we obtain width(cuty) < width(cuty).
Because deg(cuty) = deg(cuty) and the premises of cut, are cut-free, appealing to
(%) we can eliminate cuty. We thus obtain a cut-free derivation of X,0X = B

as required. Q.E.D.

Without loss of generality it suffices to consider a derivation concluded by a

cut-rule with cut-free premise derivations.

Theorem 2.21 (Cut-elimination) Let 7 be a derivation concluded by an in-
stance cuty of the cut-rule with cut-free premise derivations. Then there is a

transformed cut-free derivation T with identical endsequent.

Proof. Induction on the rank (d,n,h) of cuty under the standard lexicographic
ordering. We say that the cut-formula is left principal if an occurrence of the
cut-formula in the succedent of the left premise is a principal formula. The term
right principal is defined analogously. This follows standard practice.
1 Cut with an initial sequent as premise. This is the base case. The
transformations are standard (see [54, 70]).
2 Cut with neither premise an initial sequent.
(a) Cut-formula is left and right principal.
First suppose that the cut-formula is boxed. There are several possibilities:
(i) the cut-formula is left and right principal by the GLR rule. The derivation
must then be in SNF:

{7} {o}i
OX,X.0B8 = B OB,00,B,U,0C = C
Ox = op  oLit OB.0U = 0c Ll
0X,00 = 0OC cuto

The induction hypothesis implies that for any derivation d, any topmost cut
in 0 with rank < rank(cuty) is eliminable. This is precisely condition (%) in
Lemma 2.20. Hence we can obtain a cut-free derivation of (0.X, X = B. Consider

the derivation

{m}
0X,X,0B= B {o}i
Ox>oB M EEovBUOCSC
0X,X = B 0X,00,B,0,00 = C cuty

00X, X,0X,00,0,00 = C cuta

0x, 00U = 0OcC

GLR
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Observe that rk(cut;) = (d,n,h — 1). By the induction hypothesis we can
eliminate cut;. In the resulting derivation, since deg(cuty) < d, the result follows
from another application of the induction hypothesis.

(ii) the cut-formula OB is left principal by the GLR rule and right principal
by LC(OB).

Then 7 is as below where both premises of cuty are cut-free and m > 0:

{7}y {o}i p
0X,X,0B = B @OB)"*+2 U =W _
Ox > op  CLE OB,0 = W th (OB)
OX,. U= W cuto

In general p need not be the GLR rule. However if p # GLR then either (1)
p = LW (OB) and we delete p and the LC(OB) rule that follows, or (2) OB is
not principal by p.

In the former case the result is immediate. In the latter case the result is
obtained by applying p after cuty (as opposed to before the LC™ ™ (TJB) rules as
it currently stands) and invoking the induction hypothesis. Observe that this is
possible even if p is a binary rule.

If p=GLR it follows that U = OV and W = [JC' for some multiset V' and
formula C, and s = 1 and oy = {0'}{ /(OB)™2, B+, 0V, V,00C = C. Thus 7
must be of the form

{0}y
" OB)™*2, Bm+2 OV, V,0C = C
Ox X:{WD}JlE? B ( )(DB)m+2 OV = 0OC p=GLE
= =
sy ’ m+1
ox o LR oB,ov o K¢ (0B

OX,0V = 0C cuto

A derivation of X, X = B is obtained as in (i) using Lemma 2.20. Consider
the derivation:

{0}

(OB)™+2 pm+2 OV, v,0C = C

0X = OB OB, B™*+2.0V,V,0C = C
0Ox,B™+2 0Ov,Vv,0C = C
0X,X =B 0ox,B,0v,v,0C = C

0X, X,0X,0v,v,0C = C
0x,Xx,0v,v,0C = C
ox,0v = dc

Lomtt (OB)
cuty

LC™+1(B)

cutg

LCc*
GLR
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Now cut; has identical degree and width compared to cuty, and smaller cut-
height. Hence, we can eliminate cut; using the induction hypothesis. In the
resulting derivation deg(cuty) < d so the result follows from the induction hy-
pothesis.

(iii) the cut-formula OB is left principal by RC(OB) and right principal by
the GLR rule.

Then 7 has the following form where both premises of cuty are cut-free:

{r}1
X = Y,UB,0UB o1
X = Y,0B RCy OB,00 = OC gﬁR
0

X,00 = Y,00

Because the conclusion of (any) GLR rule has exactly one formula in the
succedent, it follows that at least one of the B formula occurrences in the
succedent of the premise of RC) can be traced upwards in {7}] to RW (OB) rule
application(s). In particular, when tracing upwards, it is impossible to encounter
a G LR rule application before encountering a RW (OB) rule application. Deleting
these RW (CJB) rule applications and the RC} contraction rule certainly preserves
the derivation structure because all the binary rules excluding the cut-rule are
additive. This new derivation contains a single instance of cut with identical
degree of cut-formula and reduced cut-height compared to cuty. Furthermore,
observe that it must be the case that the width is < n. The result follows from
the induction hypothesis.

If the calculus uses multiplicative binary rules instead, the result still holds,
although the transformations are slightly more complicated.

In each instance, the proof can be formalised using an annotation function
similar in structure to fog. See Section 2.7.

(iv) the cut-formula OB is left and right principal by RC(OB) and LC(OB)
respectively. A combination of the strategies in (ii) and (iii) suffice.

(v) the cut-formula OB is either left or right principal by RW (OB) or
LW (OB) respectively. Trivial.

Next, suppose that the cut-formula is not boxed.

(vi) the cut-formula B is is left and right principal by the respective left
and right introduction rules. The transformations are standard (see [54, 70]) —
derivation 7 is transformed to a derivation 7" containing cuts {cut; };>1 on strictly
smaller cut-formulae (i.e. deg(cut;) < d for i > 1).

(vi) the cut-formula B is right principal by LC(B). Then 7 has the following
form, where B is principal by p:
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N o s S
{m}] B,B,U=W
x=vzs "P RU:W05Mﬂ
0

X,U=Y,W

Since we have assumed that B is not boxed, it follows that p # GLR. This
is the well-known case of ‘contractions above cut’ that arises in cut-elimination
for Gentzen’s [25] sequent calculus LK. Gentzen’s solution was to introduce a
new multicut rule. There are several approaches for obtaining cut-elimination for
classical sequent calculi avoiding Gentzen’s multicut rule (for example [77, 10, 6]).
We adapt the transformations proposed by von Plato [77] for the classical calculus
GOc. The transformations there relied on the invertibility of all logical rules in
GOc. The analogous results for GLS were proved in Lemma 2.17. We illustrate
with a few cases.

Suppose B = C' A D. Consider the following derivation.

{o}3
{n}] CAD,CANDU=W
x=vonp PeND) OAQU:wa;CwAD)
X,U=YW 0

Let hy and hy (> 1) denote the heights of the left and right premise derivations
respectively. Applying Lemma 2.17 to the sequent C A D, C AN D, U = W we
obtain a derivation of C*, D', C,D,C AN D,U = W of height hy, — 1, for some I,
0 <1 < 1; from the sequent X = Y,C' A D we obtain derivations of X = Y, C
and X =Y, D, each of height h;.

If C, D,C A D is the formula occurrence C A D and | = 0 we proceed as follows
(the case when [ = 1 is similar):

X=Y,CAD D, CADU=W
X=Y,D D.X,U=Y,W
X, X, U=Y,Y,W
X,U=Y,W

cuty

cuty

LC*

Notice that cuty has height h; +hy —1 < hy 4 ho, and cut; has reduced degree
compared to cuty. If C, D,C A D is the formula occurrence D (the case when it
is C' is similar) and [ = 0 (the case when [ = 1 is similar) then we proceed as
follows, where each instance of the cut-rule in the following has reduced degree

compared to cuty:

X=Y,D D U=W
X=Y,D D.X,U=Y,W
X, X, U=VY,Y,W
X,U=Y,W

LC*
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Next, suppose B = C' D D. Consider the following derivation:

{o}i
{n}} C>D,C>D,U=W
X@Y,CDDMCDD) CoO>D,U=W CutLC(CDD)
X.U=YW 0

Applying Lemma 2.17 to the sequent C' O D,C D D,U = W we obtain
derivations of U = W,(C? and D* U = W. From RC(C) and LC(D) respec-
tively, we obtain U = W,C' and D,U = W. Applying Lemma 2.17 to the
sequent X = Y, C D D we obtain a derivation of C, X = Y, D. Then the fol-
lowing derivation suffices, where each instance of the cut-rule has reduced degree
compared to cuty.

U=W,C CX=Y,D

cut

X,U=Y,W,D DU=W
cu
X.UU=YWW .
Xoovw  LOHERC

The remaining cases can be resolved in a similar fashion.

(b) Cut-formula is left principal only.

(c) Cut-formula neither left nor right principal.

We analyse the last inference rule in the right (left) premise derivation of cuty.
The standard transformations suffice here (for example [54, 70]). In particular,
observe that for any instance cut; of the cut-rule appearing in a transformed
derivation, it must be the case that width(cut;) < n. Q.E.D.

2.5 A comparison with Valentini’s original proof

We have already noted in Remark 2.16 that the move from sequents built from
sets to sequents built from multisets necessitates a sharpening of the definition
of width, in particular, to account for the interplay between weakening and con-
traction rules. To achieve this we used the notion of an annotated derivation, to
trace upwards from the end-sequent.

An aspect of Valentini’s proof that is unclear is whether the width is non-
increasing in all introduced cuts. When eliminating cuts from a derivation ¢
containing multiple instances of the cut-rule (as occurs following an application
of Valentini’s move to a topmost cut where the cut-formula is left and right
principal by the GLR rule), we always choose to eliminate a topmost cut (with

conclusion sequent S, say). Suppose that we then obtain a cutfree derivation ¢’
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of S. Inserting the derivation ¢’ at S in § we obtain a new derivation ¢”. Now, to
ensure that it is possible to (ultimately) eliminate those cuts below S in §”, it is
essential to know that the width of those cuts has not increased. In other words,
we want to ensure that the width of a lower (non-topmost) cut does not increase
under the cut-elimination transformations to topmost cuts.

In general, it is possible for the width of a lower cut — ie a non-topmost cut
— to increase under the cut-elimination transformations. For example, consider
a transformation that reduces some topmost cut instance cut, (for “before”) to
the derivation below containing the cut instance cut, (for “after”) where {m}}

and {o}] need not be cut-free:

{r} {o}i
G=H

cut,

The cut-elimination transformations which ultimately turn cut, into a top-
most cut may produce a derivation where width(cut,) > width(cuty).

In the proof of Lemma 2.20, cut, is the only lower cut that relies on width for
elimination. Observe that width(cuts) does not increase despite the reductions
above it. This is because the cuty in that proof is ‘shielded’ by the GLR instance
concluding A;.

To see this, observe that derivation A, in Lemma 2.20 can be written as

follows, where o, n are cutfree:

g
0X,0G = 0A GLJEQW*((DB)TL)
0X,0G, (OB)" = 0A
ln] @ OX .
OB,0X,X = B (L;(zPiDX ) {r}1
O0X = 0B OX.X.0B=B . 0B
XOX,OX>B ;o ox
X,0X = B

Crucially, because GLR, is a 2-ary GLR rule in the left premise derivation
of cuty, the width of cuty is independent of the structure of ¢. In other words, if
we substituted ¢ with any other cutfree derivation o’ with identical end-sequent,
the width of cuty would remain unchanged. This shielding provided by the GLR,
rule is crucial for the success of the proof.

We conclude by noting that it has long been recognised that the contraction
rule poses special problems for cut-elimination. Hence, it is of independent inter-
est to find syntactic proofs of cut-elimination for the calculus built from multisets,

even when cut-admissibility is known for the calculus without cut. This is one
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reason for the numerous syntactic proofs of cut-elimination for GL that have been
proposed, in many different proofs systems. The present work uses the traditional
sequent calculus, and the intention is that the results can be extended to new
logics and new calculi. Indeed in Chapter 3 we will see a generalisation of this

proof applied to the logic Go.

2.6 Moen’s Val-II(core) is not Valentini’s

reduction

We have carefully examined Moen’s slides titled “The proposed algorithms for
eliminating cuts in the provability calculus GLS do not terminate” [51].

Moen sets out to reduce a cut in SNF using the transformation he titles Val-
II(core). Moen claims that Val-II(core) is the “...core of Valentini’s reduction”
[51]. Yet Val-II(core) does not appear in [71]. However it appears in [64, page 322]
with the comment “this reduction is not sufficient”.

Thus Moen is incorrect in claiming that he has demonstrated that Valentini’s
algorithm does not terminate — Moen is using the wrong algorithm. In fact,
for his concrete derivation €, the width of the cut-formula is 1 so the reduction
is immediate. Applying the base case transformations, and then the classical

transformations, we obtained a cut-free derivation of the end-sequent of e.

2.7 Incorporating multiplicative binary rules

Excluding the cut-rule, the sequent calculus GLS (Table 2.1) contains only ad-
ditive binary rules. However, in Valentini’s original sequent calculus GLSy, the

rule LD,, introducing the connective D in the antecedent is multiplicative:

X=Y,A BU=W
ASB X.U=Y,W

LD,

Let GLS,, be the sequent calculus obtained from G LS by substituting the addi-
tive rule LD with the multiplicative rule LD,, rule (the subscript is for “multi-
plicative”). It is easy to pass between these rules using the appropriate weakening
and contraction rules. Thus GLS,, is sound and complete for GL. In fact, the
proof of cut-elimination for GLS can easily be adapted to GLS,,.

Given a derivation in GL.S,, it is clear that we can obtain a cutfree derivation

as follows: first convert each instances of LD,, to LD, then use Theorem 2.21 to
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obtain a cutfree derivation in GLS. Finally, obtain a cutfree derivation in GL.S,,
by replacing each instance of LD in the cutfree derivation in GLS with LD,,.

Alternatively, we could extend the annotation function fo (Definition 2.8)
to handle the multiplicative binary rule by inserting the following case into Ta-
ble 2.2 (recall that Table 2.2 describes the helper function ®np; fo invokes $op
in Definition 2.8.3): Suppose the annotated derivation § has the form

{m}i {7}
G' (OB = H' G (OB) = H"

LD,
G,(0B)" = H
If k£ > n, then let ®p[d] be the derivation
{m}1 {7’}
Cop G”,(DB)*”,(EIE;)(’“*">:>H’ @7 OB =" 5
G,(0B)" = H i
If k < n, then let ®op[d] be the derivation
{=}1 {7}
@DB [G’/7(DB)*1]€:>H/} (I)DB |:G/l(DB)*(n—k)’(DlB)lf'rH»kéHN

Lo,
G, (OB = H >
It is now straightforward to adapt the cut-elimination proof for the GLS calculus

to the new setting.

2.8 A decision procedure for Ip using GLS

G. Sambin suggested® that it might be possible to use the decision and counter-
model construction procedure [64] for GL to obtain the corresponding procedure
for propositional intuitionistic logic Ip [16]. We demonstrate that this is indeed
the case. Of course, such procedures for Ip are well-known. The novelty here is
the use of the Godel translation [27, 16] and the decision procedure for GL. Our
main contribution is showing that the countermodel obtained using the auxiliary
calculus GLS" introduced below has the persistence property (Lemma 2.23). The

proof of the intuitionistic countermodel (Theorem 2.25) follows from this result.

IPersonal correspondence.
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2.8.1 Terminology and basic results

Before we proceed, let us introduce some standard terminology.

Propositional intuitionistic logic Ip is defined using the propositional lan-
guage L [16]. We obtain the modal language ML by augmenting the proposi-
tional language £ with the modal operator [J. Let ForL (resp. ForML) and
VarL (VarML) denote the set of well-formed formulae and propositional vari-
ables of the language £ (ML).

A frame is a pair (W, R) where W is a non-empty set of states and R is a binary
relation on W. If u,v € W such that Ruv then we say that v is above u (in F).
A frame (W, R) has the property P (think reflexivity, transitivity, antisymmetry
etc.) if the binary relation R has the property P. If a frame F' = (W, R) contains
some sequence of (not necessarily distinct) points wy, ws,...w, from W such
that Rwywq, Rwows, . .., Rw,_jw, then we say that F' contains an R-chain. If F
contains an R-chain for arbitrarily large n, we say that F' contains an oco-R-
chain. A proper R-chain is an R-chain where the points are distinct. When R is
transitive, a cluster C is a maximal subset of W such that for all distinct states
w,w’ € C we have Rww' and Rw'w. A cluster is proper if it consists of two or
more states.

Let F' be a frame. A model based on F is the pair (F, V') where V is a valuation
function assigning a subset V(p) C W to each propositional variable p. Define
the satisfaction relation M, w = D (read as ‘D is satisfiable in M at state w’) by

induction on the structure of the formula D € For ML as follows:

M,w Epiff we V(p)

M,w = —Aiff not M,w = A
M,wE=AVBift MwlE Aor M,w | B
M,wEAANBiff MwlE Aand M,w = B
M,wE ADBiff M,w = A implies M,w = B
M,w = OA iff for all v € W, if Rwv then M,v = A

The negation of M, w |= D is written M, w [~ D. We say that D is falsifiable on
a model M if there is some state w such that M,w £ D.

Let F' be a frame. A formula A is valid at a state w in F' (written F,w = A)
if it is the case that M,w = A for every model M based on F. A formula is
valid on a frame (written F' = A) if it is valid at each state on the frame. Also,

a formula A is valid on a class F of frames (written F = A) if that formula is
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valid on each frame in the class. Finally, a logic L is sound for F if A € L implies
F E A, and a logic L is complete for F if F = A implies A € L.

It is well-known [64] that G L is sound and complete for the class of frames that
are transitive and contain no co- R-chains. Such frames are necessarily irreflexive.
A model whose underlying frame is transitive and contains no co-R-chains will
be called a G L-model.

Suppose that L; and Ly are logics in the languages £, and L, respectively. A
function f : ForL; — ForL, is called an embedding of L, into Lo if

VA € Forl,. A€ L, iff f(A) € Ly

Consider the following function 7" taking ForL into For M L: for all p € VarL
and all A, B € For/L:

T(p)=0p

T(=A) =0-T(4)
T(AV B)=T(A)vT(B)
T(ANB)=T(A) NT(B)
T(A> B)=0(T(A) > T(B))

This function is called the Gddel translation [27, 16]. It is well-known that 7" is
an embedding of Ip into S4 and Ip into Grz (see [16]). Notice that for every
occurrence of the propositional variable ¢ in T'(A) for A € ForL, it must be
the case that g appears in T(A) as the subformula Og. In other words, all
propositional variables in T'(A) are boxed.

For A € ForML, let T®(A) be the formula obtained by simultaneous replace-
ment of all occurrences of [J in A with X, where X B is abbreviation for B A B.
The map T% is known to be an embedding of Grz into GL (see [16]). It follows
that T, = T™T is an embedding of Ip into GL. Notice that for every occurrence
of the propositional variable ¢ in T, (A) for A € ForL, it must be the case that ¢
appears in Tgr(A) as the subformula g A Og.

2.8.2 Decision and countermodel procedure for GL

Sambin and Valentini [64, pg 326-7] have presented the following decision and
countermodel procedure for GL. We begin by defining the auxiliary calculus G LS’
— adapted from the version appearing in [64] in order to incorporate sequents
built from multisets — obtained from GLS (Table 2.1) as follows:
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(i) In GLS’, initial sequents are of the form P,0W = ) where P and @ are
multisets of propositional variables, and W is a multiset of formulae. If

PN Q # () then we call this sequent an axiom.

(ii)) The GLR rule is replaced with the following rule, where P and @) are finite
sets of propositional variables and Y = {4;,..., A, }:

X,0X,04, = 4, ... X,0X,04, = A,
P,O0X = 0OY,Q

Its meaning is that if one of the premises is derivable, then the conclusion
in derivable. Observe that RR is not a rule in the usual sense (hence the
dashed line). The rule RR is admissible in GLS because the conclusion of
RR is derivable in GLS whenever one of the premises of RR is derivable
in GLS. Also, RR is invertible in GLS in the sense that if the conclusion
sequent is derivable in GLS, then at least one of the premises is derivable

in GLS.

(iii) Replace the rules LA and RV in GLS with the following rules:

A B X=Y X=Y A B
ANB X =y A X=>Y,AVB

RV’

(iv) Delete the weakening rules LW and RW, and delete the contraction rules
LC and RC.

(v) Delete the cut-rule.

The idea is to use the calculus GLS’ for backward proof search in GL. By
backward proof search we mean repeated backward application of the rules of
GLS’ (ie. matching the conclusion sequent to obtain the premise sequents) until
an axiom is obtained or no further backward application is possible. The resulting
object is called a searchtree. A search is obtained by choosing a particular branch
of the searchtree at each application of RR. We use the term proper search to
refer to a search whose every initial sequent is an axiom. A sequent is said to be
derivable in GLS’ if there is a proper search for that sequent. See Sambin and
Valentini [64] for the proof that there can be no repetition of a sequent along any
branch of a searchtree. Since GLS’ can produce only finitely many sequents for
a given input, it follows that the GLS’ calculus terminates under backward proof

search for any input.
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The calculi GLS and GLS’ derive the same set of sequents

The first thing to do is show that derivations in GLS and proper searches in
G LS’ derive the same set of sequents. That is, a sequent S is derivable in GLS
iff there is a proper search of some searchtree in GLS" with endsequent S. (If)
From a proper search in GLS’ it is straightforward to obtain a derivation of the
identical endsequent in GLS.

To prove the (Only-if) it suffices to show that the steps (i)—(v) for obtaining
GLS' from GLS do not reduce the set of derivable sequents. Clearly every initial
sequent of GLS is derivable in GLS’. Furthermore, it is clear that GLR is a
special case of RR so replacing the former rule with the latter does not reduce
the set of derivable sequents. Similar comments apply to the rules LA" and RV’
Notice that weakening has been absorbed into the initial sequents and the RR
rule. Although only propositional variables (as opposed to arbitrary formulae) can
be introduced into a sequent via weakening in GLS’, observe that this does not
reduce the set of derivable sequents. Neither does deletion of the cut-rule reduce
the set of derivable sequents because of the cut-elimination result for GLS.

It remains to show that the deletion of the contraction rules does not reduce
the set of derivable sequents. This result is facilitated by (i) the dispensing of the
initial sequents A = A in GLS — in contrast, an axiom in GLS’ has a common
propositional variable in the antecedent and succedent, (ii) absorbing weakening
into the initial sequents and the RR rule, and (iii) replacing the rules LA and RV
with LA" and RV’. Due to these changes, by a standard induction on the height
of the derivation, we can show height-preserving invertibility of the logical rules

and hence admissibility of the contraction rules as required. We omit the details.

Decision and countermodel procedure for GL

For a given input X = Y, if the searchtree contains a proper search, then we can
directly obtain a derivation of X = Y in GLS. On the other hand, suppose that
the searchtree contains no proper search. It follows that X = Y is not derivable
in GLS. The task then is to construct a GL-model M such that AX D VY
is falsifiable on M. Such a model is called a countermodel for AX D VY (to
simplify the notation we will continue to write this formula as X = Y). In this
manner a decision and countermodel procedure for GL is obtained.

Sambin and Valentini [64] present the following method for constructing a
countermodel. First observe that an initial sequent in the searchtree that is not an

axiom must have the form L,0W = M where L and M are sets of propositional
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variables. Given a searchtree containing no proper search, for each initial sequent
L,0OW = M in the searchtree that is not an axiom (so L N M = {)), obtain a
valuation falsifying that sequent at a state x such that Rzy for no y by setting
x € V(p) iff p € L. Then descend the searchtree, extending the countermodel
where necessary to falsify each successive sequent. The proof is by induction on
the height of the searchtree.

The existing model suffices when logical rules are encountered. However, it
becomes necessary to add new states to the model when the RR rule is encoun-
tered. Let us illustrate this step. Consider an instance of RR with premise
sequents X, X, 0A; = A; (1 <i < m) and conclusion sequent P,00X = 0OY,Q
where Y = {A;,..., A, }. By the induction hypothesis we have that xq,...x,,
are the roots of m finite irreflexive transitive antisymmetric frames Fi,..., F,
with valuations Vi, ..., V,, such that F;,z; £ OX, X,04; = A, for 1 <i < m.
Let us construct a G L-model falsifying the sequent P,[JX = Y, Q. Consider
the transitive closure F' of the frame obtained by setting a new node y below
each of the frames with root z; so Ryz;. A frame has the antisymmetry property
if the binary relation R satisfies Rxy A Ryr — x = y for all states x,y. By
construction, we observe that F'is antisymmetric. To see this, intuitively, all the
arrows point in the same general 'direction’, upwards from y, so the antecedent
of the antisymmetry condition is never true for any instantiation of states, and
hence antisymmetry holds trivially.

Let V' be the valuation that agrees with V; on all states of the subtree with
root x; and such that P = @ is falsified at y (ie. set y € V(p) for those
propositional variables p € P N Q+, where Q=+ is the complement of Q). De-
note this model (F,V). Notice that y forces X as each x; forces X,[0X.
However (F,V),y = OA; for each i since (F,V),z; = A;. We conclude that
(F,V),y = P,OX = 0OY,Q. By construction, F is finite, irreflexive, transitive
and antisymmetric and hence contains no oco-R-chains. Thus (F,V) is a GL-
model falsifying P,0X = OY, Q. We will use the name GLS’-countermodel to

refer to this model.

Motivating the termination of backward proof search

The termination of backward proof search in GLS’ can be explained as follows.
From a syntactic viewpoint, the reason is that the diagonal formula in the con-
clusion sequent of RR reappears in the antecedent of the premise sequent. This

ensures that if we encounter the same diagonal formula again while searching
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backwards on a branch, then an axiom immediately results forcing termination
(no loops). Since OX, X, 0B = B is derivable iff OX, X = B is derivable (the
forward direction is the key result for Valentini’s cut-elimination — see [71] and
[32]), the diagonal formula that appears in the antecedent of the premise of the
RR rule can be viewed as an artifice to ensure a finite frame (equivalently, to
ensure termination without loop-check).

An explanation can also be given via the G LS’-countermodel construction.

Consider the following instance of the RR rule:

A= A

S oa i

The GLS’-countermodel procedure constructs a model falsifying [JA at a frame
rooted at y, by falsifying [JA = A at some state x above y. That is, by falsifying A
at x and forcing A at every v above x. Of course, to falsify JA at y it is enough
to falsify A at x, but the former construction ensures that we do not try to

repeatedly falsify A leading to a loop.

2.8.3 Lifting the method to intuitionistic logic

Propositional intuitionistic logic Ip (see [16]) is defined in the usual way in the
language L. Let us begin by presenting the semantics for Ip.

An intuitionistic frame is defined to be a reflexive, transitive and antisym-
metric frame. An intuitionistic model is defined as the pair (F,V') where F' =
(W, R) is an intuitionistic frame and V' is a valuation function assigning a subset
V(p) C W for each propositional variable p such that V" also satisfies the follow-
ing persistence property: for all states w,v € W and propositional variables p,
w € V(p) and Rwv implies v € V(p).

Let M = (F,V) be an intuitionistic model based on the intuitionistic frame
(W,R) and w a state in W. Define the satisfaction relation M,w |=; D by

induction on the structure of the formula D € ForL as follows:

M,w =, piff we V(p)

M, w |=; —~A iff for all v € W if Rwv then not M, v |=; A

M,wkE=, AVBiff Mwl; Aor M,w |=; B

M,wl ANBiff Myw = A and M,w |=; B

M,w =; AD Biff for all v € W, if Rwov then M,v |=; A implies M, v |=; B
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The negation of M,w |=; D is written M,w F~; D. We say that the formula D
is falsifiable on an intuitionistic model M if there is some state w such that
M, w [~; D. The notions of validity, soundness and completeness are defined as
in Section 2.8.1 with the word “frame” substituted with “intuitionistic frame”.
It is well-known that Ip is sound and complete for the class of intuitionistic
frames [16].

Let us look at how to construct a decision/countermodel procedure for Ip.
Given a formula A € ForL, compute the modal formula T, (A). Via backward
proof search using the GLS’ calculus obtain a searchtree for = T (A). If the
searchtree contains a proper search, then it follows that T (A) € GL. Since
Ter is an embedding of Ip into GL, it follows that A € Ip. On the other
hand, if the searchtreee for = T (A) does not contain a proper search, using
the procedure in Section 2.8.2 we can construct a GLS’-countermodel M for
Ter(A). Of course, M is not an intuitionistic model because the underlying frame
is irreflexive. Moreover an intuitionistic model has the persistence property while
no such restriction applies to a GL-model. Nevertheless, we will show how to
construct an intuitionistic model M’ from M such that formula A is falsifiable on
M'. As a result we will have obtained a countermodel for A as required.

We have already observed that every occurrence of a propositional variable ¢
in Tgr(A), for A € ForL, must appear in the context g A Og. This observation

is crucial for the following result.

Lemma 2.22 Let § be a searchtree with endsequent = Tgr(A) for A € ForL.
Then, in every instance p of the rule RR (shown below) in 0:

X,0X,04, = A, ... X,0X,04, =4,
POX = 0OV, Q

for every p € P, it is the case that p € X.

Proof. Let p be an arbitrary propositional variable in P.

First suppose that this formula occurrence moves to the succedent in some
sequent below the conclusion sequent P,[JX = [Y Q) of p and prior to en-
countering another RR rule instance or the endsequent. Then the occurrence p
appears in the succedent as the subformula of some formula D(p). Note that
the occurrence p must appear in D(p), (i) under the scope of an odd number of
negation signs, and (ii) not in the scope of a [J. Since the propositional variable p
must appear in the endsequent = T, (A) in the context p AOp, due to (i) it must
be the case that p appears in D(p) as the subformula p A Op and in the scope
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of an odd number of negation signs (to be precise, read implications M D N
in D(p) as =M VvV N). Then by (ii) it follows that p A Op is not in the scope of
a din D(p). Notice that every formula in the conclusion sequent of p is either a
propositional variable or a boxed formula. Hence an occurrence of Op in D(p) in
the scope of an odd number of negation signs and not in the scope of a [J implies
that this occurrence must have been a member of [1X in the conclusion sequent
of p. Thus Up € X and hence p € X.

Next suppose that the formula occurrence p remains in the antecedent prior
to encountering another RR rule instance, (or the endsequent in case p is a
bottommost RR rule). In fact, if p is a bottommost RR rule, then p cannot remain
in the antecedent because the endsequent is = T (A) (there is no formula in the

antecedent). If p is not a bottommost RR rule, the searchtree has the following

form, where Y = {A,... A, and Y' = {B,..., B, }:

OX,X,04, = A, ... OX,X,04, = A
POXFOY.Q

no RR rule instance

OX', X', 0B, = By ... ... OX',X',0B, = B»

P.OX' -0V, Q'

Since a formula cannot acquire boxes between RR rules instances, we have
00X’ C OX. Now if p € X', then Op € X’ and hence p € X. Else, if p & X/,
then the formula occurrence p must have been the principal formula of some
logical rule. It follows that p appears in the subformula p A Op in some formula
C(p) in X’. Moreover, the subformula p A Op must be in the scope of an even
number of negation signs (as before, read implications M D N in C(p) as the
formula =M V N) and cannot be in the scope of a 0. It follows that Op € OX
and hence we have that p € X.

This exhausts all the possibilities, so we conclude that p € X. Q.E.D.

Lemma 2.23 Suppose that A € ForL such that A &€ Ip. Then the GLS'-
countermodel M = (F,V) obtained according to the procedure in Section 2.8.2

has the persistence property.

Proof. Revisiting the construction in Section 2.8.2, in order to show the per-
sistence property, it suffices to consider the situation when a RR rule p (with
conclusion sequent P, X = Y, () is encountered in the searchtree. Recall that
this is the only situation where new states are added to the model. The con-

struction stipulates that we take the transitive closure of the frame obtained by
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placing a new state y under the states z; (ie. Ryx;), where F; denotes the frame
with root x; obtained from the induction hypothesis (1 < i < m). The model is
obtained by setting y € V(p) for p € PNQ+. To prove persistence, for all states x
above y we must show that z € V(p). By the construction and Lemma 2.22, ev-
ery state x; forces Op, p. Since every state above y is either z; (1 < i < m) or

some state above x;, the result follows. Q.E.D.

The reflexive closure R" of R is defined as
R'zy iff x =y or Rxy.

Given a modal frame F' = (W, R) and a model M = (F,V) on it, the frame
Fr = (W, R") and the model M" = (F", V) are called the reflezivizations of F
and M respectively.

Theorem 2.24 [Reflexivization] For every model M, every state x in M and
every ML-formula A,

M,z =T%(A) iff M",z = A.
Proof. See [16]. QE.D.

Theorem 2.25 Suppose that A € ForL such that A & Ip. Then the reflexiviza-
tion M" of the GLS'-countermodel M for Tgp(A) is a finite intuitionistic model
falsifying A.

Proof. From Section 2.8.2 we know that the model M is a finite, irreflexive, tran-
sitive, antisymmetric model such that M,y ~ Tgr(A) for some state y. More-
over from Lemma 2.23 we know that M has the persistence property. Since
Tar = TPT, by Theorem 2.24 it follows that M",y [~ T(A), where M" is a finite,
reflexive, transitive, antisymmetric model with the persistence property.

Clearly M" is an intuitionistic model. It suffices to show that M, y ~; A. To
show this we prove the stronger result that M" y |=; A iff M",y = T(A). Proof
by induction on the structure of A.

Suppose that A is the propositional variable p. Then M" y |=; p iff y € V(p).
By the persistence property, every state above y is also in V' (p). The latter occurs
iff M",y = Op.

If A= =B, then M",y |=; -B iff for all z, if Ryz then M", z |~; B. By the
induction hypothesis this occurs iff for all z, if Ryz then M", z = T'(B). This in
turn occurs iff M",y = O-T(B).
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If A= B D C, then M",y =; B D C iff for all z, if Ryz then M", 2z =, B
implies M",z |=; C. By the induction hypothesis, this occurs iff for all z, if
Ryz then M",z = T(B) implies M", z |= T(C). This in turn occurs iff M",y |=
O(T(B) D T(C)).

The cases when A =C'V D and A = C A D are straightforward. Q.E.D.

Bounding the depth of the countermodel.

The above procedure suggests a simple bound on the height of the countermodel
for A € ForL such that A &€ Ip. It is the maximum modal depth — in other

words, the maximum nesting of [J — in A.

Finite model property.

Theorem 2.25 implies the finite model property [16] for Ip.

2.8.4 Related work

Gentzen’s [25] single-formula succedent calculus LJ for intuitionistic logic Ip con-

tains the following rule LD for introducing the connective D into the antecedent:

ADB,X=A B, X=C
ADB,X=C

LD

Notice that the principal formula A D B is repeated in the left premise. This
ensures admissibility of the contraction rule. However, this repetition also means
that a loop check is required to obtain termination for the calculus.

In the calculus LJT [22], the above LD rule is split into the following four

rules, the motivation being a fine-analysis of the structure of A:

B,p,X=A
pDOB,pX=A

C>(D>B),X=A
(CAND)DB,X=A

LD,

Lo,

COB,DDODB,X=A
(CvD)DB,X=A

DD>B,X=C>D B, X=A
(CO>D)DB,X=A

Loy

LDs

The rule of contraction is admissible in LJT (see [23] for a direct proof; only
LD, is non-invertible and hence requires special care). Furthermore, it is possible
to define a measure p under which the conclusion sequents have strictly greater
weight that the premises. Thus termination is guaranteed without the use of a

loopcheck. Intuitively, the left premise of LDy, (i) contains enough information to
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ensure admissibility of contraction, and (ii) is simpler than the conclusion sequent
under the measure pu.

Note that we are not suggesting that the method of embedding Ip into GL
(Section 2.8.3) is better for proof search than the calculus LJT.

2.9 Adapting the proof of cut-elimination for

some other logics

Let K be the basic modal logic and let KA, ... A, denote the axiomatic extension
of K obtained by the addition of axioms Ay, ..., .4, to K. Consider the following

axioms:

4: Op>0O0Op (transitivity)

T: Op>Dp (reflexivity)

G: OBp>op >0Op (Léb’s axiom)
Grz: O0O(@>0p)Dp) Dp

Go: DO(pp>0p)>p) >0p

As we have already noted, the Godel-Lob provability logic GL can be axiomatised
as KG. The logics Grz and Go are axiomatised as KGrz and KGo respectively.

The following results are well-known:

4¢€ GL Goe GL
4 € Go
4 € Grz T e Grz Go e Grz

An alternative axiomatisation for Grz is KTGo [31].

The logic GL is sound and complete for the class of frames that are transitive
and contain no oco-R-chains [64]. It is known that Go is sound and complete
for the class § of frames that are transitive, contain no proper clusters, and
contain no proper oo-R-chains [30]. Indeed, it is easy to see how to construct a
countermodel to show that T' ¢ Go. Finally, Grz is sound and complete for the
subclass of frames in § satisfying reflexivity [30].

The similarity of the axioms Grz and Go with Lob’s axiom G — which leads
to a similarity in the corresponding sequent rules — suggests that the proof of

cut-elimination for GL may be adapted to the logics Grz and Go. As shown
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in [2], a sequent calculus GrzS for Grz can be obtained by replacing the GLR
rule in GLS with the following modal rules:

B, X=Y OX,0(B>0OB)= B

OB, X = v CliZa OX = OB GRZb

Notice the similarity of the GRZb rule to the GLR rule — in particular, in both

rules the [IB formula passes from the succedent of the conclusion sequent to the

antecedent of the premise sequent. A semantic proof of cut-elimination for this
calculus is given in [2]. Borga and Gentilini [9] present a syntactic proof of cut-
elimination for this calculus where the sequents are built from sets. This proof
bears much similarity to the proof for GLS. The extension to sequents built from
multisets is straightforward.
A sequent calculus GoS for Go is easily obtained from GLS by replacing the
G LR rule with the following:
OX,X,0(B>0OB)=B

OX = OB Golt
There is no existing cut-elimination procedure for Go. We present a solution

in Chapter 3. Some of the ideas in the proof for GL are employed, although
the transformations for Go seem to require a deeper analysis of the derivation
structures than the proofs for GL and Grz.

The logic G Ly;, is obtained by the addition of the following axiom to GL:

O(p AOp D 0q) vO(gAOg D Op)

Valentini [72] has extended the ideas in the proof of cut-elimination for GL to
obtain cut-elimination for this logic for a calculus where the sequents are built
from sets.

The logics S4.3.1 and S4Dbr are axiomatised respectively, as K'T'4.3Dum and
KTADbr [30], where the axioms

Dum : O(O(p > Op) D p) D (¢Op D Op)
Dbr . O(0O(p > Op) D p) D (BSOp D Op)

have a similar form to the Go axiom. In the case of S4.3.1, Shimura [67] has
presented a proof of cut-elimination that requires a cutfree calculus for the logic
S5 as an oracle. However this is a rather strong requirement as all the existing
cutfree systems for S5 are obtained via modification of the traditional sequent
calculus [66, 20, 36, 56]. Thus it would be interesting to see if we can exploit the
syntactic similarity of the axioms to the Go axiom — which leads to a similar-
ity in the corresponding sequent rules — in order to obtain cut-elimination for

traditional sequent calculi for these logics.
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Form of annotated derivation § Do)
(OB)* = OB (OB)° = OB
{m} ()7
Pop | oS E
G.OBY = H o [ OO ] LW(OB)
{7} ()7
®op [m}
G,[OB)" = H ! LC(OB)
LC(OB *
G.OB" = 0 (OB) G,(OB)*" = H
{1 (r}7
G.OB = H . . %05 | gty |
c.oBsu "7 G.(OB)™ = H
{mh {r}]
DG, G, (DB)”, B", OA= A . 0UG,G,(dB)»,B™ A=A GLR
{1 {m'}
¢.Cpy =" OB =H
G, (0B = H p7cu
®op [%} ®oB {%
G, (OB = H
antecedent of ES(J) does not
contain a (OB)* formula 4]

occurrence

23

Table 2.2: Definition of ®qp. Multisets G and JG contain no occurrences of an-

notated formulae. An annotated derivation § in the left column is mapped under

®p to the annotated derivation in the right column. Due to space restrictions,

in the case where p is a binary rule, 6 and ®np[d] appear on separate rows.



o4

CHAPTER 2. CUT-ELIMINATION FOR GL RESOLVED



Chapter 3

Syntactic Cut-elimination for Go

We present a syntactic proof of cut-elimination for the logic Go. The logic has
a syntactically similar axiomatisation to Grzegorczyk’s logic Grz and provability
logic GL. In fact, Go can be viewed as the non-reflexive counterpart of Grz, and
G L can be viewed as the irreflexive counterpart of Grz. Although proofs of cut-
elimination for GL and Grz have appeared in the literature, to our knowledge,
this is the first proof of cut-elimination for Go. The proof seems to require a
deeper analysis of the derivation structures than the proofs for GL and Grz, and

new transformations are developed here.

3.1 Introduction

The logic Go is the smallest normal modal logic containing K and the schemata
Op D 0O0p and O(d(p D Op) D p) D Op). The logic is sound and complete with
respect to the class of transitive frames with no proper clusters and no proper
0o-R-chains [30] (see Section 2.8.1 for a definition of these terms), and it is a
proper subsystem of both Godel-Léb logic GL (also known as provability logic)
and Grzegorzyk’s logic Grz. A survey of some results on Go can be found in
Litak [44], where the logic is called the weak Grzegorczyk logic wGrz.

A sequent calculus GoS for Go (see Table 3.1) can be obtained by the addition
of the following modal rule GoR to a suitable calculus for classical propositional

logic:

0X,X,0(B >0OB) = B
0X = OB

Observe that GoS contains the cut-rule. Showing that it is always possible via

GoR

constructive transformation to eliminate the cuts in a given derivation to obtain a

95
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cutfree derivation of the same endsequent is called syntactic cut-elimination. It is
one of the most important results in the proof theory of a logic and the existence
of such a transformation is a highly desirable property for a sequent calculus.
The first such proof was given by Gentzen [25] who recognised the importance
of a constructive procedure in his celebrated Hauptsatz or ‘main theorem’ where
syntactic cut-elimination is presented for the classical and intuitionistic sequent
calculi LK and LJ respectively. A proof has been presented for Grz [9], and
while there has been some controversy [51] regarding Valentini’s [71] proof for
G L, the issues are now resolved [32]. Here we show syntactic cut-elimination for
GoS. To our knowledge, this is the first proof of syntactic cut-elimination for Go.
We observe that cut-elimination for Go is not just a simple variation of the proofs
for GL and Grz. Indeed, although Valentini’s [71] transformations for GL remain
an inspiration for our transformations, the proof presented here appears to gen-
eralise the methods used for GL and Grz. In particular, new transformations are
introduced, and the proof uses a quaternary induction measure (three induction
variables suffice for GL and Grz).

In the Hauptsatz, Gentzen relied on a primary induction on the degree of the
cut-formula and secondary induction on cut-height. Suppose that cut; and cuty
denote two occurrences of the cut-rule in some derivation. Write cut; < cuty to
mean that cut; is less than cuty under the above measure. If we attempt a proof
for Go following the proof of the Hauptsatz we quickly find that the only case
deserving special attention is the case when the cut-formula is principal in both
premises by GoR. Consider the following derivation where we assume without

loss of generality that both premises of cuty are cutfree:

0X, X,0(B > 0B) = B OB, B,0U,U,0(C > 0C) = C
OX = 0B GoR 05,00 = 0C
OX.00 = 00

GoR

U,to

It is not obvious how to proceed from here. However, making use of the cut-rule
observe that it is easy to construct a derivation of [JX, X = B from the left
premise of cuty. Indeed, the following suffices:

0X = OB
0X,0(B > 0B),B = 0B

O0x,0(B>0B)>DOB>OB)=BD>UB
0OX = 0O(B > OB)

LW*

R>

GoR

0X,X,0(B>0B) = B

OX,0X, X = B cut

OX,X = B

Lcx
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If we could obtain a cutfree derivation of [JX, X = B then we may proceed

0X = 0B 0OB,B,0U,U,0(C >0C) = C
O0X,X = B 0X,B,0U,U,0(C >0OC) = C
0X,0X, X,00,U,0(C >0C) = C
0X,X,00,U,0(C >0C) = C

0OX,00 = 0OC

cuty

cuty

LC*
GoR

where, cut; < cutyg and cuty < cutyg. The result would then follow directly
from the induction hypothesis. This situation parallels the approach to cut-
elimination for the calculi GLS for GL [71, 32, 8] and GrzS for Grz [9]. In GLS
for example, it is sufficient to obtain a derivation of X, X = B from a derivation
of X, X,0B = B. In GrzS, a derivation of LJX = B from a derivation for
OX,0(B D OB) = B suffices. Thus the obvious approach for GoS would be to
draw on the syntactic proofs of cut-elimination for GLS and GrzS. We discuss
the difficulties in adapting those proofs to GoS' in Section 3.4.

Finally, we remind the reader that it is straightforward to show that the cut-
rule is redundant by proving that the calculus without the cut-rule is sound and
complete for the frame semantics of Go (see [1]). However the drawback of such
a semantic (as opposed to syntactic) proof is that we have no effective method of

constructing the cutfree derivation.

3.2 Basic definitions and notation

Formulae are constructed in the usual way from propositional variables using
the logical connectives — (negation), A (conjunction), V (disjunction), D (im-
plication) and the modal operator OJ. Propositional variables are written using
D, q, ... and formulae are denoted by A, B,C,.... Multisets of formulae are de-
noted by X,Y,.... We write XA to denote the multiset ((JA, A). Let X be
the multiset (A;,...,A,). Then we write JX and XX to mean the following
multisets respectively:

(DA, ..., 04,) (DA, ..., OAn Ay, Ay)

The notation A™ denotes the multiset (Ay,..., Ay). A sequent is a tuple (X,Y)
of multisets X and Y and is written X = Y. The symbols U and C are used
to denote multiset union and the multiset inclusion relation respectively. The
multiset X and Y are called respectively the antecedent and succedent of the

sequent. The sequent calculus GoS is defined in Table 3.1.
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Initial sequents: A = A for each formula A

Logical rules:

X=Y A I A X =Y
X A=y b7 Xov, -4
A, X =Y I X=Y A X =Y A
Al/\AQ,X:>Y A X:>}/,A1/\A2
AhX:Y AQ,X:Y I X:Y,AZ R
Al\/A27X:Y v XiYV,Al\/AQ v
X=Y A B, X=Y I AX=Y DB R
ASB X=Y - X=VY,A>B '+
Modal rule: X, X, D(A D) DA) = A CoR
OX = UA ©
Structural rules:
_X=Y _X=Y
AxX=vy W X=v.a W
AAX =Y e X=Y A A o
ALX=Y X=v,a I
Cutorule: X=Y A AU =W cut

X, U=Y W
Table 3.1: The sequent calculus GoS. Note: i € {1,2} in the rules LA and RV.

A derivation (in GoS) is defined recursively with reference to Table 3.1 in the

usual manner as follows:
(i) for any formula A, the initial sequent A = A is a derivation, and

(ii) an application of a logical, modal, structural or cut-rule to derivations con-

cluding its premise(s) is a derivation.

For the logical and structural rules in GoS, the multisets X and Y are called
the context. As usual [70], in the conclusion of each of these rules, the formula
not in the context is called the principal formula. For the GoR rule in Table 3.1,
the [JA in the succedent of the conclusion sequent is the principal formula. Fur-
thermore, the formula A in that rule is called the diagonal formula. A formula

occurring in some sequent in a derivation is called principal if it is the principal
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formula of the rule deriving that sequent. We sometimes write p(A) to indicate
that the rule p makes A principal.

In the cut-rule in Table 3.1, the formula A is the cut-formula. A derivation is
said to be cutfree if it contains no instances of the cut-rule. Viewing a derivation
as a tree, we call the root of the tree the endsequent of the derivation. We use
the phrase ‘upwards’ informally to mean the direction from the endsequent to
the initial sequents. ‘Downwards’ is the direction towards the endsequent. The
phrases ‘above’ and ‘below’ are used with respect to these directions. If there is
a derivation with endsequent X =Y we say that X = Y is derivable in GoS.

Let AX (\/Y) denote the conjunction (disjunction) of all formula occurrences
in X (V). It is straightforward to show that a sequent X = Y is derivable in
GoS iff the formula AX D\/Y is a theorem of the logic Go. In other words, GoS
is sound and complete with respect to Go and thus GoS is a sequent calculus for
Go. We observe that the cut-elimination result shows that the calculus minus the
cut-rule is sound and complete for Go.

Finally we define the height, cut-height, and degree of a formula in the stan-
dard manner.

Definition 3.1 (height, cut-height, degree) The height h(7) of a derivation
T 1s the greatest number of successive applications of rules in it plus one. The
cut-height s of an instance of the cut-rule with premise derivations 11 and Ty is
h(71) + h(12). The degree |A| of a formula A is defined as the number of symbol

occurrences in A from {D, =, A\, V, D}

3.2.1 Preliminary results

Lemma 3.2 (height-preserving invertibility of LD) Suppose that 7 is a cut-
free derivation of A D B, X = Y. There there is an effective height-preserving
transformation to cutfree derivations of X = Y, A and B, X =Y.

Proof. Because GoS contains contraction rules, we actually need to prove the
stronger statement: if 7 is a cutfree derivation of (A D B)™ X = Y then there
are cutfree derivations of A", X = Y and X = B™!Y. The argument is a
standard induction on the height of 7 so we omit the details. Q.E.D.

Lemma 3.3 Let 7 be a cutfree derivation of X,00(B D OB)™ = Y. Then

there is an effective transformation to a cutfree derivation 7 of X, (OB)™ ™ = Y.
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Proof. Induction on the height of 7. Consider the last rule in 7.

For example, consider the case when the last rule in 7 is the GoR rule:

XX,0(B > OB)™, (B >OB)™,0(C >0OC) = C
0OX,0(B > OB)™! = OC

By height-preserving invertibility of LD (Lemma 3.3) we have a derivation of
XX, 0(B > OB)™ (OB)",0(C >0C) = C
Applying the induction hypothesis we obtain
XX, (@OB)™, (OB)™,0C >0C) = C

The result follows from repeated application of the LC' rule.

As another example, consider when the last rule in 7 is LC:

X,0(B>OB)™?2 =Y
X,0(B>OB)" 1 =Y

From the induction hypothesis we can obtain a derivation of X, (JB)™? = Y.
The result follows from an application of the LC' rule.

The other cases are similar. Q.E.D.

We will use the diagonal formula as the label for a GoR rule, writing “C' is
a GoR rule in 77 to refer to an occurrence of a GoR rule in 7 with diagonal
formula C. Although it is certainly possible for a derivation to contain multiple
GoR rule occurrences with the identical diagonal formula, we will ensure that the
context identifies the intended occurrence. This labelling will greatly simplify the
notation.

Let C and C5 denote two different occurrences of the GoR rule in 7. We say
that C; is above Cy if, tracing upwards, there is a path upwards in 7 from Cs
to C.

We say that boxes persist upwards in 7 if, for all occurrences C; and Cs of
GoR in 7 (with conclusion sequents 0X; = OA; and 00X, = OA, say), C is
above Cy implies that (X, U ((J(As D OAy)) C OXj;.

The rule immediately above the endsequent in a non-trivial derivation (ie the
last rule in the derivation) is called the final rule. A derivation 7 ending as
XX,0(B > UB) = B/9?0X = OB (so the final rule is GoR with diagonal
formula B) is called implication-forced if every occurrence of GoR in 7 apart from
the final rule is preceeded by LD (B D OB). In other words, every GoR rule

with the exception of the final rule occurs in the context
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0(B>0OB),0X,X,0(A>A) = A,B  0OBOMB>OB),0X,X,0A>A) = A
O(B>0OB),Bo>OB,OX,X,0(AD A) = A
O(B > 0OB),0X = 0A

LD
GoR

Definition 3.4 (normal derivation) A cutfree derivation T with final rule GoR

is called normal if bozes persist upwards and T is implication-forced.

The following lemma shows that any cutfree derivation where the final rule is

GoR can be transformed into a normal derivation with the same endsequent.

Lemma 3.5 (normal derivation lemma) Let 7 be a cutfree derivation ending
as XX,0(B > OB) = B/“?0X = OB. Then there is an effective transforma-
tion to a normal derivation 7' ending as XX,0(B > OB) = B/°f0OX = 0OB.

Proof. We will transform 7 to ensure that boxes persist upwards, and then

transform the resulting derivation to ensure that it is implication-forced.

To illustrate the transformation required to ensure that boxes persist upwards,

suppose that 7 has the following form:

Di = Di

)Y, 0O(A, 5 0A,) = A,
ay, = OA,

GoR

gY}’—la D(Ar—l D) DAr—l) = Ar—l
Oy, = UA,

GoR

R®Y, 0(A;, 5 0A4) = A,

0Ov, = 0A, GoR

The idea is to transform the proof to the following using appropriate weakening
and contraction rules — LW™ indicates some number of applications of the LW
rule (read the following proof diagram downwards from the initial sequent):
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Pi = Pi
&Yl, &(Al D) DAl), ey @Y;_l, &(Ar—l D) DAT_l), @YT,pi = P

IZYlv &(Al D) DA1)7 ) IZ}fT—la IZ(AT—I D) DAT—1)7 IZY;"’ D(A'r D) DA'I‘) = AT‘
DYla D(Al D DAl)a ) DY;“*la D(Arfl D DAT*l)a DY;‘ = DAr
XY7, &(Al D) |:|A1), L RY. D(Ar_l D) DAT_l), ay,. = 0OA,

GoR

LW

&}/1, &(Al D) DAl), ey ‘XK"—17 D(Ar_l D) DAr_l) = Ar—l
DYl, D(Al D) DAl), ey Yy, = DAT_l

GoR

&YI,D(Al D) DAl) = A
Oy; = 04,

GoR

We omit the details as the proof is straightforward, if tedious.
In this manner, from 7 we can obtain a derivation 7" ending as XX, (B D
0OB) = B/%!0OX = OB such that boxes persist upwards in 7/. Thus every

occurrence of GoR aside from the final rule has the form

O(B>0OB),B>OB,0X,X,A>04= A
0O(B > OB),0X = OA

By invertibility of LD (Lemma 3.2) we can obtain cutfree derivations d; and ds

of, respectively,

O(B > OB),0X,X,A>04= A B

and
OB >0OB),0B,0X, X,AD0A= A

Then replace the subderivation ending (B D OB),00X = A in 7 with the
following derivation:

&1 8
OB >0B),0X,X,A>0A=A,B O(B>OB),0B,0OX,X,A>0A=A
OB >0OB),B>0OB,0X,X,A>04= A

0(B > OB),0X = 0OA

L>

GoR

Apply this argument to all non-final GoR rules in 7' to obtain a cutfree deriva-
tion 7” that is implication-forced. Observe that boxes persist upwards in 7"

because boxes persist upwards in 7. It follows that 7" is a normal derivation
ending as XX, (B D> OB) = B/%f0X = OB. Q.E.D.

Let C be an arbitrary non-final GoR rule occurrence in the normal deriva-
tion 7. Because 7 is implication-forced, C' must appear as follows, with a LD rule
immediately above the GoR rule:
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O(B50B).0X,X,C50C=C.B _ O(B5OB).0BOX,X,CO0C=C
OB S 0B),B>0OB,0X,X,0 50C = C -
O(B > 0B),0X = 0C

GoR

In the above context where LD is immediately above an occurrence C' of the GoR
rule (remember that we use the diagonal formula C' as a label for the GoR rule
occurrence), we will write S;(C') and Sg(C') respectively, to denote the left and
right premise of that LD rule occurrence. Now suppose that ] is an occurrence
of the GoR rule above C'. If C occurs above the sequent Sp,(C') then we say that
(' is left-above C'. Similarly, if C'; occurs above the sequent Sg(C) then we say
that C is right-above C'. If there is no GoR rule on the path between C; and C'
then we say that C) is immediately left-above (resp. right-above) C.

Definition 3.6 (topmost sequent) Let 7 be a normal derivation ending as
XX, 0(B D> OB) = B/%FR0OX = OB. A sequent S in derivation T is called
topmost if each OB and (B D OB) formula occurring in the antecedent of S
is introduced in every branch above S wvia the initial sequents B = B and
O(B D OB) = O(B D OB) or weakening rules, and prior to encountering a
GoR rule.

Intuitively, tracing upwards along each branch of the derivation from the topmost
sequent, we will encounter the initial sequents or weakening rules for (1B and
O(B D OB) before encountering a GoR rule. For example, consider the following
proof diagram.

: GoR :
O(B > 0B),0(C >00) = ¢t ° O(C>0C0) = C

O(B > 0OB),0(C >0C) = B,C (B > 0OB),0B,0(C > 0OC) = C*
O(B > 0B),B >0B,0(C > 0C) = C*
O(B >0B)=0C

GoR

Lw
Lo

GoR

The sequent marked with  is not a topmost sequent because there is a GoR rule
immediately above it — thus violating the condition that, viewed upwards, the
O(B D OB) formula in the antecedent is introduced prior to encountering a GoR
rule. However the sequent marked with I is a topmost sequent because both the
O(B D OB) and OB formulae in the antecedent are introduced via weakening
and there is no GoR rule in-between i and the weakening rules. Finally, the
sequent marked with x is not a topmost sequent because, tracing upwards, there
is a branch above it (the left premise of LD) where the (B D OB) formula is
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not introduced via an initial sequent or weakening prior to encountering a GoR

rule.

Lemma 3.7 (topmost sequent lemma) Let 7 be a normal derivation ending
as XX,0(B D OB) = B/%Pf0X = OB and suppose that I = A is a topmost
sequent in 7. Then there is a cutfree derivation of T = A where I'* is the
multiset obtained from I' by deleting all occurrences of OB and O(B D OB).

Proof. Since I' = A is a topmost sequent, each OB formula in I' must have
been introduced by a LW (OB) weakening rule above I' = A, or it can be traced
to a OB = OB initial sequent. Similarly, each O(B D OB) formula in I' must
have been introduced by a LW (O(B D OB) weakening rule above I' = A or it
can be traced to a (B D OB) = (B D OB) initial sequent.

A cutfree derivation of I'* = A can be obtained as follows.

Substitute any LW (OB) or LW (O(B D OB) weakening rules above the se-
quent I' = A with LW*(JX), and substitute the derivation 7 of OX = OB for
occurrences of the initial sequent LJB = [B. Finally substitute the following
derivation in place of the initial sequent (B D 0OB) = O(B D OB).

0X = OB
B,XX,0((B >0B) > 0((B > 0B))) = UB

XX,0((B>0OB) > O((B>0OB))) = B> OB
0X = 0O(B > OB)

LW*

GoR

By inspection, the obvious derivation that can be obtained from these transfor-

mations is a cutfree derivation of I'* = A. Q.E.D.

3.3 Cut-elimination for Go

In this section, we consider exclusively a normal derivation 7 ending as follows:
XX, OB >0OB)=B

0X = 0B
Recall that the (GoR) rule ending 7 is called the final rule.

Before we proceed, we remind the reader once more that an occurrence in 7

GoR

of a GoR rule is referred to by the diagonal formula of that rule — even if there
are multiple occurrences of GoR with identical diagonal formula in 7 the context
will make it clear which occurrence is meant. For example, the final rule in 7 is

a GoR rule with diagonal formula B so we refer to this occurrence as the final
rule B.
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‘LW(D(B > OB)) LW(@B), LW(O(B > OB) ‘

X LD XX LD
LG R<] LG RD
x o= x on=
X X o X X o

GoR>

X | X
X

LD
X
- <,> R, <,>
>. GoR >. GoR

XX,0(B>0OB) = B
0OX = OB

GoR

Figure 3.1: A schematic representation of a fragment of a normal derivation end-
ing as XX, J(B > OB) = B/9~?0X = OB. The solid lines represent portions
of the derivation that are GoR-free. The symbol <1 denotes a leftflush rule and >
denotes a rightflush rule (each wrt B). The symbols < and > respectively denote
a M LL rule and a M RR rule (once again wrt to B).

Definition 3.8 (leftflush, rightflush rules) Let C' be some GoR rule in a nor-
mal deriwation 7. The set of GoR rules that are leftflush (rightflush) rule wrt C

is precisely the set defined by the following recursive definition:

(i) any GoR rule immediately above the final rule B is leftflush and rightflush
wrt B

(i) any GoR rule that is left-above (right-above) a GoR rule C is leftflush (right-
flush) wrt C

(11i) any GoR rule that is left-above (right-above) a rule that is itself leftflush
(rightflush) wrt C' is said to to be leftflush (rightflush) wrt C

Intuitively, D is leftflush wrt C'if D is encountered by repeatedly tracing through
GoR rules left-above C. The intuition for rightflush is analogous. See Figure 3.1



66 CHAPTER 3. SYNTACTIC CUT-ELIMINATION FOR GO

for an illustration of these terms.

Notice that it is never the case that C is leftflush (rightflush) wrt itself. Also
the final rule B is not leftflush (rightflush) wrt to any rule, although from (i)
every rule immediately above the final rule is both leftflush and rightflush wrt B.

The following observation is crucial for the success of the proof.

Suppose that the GoR rule C' in a normal derivation 7 is leftflush wrt the
final rule B. Then the rule C' has a conclusion sequent of the form OY, (B D
OB)*! = OC, where Y contains no OB or (B D UB) formulae that are
parametric ancestors of the diagonal formula in the final rule. In particular, this

means that

S (C) =XY,0(B > OB)** = B C
Sr(C) =XY,0(B > OB)*! OB*! = C

Definition 3.9 (depth) The depth of a GoR rule p in a derivation T is the

number of GoR rules between the premise of p and the endsequent of 7.

For example, for a derivation concluding with a GoR rule p, the depth of p in

that derivation is 1.

Definition 3.10 (left-, right-topmost) Suppose that T is a normal derivation.
A GoR rule C in T is called left-topmost (right-topmost) if the sequent Sp(C)
(Sr(C)) is a topmost sequent.

Definition 3.11 (M LL rule wrt C) Let C be some occurrence of the GoR rule
in a normal derivation T and suppose that D is a leftflush rule (wrt C') and left-
topmost rule. Then D is called an M LL rule wrt C' if there is no leftflush (wrt C')
and left-topmost rule below D.

The term M LL stands for ‘minimal leftflush left-topmost’. Although a normal
derivation may contain distinct M LL rules (wrt C') A and B, it must be the case
that A and B lie on different branches above C. Intuitively, an M LL rule is the
leftflush left-topmost rule closest to C'. Similarly we define

Definition 3.12 (M RR rule wrt C) Let C be some occurrence of the GoR rule
in a normal derivation T and suppose that D is a rightflush rule (wrt C') and right-
topmost rule. Then D is said to be an M LL rule wrt C' if there is no rightflush
(wrt C') and right-topmost rule below C'.
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The term M RR stands for ‘minimal rightflush right-topmost’. See Figure 3.1 for
an illustration of the terms M LL and M RR.

Definition 3.13 (leftwidth, rightwidth) The leftwidth lw(7) is defined as the
sum of the depths of each M LL rule (wrt the final rule) in a normal derivation .
Similarly, define the rightwidth rw(7) as the sum of the depths of each RLL rule
(wrt the final rule) in .

Definition 3.14 (width of cut) The width of an instance of cut is defined
when the left premise of cut is principal by the GoR rule, as the leftwidth lw(0)
of the left premise derivation 6.

To simplify the notation, in the following we will omit writing the full an-
tecedent of each sequent, dropping context terms such as [JX, and ignore for-
mula multiplicities. For example, instead of OX, X, (B D 0OB) = B we write
O(B D OB) = B. Similarly, the rule

XX,XY,X(B > 0OB)".0(C >0C) = C
OX,0v,0(B > 0OB)™ = 0OC

becomes
X(BO>OB),OC>0C)=C
O(B > 0OB) = 0OC

It is straightforward to extend the proof to the general case.

Let 7 be a normal derivation ending as XX, (B D> 0OB) = B/%f0X = UB.
Part I. obtain X(C D OC) = B for an arbitrary M LL rule C' wrt B

First suppose that {w(7) = 0. Then it must be the case that there are no
MLL rules wrt the final rule. This implies that the (B D OB) formula is

introduced via weakening or initial sequents immediately above J(B D OB) = B

in every branch. Thus, O(B D OB) = B is already a topmost sequent. We can
immediately obtain a cutfree derivation of X, X = B from Lemma 3.7.

Now suppose that lw(7) > 0. We can schematically represent 7 as follows —
an arbitrary M LL rule C' wrt B is highlighted in bold:

(topmost sequent,) :
S;=0(B>0OB),0(C >0C)= B,C Ss=0(B>0OB),0B,OCH>OC)=C
BoOB,OB>OB),OC>OC)=C
S =0(B>0B) = 0OC

GoR

OB>0B)=B
= 0B
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First, replace the subderivation of sequent &; in 7 with the derivation

uc = adc
O(B > 0OB),0C = 0OC

LW

thus deleting an M LL rule from 7. We can then obtain a derivation 7" of (0C =
OB. Although the GoR rule p below O(B D OB),0C = OC in 7" may now
be an M LL rule (observe that p could not have been an M LL rule in 7 because
then C would not have been an M LL), by inspection it is clear that the depth
of p is strictly less than the depth of the M LL rule C in 7. Thus lw(7’) < lw(T).
From OO(B D OB) = B we can obtain a derivation of OB = B (Lemma 3.3),

and so we have

0C = 0B DB:>BC
0OC =B

ut

where the cut has width < (w(7).
From O(B D OB),0(C > 0OC) = B,C (this is Sy) by Lemma 3.7 we can

obtain directly a derivation of
O >0C) = B,C
Using [JC' = B and the above sequent, from LD we get
X(C > 0C) = B (3.1)

Part II. transform 7 so Sg(D) is a topmost sequent

To show this we will prove a stronger statement (x):

If D is either the M LL rule C or a rightflush rule wrt to the M LL
rule C in 7, then we can transform the subderivation above D in 7 so

that Sg(D) is a topmost sequent.

Let 0 denote the subderivation in 7 deriving the conclusion sequent of D. The
proof is by induction on the rightwidth rw(d) of 4.

Case 1. Suppose that D is the M LL rule C.

If rw(0) = 0, then it must be the case that there are no M RR rules wrt C.
This implies that every (B D OB) formula in the antecedent of Sg(C') (=S8s) is
introduced via weakening or initial sequents above Sg(C') in every branch. Thus,
Sr(C) is already a topmost sequent.

If rw(d) > 0, there must be a GoR rule F' immediately right-above the M LL
rule C' (highlighted in bold for clarity):
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x & =0B,B,0(B>0B),R(C >OC),0F >0OF) = F
0B, B,X(B > 0B),X(C > OC),0(F > OF) = F
0B,0(B > 0OB),0(C > OC) = OF

LD

oR

x O(B>0OB),0B,0(C >00) = C
OB o>0OB),BOOB,OC>OC)=C

0(B > 0OB) = 0OC
Let ¢’ be the subderivation deriving OB, (B D OB),0(C > OC) = OF. Since
rw(d’) < rw(d), by the induction hypothesis it follows that Sg(F) (=S,) is a
topmost sequent. Hence, from Lemma 3.7 we have a derivation of B,X(C D
0C),0(F > OF) = F. Now, making use of the derivation of (3.1) we obtained

before, we have

X(C>0C)=B B,XR(C>0OC),O(F>0F) = F
X(C >0OC),0(F >0OF) = F
O(C >0C) = 0F
O(B > 0OB),0B,0(C >0OC) = 0OF

GoR

cut

oR
Lw

« OB >0B),0B,0(C >0C) = C
O(B>0B), B>0B,0(C >00) = C
O(B > 0B) = 0OC

Because of the left weakening rule we introduced above, the rightwidth of C' in

GoR

the above derivation is < rw(d), and so by the induction hypothesis it follows
that Sr(C) is a topmost sequent.

Case II. Suppose that D is a rightflush rule wrt C. If rw(d) = 0 then there
are no M RR rules wrt D, so Sg(D) must be topmost. Else, if rw(d) > 0, then
there must be a GoR rule G immediately right-above D:

x  OB,B,0(B > 0B),K(C >0OC),R(D > OD),0(G > 0G) = G

0B, B,X(B > 0B),K(C > OC),K(D > OD), (G 5> 0G) = G
OB,0(B > 0OB),0(C >0OC),0(D >0OD) = 0G

Lo
GoR

x O(B > 0OB),0B,R(C > 0C),0(D >0D) = D
X(B > OB),R(C > 0C),0(D > 0D) = D
0O(B > 0OB),0(C > OC) = 0D

From the induction hypothesis and Lemma 3.7 we can obtain a derivation of

LD
GoR

B,X(C >0OC),X(D>0D),0(G>0G) =G

Once again, making use of the derivation of (3.1) we obtained before, we have
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X(Co>0OC)=B B,XC>0OC0),XD>0D),0G>0G) =d
X(C > 0O0),X(D>0D),0(G >0G) =G

0O(C > 0OC),0(D > 0OD) = 0OG
O(B > 0OB),0B,0(C > 0OC),0(D > 0OD) = OG

cut

GoR
LW

x O(B > 0OB),0B,R(C 5 0C),0(D >0D) = D
X(B 5 OB),R(C > 0C),0(D >0OD) = D
O(B > 0OB),0(C >0OC) = 0D

Because of the left weakening rule we introduced above, the rightwidth of D in

LD
oR

the above derivation is < rw(d), and so by the induction hypothesis it follows
that Sg(D) is a topmost sequent.

We have proved all the cases for the inductive step and so (x) is proved.
Part I11. obtain a derivation of = OB with reduced leftwidth

In Part IT we showed how to obtain a derivation where Sg(C) is a topmost
sequent. Then, by Lemma 3.7 we have a derivation of J(C' D OC) = C. Finally,

OC >0O0) =C CoR
= C LIC/)V
O(B > OB) = 0OC

Replace the subderivation of S; in 7 (see Part I) with the above derivation
to ultimately obtain a derivation 7 of = OB where (w(7") < lw(7). Then the
following cut has width < {w(7):

= LB UB = B
c
= B

We have proved the following result.

ut

Lemma 3.15 Let 7 be a normal derivation ending as XX, (B D OB) =
B/%ROX = OB. Then there is an effective transformation to a derivation
" of UX, X = B, where each cut-rule in 7' has degree < |OB|, or degree |JB|
and width < lw(T).

Theorem 3.16 Syntactic cut-elimination holds for GoS.

Proof. Without loss of generality, let 7 be a derivation containing a single
instance cut of the cut-rule as the final rule. We need to show that there is a
cutfree derivation of the identical sequent.

Primary induction on the degree of the cut-formula, secondary induction on
the width of the left premise derivation of cut, and ternary induction on the cut-

height. (Observe that the proof of Lemma 3.15 uses an induction on rightwidth,
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so this proof implicitly uses a quaternary induction measure). In the following,
for instances cut; and cuty of the cut-rule, we write cut; < cuty to mean that
cuty 1s less than cut, under the above measure.

When the cut-formula is not a boxed-formula, the standard transformations
suffice (we explain how to deal with the contraction rules below). If the cut-
formula is a boxed-formula, first transform the left premise derivation and then
the right-premise derivation in the usual manner to obtain the situation where
the cut-formula is principal by the GoR rule in both premises. This is the case
discussed in the Introduction. Note that although the standard transformations
introduce new cuts, by inspection it is easily seen that the width of these intro-
duced cuts is < n. From Lemma 3.5 we can write the left premise derivation
as a normal derivation ending as (say) XX,0(B D> OB) = B/%f0X = UB.
Using Lemma 3.15 we can obtain a cutfree derivation of JX, X = B. Proceed
as directed in the Introduction.

Since we use sequents built from multisets, we also need to specify how to
deal with the contraction rules. In fact, there are two possible approaches for
dealing with ‘contractions above cut’. If we are prepared to use the multicut rule
(m,n > 0)

X=Y,A" A" U=W
X,U=Y,W

mcecut

then we can obtain a cutfree derivation by taking a detour via the calculus GoS +
mecut. This is the approach Gentzen [25] takes in his proof of the Hauptsatz. If we
wish to avoid making a detour via a new calculus, instead of using the multicut
rule we can adapt the transformations described in [77] for classical logic. The
only new case to deal with is a derivation of the following form:
OB,0B, B, B,0U,U,0(C > 0OC) = C
O0X,X,0(B>0OB)= B 0B,0B,00 = OC

OX = UB GoRt OB,0U = OC
OX,00 = 0OC

GoR

LC
cutg

Then the following transformation suffices, where a derivation of X, X = B

can be obtained from Lemma 3.15.

OB,0B, B, B,OU,U,0(C > OC) = C
OX = OB OB, B, B,0U,U,0(C > 0OC) = C
B,B,00,U,0(C 50C) = C
OX,X = B OX, B,00,0,0(C > 00) = ¢ ¢
OX, X,00,U,0(C > 0C) = C ‘
OX,00 = 00

cuty

Utg

GoR
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because cut; < cuty (reduced cut-height) and cuty < cuty (reduced degree of
the cut-formula). This is similar to the approach for avoiding multicut in cut-
elimination for GLS [32]. QE.D.

3.4 Conclusion

We fill a gap in the literature by presenting a syntactic proof of cut-elimination
for GoS. We conclude by comparing this proof to the existing proofs of cut-
elimination for Grz and GL.

The calculus GLS for GL can be obtained by substituting the GoR rule in
Table 3.1 with the GLR rule:

0X,X,08 = B
OX = 0B

The calculus GrzS for Grz can be obtained by substituting the GoR rule in
Table 3.1 with the following rules:

B, X=Y
, CRZa 0X,X,0(B>0OB) = B

0B, X =Y OX = OB GRZce

Informally, the proof for GoS appears to be more intricate than the proof for
the calculus GLS [71, 32] because of the necessity of dealing with the formula
O(B D OB) as opposed to [IB in the premise of the respective modal rules.

Compared with the GrzS calculus, although the GRZc rule also contains
O(B D OB) in the premise antecedent, the presence of the GRZa rule enables
us to directly transform any sequent of the form C' D OC, X = Y into O(C D
OC), X = Y which greatly simplifies the proof. In GoS, we have only the GoR
rule at our disposal to ‘box’ the C' D UC formula in a sequent of the form
C D OC, X =Y, and must abide by the restrictions it places on the multisets X
and Y. As a result, the proof for GoS seems to require a more detailed study of
the structure of derivations in GoS, and a quaternary induction measure, whereas
three induction variables suffice for GLS and GrzS.
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Chapter 4

Preliminaries

We begin by defining the basic modal logic K and the basic tense logic Kt, and
present a semantics for these logics (Section 4.1). In Section 4.2 we introduce some
results from correspondence theory that will be used throughout the chapter. The
Display calculus [5] is a generalised sequent framework for capturing a variety of
logics. In Section 4.3 we present the display calculus DLM for the basic tense
logic Kt.

Most of the material here is standard. Our contributions here are as follows.
We have identified an error in the definition of Kracht formula given in Blackburn
et al. [7, Definition 3.58]. To obtain the desired correspondence between Kracht
formulae and Sahlqvist formulae, the definition given in [7] needs to be suitably
extended. Blackburn et al. also show how to compute a Sahlqvist formula from
a Kracht formula. We explain how to extend the given algorithm to handle the
additional cases that arise due to the new definition of Kracht formula. We have
provided a new definition of “properly displays” for display calculi. In our view,
this new definition corresponds more closely with the notion of soundness and
completeness of a calculus with respect to a logic. Moreover, our new definition
does not rely on the translation 7 between display structures and tense formula.
As a result, the definition works equally well with calculi for the modal language.
We prove the equivalence of the two definitions for display calculi for the tense

language.

4.1 Introducing modal and tense logics

A formal language consists of strings of symbols. Some of these strings are taken

to be meaningful (formulae) and the remainder are taken to be meaningless.

75
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From the set of meaningful strings of the language, some strings are chosen to be
‘ood’ (theorems). The set of good strings is called a logic.

There are two standard ways of specifying the theorems of a logic.

One way is to use the language to describe an object or some class of objects
(the set of natural numbers, or the class of directed graphs, for example). The
logic is defined as the set of formulae in the language that are true of the object.
Since this method relies on the meaning or semantics of the object, we say that
the logic has been defined semantically.

The other way is to choose a set of formulae as theorems (call this set the
azxioms), and provide a set of inference rules which specify how to produce new
theorems from the existing ones. The logic is defined as the set of formulae that
can be produced by repeatedly applying the inference rules to already-obtained
theorems. Unlike before, the language is not used to directly describe the object,
and theorems are specified solely based on the syntax. For this reason we say
that the logic has been defined syntactically. There are many different systems
that can be used to syntactically define a logic — the Hilbert calculus [75, 16],
natural deduction and sequent calculi systems [25] and the display calculus [5],
to name just a few examples. The reason for this diversity is that each system
has advantages and drawbacks from a theoretical and computational perspective,
and also in terms of applicability to a given logic.

Let us begin by defining a formal language called the propositional language L.
This language is defined using a countably infinite set of propositional variables p;,
the propositional constants L and T, the propositional connectives = (“not”),
V (“or”), A (“and”) and D (“implication”), and the punctuation marks “(”

and “)”. The set ForL of formulae of £ is given by the grammar
Az=p;|L|T|-A|(AVB)|(AANB)|(AD B)

where p; ranges over the set VarL of propositional variables. We will use p, q,r, ...
(possibly with subscripts) to denote propositional variables, and A, B, ... to de-
note formulae (the context will determine the language in question).

For example, the string “p D (p A q)” is in ForL because it is derivable using
the above grammar, whereas the string “pyLV” is not derivable by the above
grammar so it is not a formula of £. Notice that it is straightforward to decide
whether or not a given string of £ belongs to ForL.

Let us now define a logic called Classical propositional logic C'p. We will

define C'p syntactically using a Hilbert Calculus. A Hilbert calculus consists of a
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set of formulae (axioms) and inference rules of the following form, for formulae
Al,...,An,BZ

Ar... A LA,
B
The formulae Ay,..., A, are called the premises of the rule, and the formula B

is called the conclusion. This rule states that if all the premises of the rule are
theorems of the logic, then the conclusion is also a theorem of the logic. The
logic defined by a Hilbert calculus is precisely the closure of the axioms under the
inference rules. Note that we will occasionally describe the inference rules using
words when it is convenient to do so. Finally, we write A &~ B as an abbreviation
for the formula (A D B) A (B D A).

Here is a Hilbert calculus for Cp (see [16]):

Axioms:
(A1) pD(¢gDr) (A7) gD pVyq

(A2) (pD (D7) D((p2g)D(>Dr) (A8) (pDr)D((gDr)D(pVegDT))

(A3) pAgDDp (A9) Lop
(A4) pAgDgq (A10) pv(pD 1)
(A5) pD(¢D (PA4)) (A11) p=~p> L
(A6) pDpVyg (A12) T~-L

Inference rules:
Modus ponens: if A€ Cp and A D B € Cp, then B € Cp

Uniform substitution of arbitrary formulae for propositional variables in a for-

mula

Let us introduce some basic terminology and notation. A subformula A’ of
the formula A is a formula that occurs as a substring of A. We say that A’ is a
proper subformula of A if it is a subformula and A’ is not identical to A. Also,
we write A € L to denote that the formula A is a theorem of the logic L. If
A ~ B € L then we say that A and B are logically equivalent in L. We write
“ift” as shorthand for “if and only if” in the usual mathematical sense.

Examples of theorems in Cp include
pOT (PDq)D(rApDqVs)

=(pVq) ~ (=pA—q) (p2>q) =~ (-pVa)
(m—p)~p =(pAq) = (=pV —q)
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Using (p D L) & —p, it is easy to see that (A10) is logically equivalent to p V —p.

First-order classical logic with equality is obtained from Classical proposi-
tional logic in the usual way by extending the language £ with the quantifiers
V and 3 and the equality relation =, and the addition of suitable axioms to the
Hilbert calculus for Cp to make the logic work. Specific first-order theories can
be obtained by the addition of new function and relation symbols (such as +, x
for an arithmetic theory, for example) and axioms that capture the properties of
these symbols. Since this formulation of first-order logic is standard, we omit the

details (see [4] for example).

Theorems of the form A ~ B in first-order classical logic and classical propo-
sitional logic are called classical equivalences. We will implicitly make use of the
result that if A is a theorem of one of these logics and B ~ (' is a classical
equivalence, then the formula A’ obtained by substituting some occurrences of

formula B in A with formula C' is logically equivalent to A.

Since (A1l) states that =A ~ (A D 1) and (A12) states that T ~ —1,
it follows that — and T are redundant in the sense that any formula in Cp
containing the symbols - and T is equivalent to some formula not containing
these symbols. Similarly, the conjunction connective can be defined in terms of
{=, V}, and the disjunction connective can written in terms of {—=, A}. Also the
implication connective can be defined in terms of {—,V}. Despite this obvious
redundancy, we retain these connectives because it is convenient to be able to
use them directly, and also because their presence makes it possible to construct

formal proof systems with nice properties.

4.1.1 Hilbert calculi for modal and tense logic

The basic modal language ML can be obtained by augmenting the language £
with the modal operators < (‘diamond’) and [J (‘box’). The formulae of the basic
modal language is the set For ML given by the grammar

Az=pi | L|T|-A|(AVB)|(AAB)|(AD B)|CA|OA

where p; ranges over the set of propositional variables. Formulae in For ML are
called modal formulae. For example, J(A A B) D OA and ¢Op D p are modal
formulae. Below, we define syntactically the basic modal logic Ky using the

following Hilbert calculus:
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Axioms: all the axioms of classical propositional logic C'p plus:

B(p > ¢) > (Op > Ug) (Az —1J)
Op =~ —~O—p (Dual — 0O)

Inference rules:
Modus ponens: if A€ Ky and A D B € Ky then B € Ky

Uniform substitution of arbitrary modal formulae for propositional variables in

a formula
Necessitation: if A € Ky, then JA € Ky

Clearly Cp C Kp. Next we introduce the basic temporal language T L, ob-
tained by augmenting ML with the modal operators  (‘black diamond’) and
B (‘black box’). The formulae of the basic temporal language is the set For7 L

given by the grammar
Au=p | L|T|-A|(AVB)|(AAB)|(ADB)|CA|OA| ¢A|RA

where p; ranges over the set of propositional variables. Formulae in For7T L are
called tense formulae. Clearly every modal formula is a tense formula.
Define the basic tense logic Kty in the language 7 L using the following

Hilbert calculus:

Axioms: all the axioms of classical propositional logic C'p plus:

O(p > ¢) > (Op > Hq) (Az —0J)
M(pDg) D (Hp > Mg (Az — W)
OA =~ -0-A (Dual —0O)
HA~ -e-A (Dual — 1)
p D Oep (Conversel)
p D> EOp (Converse2)

Inference rules:
Modus ponens: if A€ Kty and A D B € Kty then B € Kty

Uniform substitution of arbitrary tense formulae for propositional variables in a

formula
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Necessitation: if a € Kty, then Oa € Kty and Ba € Kty.

For an example of reasoning in the Hilbert calculus, see Lemma 4.47.
Clearly Ky C Kty. In the following subsection, we will see how to define the

logics Ky and Kty semantically.

4.1.2 Defining the logics Ky and Kty semantically

Classical propositional logic C'p defined in the previous section can also be defined
semantically using a so-called classical interpretation of the language £ (see [16]).
This is sometimes called the truth-table semantics for Cp. The idea is to assign
a valuation of either true or false (but not both simultaneously) to each propo-
sitional variable. The constant L is always false, the constant T is always true,
and the formulae -A, AV B, AA B and A D B are inductively defined in the
usual manner using truth tables. For example, A D B is assigned true if and only
if A is false or B is true. It can be shown that classical propositional logic C'p
consists precisely of those formulae in ForL that are true under all valuations.

Since the modal and temporal languages contain the operators ¢ and ¢ and
their duals, a more sophisticated semantics is required in order to incorporate
these language elements in accordance with their intended meaning. A standard
approach is to use Kripke semantics (also known as frame semantics) — see [16, 7]
for an exposition.

The abstract framework for Kripke semantics is based on frames and models.

Definition 4.1 (frame) A frame for the basic modal language (‘modal frame’)
is a pair F = (W, R) such that

1. W is a non-empty set (‘states’), and
2. R is a binary relation on W.

A modal frame is an instance of a mathematical object called a relational struc-
ture. A relational structure is simply a non-empty set W together with some
positive number of relations on W. For this reason, Kripke semantics are some-

times called relational semantics.

Definition 4.2 (model) A model for the basic modal language is a pair M =
(F,V), where F is a frame (W, R) for the basic modal language, and V is a
function (‘valuation function’) assigning to each proposition variable p a subset

V(p) of W.
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A model M is said to be based on the frame F if M = (F,V) for some

valuation V.

Now let M = ((W,R),V) be a model and w € W. Define the satisfaction
relation (M, w) = D (read as ‘D is satisfiable in M at state w’) by induction on
the structure of the formula D € For ML as follows:

M,w Epiff we V(p)

M,w = L never

M,w =T always

M,w = -Aiff not M,wkE A
M,wlE=AVBiff Miwl= Aor M,w|= B
M,wE=AANBiff M,wlE= Aand M,w = B

M,wE= AD Biff M,w = A implies M,w = B

M,w = OA iff there exists v € W such that Rwv and M,v = A
M, w = OA iff for all v € W, if Rwv then M,v | A

The negation of M,w |= D is written M, w [~ D.

Definition 4.3 (validity) A formula A is valid at a state w in frame F (no-
tation: Fyw |= A) if A is satisfied at w in every model (F,V) based on F. A
formula A is valid on a frame F if it is valid at every state in F (notation:
F E A). Also, we say that A is valid on a class F of frames if F € F implies
that F = A.

A set of formulae T" is valid on a frame F (notation: F |=T') if every formula
in I is valid on F; and T' is valid on a class of frames F (notation: F = T) if

every formula in T is valid on F.

The negation of Flw = A (F = A) is written Flw £ A (FE A). f F,w = A
it follows that there is a model M based on F' such that M,w = A. In this case
we say that A is falsifiable on F at w. Moreover, it follows directly from the
definition that if F' f~ A then there is some state w in F' such that F,w £ A. We
say that A is satisfiable on F if there is a model M based on F' and state w such
that M, w = A. Similarly, we say that A is falsifiable on F' if there is a model M
based on F' and state w such that M, w = A. Clearly, A is falsifiable on F iff = A
is satisfiable on F'.

It is easy to check for any frame F that F' = Cp — it suffices to verify that

each axiom of C'p is valid on F', and also that each of the inference rules preserve
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validity. Note that when I' is a finite set of formulae, then validity of [' on a
frame F' (resp. class of frames F) is equivalent to validity of AT on F' (F),
where AT denotes the conjunction of all formulae in T

Observe that the definition of validity at a state in a frame requires quantifica-
tion over all valuation functions V. For each propositional variable p, since V' (p)
is a subset of W, quantification over all valuations amounts to quantification over
all subsets of W. Quantification over sets of propositional variables as opposed
to quantifying over a propositional variable hints at the second-order nature of
frame validity, discussed in greater detail in the next section.

Define semantically the modal logic K¢, in the language ML as those for-

mulae in For ML that are valid in all modal frames, that is:

Kame ={A € ForML | F |= A for all modal frames F'}
The following result is a basic result in modal logic (see [16, 7] for example).
Theorem 4.4 K, = Ky.

In other words, the syntactically specified Kpy and the semantically specified
K rqr describe the same logic. From now on we will write this logic as K using
the syntactic and semantic definitions interchangeably as convenient. The logic
K is often called the basic (or minimal) propositional modal logic. The term
‘minimal’ is due to the fact that K is the weakest system for reasoning about
frames.

We would now like to give a semantic specification for the logic Kty. Gener-
ally, Kripke frames for the temporal language (‘temporal frames’) should consist
of two relations (Rr and Rp say) on the non-empty set W standing for future
and past respectively, corresponding to the operators & and 4. Semantics for
formulae in the temporal language could then be obtained by replacing the final

two lines of the satisfaction relation definition above with the following:
M,w = OA iff there exists v € W such that Rpwv and M,v | A
M,w = OA iff for all v € W, if Rpwv then M,v = A
M,w = ®A iff there exists v € W such that Rpwv and M, v = A
M, w = BA iff for all v € W, if Rpwv then M,v | A
Satisfaction and validity for temporal frames can be defined analogously to the

modal case. However it is easily seen that the converse axioms in Kt are valid

on a temporal frame iff the temporal frame satisfies

Vry.Rrpxy <> Rpyx (4.1)
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If R is a binary relation, let Fviube the converse binary relation of R defined as
Rry = {(z,y) | Ryz}. Clearly Rry < Rxy. Then (4.1) implies that Ry < Rp
(and Rp <> }?p) As a consequence, it is enough to keep track of a single binary
relation (Rp say) since the other relation can be computed from it. A non-empty
set with a single binary relation is simply a modal frame, so it follows that modal
frames contain enough information to encode the class of temporal frames on
which (Conversel) and (Converse2) are valid.

Specifically, define a tense frame to be a temporal frame on which (Conversel)
and (Converse2) — or equivalently (4.1) — is valid. From our discussion, it
follows that every tense frame has the form (W, R, R). This gives rise to an
obvious isomorphism between the class of tense frames and modal frames: given
the modal frame (W, R), obtain the tense frame (W, R, R), given the tense frame
(W, R, R), obtain the modal frame (W, R).

Example 4.5 Let W = {u,v,w} and R be given by {(u,v), (v,w), (w,w)}. Then
the basic modal frame F = (W, R) can be presented graphically as

U—V——>W

The tense frame corresponding to the above relational structure is obtained by

augmenting F with the relation R given by {(v,u), (w,v), (w,w)} to obtain the

F' = (W,R, ]52) This frame can be presented by the following picture:
U—>V—W

where the solid arrows correspond to the ‘filiur@’ relation and the broken arrows

correspond to the ‘past’ relation.

From now on we will simply use the term ‘frame’ to mean either a modal frame
or a tense frame, leaving it to the context to indicate which type is meant.
Define a tense model as a pair (F, V) where F' = (W, R, R) is a tense frame and
V is a valuation function, assigning to each propositional variable a subset V' (p)
of W. We can define the satisfaction relation M,w |; A for a tense model M
containing state w and tense formula A by extending |= in the obvious way by

the addition of the statements:

M, w |=; ®A iff there exists v € W such that Rvw and M,v |4 A
M, w =, BA iff for all v € W, if Row then M, v | A

Notice that we have done away with R and written the above solely in terms of R

for simplicity. Following standard practice we will use the symbol = to mean the
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satisfaction relation on the temporal language as well (dropping the subscript ‘t’),
allowing the context to determine if the formula belongs to ForML or ForT L,
except when this is likely to cause confusion.

We can now define the logic
Kty ={A € ForTL|F = A for all frames F'}.

The following is a basic result of modal logic ([16, 7]):
Theorem 4.6 Kty, = Kty.

Thus the syntactic and semantically specified Kty and the semantically specified
Kty describe the same logic. From now on we will write this logic as Kt using
the syntactic and semantic definitions interchangeably as convenient. The logic
Kt is often called the basic (or minimal) normal propositional tense logic.

Any logic L O K (L 2 Kt) closed under modus ponens, substitution and
necessitation is called normal. The axiomatic extensions of K and Kt, defined

below, is one such class of normal logics.

Definition 4.7 (axiomatic extensions of K,Kt) Let A be a (possibly empty)
set of modal (tense) formulae (the axioms). Then the aziomatic extension of K
(Kt) by A denoted K & A (Kt @ A) is the logic obtained by the addition of A
to the axioms of K (Kt) and closure under the inference rules modus ponens,

substitution and necessitation.

An axiomatic extension of K (Kt) a modal (tense) logic. Observe that although
the term ‘modal logic’ is also used more generally to describe the field of logic
dealing with modalities (operators) such as < and @, the overloading of this term
to refer specifically to logics in the basic modal language will cause no confusion
in practice.

Notice that the axiomatic extensions of K and Kt defined above have been
syntactically specified using the Hilbert calculus. It is an obvious question to
wonder if we can semantically specify these logics (ie provide theorems analogous
to Theorem 4.4 and 4.6). The Sahlqvist correspondence and completeness theo-
rems show how such a semantic specification can be achieved for a large class of

axiomatic extensions. Before proceeding, let us introduce a few more definitions.

Definition 4.8 (weakly sound) Let F be a class of frames. A logic L is weakly
sound with respect to F if for any formula A,

A € L implies F = A.
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Definition 4.9 (weakly complete) A logic L is weakly complete with respect

to a class F of frames if for any formula A,
F = A implies A€ L

There is in fact a more powerful notion of soundness and completeness [7] that
is encountered in the literature, sometimes referred to as “strong soundness” and
“strong completeness”. Nevertheless, the present definitions are sufficient for our
purposes. We will often drop the word ‘weakly’ and use the terms sound and
complete to refer to Definition 4.8 and 4.9 respectively.

If logic L is sound and weakly complete with respect to some class F of frames,

from the definitions it follows that
AceLift FEA

We remind the reader that the symbol |= above is overloaded, standing for the
satisfaction relation on both modal and temporal languages. Hence, if F,; de-
notes the class of all frames, then since A € K iff F;; F A and A € Kt iff
Fai A, we freely say that both K and Kt are sound and weakly complete
for Fu;. Of course, this does not mean that K = Kt.

4.2 Some results in correspondence theory

Our presentation of correspondence theory follows Blackburn, de Rijke and Ven-
ema [7], with the following exceptions. We have chosen to introduce Kracht’s
restricted quantifiers [38, 40] at an early stage. Although this may seem to com-
plicate the notation somewhat, it will allow us to directly obtain the first half
of Theorem 4.31. We also identify a deficiency in Definition 3.58 in [7]. Fixing
this definition makes the algorithm for the first half of Theorem 4.31 incomplete.
Here we show how to complete the algorithm, and also fix an independent error
that occurs in the proof of the algorithm. Another good reference for modal cor-
respondence theory is van Benthem [73]. In particular, this work contains some
interesting results on the preservation of first-order formulae for classes of frames
that are modally definable. We do not specifically address tense correspondence
theory here — the interested reader is directed to van Benthem [74].

We begin by introducing ‘frame languages’ that make use of frame validity
to describe classes of frames (Section 4.2.1). A formula from a frame language

‘corresponds’ to a tense formula if they each describe the same class of frames. In
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Section 4.2.2 we will see how to compute the first-order correspondents for a large
syntactically-defined class of tense formulae. Then in Section 4.2.3 we will look
at the reverse direction, and see how to compute modal and tense correspondents
for a large class of first-order formulae. Note that we limit this exposition to

cover the tools that are required for our work.

4.2.1 Basic definitions

The following definition provides us with a way of describing a class of frames

using a tense formula.

Definition 4.10 (defining a class of frames) We say that a modal or tense

formula A defines a class F of frames if for every frame F':
FeFif FEA

A set T of formulae defines a class F of frames if for all frames F, F € F
iff FET.

If T is a finite set of formulae, then I' defines F iff AT defines F. Formulae A
and B are called frame equivalent if for every frame F', F' = A iff F = B.

Since a frame is simply a relational structure, we can also describe a class of
frames using non-modal languages. In this section we will define two such frame
languages. The expressiveness of the frame language determines what classes of
frames are definable. We will see that the class of frames defined by any modal or
tense formula can also be defined by a formula from an appropriate second-order
language. However, it is known that the classes of frames defined by McKinsey’s
axiom OJOp D OOp and Lob’s axiom O(Op D p) D Op cannot be defined using
a first-order language. Furthermore, the class of frames having a single reflexive
point is definable using a first-order language (Jz.Rxx), but it is not definable

using tense formulae (see [7]).

Definition 4.11 (frame languages) The first-order frame language £/ is the

first-order language equipped with equality = and a binary relation symbol R.
The monadic second-order frame language £§ is obtained by augmenting L

with a counNtable set of monadic predicate variables and the monadic predicate

quantifiers ¥V and 3.

The first-order quantifiers V,d range over first-order variables x,y, ..., and the

monadic predicate quantifiers V, 9 range over monadic predicate variables P, (), . ..
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(possibly with subscripts). Here the term monadic refers to the fact that a pred-
icate variable in £§ ranges over sets of propositional variables only. Observe that
quantifying over monadic predicate variables, amounts to quantification over sets
of first-order variables. Full second-order logic is even more expressive (exceeding
our requirements here), containing other sorts of variables as well.

To help distinguish the frame languages from the modal and temporal lan-
guages ML and T L, implication in the frame languages will be written using —
rather than D, and the logical constants for true and false are written t and f
respectively (for the other logical connectives and constants we use the same
symbols as in ML and TL). We will use «, 3, ... to denote formulae from £/
and L’g. Following the standard terminology, a first-order (or monadic predicate

variable) occurring in a formula is called free if it is not bound by the quantifiers

v, 3 (v, 3).
For a formula « from £/ or £§ with free first-order variables 1, ...z, and (in
the case of Eg ) monadic predicate variables P, ..., Py, we write

alwy /1, . W /T, Q1) Py, Q) Pl

to denote the formula obtained by uniformly substituting the first-order vari-
able w; for each free occurrence of z; (1 < i < n) and substituting the pred-
icate @; for each free occurrence of the predicate variable P; (1 < i < m)
in a. For brevity, we some times write the above as a[{w;/z;}|[{Q:/P;}], or
even afwi ... wy][@1 . ..Qm] when the free variables can be identified from the
context.

Following Kracht [38, 40] we introduce the so-called restricted quantifiers (Vyr>
z)a(y) and (Jy > x)a(y) which are the following abbreviations:

abbreviates Jy(Rxy A a(y)

y))
y))

abbreviates Vy(Rry — «

e N e e
LL
<
A
8
— — ~— ~—
e
~—/N /N /N
<
~— —— ~—

( )
abbreviates Jy(Ryx A a(y))
( ()
abbreviates Vy(Ryr — a(y)
In the above, the variable z is called the restrictor of the restricted quantifier.
We refer to (Jy>x)a(y) and (Jy <z)a(y) as the existential restricted quantifiers,
writing 3"y a(y) to avoid specifying which instance is meant, and also to avoid
naming the restrictor. Similarly, (Vy > x)a(y) and (Vy < z)a(y) are called the
universal restricted quantifiers, and we write V'y a(y) to denote either one of

these instances. We also use the terminology forward (resp. backward) restricted
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quantifiers to refer to (Vy > z)a(y) and (Jy > z)a(y) ((Vy < x)a(y) and (Jy <
z)a(y)).
Since each restricted quantifier abbreviates a formula in £/, we can use the
restricted quantifiers without having to extend the languages with new symbols.
Consider the following translation from a modal formula into a formula in £3.
This is called the standard translation [7].

Definition 4.12 (standard translation) Let x be a first-order variable. De-
fine the following translation ST, (-) taking modal formulae to the monadic second-

order frame language 55:

T.(pi) = P

T.(1) = (z # 2)

T(T) = (z =x)
( A) = =ST,(A)

(A V B) =ST,(A)Vv ST,(B)
ST.(ANB) = ST, (A) N ST,(B)
ST, (A D B)=ST,(A) — ST,(B)

T,(¢A) = (Jy > z)ST,(A)
T,(8A) = (Vy > 2)ST,(A)

where y is a first-order variable that has not been used so far in the translation.

Observe that ST, (A) contains only z as a free variable. The standard translation
for a tense formula is obtained by the addition of the following to the above

definition:

ST, (®A) = (Jy <x)ST,(A)
ST,(MA) = (Vy <x)ST,(A)

Now we will show how to use the frame languages to describe models and
frames. Suppose that « is a formula from £/. To construct a model for £/,
we need to provide an interpretation for the symbol R. Suppose that M =
((W,R),V) is a modal model (remember that the underlying frame (W,R) is
just a relational structure). By interpreting the symbol R in £/ as the symbol R
from M, we can write things such as M | afwws,...,w,| which means that «
is satisfied in the usual sense of first-order logic on the model M when the free

variables (z,zq,...,z,) are substituted with the states (w,ws,...,w,) in W.
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When « is a formula from £§ , we need to also interpret the monadic predicate
variables. We will interpret each monadic predicate variable P; on M as the
set V(p;). Then we can show that for any model (F,V) and modal or tense

formula A, by a straightforward induction on the structure of A [7]:
(V) w Al (FV) | ST,(A)[w/2][{V(p:)/ Fi}] (4.2)

Under this interpretation, quantifying over all valuations is equivalent to quanti-

fying over the free monadic predicate variables P = {P,,..., P,}, and thus
Fow ke Aiff F = YP ST, (A)[w/x]

Indeed, from the above, by quantifying over all states of the frame, we see that

for every frame F"
F = Aiff F=VYPVY2 ST, (A). (4.3)

Definition 4.13 (defining a class of frames using £ or £]) A formula a

from LT or £§ defines a class F of frames if for every frame F':
FeFif FE«
We will make use of the following lemma without explicit reference.

Lemma 4.14 Let {¢1,...,¢,} be a set of (i) modal or tense formulae or (ii)
formulae from LS or £§, such that ¢; defines the class F; of frames. Then A ®;
defines NI F;.

Proof. For,
FenlFieFceFforl<i<n
S FE¢ forl1<i<n
If the {¢1,...,¢,} are formulae from the frame languages, then the above is

equivalent to F' = A" ¢; as required. If the {¢1,...,¢,} are tense formulae,
then F' |= ¢; iff it is the case that M,w | ¢; for every model M based on F
and every state w in F. This is equivalent to M, w = A, ¢; for every model M
based on F' and state w. By the definition of validity on a frame, the latter is
equivalent to F' = A, ¢; so we are done. QE.D.

Definition 4.15 (global frame correspondent) If a class of frames can be
defined by a modal or tense formula A and a formula o from L or Eg, then we

say that A and « are global frame correspondents of each other.
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An equivalent formulation of the above definition is
A is a global correspondent of « iff for every frame F', F' = Aiff F = «

From (4.3), it follows that any modal or tense formula A is a global corre-
spondent of the £} formula VPV ST, (A).

That every tense formula has a second-order global correspondent is not really
surprising. After all, the standard translation essentially rehashes the definition
of truth relation and validity. The requirement for monadic predicate quantifi-
cation is clearly due to the fact that validity is defined (Definition 4.3) using a
quantification over all valuations of a given frame. Quantifying over sets of vari-
ables (as opposed to just over variables) takes us out of the realm of first-order
logic and into monadic second-order logic.

At the beginning of the section we noted that McKinsey’s axiom and Lob’s
axiom have no first-order global correspondent. In other words, these formu-
lae define classes of frames that cannot be described using first-order formulae
(although the classes can be described using second-order formulae). What is
surprising however is why certain tense formulae do have a first-order global cor-
respondent. Consider some well-known examples. It is a standard result that the
formulae p O &p and Up D OUp respectively define the class of reflexive frames
and the class of transitive frames. These frame properties can be defined in turn
by the £/ formulae Vo Rzx and Vayz (Rwvy A Ryz — Rxz). Thus VoRzw is a
first-order global correspondent of p O @p, and Vzyz (Rzy A Ryz — Rxz) is a
first-order global correspondent of [lp D Clp.

It would be nice if we had some syntactic conditions to determine when a for-
mula has a first-order correspondent. In Section 4.2.2 we introduce the Sahlquist
formulae which are a large class of formulae that are known to have first-order
correspondents. In Theorem 4.31 we will see that each Sahlqvist formula corre-
sponds to a formula belonging to a fragment of the first-order language called
Kracht formulae, and also that each Kracht formula corresponds to a Sahlqvist

formula.

Kracht formulae
Consider the following recursive abbreviations:

Rlzy = Rxy
Ry = (o1 & )R ony (0 >1)
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Notice that the R"xy contains n — 1 occurrences of the restricted existential
quantifier. Since R" abbreviates a formula in £/, usage of this symbol does not
extend the £/ language.

Let us introduce the Kracht formulae. Without loss of generality, in this
section we work with formulae in which no variable occurs as both free and
bound. Also, no distinct quantifier occurrences will bind the same variable. Such

a formula is called a clean formula.

Definition 4.16 (restrictedly positive) An L/ formula is called tense restrict-
edly positive if it is built-up from atomic formulae of the form u # u, u = u,
uw = v and R*uwv using A,V and the restricted quantifiers only. An LS formula
is called modal restrictedly positive if it s built-up from atomic formulae using
A, V and the forward restricted quantifiers (Jy > x) and (Vy > z) only.

Notice that a restrictedly positive formula will contain at least one free variable.

Definition 4.17 (inherently universal) An occurrence of the variable y in the
clean formula « is inherently universal if either y is free, or else y is bound by a
restricted quantifier of the form (VYy > z)5 or (Vy <z)B which is not in the scope

of an existential quantifier.

When z is not free in 3, since

(Fra(z)) A B =Tz (az) A P)
(Fza(z)) = = Vo (a(z) = )

observe that

ST(O"™'p) = (Vyr > ) (Vy2 > 1) - - - (VWmt1 B Ym) PYmia
= Vy1 (Rryr — Yy (Ryrye = -+ VYt (RYmYmt1 = PYmy1) - .))
=Yy Ymr1(Reyr = (Byiye = - = (RYmYmtr = Plmrr) - )
=Vy1. . Ymi1(Beys A Ryrya A oo A RYmYmyr = PYmyr)
= YY1 (Fy1 (Reyr A (3y2Ryaya A Jys(--2))) = Pyme)
= vym+1(Rm+lxym+l = PYmi1)

Definition 4.18 (modal and tense Kracht formula) A modal (resp. tense)
restrictedly positive formula o(zx) containing a single free variable x is called a
modal (tense) Kracht formula if « is clean and in atomic formulae of the form

u = v and R*uv, either u or v is inherently universal.
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This definition agrees exactly with the definition given by Kracht [40]. We
simply write Kracht formula to refer to both modal and tense Kracht formulae

— the context will determine which type is meant.

4.2.2 From Sahlqvist formulae to first-order formulae

Sahlqvist formulae are a large class of formulae that are known to have first-order
correspondents. Moreover, the first-order correspondent of a Sahlqvist formula
is effectively computable and expressible as a Kracht formula. For our purposes,
it will be sufficient to focus on a proper subclass of the Sahlqvist formulae called
the very simple Sahlquist formulae [7]. Furthermore, although the results apply
to many different modal languages, here we will work with the basic temporal
language (which properly includes the basic modal language). Sahlqvist’s original
paper can be found at [62].

Let A7 be the tense formula that is obtained from A by eliminating all oc-

currences of the D-connective using the classical equivalence B D C'~ —-B V C.

Definition 4.19 (positive, negative formula) A tense formula A is positive
in the propositional variable p (negative in p) if every occurrence of the monadic
predicate variable p in A7 is in the scope of an even (odd) number of negation
signs. A formula is called positive (negative) if it is positive (negative) in all

propositional variables occurring in it.

Definition 4.20 (upward, downward monotone) A tense formula A is up-
ward monotone in p if for every valuation V' such that (i) V(p) C V'(p) and (ii)
for-all g #p, V(q) = V'(q),

if (F,V),wE A then (F,V'),wE A

A tense formula A is downward monotone in p if for every valuation V' such
that (i) V(p) 2 V'(p) and (i) for all ¢ # p, V(q) = V'(q),

if (F,V),wE A then (F,V'),wE A

Informally, A is upward monotone in p if whenever A is satisfied on some model
at state w, then A is satisfied at w under any valuation that extends the in-
terpretation (valuation) of p and keeps constant the interpretations on all other

propositional variables.

Lemma 4.21 Let A be a tense formula. Then,
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(i) if A is positive in p, then it is upward monotone in p.
(ii) if A is negative in p, then it is downward monotone in p.

Proof. Straightforward. Q.E.D.

The notions of positive and negative formula, and upward and downward mono-
tonicity can be defined analogously for monadic predicate variables for formulae
in L'g. An analogous result to the above Lemma applies to these formulae.
Recall the definition of global frame correspondent (Definition 4.15). The
Sahlqvist correspondence theorems actually prove a stronger version of corre-
spondence called local frame correspondence. Let us introduce this notion before

proceeding to the theorem.

Definition 4.22 (local frame correspondents) Let A be a modal or tense
formula, and suppose that a(x) is a formula in L/ or Eg containing a single
free variable x. We say that A and a(x) are local frame correspondents of each

other if, for all frames ' and states w in F:

FuwlEAiff FEaw/z

It is easy to see that if A and a(z) are local frame correspondents, then it must
be the case that A and Vza are global frame correspondents.

We will say “A and « are frame correspondents” or simply that A and « are
each other’s correspondents to mean that A and « are local frame correspondents.
When the formula « is from £/, we will say that « is a first-order correspondent
of A. When we wish to refer to the notion of global frame correspondenence we
will take care to explicitly use the term “global”.

As an aside we observe that global frame correspondence does not imply local
frame correspondence. For it is known that (OOp — OOp) A (OOg — <O¢) and
the £7 formula

(Vzdy(Rxy AVz(Ryz — z =y))) A (Veyz(Rzy A Ryz — Rxz))

are global correspondents, but it is known that the above modal formula does
not have a local frame correspondent in £/ (see [7, page 169)]).
We have already noted (see the discussion following equation (4.2) in Sec-

tion 4.2.1) that for any formula A and all frames F' and states w in F:

Fow ke Aiff F = YP ST, (A)[w/x]
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so A and the £] formula VP ST, »(A)[w/z] are local frame correspondents.
We are ready to define very simple Sahlqvist formulae and present the corre-

spondence results.

Definition 4.23 (very simple Sahlqvist formula) A very simple Sahlqvist
antecedent in the basic temporal language is a formula built up from T, L and
propositional letters, using only A, & and #. A (tense) very simple Sahlqvist
formula s an implication A D B in which B is positive and A is a very simple

Sahlquist antecedent in the basic temporal language.

Theorem 4.24 Let D ~ A D B be a very simple Sahlquist formula in the basic
temporal language. Then there is a tense Kracht formula ap(x) that is effectively

computable from D such that ap(x) is a first-order correspondent of D.

We closely follow the presentation given in [7], the main deviation being the use
of the restricted quantifier notation. This enables us to directly obtain the first
half of Theorem 4.31. In [7] this has to be worked out separately.

Proof. The ‘effectively computable’ statement follows from the fact that it is
straightforward to write a program to implement the following algorithm.

The second-order translation of D is the formula g’?(ST »(A) — ST, (B)).
Let us denote ST, (B) by POS to remind us that this formula is positive. Then
ST, (D) can be written

~

VP(ST,(A) — POS) (4.4)

Without loss of generality, we may assume that no two quantifiers in the above
formula bind the same variable, and no quantifier binds x (pre-processing step).

Step 1. Whenever y is not free in 5, we have the classical equivalences

(F'yaly) AB=Ty(aly) AB)

and

(F'yaly) = B) = Fy>xz)aly) = Bor (Fy <z)aly) = B
= (Jy(Rzy A a(y))) — B or By(Ryz Aaly))) — B
= Vy(Ray A a(y) — B) or Vy(Ryx A a(y) — B)
= Vy(Rzy = (a(y) — B)) or Vy(Ryz — (aly) = B))
=V"y (aly) = B)



4.2. SOME RESULTS IN CORRESPONDENCE THEORY 95

Using these equivalences (in that order) we can convert all existential restricted
quantifiers in the antecedent ST,(A) to universal restricted quantifiers over the
main implication in (4.4).

Step 1 results in a formula of the form
VPV’ (AT — POS) (4.5)

where AT is a conjunction of (translations of) proposition letters, and 7 is a set
{1,...,2,} of proposition variables not containing z.

Step 2. Let P, be a unary predicate occurring in (4.5) and let Pz, , ... Px;,
be all the occurrences of the predicate P; in the antecedent AT of (4.5). Define
the predicate o(P;) using the following characteristic function:

t we{ry,...x},

o(F)(w) = _ (4.6)
f otherwise

Let M be an arbitrary model, and let w, wy, . . ., w,, be some arbitrary states in M.
Now suppose that M = AT |w/z][{w;/z;}] and M |= o(P;)(u)[w/z][{w;/x;}] for
some state u. Due to the definition of o(F;)(u) it follows that u (under the
substitutions [w/z][{w;/y;}]) must be a variable in {z;,...x;,}. Since each Pz,
term occurs as a conjunct in AT, from M = AT|w/z|[{w;/z;}] it follows that
M & Pulw/z|[{w;/z;}]. We have shown that

M = AT w/x][{w:/y:}] implies M = Vu(o (P;)(u) = Fu)lw/z][{wi/z:}] (4.7)

Step 3. Instantiate o(P;) for each P; in (4.5). This results in a formula of the
form

VT (AT — POS)[{o(F)/Fi}]
Since AT[{o(FP;)/P;}] is trivially true by the definition of o, this is equivalent to
vz (POS[{o(F)/P}]) (4.8)

Notice that the above formula is a Kracht formula. More precisely, the substitu-
tion [{o(P;)/P;}] results in a formula containing terms of the form o(P;)(u) —

this term can be reduced to the first-order term
(u=ax;) V...V (u=uwx)

Moreover POS is the formula ST, (B), which is constructed using the restricted
quantifiers. Finally, every variable occurring in the formula is inherently universal

because there are no existential restricted quantifiers to worry about.
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To complete the proof, it suffices to show that (4.8) is equivalent to (4.5).
Certainly (4.5) implies (4.8) since (4.8) is an instantiation of (4.5). Now for the
other direction. Recall that (4.5) is shorthand for the formula

VT

gﬁEVacl DAYL) ... (VT X Y ) (AT — POS)

for some {y1, ..., ym} where < means either > or <1. With respect to this formula,
define

S Rz;y; if (Vx; > y;) occurs in V'T
' Ry;x; if (Vx; <y;) occurs in V'T

Now observe that formula (4.5) is equivalent to the statement: for any model M

and states w, wy, ..., Wy,
M = (/\ S,[wz/xz]> N AT [wwy, ..., wy] implies M = POS[ww . . . wpy,]
i=1

Thus, in order to show that (4.8) implies (4.5), we assume for arbitrary model M
that
M = V"z (POS[{o(F;)/F}]) (4.9)

and

M (/\Sz[wz/x,]> N AT [wwy, ..., W] (4.10)

and show that M = POS[ww; ... w,,]. Instantiating w; for each z; in (4.9) and

expanding the V"7 notation we get
M |= Sifwi /1] = (Selwa /o] = (.. = (Sml[wm/@m] = POS)...))[{o(F)/Fi}]
Since M = Sifws/a:] for each i from (4.10), we obtain

M = POS[ww: ... wy]{o(F;)/Pi}] (4.11)

Furthermore since we have M |= AT[wwy, ..., w,] (4.10), from (4.7) it follows
that
M =VYu(o(P)(u) — Pu)[ww ... 1wy,

What this says is that if u € o(P;)[wwy . .. w,,] (viewing the monadic predicate as
a set), then u € Pjlww; ... w,]|. Thus o(P;) is a minimal valuation in the sense
that the set V (p;) for an arbitrary model satisfying (4.9) and (4.10) extends o(F;).
As POS[wuw; ...wy,| is positive, it is upward monotone is all unary predicates
occurring in it, so by (4.11) and Lemma 4.21 we get M = POS[ww; ... wy].

Q.ED.



4.2. SOME RESULTS IN CORRESPONDENCE THEORY 97

Example 4.25 Consider the very simply Sahlquist formula ¢Op D Oep. The
second-order translation of this formula is

~

VP((Fu < z)(Fv u)Pv— (Al >z)(Im <l)Pm)

Step 1. Pushing the existential restricted quantifiers in the antecedent of the
implication outwards, we obtain the equivalent formula

~

VP(Yu < x)(Yo > u)(Pv — (3l > z)(Im <) Pm) (4.12)

Step 2. Set o(P)(w) as t if w = v and £ otherwise.
Step 3. Instantiating o(P) for the predicate P in (4.12) we obtain

NVu<z) Vo> u)(v=x— 3l>z)(Tn<l)v=m)

The above formula is equivalent to (Vu < x)(Yv > uw)(3l > x)Rvl. Notice that this
formula s a Kracht tense formula. From the proof of Theorem 4.24 we know that

it is equivalent to (4.12) and hence it is a local correspondent of #Op D O@p.

Before proceeding, for the sake of completeness we state the definition and
result for full Sahlqvist formulae. In the following, a boxed atom in the basic
temporal language is a propositional variable preceeded by a (possibly empty)
string constructed from [J and W’s. Notice that a boxed atom with an empty

string is simply a propositional variable.

Definition 4.26 (modal and tense Sahlqvist formulae) Define a Sahlqvist
antecedent in the basic temporal language to be a formula built from T, 1, boxed
atoms, and negative formulae, using A, V and existential modal operators (<&
and ). A Sahlquist implication in the basic temporal language is an implication
A D B in which B is positive and A is a Sahlquist antecedent in the basic temporal
language.

A tense Sahlqvist formula is a formula that is built from Sahlquist implications
in the basic temporal language by freely applying boxes and conjunctions, and by
applying disjunctions only between formulae that do not share any proposition
letters.

A modal Sahlqvist formula is a tense Sahlquist formula that does not contain
either B or .

Although we have been working with tense Sahlqvist formulae, corresponding

results apply to modal Sahlqvist formulae in the obvious way. Note that we will
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often drop the word “modal” and “tense” prefixing the term “Sahlqvist/Kracht
formula” when the results apply by the uniform usage of either word. By inspec-
tion we see that every very simple Sahlqvist formula is also a Sahlqvist formula.

The main result is the Sahlqvist correspondence theorem.

Theorem 4.27 (Sahlgvist correspondence theorem) Let D be a tense (resp.
modal) Sahlquist formula. Then there is a tense (modal) Kracht formula ap(x)
that is effectively computable from D such that ap(x) is a first-order correspon-
dent of D.

The proof is an extension of the proof of Theorem 4.24. See [7] for details.

Observe that if {A;,...,A,} is a set of Sahlqvist formulae, then together
with Lemma 4.14 we can compute a set {aq,...,a,} of Kracht formulae, each
with the single free variable w, such that A;A; corresponds to AVwa;(w). Since
AiVwa;(w) is frame-equivalent to Yw A; a;(w), it follows that A;A; corresponds to
Yw A; ai;(w). We can rewrite A;a;(w) as a (clean) Kracht formula by appropriate
renaming of bound variables in the formula to ensure that no distinct quantifier
occurrences bind the same variable.

It should be mentioned that the class of Sahlqvist formulae is not the last
word on formulae with first-order correspondents. See [7] for (i) an example of a
formula that has a local first-order correspondent, and (ii) an example of a formula
that has a global first-order correspondent but no local first-order correspondent,
where in each case, the respective formula is not equivalent to a Sahlqvist formula.
Despite such results, the class of Sahlqvist formulae is expressive enough to be

useful in many of the cases encountered in practice.

4.2.3 From Kracht formulae to Sahlqvist formulae

In the previous section we saw how to compute the local first-order correspondent
of a Sahlqvist formula. Kracht [38, 40] has identified a class of first-order formulae
(‘Kracht formulae’) such that each Kracht formula is a correspondent of some
Sahlqvist formula. In other words, Kracht’s result is a converse to the Sahlqvist
correspondence theorem.

In this section we focus on modal Kracht formulae. The generalisation to
tense Kracht formulae is straightforward. We will write 3"’y as an abbreviation
to mean (y > x) for some z, and V"'y as an abbreviation to mean (Vy > z) for
some z. We write Q"'y when we do not want to specify whether we mean 3"y

or V'y.
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Kracht [38, 40] presented a Calculus of Internal Descriptions that can be used
to compute the formula correspondent of a given Kracht formula — his calculus
uses general frames [7] rather than Kripke frames. Instead of using that calculus,
we will use the algorithm presented in Blackburn et al. [7, Theorem 3.59] to
accomplish this task. We have identified the following errors with this algorithm

— we expand on this at the end of this section.

(i) The type 1 characterisation that used in the proof cannot be obtained using
the algorithm. This is because the algorithm makes use of an equivalence
that is invalid. Consequently the type 2 characterisation is unattainable via
the algorithm as well. Here we use revised characterisations type 1’ and

type 2’ respectively.

(i) The definition of Kracht formula used there [7, Definition 3.58] is deficient.!
The revised definition (which coincides with Kracht’s original definition)

introduces new cases for the algorithm that need to be dealt with.

Here we sketch the proof and show how to resolve the above problems. Aside
from the resolution of these issues, note that we follow closely the detailed proof
given in [7]. For this reason it may be helpful to read the following in conjunction
with that proof.

Recall that the notation f(ug,...,u,) is used to identify the free variables

in 8. Now we introduce the notation

B(Qq/yla R Q:r;ymvula cee aun)

to mean a formula [ containing restricted quantifier occurrences Q’{'yl, cee Q;;ym
and free variables uq,...,u,. To simplify the notation we denote the above for-
mula as $(Q"7; ) for sequences 7 = (y1,...,Ym) and @ = (uy, ..., uy,).

Definition 4.28 (type 1’ formula) A type 1’ formula is a Kracht formula of

the following form containing the single free variable xq:

Vi L. .Vrlxnﬁ(leyl, e szm;fo, e Ty YLy e s Ym) (4.13)

such that n,m > 0 and each variable is restricted by an earlier variable (that is,
the restrictor of any x; s some x; with j <1 and the restrictor of any y; is either
some xy, or some y; with j < i. Furthermore, B is a disjunction of conjunctions
of restricted quantifiers and atomic formulae of the form u # u, u = u, u = v
and Ruv (ie B is in disjunctive normal form DNF).

!Thanks to M. Kracht for clarifying the shortcomings in the definition of modal Kracht*
formula (in our terminology) given in [7, Definition 3.58].
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In this section, u,z; denote arbitrary variables in {xq,...,Zn,¥1,...Ym} and z
denotes an arbitrary variable in {xy,...,z,}.
The first step is to show how to rewrite a given Kracht formula « as a type 1/

formula. The idea is to use repeatedly the equivalences
(V' 2 6)0y ="z (69D )

(where © uniformly denotes either A or V) to pull out each universal restricted
quantifier in «, quantifying over an inherently universal variable, to the front.
This is possible because no universal restricted quantifier quantifying an inher-
ently universal variable can occur within the scope of an existential restricted
quantifier (see Definition 4.17). It is easy to verify that the resulting formula is
a type 1’ formula.

In the following definition, a boxed atom in the propositional variable p is a
formula of the form Op for ¢ > 0.

Definition 4.29 (type 2’ formula) A type 2' formula is a formula in Eg of

the following form containing the single free variable xq:

VP, .. POy . NQurs o NQu N 21 Y T, ( A ST (o)) %7>

0<i<n

such that each o; is a conjunction of boxed atoms in the propositional variables p;
and ¢1-..Gir, and 7y is a DNF of formulae ST,(B) (r € {x;}) where B is a
modal formula which is positive in every propositional variable and containing

only those propositional variables occurring in U{o;}.

We have seen how to rewrite a Kracht formula as a type 1’ formula. The
next step is to show that every type 1’ formula can be effectively rewritten as an
equivalent type 2’ formula.

Suppose that we are given the type 1 formula V"'Z 8(Q"'7). Let ' be the

formula obtained from ( by replacing each subformula

u # u with ST, (L)
u=u with ST,(T)
u = x; with ST, (p;)
R"uz; with ST,,(C"p;)
and each occurrence (indexed by j) of R™®Dx,u (m(i, §) > 1) in B with ST, (g ;)-

That is, the index j corresponds to the variable x; and the index r signifies the

j-th occurrence of R™x;u in f3.
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The claim is that V"7 3(Q"'%) is equivalent to

vPOv'E [ A\ ST [mn | \NT"a,| | = 8@Q'7) (4.14)

0<i<n (i.9)
Remark 4.30 Notice that we could simply replace R™x;u with ST, (®"p;) in
the above (instead of introducing the ST,(g; ;) terms) and proceed in the obvious
way if we are content to obtain a (tense) formula containing occurrences of ®.
However our aim is to compute a modal formula from a modal Kracht formula.

Hence we are forced to introduce the [ operator to handle the R™x;u terms.

Define the predicates o(F;) and o((Q); ) using the following characteristic func-

tions:
t w=ux
o(F)(w) = ,
f otherwise
and
t RO pw
U(Qi,r)(w) =

f otherwise

(<) Consider the formula obtained from (4.14) by the instantiation of each
predicate P; and Q);, with o(P;) and o(Q;,) respectively:

\V/T/f ( /\ Ssz (pi/\ [/\ Dmi’rq@r

0<i<n (i,r)

) — B’(Q”y)) {o(P)/Pi}]{o(Qir)/Qir}]

(4.15)
Let [S] denote the substitution [{o(F;)/P;}[{o(Qir)/Qir}]. Note that

ST, (pi)[S] = Pai[S] = (wi = x;) = ¢
and

ST, (O"g;,.)[S] = Vy(R™Vaiy — Qi,y)[S]
= Vy(Rm(”):riy — Rm(i’r)aziy)
=t

Thus, under the substitution [S], the entire formula preceeding the implication

connective — in (4.15) becomes t, so that formula is equivalent to

VT 5(QY)LS] (4.16)
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Since

STzi(C]z’,r erzz[s] = Rm(i’r)ﬂfizi
STu(O"ps)[S] = By > ) ... (Fy2 > y3)(Tyr > y2) P [S]
= <E|yn > U) ... (E'yg > y3)3y1<Ry2y1 N Y1 = LUZ)
)

\_/
05)
)

by inspection, V"'Z ' (Q"'7)[S] is equivalent to V"' T B(Q"'7).

(=) For any model M and states w = {w,w,...,w,}, it suffices to show
that
MEVEAQ ) (.17
and
ME N ST, [pin | \NDO"q, | | 0] (4.18)
0<i<n (i)
implies
M = 5(Q"y)[w]

Note that the above formula is positive for all predicates P; and ();, and hence
upward monotone due to Lemma 4.21. We showed above that V"'Z 5/(Q"'7)[S] is
equivalent to V"'Z 4(Q"'y), and thus from (4.17) we have

M | 8/(Q"y)[@][S]
Furthermore, for all i and j indices, (4.18) implies
M = P;[w] M | Yy(R™ Wz — Q; y)[w@]
It follows for every o(P,) and o(Q;,) that
M = Vy(o(F)(y) — Fi(y))[w] M = Vy(o(Qir)(y) = Qir(y))[w]

It follows that every o(FP;) and o(Q;,) predicate is a minimal valuation. The
result follows due to upward monotonicity.
The final step is to show that every type 2’ formula can be rewritten as a

Sahlqvist formula. First we delete the restricted quantifiers Q"% in 5. The idea
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is to work from the innermost quantifier outwards as follows: delete an existential
restricted quantifier appearing in ' as (Ju > v)ST,(B) by substituting with
ST,(CB); when a universal restricted quantifier (Vu > v)ST,(B) is encountered,
substitute this occurrence with ST,(—<>—-B). The remaining manipulations are
usually straightforward in practice, so we omit the algorithmic details.

Notice that we have taken care to map modal Kracht formulae into modal
Sahlqvist formulae (see Remark 4.30). The generalisation to tense Kracht formu-

lae is straightforward. Combining this result with Theorem 4.27 we get

Theorem 4.31 (Kracht’s theorem) FEvery tense (resp. modal) Sahlquist for-
mula locally corresponds to a tense (modal) Kracht formula. Also, every tense
(modal) Kracht formula is a local first-order correspondent of some tense (modal)
Sahlquist formula which can be effectively obtained from the Kracht formula.

Note that if {a, ..., a,} is some set of Kracht formulae, then we can compute
a set {Ai,...,A,} of Sahlqvist formulae such that a; A ...«, corresponds to
AN N A,L

Example 4.32 Consider the Kracht formula
(Vu > x)(Vo > 2)(Fz > u) (Rloz A R*vz) (4.19)

This is already a type 1' formula. Following the above proof, we will replace R'vz
with ST,(q1) (= Q1z) and R*vz with ST,(q2) (= Q2z), so that the above formula
is equivalent to the following type 2 formula:

YOQIYQs (Vu > ) (Yo > 2) (ST, (O A O0gs) — (32 > u)(STo(q1) A STo(g0)))

The manipulation from here is straightforward. Since (3z>u)ST,(q1 A gs) can be
replaced with ST,(C(q1 A q2)) we have

VQIYQs(Yu > 2) (Yo > ) (ST, (Ogy A O0gs) — STu(O(qr A g2)))
This 1s equivalent to

YQIYQs~(3u > 2)(3v > 2) ST, (Ogy A T0ga) A ~STu(O(qr A o))
This simplies to

VQ1VQ2 ST, (OO A O0ga) A O=(qr A q2))
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This means that (4.19) corresponds to the Sahlquist formula

or simply <(Og A OOge) D OC(q1 A go).

If we are happy to compute a tense formula corresponding to (4.19), as dis-
cussed in Remark 4.30 we can then replace R'vz and R*vz respectively, with
ST,(®p) and ST.(®®p). Then we can obtain the equivalent type 2 formula

VPP (Yu > 2) (Vo > 2) (ST, (p) — (32 > u)(ST.(#p) A ST (46p)))
Sitmplifying as above we get
VPP ST, (Op A O=O(4p A 4p))
The corresponding (tense) Sahlquist formula is Op D OO (ep A €€p).
Example 4.33 Consider the Kracht formula
Gu z)R'ux vV (Vy > 2)(Fv > y) (Vw > v)Rrwz (4.20)

The inherently universal variables in the above formula are {x,y}. We can pull

out the universal restricted quantifier to obtain the equivalent type 1" formula
(Vy > ) ((Fu > 2)R'uz V (Fv > y) (Yu > v)R'wz)

This is equivalent to the type 2 formula

~

VP(Vy > x) (ST, (p) = (Fur> x)ST,(Cp) V (v > y)(Vw > v) ST, (Cp))

Then we simplify

gP(Vy > x) (ST, (p) = ST,(OOp) V (Fv > y)(Yw > v) ST, (Op))

VP(Vy > @) (ST (p) = ST,(00p) V (Bu & ) ST, (~0=0p))

VP(Vy > ) (STy(p) — STy(O0p) V ST, (O~0—Op))

VP (STu(p A =OOp A OmO=0=0p))
The modal correspondent of the above is

PAAOOP A OOO-Op D L

This simplifies to the Sahlquist formula

p D OOp vV IUHOUOY
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Let us expand on the errors concerning Definition 3.58 and the proof of The-
orem 3.59 in Blackburn et al. [7]:

(i) The first step in the algorithm given in [7] for obtaining a modal correspon-
dent from a Kracht formula involves transforming the given Kracht formula

into a type 1 formula, where the latter is defined as follows.

Definition 4.34 (type 1 formula [7]) A type 1 formula is a Kracht for-

mula of the following form containing the single free variable xq:

Vi Y leyl . Q;;ymﬁ(xo, e Ty YLy e ey Ym) (4.21)

such that n,m > 0 and each variable is restricted by an earlier variable (that
is, the restrictor of any x; is some x; with j < i and the restrictor of any y;
is either some xy or some y; with j < i. Furthermore, 5 is a disjunction of
conjunctions of atomic formulae of the form u # u, u = u, u = v and R*uv

(ie B is in disjunctive normal form DNF).

Comparing (4.13) with (4.21), the only difference is that in the latter case
the existential restricted quantifiers have been taken ‘outside’ 5. In order

to achieve this, the following equivalence is quoted in [7]:
(F'ud)Vy=Y"u(d V) (4.22)

A simple counterexample to the above is the Kracht formula (Jurt>x)(t) vVt
where t should be read as x = x. To see this, first observe that this formula
is equivalent in first-order logic to the formula t. If the above equivalence
was valid, then (Ju > z)(t) V t would be equivalent to (Ju > z)(t V t) and
hence to (Jut> x)(t). Since (Ju > z)t and t are obviously not equivalent, it

follows that the above equivalence is not valid.

Of course, although the algorithm [7] for transforming a Kracht formula into
a type 1 formula is incorrect due to the invalidity of the (4.22), this does
not necessarily mean that the type 1 characterisation itself is unattainable.
After all, the counterexample (Ju > z)(t) V t to the algorithm is equivalent

to t, and t is a type 1 formula.

Since we do not actually need the type 1 characterisation for our work, we
do not pursue the question of whether this characterisation is attainable,
and if it is, how to obtain an algorithm that witnesses this. Nevertheless

we observe that the main obstacle seems to be the simplification of the
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expression (3”2 §) V R*Im in a Kracht formula (this is a special case of the
lefthand side of (4.22)). As an illustration, consider the following Kracht

formula a:
(Vyr > ) (Vyo > y1) Gug > 2)(Fug > wy) ((Fug > ug) R wus V R wus)

Unlike in the previous example, it is not clear how to rewrite this formula as
an equivalent type 1 formula. In particular, observe that Vza is true on the
frame below left due to the Rlzu, disjunct, and Vza is true on the frame

below right due to the (Jus > us)R'zus disjunct, so neither disjunct can be

deleted:

//”— \\\
2 ~
Q

r—=U1 —> U2 x (75} U2 Us -
V -

Finally, let o/ be the following formula, obtained from « by applying (4.22):

(Vyr > ) (Vyo > y1) (G > 2)(Fug > wy) (Fus > us) (R'wus V R'wus)

Notice that o' is false on the frame above left, providing another example

of the incorrectness of (4.22).

According to the definition of modal Kracht formula [7, Definition 3.58]
given there (let us name formulae defined according to that definition as
modal Kracht* formulae) these formulae do not have the liberty of using
R°uv as atomic, relying on v = v and Ruv terms instead. Specifically,

define a modal Kracht* formula as follows:

Definition 4.35 (modal Kracht* formula) A modal restrictedly positive
formula o(z) containing a single free variable x constructed from atomic for-
mulae u # u, u=u, u =v and Ruv is called a modal Kracht* formula if o
s clean and in atomic formulae of the form u = v and Ruv, either u or v

15 tnherently universal.

Now consider the formula OCp D Op. Although we only described the
computation of modal Kracht formulae for very simple Sahlqvist formulae,

following the algorithm [7] we obtain
(Ju > x)R*zu

This is a modal Kracht formula. However, it is not a modal Kracht* formula

because of the R2zu term. If we expand it out and simplify we obtain the
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formula (Ju > z)(Jv > z) Rou. This is not a modal Kracht* formula either,

because neither v nor u in Rvu is inherently universal.

Of course, it may be possible to rewrite the above as a modal Kracht*
formula, but it is not obvious how to do so. To summarise, the (full) al-
gorithm [7] mapping modal Sahlqvist formulae to first-order formulae in-
troduces R°uv terms. However, these terms are outside the fragment of
modal Kracht* formulae, and expanding the R*uv terms may still keep us
outside the modal Kracht* fragment. In our description of the algorithm
from modal Kracht formulae to modal Sahlqvist formulae, we have shown

how to handle the new cases arising from the use of R*uv instead of Ruwv.

4.2.4 The Sahlqvist completeness theorem

Thus far our discussion has centred around computing the first-order correspon-
dent of a Sahlqvist formula (Section 4.2.2), and computing the Sahlqvist formula
corresponding to a (first-order) Kracht formula (Section 4.2.3). In this section we
will show how to obtain soundness and completeness results for logics axioma-
tised over K and Kt by Sahlqvist formulae. It turns out that these logics are

sound and weakly complete for the class of frames defined by these formulae.

In this paragraph, let ¢; uniformly denote either a tense formula or a formula
from the frame languages. We write Fy, to denote the (not necessarily first-order
definable) class of frames defined by ¢;. Now suppose that A = {¢1,...,¢,} is
some set of formulae. From Lemma 4.14 we know that the formula A, ¢; defines
the class (), Fy, of frames. We write Fx to denote the class (), Fy, and say that A
defines Fa.

Of course, if A is some set of Sahlqvist formulae, Theorem 4.31 tells us that

there is some conjunction « of Kracht formulae such that Fa = Fyea.

Let K @ A be the axiomatic extension of basic modal logic K by a finite set A
of modal Sahlqvist formulae. Certainly we have Fa = K (due to Theorem 4.4)
and Fao = A. Recall that K & A is the closure of K U A under the rules of
modus ponens, necessitation and the uniform substitution of modal formulae for
propositional variables. Thus any A € K @& A can be obtained by applications of

these rules to formulae in K UA. Now, for any class F of frames and formulae A
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and B, it is easy to check that

FEAD B and F = A implies F = B
F E Aimplies F = 0A
F |= A implies F = A" where A’ is a uniform substitution instance of A

Thus A € K @ A implies that Fa E A. So K & A is sound for Fa.
Weak completeness of K @ A for Fa is the statement:

Fa | Aimplies A€ K@ A

Under the assumption that A is a finite set of modal Sahlqvist formulae, this
statement indeed holds, although the proof requires some work. Here we only
sketch the proof following [7]. Sahlqvist’s original proof can be found in [62].
Also see Sambin and Vaccaro [63] for a different proof of the main theorem. We
observe that analogous results apply for axiomatic extensions of the basic tense
logic Kt.

Definition 4.36 (L-consistent sets) Let L be an extension of the basic modal
logic K. A setT' of formulae is called L-consistent if the formula (AT D L) € L

and L-inconsistent otherwise.

We have the following lemma (see [7] for a proof).

Lemma 4.37 A logic L is weakly complete with respect to a class of frames F

iff every L-consistent set is satisfiable on some model for some frame in JF.

To prove that L is complete for F, from the above lemma, it suffices to find a
model in F which makes every L-consistent set satisfiable. What model should
we choose? It turns out that there is a natural choice for this purpose, aptly called
the canonical model for L. The states of this model are the mazimal L-consistent

sets.

Definition 4.38 (maximal L-consistent sets) A set I' of formulae is called
maximal L-consistent if ' is L-consistent, and any set of formulae properly con-
taining ' is L-inconsistent. If I is a maximal L-consistent set of formulae then
for short we say it is a L-MC'S.

Let us define the canonical model and frame for the basic modal language.
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Definition 4.39 (canonical model, frame) The canonical model M for a
normal modal logic L in the basic modal language is the triple (WL RE VL)

where:

(i) WL is the set of all L-MCSs.

(ii) RY is the binary relation on WL defined by RF*wu if for all formulae B,
B € u implies OB € w.

(iii) VL is the valuation function defined by

Vip) ={w e W"|p e w}

The pair FL' = (WL RY) is called the canonical frame for L.

The relation R” is called the canonical relation, and V¥ the canonical valuation.

Next we state without proof the following results [7]:

Lemma 4.40 (Lindenbaum’s Lemma) If[ is a L-consistent set of formulae,
then there is a L-MCS I'" such that T C T'T.

Lemma 4.41 (Truth Lemma) For any normal modal logic L and set T" of for-
mulae, M¥ w =T iff T C w.

Given any set I of L-consistent formulae, Lindenbaum’s lemma states that
there is an L-MCS I'T such that I' € I'". From the Truth Lemma we have
ME TF |=T. What this means is that in order to show that a logic L is weakly
complete with respect to some class F of frames, it suffices to show that the
canonical frame F'* € F. Let us call a formula A canonical if, for any normal

modal logic L, A € L implies that A is valid on the canonical frame F”.

Theorem 4.42 (Sahlqvist completeness theorem) FEvery Sahlquist formula

18 canonical.

Thus, for any set A of modal Sahlqvist formulae, each formula in A must be
valid on the canonical frame FE®2 for K @ A. Since Fa consists of precisely
those frames that make A valid, we have FX®2 ¢ Fo. By our discussion above,
it follows that K & A is weakly complete with respect to Fa. Analogous results
apply to axiomatic extensions over the basic tense logic Kt. Together with the

soundness result we discussed earlier in this section, we have

Corollary 4.43 Let A be a finite set of modal (tense) Sahlquist formulae. Then
K& A (Kt® A) is sound and weakly complete with respect to Fa.

This completes our overview of correspondence theory.
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4.3 Introducing the Display Calculus

The Display Calculus [5] is a formal proof system that can be used to present
a large class of logics.? To motivate the display calculus, let us look at another
formal proof system that we have already encountered — Gentzen’s sequent cal-
culus [25]. Gentzen’s sequent calculus is built from (traditional) sequents of the
following form

Ay,... A, = By,...,B,

where {A;}ica and {B;}icp are logical formulae from some language £ (say).
The symbol = in the sequent places the Ay, ..., A, on the left-hand side (the
antecedent) and and the By, ..., B, on the right-hand side (the succedent). More-
over, notice how formulae in both the antecedent and succedent are separated by
a comma (,). It is important to note that the symbols = and the comma do
not belong to L. Instead these are meta-logical symbols belonging to the sequent
calculus formalism. For this reason, these symbols are called structural connec-
tives, to distinguish them from the logical connectives — think —, D and [J for
example — in the language £. Properties of the structural connectives such as
associativity and commutativity of the comma are usually defined implicitly.
Although the structural connectives do not actually belong to £, they can
often be interpreted in £. For example, in the Gentzen sequent calculus presenting

classical propositional logic, the sequent above is intended to mean the formula

where the = has been interpreted as the implication connective D and the comma
has been interpreted as conjunction in the antecedent and disjunction in the
succedent. This relationship between the logical connectives and the structural
connectives (which lie outside the language of the logic) deserves further exami-
nation.

We can examine this relationship by writing a traditional sequent as X = Y
where X and Y are Gentzen structures composed from logical formulae using the
structural connective comma. Gentzen structures can be defined by the following
grammar, where I is a constant (the identity structure) and A denotes a logical

formula:

X::I‘A‘Xl,XQ

2Since it is a proof system rather than a logic, we prefer the term “display calculus” to

Belnap’s original “display logic”.
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Now we must explicitly define the properties of the comma. There are also
other properties concerning the sequent calculus structure that we would typically

define, for example, the contraction rule (below)

AAX =Y
A X =Y

These rules are called structural rules, to contrast with the logical rules of the
sequent calculus which introduce logical and modal connectives into the sequent.
Now let us consider the Display Calculus. A display calculus is built from
display sequents — each sequent is divided into an antecedent and a succedent
by the symbol F (we use F for display sequents and = for Gentzen sequents in
order to distinguish between these two objects). Then we can write a display
sequent as X F Y where X and Y are display structures. Display structures
are typically more sophisticated than their Gentzen counterparts as they are en-
riched with several different types of structural connectives. The properties of
these structural connectives are then explicitly specified in such a manner that
the expressivity of the structural connectives is ‘complete’ in the sense that any
substructure in a display sequent can be displayed as the whole of the antecedent
or succedent. This is called the display property — the name Display Calculus
is due to this property. The display property makes it straightforward to prove
a cut-elimination theorem that is applicable to any display calculus whose rules
satisfying certain properties (the ‘display conditions’). Informally speaking, the
greater expressivity that is achieved due to the rich display structures — in par-
ticular, the interplay between the logical formulae and the structural connectives
— makes it possible to construct display calculi with nice properties (such as
cut-elimination and the display property) for a large class of logics.

The generality of the Display Calculus can be seen by the fact that cutfree
display calculi have been presented for a broad class of logics including sub-
structural logics [60, 29], modal and polymodal logics [78, 39] and intuitionistic
logics (see [28] and Chapter 6 of this thesis). Mints [50] and Wansing [79] have
demonstrated an embedding, respectively, from labelled sequent calculi and hy-
persequent calculi into the display calculus, and Restall [59] has presented an
embedding of the display calculus into the labelled sequent system of Negri [52].

In the following subsection, we present the display calculus DLM for the
basic tense logic Kt and then introduce Belnap’s cut-elimination theorem for
display calculi. In Section 5.1 we present Kracht’s elegant result characterising

the axiomatic extensions of Kt that can be presented as structural rules extensions
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Table 4.1: Logical rules for the display calculus DLM

of DLM. There is a good reason for focusing on structural rule extensions —
it is particularly easy to verify the display conditions for structural rules. An
analogous characterisation for axiomatic extensions of the basic modal logic K
is claimed in Kracht [39] but R. Goré has recently observed that this claim is

incorrect. In Section 5.2 we examine a new characterisation.

4.3.1 The display calculus DLM

Let us now introduce the display calculus DLM [39].

The class of display structures for DLM is defined over the binary structural
connective o, the unary structural connectives * and e, and the constant I (the
‘identity structure’) by the following grammar, where A denotes a formula from
ForT L:

X =I|A|X10Xy|xX|eX

We will use the letters XY, ... (and later U, V, L, M, possibly with subscripts) to
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denote display structures. If Y is a structure occurring in the structure X, we say
that Y is a substructure of X and write X[Y]. A proper structure is a structure
that is not a formula. The structure Z appears positively (resp. negatively) in X
if Z occurs in the scope of an even (odd) number of % symbols in X[Z].

A display sequent has the form X Y where X and Y are display structures.
A structure Z is said to be an antecedent (resp. succedent) part of the sequent
X B Y if Z occurs positively (negatively) in X or negatively (positively) in Y.

A rule in the display calculus consists of some number of premise sequents
and a conclusion sequent. We represent a rule in the usual way, by drawing a line
to separate the premises from the conclusion. We use a double line to indicate
that a (single-premise) rule can be read both upwards and downwards (so each
item represents a pair of rules).

The rules are often presented as rule schemata. In this context, the letters
X,Y,... should be treated as schematic structure variables, the letters p,q, ...
as schematic propositional variables and A, B, ... as schematic formula variables.
A schematic structure is constructed from these constituents and I using appro-
priate structural and formula connectives. A schematic formula is constructed
from schematic formula variables and propositional variables using the logical
connectives and constants. A rule instance is obtained from a rule schema by the
uniform substitution of structures for schematic structure variables, propositional
variables for schematic propositional variables and tense formulae for schematic
formula variables. In practice, we use the term “rule” to refer to both a rule
schema and its instance. The use of rule schemata allows us to do without a
substitution rule (compare with the Hilbert calculus).

A rule is called a logical rule if it introduces a logical connective or logical
constant into the conclusion sequent. Clearly, each rule in Table 4.1 is a logical
rule. A rule is called a structural rule if its rule schema consists of schematic
structures built from schematic structure variables X,Y, ... and structural con-
nectives (so no schematic formula variables or logical connectives are permitted).
For example, consider the following rule schemata:

XoXHY Ao ALY Cliorm
XFY ARY

The rule schema C1 is clearly a structural rule. However, the rule schema

Cl

Clyorm is not a structural rule (under the definition of display structural rule
given above) because it contains the schematic formula variable A. Furthermore,
when viewed as an instance of a rule schema (rather than as a rule schema itself),

notice that
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XoYHFHZ XoYHFHZ
X+ ZoxY YFxXoZ
XFYoZ XFYoZ
XoxZ Y *YoXFZ
*XFY X F %Y
*Y X Y FxX
xx XFY XFxxY
XFY XFY
X FeoY
o XY

Table 4.2: The display rules for the display calculus DLM

Ao ALY
AFRY

is an instance of the rule schema C1. Clearly, each rule in Table 4.3 and 4.2 is a
structural rule. Observe that no rule can be both a logical rule and a structural
rule.

The rules for the display calculus DLM are given below.

(i) initial sequents: p - p for every propositional variable p, and the sequents
IFTand LFT;

(ii) the logical rules in Table 4.1;

(iii) the structural rules in Tables 4.2 and 4.3; and

(iv) the cutrule X 131( - };4 Y (cut)

Notice that the cutrule is neither a logical rule (because it does not introduce a
logical connective or a constant) nor a structural rule (because the rule schema
contains a formula).

A derivation in the display calculus DLM is defined recursively in the usual
way as either an initial sequent p = p or an application of the rules to derivations
concluding its premises. The last sequent in the derivation is called the end-
sequent. The sequent X F Y is derivable if there is some derivation with end-
sequent X Y.

A rule in the display calculus is called invertible if the premise sequents of

a rule instance are derivable whenever the conclusion sequent is derivable. By



4.3. INTRODUCING THE DISPLAY CALCULUS 115

ez 0 Yrioz ™
——= (@ (@)
voxtz W Soviz W)
tres arsoe KGNS = s o ol
FXEZ s na
A2 oy ZeXeX (o
STI Lo

Table 4.3: Proper structural rules for the display calculus DLM

our previous comment, we can equally say that a rule is invertible if there is a
derivation of the premise sequents of a rule instance from the conclusion sequent.
Because every rule in Table 4.2 has double lines, it is obvious that each of these
rules is invertible.

For brevity, we will often omit labelling an application of the structural rules
from Tables 4.2 or 4.3 or apply some number of these rules in a single step of the
derivation.

Notice that the rules in Table 4.3 specify the properties of the structural
connectives in the language. For example, the rules (P1) and (Pr) respectively
specify commutativity of o in the antecedent and succedent of a sequent. The rules
in