
General methods in proof theory for modal logic -
Lecture 1

Björn Lellmann and Revantha Ramanayake

TU Wien

Tutorial co-located with TABLEAUX 2017, FroCoS 2017 and
ITP 2017

September 24, 2017. Brasilia.

Outline of the tutorial

Lecture 1 An introduction to proof theory via the sequent
calculus, and an introduction to normal modal logics
defined via syntax and relational semantics.

Lecture 2 Limits of the sequent framework. Case study S5. No
cutfree sequent calculus, but a hypersequent calculus

Lecture 3 Proof theoretic methods case study: cut-elimination
methods for provability logics. The sequent calculus
is not enough: other proof-theoretic formalisms
(labelled, nested, display calculus) for obtaining
analytic calculi for modal logics.

Lecture 4 Non-normal logics (and their neighbourhood
semantics). Ackermann’s lemma/Tseitin
transformation to obtain logical rules. Case study:
Mimamsa Deontic Logic.

Proof theory

I Proof theory treats a proof as a formal mathematical object,
facilitating its analysis, and also the study of the provability
relation, by mathematical techniques.

I A proof is typically defined by first defining a proof system

I Our emphasis is on structural proof theory: the study of various
proof systems for logics and their structural properties, and using
the proof system to study the logic of interest.

I There are essentially two degrees of freedom here: choose the
logic and then choose/construct a proof system for the logic

I To begin with, let’s start with a very familiar logic: propositional
classical logic Cp. Classical logic consists of the set of formulae
with evaluate to > under the usual truth table semantics.

I Let us introduce a proof system for it. This proof system is
called a Hilbert calculus. . .

The Hilbert calculus hCp for classical logic Cp

I Classical language: countable set of propositional variables
p1, p2, . . . and logical connectives →,¬,∧,∨,⊥,>.

I Every propositional variable and ⊥ and > is a formula. If A
and B are formulae, then so are A→ B, ¬A, A ∧ B, A ∨ B

I The Hilbert calculus hCp consists of the following axiom
schemata (schematic variable A,B, C stand for formulae):

Ax 1: A → (B → A)

Ax 2: (A → (B → C))→ ((A → B)→ (A → C))

Ax 3: (¬A → ¬B)→ ((¬A → B)→ A)

and other axioms for ∧,∨,>,⊥ (omitted for brevity)

and a single rule called modus ponens:

A A → B
MPB

Derivation of A→ A

Definition (derivation)

A formal proof or derivation of B is the finite sequence
C1,C2, . . . ,Cn ≡ B of formulae where each element Cj is an axiom
instance or follows from two earlier elements by modus ponens.

Ax 1: A → (B → A)

Ax 2: (A → (B → C))→ ((A → B)→ (A → C))

Ax 3: (¬A → ¬B)→ ((¬A → B)→ A)

MP: A A → B/B

1 ((A→ ((A→ A)→ A))→ ((A→ (A→ A))→ (A→ A))) Ax 2

2 (A→ ((A→ A)→ A)) Ax 1

3 ((A→ (A→ A))→ (A→ A)) MP: 1 and 2

4 (A→ (A→ A)) Ax 1

5 A→ A MP: 3 and 4

A drawback of the Hilbert calculus: derivations lack a
discernible structure

I Consider the derivation of A→ A:

1 ((A→ ((A→ A)→ A))→ ((A→ (A→ A))→ (A→ A))) Ax 2

2 (A→ ((A→ A)→ A)) Ax 1

3 ((A→ (A→ A))→ (A→ A)) MP: 1 and 2

4 (A→ (A→ A)) Ax 1

5 A→ A MP: 3 and 4

What is the relation of the derivation to A→ A? How could we
construct its derivation? Is there an algorithm? and if so, what is
its complexity? Is there a derivation of (p → p)→ ¬(p → p)?

There is no obvious structural relationship between A→ A and its
derivation (and MP is the culprit)

A new proof system: the sequent calculus sCp

init
p,X ` Y , p

⊥l⊥,X ` Y
>r

X ` Y ,>

X ` Y ,A
¬l¬A,X ` Y

A,X ` Y ¬r
X ` Y ,¬A

A,B,X ` Y
∧l

A ∧ B,X ` Y

X ` Y ,A X ` Y ,B
∧r

X ` Y ,A ∧ B

A,X ` Y B,X ` Y
∨l

A ∨ B,X ` Y

X ` Y ,A,B
∨r

X ` Y ,A ∨ B

X ` Y ,A B,X ` Y
→l

A→ B,X ` Y

A,X ` Y ,B →r
X ` Y ,A→ B

I No axioms, only rules built from sequents of the form X ` Y
I X ,Y are multiset of formulae)
I X is the antecedent, Y the succedent
I Aside: original sequent calculus presented in Gentzen’s (1935)

highly readable work

init
p,X ` Y , p

⊥l⊥,X ` Y
>r

X ` Y ,>

X ` Y ,A
¬l¬A,X ` Y

A,X ` Y ¬r
X ` Y ,¬A

A,B,X ` Y
∧l

A ∧ B,X ` Y

X ` Y ,A X ` Y ,B
∧r

X ` Y ,A ∧ B

A,X ` Y B,X ` Y
∨l

A ∨ B,X ` Y

X ` Y ,A,B
∨r

X ` Y ,A ∨ B

X ` Y ,A B,X ` Y
→l

A→ B,X ` Y

A,X ` Y ,B →r
X ` Y ,A→ B

I Above the line are premises and below is the conclusion
I A 0-premise rule is called an initial sequent
I A derivation in the sequent calculus is an initial sequent or a

rule applied to derivations of the premise(s).
I A derivation can be viewed a tree with vertices labelled by

sequents. The root is the endsequent

init
p,X ` Y , p

⊥l⊥,X ` Y
>r

X ` Y ,>

X ` Y ,A
¬l¬A,X ` Y

A,X ` Y ¬r
X ` Y ,¬A

A,B,X ` Y
∧l

A ∧ B,X ` Y

X ` Y ,A X ` Y ,B
∧r

X ` Y ,A ∧ B

A,X ` Y B,X ` Y
∨l

A ∨ B,X ` Y

X ` Y ,A,B
∨r

X ` Y ,A ∨ B

X ` Y ,A B,X ` Y
→l

A→ B,X ` Y

A,X ` Y ,B →r
X ` Y ,A→ B

I A principal formula is the formula containing the newly
introduced logical connective

I The auxiliary formula(e) are the formulae in the premises

I The multisets X and Y are the context

A derivation in sCp

A,A→ (B → C) ` C ,A

B,A ` C ,A

B,A ` C ,B C ,B,A ` C
→l

B → C ,B,A ` C
→l

B,A,A→ (B → C) ` C
→l

A,A→ B, (A→ (B → C)) ` C
→r

A→ B, (A→ (B → C)) ` A→ C
→r

(A→ (B → C)) ` (A→ B)→ (A→ C)
→r

` (A→ (B → C))→ ((A→ B)→ (A→ C))

I Actually, the above is not yet a derivation. Recall that the
initial sequents have the form p,X ` Y , p not A,X ` Y ,A.

I The height of a derivation is the maximal number of sequents
on a branch in the derivation.

I The size of a formula is the number of connectives in it plus
one. Another useful representation of a formula is in terms of
its grammar tree.

I Note that A,X ` Y ,A is derivable: Argument by induction on
the size of a formula. The base case (A is a propositional
variable) is already an initial sequent!

(Height-preserving) admissibility and invertibility
I A rule r is admissible in sCp if the conclusion of the rule is

derivable whenever the premise(s) are derivable.
I If the height of the derivation of the conclusion is no greater

than the height of the premise(s), then r is height-preserving
admissible in sCp

I A rule r of sCp is invertible: if a sequent instantiating
conclusion is derivable, then the corresponding sequents
instantiating premise(s) are derivable. If the latter have height
no greater than the former then it is height-preserving

I The weakening rules lw and rw are height-preserving
admissible

X ` Y
lw

A,X ` Y
X ` Y rw

X ` Y ,A
Suppose we are given a derivation d of X ` Y . Induction on
the height of d . Consider the last rule r . Insert A into premise
of r via IH, and hence obtain A in conclusion.

I The induction argument is simply the method of proving
result. Picture the transformation of d .

(Height-preserving) admissibility and invertibility

I Every rule in sCp is height-preserving invertible. Induction on
the height of d

I Once again: the induction argument is simply the method of
proving result. Picture the transformation of d .

I The contraction rules lc and rc are height-preserving
admissible

A,A,X ` Y
lc

A,X ` Y

X ` Y ,A,A
rc

X ` Y ,A

Prove both claims simultaneously (why?). I.e. Let d be a
derivation. If d is derives A,A,X ` Y then A,X ` Y is
derivable, and if d derives X ` Y ,A,A then X ` Y is
derivable. Induction on the height of d . Use hp invertibility.

I Once again: the induction argument is simply the method of
proving result. Picture the transformation of d .

Relating sCp to classical logic
I Let Cp denote the set of formulae that are derivable in hCp.

I Since hCp is a Hilbert calculus for classical logic, Cp is the set
of theorems of classical logic.
I Equivalently, Cp consists of those formulae that evaluate to >
under the truth table semantics.

Theorem
For every formula A: `A is derivable in sCp ⇔ A ∈ Cp.

I To prove this, following Gentzen, introduce a sequent calculus
version of MP called the cut rule. Formula A is the cutformula.

A A→ B
MP

B
X ` Y ,A A,U ` V

cut
X ,U ` Y ,V

I We will prove the theorem by showing the following:

1. Γ ` ∆ is derivable in sCp + cut ⇔ ∧Γ→ ∨∆ ∈ Cp (notation)

2. Γ ` ∆ is derivable in sCp + cut iff Γ ` ∆ is derivable in sCp

`A is derivable in sCp
2.⇔ `A is derivable in sCp + cut

1.⇔ A ∈ Cp

1a: Γ ` ∆ is derivable in sCp + cut ⇒ ∧Γ→ ∨∆ ∈ Cp

I This direction is soundness. We want to show that what the
calculus derives can be translated to a theorem of classical
logic.

I Use semantics or hCp to establish this direction.

I Argue by induction on the height of derivation of Γ ` ∆.

I Translations of the initial sequents are theorems of Cp

p,X → Y , p show that p ∧ (∧X)→ (∨Y) ∨ p ∈ Cp

⊥ ∧ X → Y show that ⊥ ∧ (∧X)→ (∨Y) ∈ Cp

I Inductive step. Show for each remaining rule ρ: if the
translation of every premise is a theorem of Cp then so is the
translation of the conclusion.

A,X ` B

X ` A→ B
need to show:

(A ∧ (∧X))→ B

(∧X)→ (A→ B)

1b: ∧Γ→ ∨∆ ∈ Cp ⇒ Γ ` ∆ is derivable in sCp + cut

I Observe: ` ∧Γ→ ∨∆ derivable in sCp + cut iff Γ ` ∆
derivable sCp + cut

I Show that ` Ax is derivable in sCp + cut for every axiom Ax
in hCp. E.g.

A,A→ (B → C) ` C ,A

B,A ` C ,A

B,A ` C ,B C ,B,A ` C
→l

B → C ,B,A ` C
→l

B,A,A→ (B → C) ` C
→l

A,A→ B, (A→ (B → C)) ` C
→r

A→ B, (A→ (B → C)) ` A→ C
→r

(A→ (B → C)) ` (A→ B)→ (A→ C)
→r

` (A→ (B → C))→ ((A→ B)→ (A→ C))

1b: ∧Γ→ ∨∆ ∈ Cp ⇒ Γ ` ∆ is derivable in sCp + cut
(ctd)

I Now let us simulate MP in the sense: if ` A and ` A→ B is
derivable, then ` B is derivable:

` A

` A→ B
A ` A B ` B →l
A→ B,A ` B

cut
A ` B cut` B

I In this way we have that if A is derivable in hCp then ` A is
derivable in sCp + cut

I It follows that

∧Γ→ ∨∆ ∈ Cp ⇒ ` ∧Γ→ ∨∆ derivable in sCp + cut

⇒ Γ ` ∆ derivable in sCp + cut

2. Γ ` ∆ derivable in sCp + cut iff Γ ` ∆ derivable in sCp
I Right-to-left direction is trivial. Left-to-right is the

cut-elimination theorem

Theorem (Gentzen cut-elimination theorem)

Suppose that δ is a derivation of X ` Y in sCp + cut. Then there
is a transformation to eliminate instances of the cut-rule from δ to
obtain a derivation δ′ of X ` Y in sCp.

I First argue how to get rid of a single cut in δ
I Suppose that we are given a derivation δ of X ` Y containing

a single occurrence of the cutrule as the last rule of the
derivation. Argue by principal induction on the size of the
cutformula and secondary induction on cutheight (sum of the
premise derivation heights) that there is a cutfree derivation
of X ` Y .

I Again: induction is method of proving; picture transformation
I If δ multiple cuts, repeat the argument, always choosing a

topmost cut (i.e. a cut that has no cut above it in the
derivation)

Proof of Gentzen’s Hauptsatz

Consider a derivation concluding with the cut-rule:

X ` Y ,A A,U ` V
cut

X ,U ` Y ,V

I (Base case) A derivation of minimal height concluding in a
cutrule must have the left and right premise as initial sequents.

p,X ` Y , p q,U ` V , q
cut

depends on whether cut-formula is p or q or something else

In every case the conclusion is already an initial sequent so we
don’t need the cut!

I Argument when either initial sequent is (⊥l) or (>r) is similar
I (Inductive case) Consider the following possibilities

1. cut-formula A is not principal in one of the premises
2. cut-formula A is principal in both premises

Proof of Gentzen’s Hauptsatz II
A is not principal in one of the premises of the cutrule e.g.

...

X ′ `k Y ′,A
r

X `k+1 Y ,C ∨ D,A

...

A,U `l V ,C ∨ D
cut

X ,U ` Y ,V ,C ∨ D

Superscript indicates height. Cutheight is k + l + 1. Lift the cut
upwards. . .

...

X ′ `k Y ′,A

...

A,U `l V ,C ∨ D
cut

X ′,U ` Y ′,V ,C ∨ D

Derivation has reduced cutheight k + l (< k + l + 1) so apply
induction hypothesis to get cutfree derivation
X ′,U ` Y ′,V ,C ∨ D.

Apply rule r to X ′,U ` Y ′,V ,C ∨ D to get cutfree derivation of
X ,U ` Y ,V ,C ∨ D. Cutfree derivation has greater height!

Proof of Gentzen’s Hauptsatz III

I The cutformula A is principal in both premises e.g.
...

A,X `k Y ,B →r
X `k+1 Y ,A→ B

...

U `l V ,A

...
B,U `m V

→l
A→ B,U `1+max l,m V

cut
X ,U ` Y ,V

Lift the cut upwards. . .
...

A,X ` Y ,B

...
B,U ` V

cut
A,X ,U ` Y ,V

Since size |B| of the cutformula smaller than before (A→ B)
apply the induction hypothesis to get cutfree derivation of
A,X ,U ` Y ,V .

Proof of Gentzen’s Hauptsatz IV

From above: apply the induction hypothesis to obtain a cutfree
derivation of A,X ,U ` Y ,V . Now proceed:

...
U ` V ,A

...
A,X ,U ` Y ,V

X ,U,U ` Y ,V ,V

Since the size |A| of the cutformula is smaller than before (A→ B)
apply the induction hypothesis to obtain a cutfree derivation of
X ,U,U ` Y ,V ,V (the duplicates are because we applied cut
twice)

By admissibility of lc and rc we get X ,U ` Y ,V as required.

I cutfree proof is typically much longer than proof with cuts

I Cut-elimination: eliminating lemmata from a math. proof

I Computational interpretations

Hilbert calculus hCp and sequent calculus sCp compared

init
p,X ` Y , p

⊥l⊥,X ` Y
>r

X ` Y ,>

X ` Y ,A
¬l¬A,X ` Y

A,X ` Y ¬r
X ` Y ,¬A

A,B,X ` Y
∧l

A ∧ B,X ` Y

X ` Y ,A X ` Y ,B
∧r

X ` Y ,A ∧ B

A,X ` Y B,X ` Y
∨l

A ∨ B,X ` Y

X ` Y ,A,B
∨r

X ` Y ,A ∨ B

X ` Y ,A B,X ` Y
→l

A→ B,X ` Y

A,X ` Y ,B →r
X ` Y ,A→ B

I We have traded many axioms and few rules in hCp for no
axioms and many rules in sCp. So what’s the point?

I The aim was to remove MP to obtain the subformula
property: every formula in the premise(s) is a subformula of a
formula in the conclusion

I To do this we first introduced a more general version of MP
(the cut rule) and showed how it could be eliminated

sCp has the Subformula property, hCp does not

I Subformula property: every formula in the premise(s) is a
subformula of a formula in the conclusion

I If all the rules of the calculus satisfy this property, the calculus
is analytic

I Analyticity is crucial to using the calculus (for consistency,
decidability. . .) as we shall see

I Unlike in the Hilbert calculus, the proof has a nice structure!

I To be precise: there are properties weaker than the subformula
property which can be useful (e.g. analytic cut). The point is
to meaningfully relate the premises to the conclusion.

Applications: Consistency of classical logic

Consistency of classical logic is the statement that A ∧ ¬A 6∈ Cp.

Theorem
Classical logic is consistent.

Proof by contradiction. Suppose that A ∧ ¬A ∈ Cp. Then A ∧ ¬A
is derivable in sCp (completeness). Let us try to derive it (read
upwards from ` A ∧ ¬A):

` A
A `
` ¬A

` A ∧ ¬A
So ` A and A ` are derivable. Thus ` must be derivable in
sCp + cut (use cut) and hence in sCp (by cut-elimination). This is
impossible (why?) QED.

Applications: Decidability of classical logic

Theorem
Decidability of Cp.

I Starting from a given formula A, repeatedly apply the rules
backwards (choosing some formula as principal).

I Since each rule reduces the complexity of the sequent (a
logical connective is deleted), the backward proof search
terminates under any choice of principal formulae

I There are only finitely many backward proof searches. If one
is a derivation, then A ∈ Cp otherwise it is not.

I Note: argument (as above) fails in sCp + lc + rc . Suppose
your favourite calculus obliges the inclusion of contraction in
some way (e.g. most calculi for intuitionistic logic). Then
other arguments may be available.

I Substructural logics side comment: deleting weakening
from Ip leads to FLec (proved decidable by Kripke, 1959).

I Deleting weakening and exchange leads to FLc proved
undecidable (Chvalovsky and Horcik, 2016)

Modal Logics

“Modal languages are simple yet expressive languages for talking
about relational structures”
Modal Logic (Blackburn, Venema and de Rijke)

I Augment the usual boolean connectives (¬, ∧, ∨, →, ⊥, >)
with modal operators like (but not limited to) ♦ and �.

I No variable binding, so the language is simpler than first-order.

I A relational structure is a set with a collection of relations on
the set.

I Relational structures appear everywhere.

I E.g. to describe mathematical structures, theoretical
computer science (model program execution as a set of states,
where the binary relations model the behaviour of the
program), knowledge representation, economics,
computational linguistics

I We could already imagine that first-order and second-order
languages are well-equipped to talk about relational structures

I The point is that modal languages are very simple languages
to describe relational structures

Modal language

I Let V be a set of variables. The formulae of modal logic are:

F ::= V | F ∧ F | F ∨ F | F → F | ¬F | �F

with ♦A abbreviating the formula ¬�¬A
I Equivalently �A abbreviating ¬♦¬A.

I Alternatively we could include both ♦ and � in the signature

I So ♦A and �A are said to be duals of each other

I Recall ∀A = ¬∃¬A.

Some standard interpretations of the modal operators

1. ♦A as ‘it is possibly the case that A’. So �A reads ‘it is not
possible that not A’ or simply ’it is necessarily the case
that A’.

So what can we say about statement like A→ ♦A and
♦A→ �♦A? Do these follow as a logical consequence?

2. Epistemic logic. Read �A as ‘the agent knows A’. Or have
lots of modal operators and read �iA as ‘the i th agent
knows A.

Since we use the word knowledge, we would expect �A→ A
(‘if the agent knows A then A’—contrast with belief) . But is
it the case that A→ �A (‘if A, then the agent knows it’)?
What about �A→ ��A?

Some standard interpretations (cont.)

1. Provability. Read �A as ‘it is provable in Peano arithmetic
that A’. It may be shown that �(�A→ A)→ �A (Löb
formula) holds.

2. Temporal language. Read ♦A as ‘A holds in some future time’
and _A as ‘A held at some past time’.
(what is �A and �A?)

3. Propositional dynamic logic. 〈π〉A as ‘some terminating
execution of program π from the present state leads to a state
bearing information A’ . So [π]A is ‘every execution of
program π from the present state leads to a state bearing
information A’

Talking about relational structures via the modal language
I A frame consists of a nonempty set W of worlds and a binary

relation R ⊆W ×W .

I A model is a pair (F ,V) where F = (W ,R) is a frame and V
is a function mapping each propositional variable to a
subset V (p) ⊆W ‘valuation’.

I Truth (satisfaction) at a world w in a model M is defined via:

M,w |= p iff w ∈ V (p)

M,w |= A ∧ B iff M,w |= A and M,w |= B

M,w |= A ∨ B iff M,w |= A or M,w |= B

M,w |= A→ B iff M,w 6|= A or M,w |= B

M,w |= ¬A iff M,w 6|= A

M,w |= �A iff ∀v ∈W .(Rwv ⇒ M, v |= A)

M,w |= ♦A iff ∃v ∈W .(Rwv & M, v |= A)

I If M,w |= A then A is satisfied in M at w .

Validity I

I A frame is a formalisation of the phenomenon we wish to
capture (time as a linearly ordered set).

I A model ‘dresses up’ the frame with information (the program
executes at t = 4).

I Since logic is concerned with reasoning (invariant under local
information), we need to consider those things that hold
under all possible models.

I A formula is valid at a world w of a frame F = (W ,R) if it is
satisfied at w in every model (F ,V)

I A formula is valid if it is valid on all frames at every world

I Classical theorems (i.e. A ∈ Cp) are valid

Validity II

Definition
Formula A is valid at a world w in a frame F (F ,w |= A) if for all
valuations V it is the case that (F ,V),w |= A.

Formula A is valid on the frame F if it is valid at every world in F .

Formula A is valid on a class F of frames if A is valid on every
frame in F .

I Given a class F of frames, the set ΛF of formulae valid on F
is called the logic of F .

I The definition of validity utilises second-order quantification:
‘over all valuations V ’ (over all subsets of W).

The logics of various frame classes

I The logic of all frames

I The logic of transitive frames i.e.

{A |F |= A for every frame F s.t. F |= ∀xyz .(Rxy ∧ Ryz → Rxz)}

I The logic of reflexive frames

{A |F |= A for every frame F s.t. F |= ∀x .Rxx}

I The logic of finite (irreflexive) transitive trees (cannot be
described by a first-order formula!)

Syntactic definition of modal logics

I The semantic definition we have seen is in terms of the
structures the modal language intends to talk about i.e.
relational structures.

I The valid formulae then represent the properties that are
invariant under local information

I When we are concerned solely about such valid formulae, it
makes sense to abstract away the details of the relational
structure.

I Recall we have seen this before! Instead of talking about the
theorems of classical logic as those that are valued > under all
truth table valuations, we generated the set of theorems by
consideration of the provability relation

I In other words, we want nice syntactic mechanisms for
generating ΛF for a given class F of frames

A Hilbert calculus hK for the normal modal logic K

I Define the Hilbert calculus hK to be the extension of the
Hilbert calculus hCp for classical propositional logic with the
following axioms and rule:

�(A→ B)→ (�A→ �B) �A↔ ¬♦¬B

A
necessitation

�A

I Axiom top left is called the normality axiom.

I Axiomatic extensions of hK are called normal modal logics.

I Non-normal modal logics are also interesting, they will be
discussed in Lecture 4

I Syntactically speaking, the normal axiom permits modus
ponens under �; necessitation allows us to add boxes.

Soundness and completeness of hK wrt semantics

I The claim is that K is the logic of all frames i.e. K = ΛF
where F is the class of all frames.

I What is derivable in hK is valid on all frames (soundness)

I A formula valid on all frames is derivable (completeness)

I Soundness of the axioms. Let M be an arbitrary model and w
some world in M. Show that each axiom holds on M at w .

I Next show soundness of the rules. Supposing that the
premises are valid show that the conclusion is also valid

I Completeness entails showing that if A is valid on all frames,
then A is a theorem of the Hilbert calculus. We omit the
argument here since we can obtain the result using the
sequent calculus introduced later.

Some axiomatic extensions of hK

I Consider the following axioms

4 : �p → ��p (or perhaps more clearly ♦♦p → ♦p)

T : �p → p (or perhaps more clearly p → ♦p)

L : �(�p → p)→ �p (Löb axiom)

I We claim that the addition of these axioms to hK yield the
following logics:

K4 the logic of transitive frames

KT the logic of reflexive frames

KL the logic of finite (irreflexive) transitive trees

I For historical reasons, axiom T is reflexivity (and not
transitivity!)

I Check soundness. Completeness is non-trivial.

Obtaining a sequent calculus for K

I Let’s try to derive the normality axiom
�(A→ B)→ (�A→ �B) in sCp:

A ` A B ` B →l
A→ B,A ` B

. . .
�(A→ B),�A ` �B →r
�(A→ B) ` (�A→ �B) →r
` �(A→ B)→ (�A→ �B)

I How to fill in the . . .?

I We might ‘guess’ the following

X ` A �K�X ` �A
I Here �X is notation

X = {A1, . . . ,An} �X = {�A1, . . . ,�An}

A sequent calculus sK for the modal logic K

I Add the �K rule to the sequent calculus for classical logic.

X ` A �K�X ` �A
I We claim that sK is sound and complete for K

I Soundness. In the case of sCp we argued soundness from
premise to conclusion. For the �K rule, it is easier to argue
contrapositively. Suppose that ∧�X → �A is not valid. We
need to show that ∧X → A is not valid.

I Completeness: Show that sK derives all the axioms of hK and
simulates all the rules.

I The �K rule simulates necessitation. Add the cut-rule to
simulate MP

I Since we ultimately want a calculus with the subformula
property, we need to show (surprise. . .) cut-elimination.

Cut-elimination for sK

I Recall the Gentzen-style cut-elimination (primary induction on
size of cutformula, secondary induction on cutheight)

1. Base case. Consider when the cutheight is minimal.
2. Inductive case. Either the cutformula is principal in both

premises or it is not principal in at least one premise.

I Let us consider the case of principal cuts (i.e. cutformula is
principal in both premises)

X ` A �K�X ` �A
A,Y ` C

�K�A,�Y ` �C
cut

�X ,�Y ` �C
Lift cut, then apply induction hypothesis, finally reapply �K

X ` A A,Y ` C
cut

X ,Y ` C

induction hypothesis yields cutfree:

X ,Y ` C
�K�X ,�Y ` �C

A sequent calculus sK4 for K4

I Recall: K4 is the logic of transitive frames (T is for reflexive,
remember?)

I Here is the rule encountered in the literature.

�X ,X ` A
�4

�X ` �A
I Soundness and completeness of sK4 wrt K4

I Check soundness of �4 and derive the 4 axiom.

I Simulating modus ponens leads us to introduce the cutrule. . .

I . . . subformula property considerations motivate us to
eliminate the cutrule. . .

I . . . blah blah. . .

The modal provability logic GL

I GL = K +�(�p ⊃ p) ⊃ �p (Löb’s axiom)

I characterised by the class FGL of Kripke frames satisfying
transitivity and no ∞-R-chains (finite transitive trees)

I I.e. for every formula A: A ∈ GL iff FGL |= A

I proof omitted

I Interpreting �A as “Ā is provable in Peano arithmetic”
(frequently written Bew(Ā)) GL is sound and complete wrt
formal provability interpretation in Peano arithmetic (Solovay,
1976).

I Hence the name provability logic

I The logic is decidable (a benefit of studying a fragment of
Peano arithmetic)

A sequent calculus for GL

I K:

X ⇒ A �K�X ⇒ �A

I K4 (the 4 axiom is �A ⊃ ��A and corresponds to
transitivity)

X ,�X ⇒ A
�4

�X ⇒ �A

I GL (axiomatised by addition of �(�A ⊃ A) ⊃ �A to K)

�X ,X ,�A⇒ A
GLR�X ⇒ �A

(Sambin and Valentini, 1982).
�A is called the diagonal formula. Motivated from �4 rule.

The sequent calculus sGL for GL
Initial sequents: A⇒ A for each formula A

Logical rules:

X ⇒ Y ,A
L¬

X ,¬A⇒ Y

A,X ⇒ Y
R¬

X ⇒ Y ,¬A

Ai ,X ⇒ Y
L∧

A1 ∧ A2,X ⇒ Y

X ⇒ Y ,A1 X ⇒ Y ,A2
R∧

X ⇒ Y ,A1 ∧ A2

A1,X ⇒ Y A2,X ⇒ Y
L∨

A1 ∨ A2,X ⇒ Y

X ⇒ Y ,Ai
R∨

X ⇒ Y ,A1 ∨ A2

X ⇒ Y ,A B,U ⇒W
→L

A ⊃ B,X ,U ⇒ Y ,W

A,X ⇒ Y ,B
→R

X ⇒ Y ,A ⊃ B

Modal rule:
�X ,X ,�A⇒ A

GLR
�X ⇒ �A

Structural rules:
X ⇒ Y

LW
A,X ⇒ Y

X ⇒ Y
RW

X ⇒ Y ,A

Soundness of sGL wrt KL

I As before soundness can be verified by taking the
contrapositive of each rule and falsifying on a finite transitive
irreflexive trees.

I Let us consider the rule GLR

I Omitting the context for simplicity, suppose that the
conclusion of GLR is falsifiable so there is a model M s.t.
M,w0 6|= �A. Then there exists w1 s.t. M,w1 |= ¬A.
If M,w1 |= �A then the premise of GLR is falsified.

I If M,w1 6|= �A then there exists w2 s.t. M,w2 |= ¬A.
If M,w2 |= �A then the premise of GLR is falsified.

I . . . and so on. . .

I We cannot continue this indefinitely because the trees are
finite!

I To see why transitivity is required, consider the contexts too.

Completeness of sGL wrt KL

I Completeness: simulate modus ponens with cut; eliminate cut
to obtain subformula property

I An alternative semantic proof of completeness: since
FGL |= A implies sGL derives ` A, taking the contrapositive it
suffices to prove:

if there is no derivation of ` A in sGL then FGL 6|= A

I Idea. Suppose that there is no derivation of ` A. Use this to
build a finite tree that falsifies A at the root.

I Nonetheless, the proof of cut-elimination is interesting so let
us sketch the proof.

Syntactic cut-elimination for GL - a brief history

I Leivant (1981) suggests a syntactic proof, counter-example by
Valentini (1982)

I new proof of syntactic CE for GLSset proposed by Valentini
(1983) — induction on degree · ω2 + width · ω + cutheight

I Subsequently Borga (1983) and Sasaki (2001) present new
proofs

I Moen (2001) claimed that Valentini’s proof has a gap when
contractions are made explicit

I Many other proofs were subsequently presented as an
alternative (e.g. Mints, Negri)

I Goré and R. (2008) show Moen’s claim is incorrect,
Valentini’s argument is sound, and introduce new
transformations to deal with contraction

I Dawson and Goré (2010) verify this argument in Isabelle/HOL

Sambin Normal Form

The interesting case is the Sambin Normal Form (SNF) where
both Π and Ω are cutfree

Π

�X ,X ,�B
k⇒ B

GLR
�X

k+1⇒ �B

Ω

�B,B,�U,U,�D
l⇒ D

GLR
�B,�U

l+1⇒ �D
cut(�B)

�X ,�U ⇒ �D

cut-height is (k + 1) + (l + 1). degree of cut-formula is d(�B).

The principal case — a derivation in SNF

A derivation is in Sambin Normal Form when:

I the last rule is the cut rule with cutfree premises

I the cut-formula is principal by GLR in both premises

A naive transformation to eliminate cut:
Π

�X ,X ,�B
k⇒ B

GLR
�X

k+1⇒ �B

Π

X ,�X ,�B
k⇒ B

Ω

�B,B,�U,U,�D
l⇒ D

cut1
X ,�X ,�B,�U,U,�D

[k,l]+1⇒ D
cut2

X ,�X ,�X ,�U,U,�D ⇒ D
LC∗(�X)

X ,�X ,�U,U,�D ⇒ D
GL

�X ,�U ⇒ �D

Cut-height is k + l (cut1) and (k + 1) + ([k , l] + 1) (cut2)
Problem with cut2 !

A successful transformation for SNF

Transform derivation in SNF to:

Σ
�X ,X ⇒ B

Π

�X ,X ,�B
k⇒ B

GLR
�X

k+1⇒ �B
Ω

�B,B,�U,U,�D
l⇒ D

cut1
�X ,B,�U,U,�D ⇒ D

cut2
�X ,�X ,X ,�U,U,�D ⇒ D

LC∗(�X)
�X ,X ,�U,U,�D ⇒ D

GLR
�X ,�U ⇒ �D

where Σ is some cut-free derivation.

I cut1 has cut-height (k + 1) + l

I cut2 has smaller degree of cut-formula

New task: obtain a cut-free derivation of �X ,X ⇒ B from a
derivation of �X ,X ,�B ⇒ B

A sketch of the proof of �X ,X ` B from �X ,X ,�B ` B

The width is the number n of occurrences of the following schema,
where no GLR rule occurrences appear between GLR1 and GLR2

�G ,G ,�B,B,�C ⇒ C
GLR2�G ,�B ⇒ �C

...
�X ,X ,�B ⇒ B

GLR1�X ` �B

If n = 0 then the �B in �X ,X ,�B ⇒ B has either been
introduced by

1. LW (�B). In this case delete the LW (�B) rule. Or,

2. the initial sequent �B ⇒ �B. Replace with �X ⇒ �B.

In this way we obtain a derivation of �X ,X ` B.

The width is the number n of occurrences of the following schema,
where no GLR rule occurrences appear between GLR1 and GLR2

�G ,G ,�B,B,�C ⇒ C
GLR2�G ,�B ⇒ �C

...
�X ,X ,�B ⇒ B

GLR1�X ` �B

If n = k + 1, each occurrence of the above schema is deleted as
follows. Replace below left by below right.

�G ,G ,�B,B,�C ⇒ C
GLR2�G ,�B ⇒ �C

�C ⇒ �C
lw

�G ,�B,�C ⇒ �C

Continuing downwards we obtain a derivation of �X ,�C ` �B
with smaller width.

Now proceed:

�X ,�C ` �B
�X ,X ,�B ` B �G ,G ,�B,B,�C ⇒ C

cut
�X ,X ,�G ,G ,�B,�C ` C

cut
�X ,�X ,X ,�G ,G ,�C ,�C ` C

The second cut has lesser width than before! So we obtain a
cutfree derivation of �X ,X ,�G ,G ,�C ` C .

Now replace below left in original derivation with below right.

�G ,G ,�B,B,�C ⇒ C
GLR2�G ,�B ⇒ �C

�X ,X ,�G ,G ,�C ` C
GLR

�X ,�G ` �C
lw

�X ,�G ,�B ` �C

We thus obtain a derivation of the following of lesser width.

�X ,X ,�B ⇒ B
GLR1�X ` �B

GL, Grz and Go

L : �(�p ⊃ p) ⊃ �p (Löb’s axiom)

Grz : �(�(p ⊃ �p) ⊃ p) ⊃ p

Go : �(�(p ⊃ �p) ⊃ p) ⊃ �p

GL=K + L Go=K + Go Grz=K + Grz

A sequent calculus for Grz is obtained by adding the rules below
left and center. For Go add rule below right.

B,X ⇒ Y

�B,X ⇒ Y

�X ,�(B ⊃ �B)⇒ B

�X ⇒ �B
�X ,X ,�(B ⊃ �B)⇒ B

GoR
�X ⇒ �B

I sGrz has cut-elimination (Borga and Gentilini, 1986).
Reflexivity rule above left simplifies argument.

I Cut-elimination for sGo (Goré and R., 2013).
I The proof requires a deeper study of the derivation (not just

the GoR2 rule instance). Extends Valentini’s argument for
sGL and uses a quaternary induction measure

Extending the sequent calculus to present more logics

I The sequent calculus is simple to work with

I However, it is hard to extend the proofs of cut-elimination for
axiomatic extensions. . .

I The addition of a new rule typically breaks cut-elimination

I This motivates the extension of the sequent calculus to yield
modular extensions (see next page!)

Labelled Sequents

A very general method for constructing sequent calculi from frame
conditions was developed e.g. in (Viganò, 2000), (Negri, 2005 and
2011)

Main idea: Explicitly include the Kripke semantics in the calculus

Definition
Let u, v ,w , . . . be a countably infinite set of labels.

I A labelled modal formula has the form w : A for a label w and
a modal formula A.

I A relational term has the form wRv for labels w , v .

I A labelled sequent is a sequent consisting of labelled modal
formulae and relational terms.

The calculus G3K

The modal rules of the labelled sequent calculus G3K for modal
logic K are

Γ,wRv ` ∆, v : A

Γ ` ∆,w : �A R�

(v does not occur in Γ,∆)

Γ, v : A,w : �A,wRv ` ∆

Γ,w : �A,wRv ` ∆
L�

Intuition behind the rules:

I R� is equivalent to the condition

∀v . (wRv =⇒ v : A) =⇒ w : �A

I L� is equivalent to the condition

w : �A and wRv =⇒ v : A

The calculus G3K - propositional part

The propositional rules of G3K are essentially the standard ones
extended with labels:

Γ,w : ⊥ ` ∆
L⊥

Γ,w : p ` w : p,∆ Γ,wRv ` wRv ,∆

Γ,w : A,w : B ` ∆

Γ,w : A ∧ B ` ∆
L∧

Γ ` w : A,∆ Γ ` w : B,∆

Γ ` w : A ∧ B,∆
R∧

Γ,w : A ` ∆ Γ,w : B ` ∆

Γ,w : A ∨ B ` ∆
L∨

Γ ` w : A,w : B∆

Γ ` w : A ∨ B∆
R∨

Γ,w : B → ∆ Γ ` w : A,∆

Γ,w : A→ B ` ∆
L→

Γ,w : A→ w : B,∆

Γ ` w : A→ B,∆
R →

The calculus G3K

Example

The axiom �(p → q)→ (�p → �q) is derived as follows:

Γ, v : q, v : p ` v : q
init

Γ, v : p ` v : p, v : q
init

w : �(p → q),w : �p,wRv , v : p → q, v : p ` v : q
L→

w : �(p → q),w : �p,wRv ` v : q
L�

w : �(p → q),w : �p ` w : �q
R�

w : �(p → q)→ (�p → �q)
R →

The calculus G3K - useful properties

Proposition

The following properties can all be established by standard
methods (mostly induction on the depth of the derivation):

I The sequent Γ,w : A ` w : A,∆ is derivable for every A

I Substitution of labels
Γ ` ∆

Γ(v/w) ` ∆(v/w)
is depth-preserving

admissible.

I Weakening is depth-preserving admissible.

I The labelled necessitation rule ` w : A
` w : �A

is derivable.

I The rules of G3K are depth-preserving invertible.

I Contraction is depth-preserving admissible.

Soundness and completeness

The cut rule in the labelled sequent framework, written cut`,
comes in two shapes, depending on the shape of the cut formula:

Γ ` ∆,w : A w : A,Σ ` Π

Γ,Σ ` ∆,Π

Γ ` ∆,wRv wRv ,Σ ` Π

Γ,Σ ` ∆,Π

Theorem
The calculus G3Kcut` is sound and complete for modal logic K,
i.e., for every formula A:

A is a theorem of K iff ` w : A is derivable in G3Kcut` .

Sketch of proof.

Since the labelled necessitation rule is admissible, deriving the
axioms of K and simulating modus ponens using cut` is enough.

Cut Elimination for G3K

The cut elimination proof is essentially the standard one, using a
double induction on the size of the cut formula and the height of
the cut (the sum of the depths of the derivations of its premisses).

The interesting case:

Γ,wRx ` ∆, x : A

Γ ` ∆,w : �A R�
w : �A,wRv , v : A,Σ ` Π

w : �A,wRv ,Σ ` Π
L�

Γ,wRv ,Σ ` ∆,Π
cut`

Γ,wRx ` ∆, x : A

Γ,wRv ` ∆, v : A
sb

Γ,wRx ` ∆, x : A

Γ ` ∆,w : �A R�
w : �A,wRv , v : A,Σ ` Π

Γ, v : A,wRv ,Σ ` ∆,Π
cut`

Γ,wRv , Γ,wRv ,Σ ` ∆,∆,Π
cut`

Γ,wRv ,Σ ` ∆,Π
Con

Cut Elimination for G3K

The cut elimination proof is essentially the standard one, using a
double induction on the size of the cut formula and the height of
the cut (the sum of the depths of the derivations of its premisses).

Theorem
The labelled cut rule is admissible in G3K. Hence the calculus G3K
is cut-free complete for modal logic K, i.e.:

If A is a theorem of K then ` w : A is derivable in G3K .

Converting frame conditions into rules

Definition
A geometric axiom is a formula of the form

∀~x(P → ∃~y1M1 ∨ · · · ∨ ∃~ynMn)

where

I the Mj and P are conjunctions of relational terms

I the variables ~yj are not free in P.

Examples

I ∀x xRx for reflexivity

I ∀x , y , z (xRy ∧ yRz → xRz) for transitivity

I ∀x , y (xRy → yRx) for symmetry

I ∀x , y , z (xRy ∧ xRz → ∃w (yRw ∧ zRw)) for directedness

Converting frame conditions into rules

Definition
A geometric axiom is a formula of the form

∀~x(P → ∃~y1M1 ∨ · · · ∨ ∃~ynMn)

where

I the Mj and P are conjunctions of relational terms

I the variables ~yj are not free in P.

Theorem
The geometric axiom above is equivalent to the geometric rule

Γ, P̄, M̄1(z1/y1) ` ∆ . . . Γ, P̄, M̄n(zn/yn) ` ∆

Γ, P̄ ` ∆

with M̄i and P̄ the multisets of relational atoms in Mi resp. P, and
z1, . . . , zn not in the conclusion.

Converting frame conditions into rules: Examples

I Reflexivity ∀x xRx is converted to

Γ, yRy ` ∆

Γ ` ∆

I Transitivity ∀x , y , z (xRy ∧ yRz → xRz) is converted to

Γ, xRy , yRz , xRz ` ∆

Γ, xRy , yRz ` ∆

I Symmetry ∀x , y (xRy → yRx) is converted to

Γ, xRy , yRz ` ∆

Γ, xRy ` ∆

I Directedness ∀x , y , z (xRy ∧ xRz → ∃w (yRw ∧ zRw)) gives

Γ, xRy , xRz , yRv , zRv ` ∆

Γ, xRy , xRz ` ∆
v not in conclusion

Converting frame conditions into rules: Contraction

To obtain the nice structural properties for extensions of G3K with
geometric rules we need to close the rule set under contraction:

Definition
A geometric rule set satisfies the closure condition if for every rule

Γ, P̄,Q,R, M̄1(z1/y1) ` ∆ . . . Γ, P̄,Q,R, M̄n(zn/yn) ` ∆

Γ, P̄,Q,R ` ∆

and injective renaming σ with Qσ = Rσ = Q it also includes

Γ, P̄σ,Q, M̄1σ(z1/y1σ) ` ∆ . . . Γ, P̄σ,Q, M̄nσ(zn/ynσ) ` ∆

Γ, P̄σ,Q ` ∆

Lemma
Contraction is admissible in extensions of G3K with geometric rules
satisfying the closure condition.

Converting frame conditions into rules: Contraction

To obtain the nice structural properties for extensions of G3K with
geometric rules we need to close the rule set under contraction:

Example

For directedness

Γ, xRy , xRz , yRv , zRv ` ∆

Γ, xRy , xRz ` ∆
v not in conclusion

we need to add the rule which identifies y and z and contracts the
two occurrences of xRy :

Γ, xRy , yRv , yRv ` ∆

Γ, xRy ` ∆
v not in conclusion

Remark: Closing a rule set under contraction only demands the
addition of finitely many rules and thus is unproblematic!

Cut elimination for extended calculi

The so constructed geometric rules

Γ, P̄, M̄1(z1/y1) ` ∆ . . . Γ, P̄, M̄n(zn/yn) ` ∆

Γ, P̄ ` ∆

have nice properties: all their active parts

I occur on the left hand side only

I consist of relational terms only

I occur in the premisses if they occur in the conclusion.

Hence we can add them to G3K without harming cut elimination!

Cut elimination for extended calculi

Theorem
If G3K∗ is an extension of G3K by finitely many geometric rules
satisfying the closure condition, then cut` is admissible in G3K.

Proof.
As for G3K, possibly renaming variables. E.g. for directedness:

Γ ` ∆, v : A

Γ ` ∆,w : �A R�
w : �A,Σ, xRy , xRz , yRv , zRv ` Π

w : �A,Σ, xRy , xRz ` Π
dir

Γ,Σ, xRy , xRz ` ∆,Π
cut`

Γ ` ∆, v : A

Γ ` ∆,w : �A R�
w : �A,Σ, xRy , xRz , yRv , zRv ` Π

w : �A,Σ, xRy , xRz , yRu, zRu ` Π
sub

Γ,Σ, xRy , xRz , yRu, zRu ` ∆,Π
cut`

Γ,Σ, xRy , xRz ` ∆,Π
dir

where u does not occur in Γ,Σ, xRy , xRz ` ∆,Π.

Where’s the catch?

So, labelled sequent calculi seem ideal to treat modal logics.

However, there are some issues:

I Decidability results need to be shown for every single logic.

I since the method is based heavily on Kripke semantics, the
modification for non-normal modal logics is not immediately
clear (see however (Gilbert and Maffezioli, 2015) and recent
work by Negri).

I The calculi are not fully internal: there seems not to be a
formula translation of a labelled sequent.

Recovering labelled sequents with a formula translation

I Following (Fitting 2012) and (Goré and R. 2012), let us see
how the labelled sequents might be restricted to those which
support a formula translation.

I First of all, let us treat formulae in negation normal form
(pushing all negations inwards onto the propositional
variables)

I This preserves equivalence because in every extension of K:

¬�A = ♦¬A ¬♦A = �¬A
¬(A ∧ B) = ¬A ∨ ¬B ¬(A ∨ B) = ¬A ∧ ¬B
¬(A→ B) = A ∧ ¬B

I In fact, while we are at it, let us eliminate A→ B in favour
of ¬A ∨ B

I Only a small apology for changing notation at this (late)
stage: notation is notation, choose what works best

I With these changes, G3K can be written as follows:

initR, x : p, x : p, Γ
R, x : A, x : B, Γ ∨R, x : A ∨ B, Γ

R, x : A, Γ R, x : B, Γ ∧R, x : A ∧ B, Γ

R,Rxy , y : A, Γ
�∗R, x : �A, Γ

R,Rxy , y : A, x : ♦A, Γ
♦R,Rxy , x : ♦A, Γ

*eigenvariable y does
not occur in conclusion

I Here R consists of relational terms Rxy (possibly empty)

I Interpreting each Rxy as an edge (x , y), we naturally obtain a
graph from R

I So the labelled sequent R, Γ is a labelled graph

Labelled tree sequents = nested sequents

Definition
A labelled tree sequent (or LTS) is a labelled sequent R, Γ
where R defines a tree

I A LTS calculus is a labelled sequent calculus where every
sequent is a LTS

I Since a labelled tree sequent is a labelled tree, we can define
its grammar:

Γ := A1, . . . ,An, [Γ], . . . , [Γ]

I With the added constraints: finite and non-empty

I This object is precisely a nested sequent; these have been
investigated independently since (Kashima, 1994) and
independently rediscovered by (Poggiolessi, 2009) and
(Brünnler, 2009).

Nested sequent calculus/LTS calculus for K

I Notation: Γ{∆} refers to an occurrence of the sequent ∆
inside Γ. Γ{ } is called a context

init
Γ{p, p}

Γ{A} Γ{B}
(∧)

Γ{A ∧ B}
Γ{A,B}

(∨)
Γ{A ∨ B}

Γ{[∆,A],♦A}
(♦)

Γ{[∆],♦A}
Γ{[A]}

(�)
Γ{�A}

I NS calculi (equivalently LTS calculi) have been presented for
many modal logics, intuitionistic modal logics and
constructive modal logics.

I Note: in general we cannot use the structural rule extensions
of G3K (to present axiomatic extensions of K) because they
are not LTS rules. Non-structural rules are typically required.

I In these systems, a nested sequent Γ below left has the
formula interpretation I(Γ) below right

A1, . . . ,An, [Γ1], . . . , [Γm] A1 ∨ . . . ∨ An ∨�I(Γ1) ∨ . . . ∨�I(Γm)

I The claim that NS calculi are more ‘internal’/preferred over
LS calculi because they support a formula interpretation is
misleading

I More accurate: NS calculi and some LS calculi (in particular
LTS calculi) support a formula interpretation. Some LS calculi
seem not to.

I (Fitting 2015) extended the NS formalism to indexed nested
sequents in order to give cutfree proof systems for logics like
K + ♦�p → �♦p. The notational variant labelled formalism
is LTS with equality (R. 2016). It is not clear if it is possible
to interpret the sequents as formulae.

One final extension: the display calculus for tense logic Kt
I The nested sequent had a single type of nesting. Following

(Goré et al. 2011) define a display sequent with two types of
nesting ◦[] and •[]:

Γ := A1, . . . ,An, ◦[Γ], . . . , ◦[Γ], •[Γ], . . . , •[Γ]

init
Γ, p, p

Γ,A,B
∨

Γ,A ∨ B

Γ,A Γ,B
∧

Γ,A ∧ B

Γ,∆,∆
c

Γ,∆

Γ w
Γ,∆

Γ, ◦[∆]
rf•[Γ],∆

Γ, •[∆]
rp

◦[Γ],∆

Γ, •[A]
�

Γ,�A

Γ, ◦[A]
�

Γ,�A

Γ, •[∆,A],_A
_

Γ, •[∆],_A

Γ, ◦[∆,A],♦A
♦

Γ, ◦[∆],♦A

I (Kracht 1996) uses the structural rule below for a display
calculus for Kt + ♦h�ip → �j♦kp = Kt + _h♦jp → ♦i_kp.

Γ, ◦i{•k{∆}}
d(h, i , j , k)

Γ, •h{◦j{∆}}
I The computation of these rules from axioms has a nice

algorithm! Limitative results by (Kracht 1996) for tense logics
(Display Theorem I), modal logic case open.

