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A (very) brief history of proof theory

The so-called foundational crisis of mathematics (early 1900s) arose
from various challenges to the implicit assumption that consistency of the
‘foundations of mathematics’ could be shown within mathematics
For example, the discovery of Russell’s paradox (1902) showed that
naive set theory was an inadequate foundation.
The need for a precise development of the underlying logical systems
became apparent.
The intention is to present a narrative placing the display calculus in a
broader context. Introduction not intended to be at all comprehensive!
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Hilbert’s Program (around 1922)

Proofs are the essence of mathematics — to establish a theorem..
present a proof!
Historically, proofs were not the objects of mathematical investigations
(unlike numbers, triangles. . . )
In Hilbert’s Proof theory : proofs are mathematical objects.

Hilbert’s Program:
1 Formalise the whole of mathematical reasoning in a formal theory T
2 Prove the consistency of T by ‘finitistic’ means

T is consistent if there is no formula A such that A ∧ ¬A is derivable in T .
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Hilbert calculus

Mathematical investigation of proofsf formally definition of proof
Hilbert calculus fulfils this role.

A Hilbert calculus for propositional classical logic. Axiom schemata:

Ax 1: A→ (B → A)
Ax 2: (A→ (B → C))→ ((A→ B)→ (A→ C))

Ax 3: (¬A→ ¬B)→ ((¬A→ B)→ A)

and the rule of modus ponens:

A A→ B
B

Read A↔ B as (A→ B) ∧ (B → A). More axioms:

Ax 4: A ∨ B ↔ (¬A→ B) Ax 5: A ∧ B ↔ ¬(A→ ¬B)
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Derivation of A→ A

Definition
A formal proof (derivation) of B is the finite sequence C1,C2, . . . ,Cn ≡ B of
formulae where each element Cj is an axiom instance or follows from two
earlier elements by modus ponens.

1 ((A→ ((A→ A)→ A))→ ((A→ (A→ A))→ (A→ A))) Ax 2
2 (A→ ((A→ A)→ A)) Ax 1
3 ((A→ (A→ A))→ (A→ A)) MP: 1 and 2
4 (A→ (A→ A)) Ax 1
5 A→ A MP: 3 and 4

Not easy to find! Proof has no clear structure (wrt A→ A)
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Gödel’s second incompleteness theorem (1931)

Theorem
Let T be a consistent theory containing arithmetic. Then there is no proof of
consistency of T in T (ie. T 6` Con(T )).

Destroys Hilbert’s program (assuming finitistic reasoning can be formalised in
arithmetic, as was believed)

If it is the case that
(i) consistency of mathematics can be shown by finitistic reasoning, and
(ii) arithmetic can formalise finitistic reasoning

Then arithmetic can show the consistency of mathematics (and hence
arithmetic). Contradiction. So if we believe that (ii) holds, then (i) cannot hold.

Revantha Ramanayake (TU Wien) An introduction to the display calculus 6 / 66



Natural deduction and the sequent calculus

Gentzen: proving consistency of arithmetic in weak extensions of finitistic
reasoning.
Hilbert calculus not convenient for studying the proofs (lack of structure).
Gentzen introduces Natural deduction which formalises the way
mathematicians reason.
Gentzen introduced a proof-formalism with even more structure: the
sequent calculus.
Sequent calculus built from sequents X ` Y where X ,Y are
lists/sets/multisets of formulae
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Sequent calculus

sequent:

antecedent︷             ︸︸             ︷
A1,A2, . . . ,Am `︸︷︷︸

turnstile

succedent︷            ︸︸            ︷
B1,B2, . . . ,Bn

sequent calculus rule:
(S0,S1, . . . ,Sk
are sequents)

k ≥ 0 premises︷                  ︸︸                  ︷
S1 . . . Sk

S︸︷︷︸
conclusion

Typically a rule for introducing each connective in the antecedent and
succedent.
A 0-premise rule is called an initial sequent

Definition (derivation)

A derivation in the sequent calculus is an initial sequent or a rule applied to
derivations of the premise(s).
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The sequent calculus SCp for classical logic Cp

initp,X ` Y ,p ⊥l
⊥,X ` Y

X ` Y ,A
¬l

¬A,X ` Y
A,X ` Y

¬r
X ` Y ,¬A

A,B,X ` Y
∧lA ∧ B,X ` Y

X ` Y ,A X ` Y ,B
∧r

X ` Y ,A ∧ B
A,X ` Y B,X ` Y

∨lA ∨ B,X ` Y
X ` Y ,A,B

∨r
X ` Y ,A ∨ B

X ` Y ,A B,X ` Y
→lA→ B,X ` Y

A,X ` Y ,B
→r

X ` Y ,A→ B

Here X ,Y are sets of formulae (possibly empty)
Aside: differs from the calculus Gentzen used (not important)
Gödel’s incompleteness theorem does not apply since this logic does not
contain arithmetic
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Soundness and completeness of SCp for Cp

Need to prove that SCp is actually a sequent calculus for Cp.

Theorem
For every formula A we have: `A is derivable in SCp ⇔ A ∈ Cp.

(⇒) direction is soundness.

(⇐) direction is completeness.

Revantha Ramanayake (TU Wien) An introduction to the display calculus 10 / 66



Proof of completeness

Need to show: A ∈ Cp ⇒ `A derivable in SCp.

First show that A,X ` Y ,A is derivable (exercise).

Show that every axiom of Cp is derivable (easy, below) and modus ponens
can be simulated in SCp (not easy)

A,A→ (B → C) ` C,A
B,A ` C,A

B,A ` C,B r ,B,A ` C
B → C,B,A ` C

B,A,A→ (B → C) ` C
A,A→ B, (A→ (B → C)) ` C

A→ B, (A→ (B → C)) ` (A→ C)

(A→ (B → C)) ` (A→ B)→ (A→ C)

` (A→ (B → C))→ ((A→ B)→ (A→ C))
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How to simulate modus ponens

Gentzen’s solution: to simulate modus ponens (below left) first add a new rule
(below right) to SCp:

A A→ B
B

X ` Y ,A A,X ` Y
cutX ` Y

The following instance of the cut-rule illustrates the simulation of modus
ponens.

` A
` A→ B

A ` A B ` B
A→ B,A ` B

A ` B cut
` B

So: A ∈ Cp ⇒ `A derivable in SCp + cut !
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Proof of soundness

Need to show: `A derivable in SCp + cut ⇒ A ∈ SCp.

We need to interpret SCp + cut derivations in Cp.

For sequent S A1,A2, . . . ,Am ` B1,B2, . . . ,Bn

define translation τ(S) A1 ∧ A2 ∧ . . . ∧ Am → B1 ∨ B2 ∨ . . . ∨ Bn

Comma on the left is conjunction, comma on the right is disjunction.

Translations of the intial sequents are theorems of Cp

p ∧ X → Y ∨ p ⊥ ∧ X → Y

Show for each remaining rule ρ: if the translation of every premise is a
theorem of Cp then so is the translation of the conclusion.

For
A,X ` B

X ` A→ B
need to show: A ∧ X → B

X → (A→ B)
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The cut-rule is undesirable in SCp + cut

We have shown

Theorem
For every formula A we have: `A is derivable in SCp + cut ⇔ A ∈ Cp.

The subformula property states that every formua in a premise appears
as a subformula of the conclusion.
If all the rules of the calculus satisfy this property, the calculus is analytic
Analyticity is crucial to using the calculus (for consistency, decidability. . . )
SCp + cut is not analytic because:

X ` Y ,A A,X ` Y
cutX ` Y

We want to show: `A is derivable in SCp ⇔ A ∈ Cp
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Gentzen’s Hauptsatz (main theorem): cut-elimination

Theorem
Suppose that δ is a derivation of X ` Y in SCp + cut. Then there is a
transformation to eliminate instances of the cut-rule from δ to obtain a
derivation δ′ of X ` Y in SCp.

Since `A is derivable in SCp + cut ⇔ A ∈ Cp:

Theorem
For every formula A we have: ` A is derivable in SCp if and only if A ∈ Cp.
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Applications: Consistency of classical logic

Consistency of classical logic is the statement that A ∧ ¬A < Cp.

Theorem
Classical logic is consistent.

Proof by contradiction. Suppose that A ∧ ¬A ∈ Cp. Then A ∧ ¬A is derivable
in SCp (completeness). Let us try to derive it (read upwards from ` A ∧ ¬A):

` A
A `
` ¬A

` A ∧ ¬A

So ` A and A ` are derivable. Thus ` must be derivable in SCp + cut (use cut)
and hence in SCp (by cut-elimination). This is impossible (why?) QED.

Theorem
Decidability of Cp.

Given a formula A, do backward proof search in SCp on ` A. Since
termination is guaranteed, we can decide if A is a theorem or not. QED.
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Looking beyond the sequent calculus

Aside from proofs of consistency, proof-theoretic methods enable us to
extract information from the proofs and about the logic (a fact already
recognised by Gentzen).
Many more logics of interest than just first-order classical and
intuitionistic logic
How to give a proof-theory to these logics? Want analytic calculi with
modularity
In a modular calculus we can add rules corresponding to (suitable)
axiomatic extensions and preserve analyticity.
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Some nonclassical logics

Modal logics extend classical language with modalities � and ^. The
modalities were traditionally used to qualify statements like “it is possible
that it will rain today". Tense logics include the temporal modalities �
and �. Closed under modus ponens and necessitation rule (A/�A).

An intermediate logic L is a set of formulae closed under modus ponens
such that intuitionistic logic Ip ⊆ L ⊆ Cp.

Starting with the sequent calculus SCp, if we consider a sequent X ` Y to
be built from lists X ,Y (rather than sets or multisets) then A,A,X ` Y and
A,X ` Y are no longer identical (no contraction). Also A,B,X ` Y and
B,A,X ` Y are not identical (no exchange). The logics obtained by
removing these properties are called substructural logics.

Sequent calculus inadequate for treating these logics (eg. no analytic sequent
calculus for S5 despite analytic sequent calculus for S4)
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Display Calculus

Introduced as Display Logic (Belnap, 1982).
Extends sequent calculus by introducing new structural connectives that
interpret the logical connectives (enrich language)
A structure is built from structural connectives and formulae.
A display sequent: X ` Y for structures X and Y
Display property. A substructure in X [U] ` Y equi-derivable (displayable)
as U `W or W ` U for some W .
Key result. Belnap’s general cut-elimination theorem applies when the
rules of the calculus satisfy C1–C8 (display conditions)
Display calculi have been presented for substructural logics, modal and
poly-modal logics, tense logic, bunched logics, bi-intuitionistic logic. . .
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Display calculi generalise the sequent calculus

Here is the sequent calculus SCp once more:

initp,X ` Y ,p ⊥l
⊥,X ` Y

X ` Y ,A
¬l

¬A,X ` Y
A,X ` Y

¬r
X ` Y ,¬A

A,B,X ` Y
∧lA ∧ B,X ` Y

X ` Y ,A X ` Y ,B
∧r

X ` Y ,A ∧ B
A,X ` Y B,X ` Y

∨lA ∨ B,X ` Y
X ` Y ,A,B

∨r
X ` Y ,A ∨ B

X ` Y ,A B,X ` Y
→lA→ B,X ` Y

A,X ` Y ,B
→r

X ` Y ,A→ B

Revantha Ramanayake (TU Wien) An introduction to the display calculus 20 / 66



Display calculi generalise the sequent calculus

Let’s add a new structural connective ∗ for negation.

initp,X ` Y ,p ⊥l
⊥,X ` Y

∗A,X ` Y
¬l

¬A,X ` Y
X ` Y , ∗A

¬r
X ` Y ,¬A

A,B,X ` Y
∧lA ∧ B,X ` Y

X ` Y ,A X ` Y ,B
∧r

X ` Y ,A ∧ B
A,X ` Y B,X ` Y

∨lA ∨ B,X ` Y
X ` Y ,A,B

∨r
X ` Y ,A ∨ B

X ` Y ,A B,X ` Y
→lA→ B,X ` Y

A,X ` Y ,B
→r

X ` Y ,A→ B
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Add the display rules

The addition of the following rules permit the display property:

Definition (display property)

The calculus has the display property if for any sequent X ` Y containing a
substructure U, there is a sequent U `W or W ` U for some W such that

X ` Y
U `W

or
X ` Y
W ` U

We say that U is displayed in the lower sequent.

X ,Y ` Z

X ` Z , ∗Y

X ,Y ` Z

Y ` ∗X ,Z

X ` Y ,Z

X , ∗Z ` Y
X ` Y ,Z

∗Y ,X ` Z
∗X ` Y
∗Y ` X

X ` ∗Y
Y ` ∗X

∗ ∗ X ` Y
X ` Y

X ` ∗ ∗ Y
X ` Y

X ` •Y
•X ` Y
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Using the display rules

Examples:

∗(A, ∗B) ` ∗(C,D)

∗ ∗ (C,D) ` A, ∗B

∗A, ∗ ∗ (C,D) ` ∗B

B ` ∗(∗A, ∗ ∗ (C,D))

B is displayed

∗(A, ∗B) ` ∗(C,D)

C,D ` ∗ ∗ (A, ∗B)

D ` ∗C, ∗ ∗ (A, ∗B)

D is displayed

Exercise. Prove that the display property holds for this calculus.
Also see Kracht, 1996.
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Specify the properties of the structural connectives

We want weakening, contraction, exchange, associativity.

Here I is a structural constant for the empty list.

X ` Z
I,X ` Z

X ` Z
X ` I,Z

I ` Y
∗I ` Y

X ` I
X ` ∗I

X ` Z
Y ,X ` Z

X ` Z
X ,Y ` Z

X ,Y ` Z
Y ,X ` Z

Z ` X ,Y
Z ` Y ,X

X ,X ` Z
X ` Z

Z ` X ,X
Z ` X

X1, (X2,X3) ` Z

(X1,X2),X3 ` Z

Z ` X1, (X2,X3)

Z ` (X1,X2),X3
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Display calculi generalise the sequent calculus

The presence of the display rules permit the following rewriting of the rules:

initp ` p ⊥l
⊥ ` I

∗A ` Y
¬l

¬A ` Y
X ` ∗A

¬r
X ` ¬A

A,B ` Y
∧lA ∧ B ` Y

X ` A X ` B
∧r

X ` A ∧ B
A ` Y B ` Y

∨lA ∨ B ` Y
X ` A,B

∨r
X ` A ∨ B

X ` A B ` Y
→lA→ B ` ∗X ,Y

A,X ` B
→r

X ` A→ B

The formulae are called principal formulae. The X ,Y are context variables.
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Sequent calculus to display calculus

From a procedural point of view, we obtained the display calculus δCp for Cp
from the sequent calculus by

1 Addition of a structural connective ∗ for negation
2 Addition of the display rules to yield the display property
3 Additional structural rules for exchange, weakening, contraction etc.
4 Rewriting the logical rules so the principal formulae in the conclusion are

all of the antecedent or succedent

We will consider a theoretical viewpoint shortly.
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The display calculus δKt for tense logic Kt

Tense logics extend the classical language with the modal operators ^,�
and the tense operators �,�.

� and ^ are duals. Similarly � and �. Ie. axioms:

�A↔ ¬^¬A �A↔ ¬�¬A

The following ‘residuation’ property holds in the basic tense logic Kt .

�A→ B if and only if A→ �B

Identifying residuation is crucial for constructing a display calculus (more
later).
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Display rules from residuation

We saw that: �A→ B ⇔ A→ �B

Introduce a new structural connective • for (�,�) (ie. � in the antecedent,
� in the succedent).

Add the display rules
•X ` Y
X ` •Y

and additional structural rules (for necessitation)

I ` Y (Ml)
•I ` Y

X ` I (Mr)
X ` •I
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A display calculus δKt for tense logic Kt

p ` p ⊥ ` I

∗A ` X
¬l

¬A ` X
X ` ∗A

¬r
X ` ¬A

A ◦ B ` X
∧lA ∧ B ` X

X ` A X ` B
∧r

X ` A ∧ B
A ` X B ` X

∨lA ∨ B ` X
X ` A ◦ B

∨r
X ` A ∨ B

X ` A B ` Y
→lA→ B ` ∗X ,Y

A,X ` B
→r

X ` A→ B
A ` X

�l
�A ` •X

X ` •A
�r

X ` �A
∗ • ∗A ` X

^l
^A ` X

X ` A
^r

∗ • ∗X ` ^A
•A ` X

�l
�A ` X

X ` A �r
•X ` �A

A ` X
�l

�A ` ∗ • ∗X
X ` ∗ • ∗A

�r
X ` �A
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Display Property

Theorem. Every substructure Z appearing in X ` Y can be displayed as the
whole of the antecedent (Z ` U) or the whole of the succedent (U ` Z ) for
suitable U.

X ,Y ` Z

X ` Z , ∗Y

X ,Y ` Z

Y ` ∗X ,Z

X ` Y ,Z

X , ∗Z ` Y

X ` Y ,Z

∗Y ,X ` Z

∗X ` Y

∗Y ` X

X ` ∗Y

Y ` ∗X

∗ ∗ X ` Y

X ` Y

X ` ∗ ∗ Y

X ` Y

X ` •Y

•X ` Y

Example.

∗ • ∗p ` q

∗q ` • ∗ p

• ∗ q ` ∗p

p ` ∗ • ∗q

p is displayed

p ` •(q, ∗ • ∗r)

•p ` q, ∗ • ∗r

∗q, •p ` ∗ • ∗r

∗ • ∗(∗q, •p) ` r

r is displayed
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Translating sequents into formulae

We have seen that a sequent X ` Y in δKt is built from structures X ,Y :

Struc ::= tense formula | I | (X ,X ) | •X | ∗X

Define the translation functions l and r from structures into tense formulae:

l(A) = A r(A) = A

l(I) = > r(I) = ⊥
l(∗X ) = ¬r(X ) r(∗X ) = ¬l(X )

l(X ,Y ) = l(X ) ∧ l(Y ) r(X ,Y ) = r(X ) ∨ r(Y )

l(•X ) = �l(X ) r(•X ) = �r(X )

The sequent X ` Y is interpreted as l(X )→ r(Y ).
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Soundness of δKt for Kt

It suffices to prove that if the translations of the premises are theorems of Kt ,
then so is the translation of the conclusion (this has to be done for all rules).

Eg. consider the display rule (below left) and its formula translation (below
right)

•X ` Y
X ` •Y

�l(X )→ r(Y )

l(X )→ �r(Y )

We already noted that above right holds in Kt .

Aside. Helpful to prove soundness with respect to frame semantics for Kt .
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Completeness of δKt for Kt

As in the case of the sequent calculus, we can prove completeness by
deriving all the axioms, and

simulating modus ponens and necessitation A
�A

The following suffices:

X ` A A ` Y cutX ` Y
I ` Y (Ml)
•I ` Y

The cut-rule applies only to a formula (and not a structure!)

To obtain an analytic calculus we need to eliminate cut.
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Belnap’s general cut-elimination theorem

Belnap showed that any display calculus satisfying the display conditions has
cut-elimination. The display conditions C1–C8 are syntactic conditions on the
rules of the calculus.

Theorem
A display calculus that satisfies the Display Conditions C2–C8 has
cut-elimination. If C1 is satisfied, then the calculus has the subformula
property.

Proof ‘follows’ Gentzen’s cut-elimination, uses display property.

Only C8 is non-trivial to verify.
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Display conditions

∗ • ∗A ` X (^l)
^A ` X

X ,Y ` Z
(∗r)

X ` Z , ∗Y
��A ` X
�A ` X

(C1) Each schematic formula variable occurring in a premise of a rule ρ , cut
is a sub-formula of some schematic formula variable in the conclusion
of ρ.

(C2) A parameter is an occurrence of a schematic structure variable in the rule
schema. Occurrences of the identical structure variable are said to be
congruent to one another (really a definition)

(C3) Each parameter is congruent to at most one structure variable in the
conclusion. Ie. no two structure variables in the conclusion are congruent
to each other.
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Display conditions

∗ • ∗A ` X (^l)
^A ` X

X ,Y ` Z
(∗r)

X ` Z , ∗Y
X ` Y

X ,X ` Y

(C1) Each schematic formula variable occurring in a premise of a rule ρ , cut
is a sub-formula of some schematic formula variable in the conclusion
of ρ.

(C2) A parameter is an occurrence of a schematic structure variable in the rule
schema. Occurrences of the identical structure variable are said to be
congruent to one another (really a definition)

(C3) Each parameter is congruent to at most one structure variable in the
conclusion. Ie. no two structure variables in the conclusion are congruent
to each other.
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Display conditions

∗ • ∗A ` X (^l)
^A ` X

X ◦ Y ` Z (∗r)
X ` Z ◦ ∗Y

X ◦ Y ` Z
X ` Z ◦ Y

(C4) Congruent parameters are all either a-part or s-part structures.
(C5) A schematic formula variable in the conclusion of an inference rule ρ is

either the entire antecedent or the entire succedent. This formula is
called a principal formula of ρ.

(C6/7) Each inference rule is closed under simultaneous substitution of arbitrary
structures for congruent parameters.
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Display conditions

∗ • ∗A ` X (^l)
^A ` X

X ◦ Y ` Z (∗r)
X ` Z ◦ ∗Y

A,B,X ` Y
A ∧ B,X ` Y

(C4) Congruent parameters are all either a-part or s-part structures.
(C5) A schematic formula variable in the conclusion of an inference rule ρ is

either the entire antecedent or the entire succedent. This formula is
called a principal formula of ρ.

(C6/7) Each inference rule is closed under simultaneous substitution of arbitrary
structures for congruent parameters.
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Display conditions

∗ • ∗A ` X (^l)
^A ` X

X ◦ Y ` Z (∗r)
X ` Z ◦ ∗Y

(C8) If there are inference rules ρ and σ with respective conclusions X ` A and
A ` Y with formula A principal in both inferences (in the sense of C5) and
if cut is applied to yield X ` Y , then X ` Y is identical to either X ` A or
A ` Y ; or it is possible to pass from the premises of ρ and σ to X ` Y by
means of inferences falling under cut where the cut-formula is always a
proper sub-formula of A.

X ` A
^r

∗ • ∗X ` ^A
∗ • ∗A ` Y

^l
^A ` Y

∗ • ∗X ` Y

X ` A
∗ • ∗A ` Y drsA ` ∗ • ∗Y

X ` ∗ • ∗Y drs
∗ • ∗X ` Y
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Display calculi for modal logics

A display calculus δK for the modal logic K can be obtained by deleting
the introduction rules for the tense operators � and �.
By cut-elimination and the conservativity of tense logic over modal logic,
any derivation of a modal formula does not require the use of tense
operators.
However, using the display rules in δK may result in • in the antecedent.

p ` p
�l�p ` •p
dr•�p ` p

p → p
�p → �p
��p ` p

Recall that cut-elimination in the display calculus relies on the display property.
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Kracht’s structural rule extensions of Kt

Definition
A primitive tense axiom has the form A→ B where both A and B are
constructed from propositional variables and > using {∧,∨,^, �} and A
contains each propositional variable at most once.

Some examples of primitive tense axioms

^^A→ ^A �^A→ ^�A ^(A ∧ �B)→ �^(A ∨ ^B)

First two axioms are primitive tense equivalents of �A→ ��A (transitivity) and
^�A→ �^A (connectedness) respectively.

Theorem (Kracht)

Let L be a tense logic. Then L is an axiomatic extension of Kt by primitive
tense axioms iff there is a proper structural rule extension of δKt for L.

A proper structural rule is a structural rule satisfying C1–C8.
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Structural rules from primitive tense axioms

Let A→ B be a primitive tense axiom. Since

^(C ∨ D)↔ ^C ∨ ^D
�(C ∨ D)↔ �C ∨ �D
(C ∨ D) ∧ E ↔ (C ∧ E) ∨ (D ∧ E)

So A→ B ↔ (
∨

i≤m Ci)→
(∨

j≤n Dj
)

where Ci ,Dj built from >, ∧, � and ^.

Then A→ B is equivalent to the following axioms:

C1 →
∨
j≤n

Dj . . . Cm →
∨
j≤n

Dj
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Structural rules from primitive tense axioms (ctd)

Now Cj →
∨

j≤n Dj is equivalent to the rule

σ(D1) ` Y . . . σ(Dn) ` Y
ρi

σ(Cj) ` Y

where

σ(>) = I
σ(p) = Xp

σ(A ∧ B) = σ(A), σ(B)

σ(�B) = •σ(B)

σ(^B) = ∗ • ∗σ(B)

(recall: Ci ,Dj built from >, ∧, � and ^)
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Example

σ(>) = I
σ(p) = Xp

σ(A ∧ B) = σ(A), σ(B)

σ(�B) = •σ(B)

σ(^B) = ∗ • ∗σ(B)

Consider �^p → ^�p. We compute the rule

(∗ • ∗) • X ` Y
ρ

•(∗ • ∗)X ` Y

By Kracht’s theorem

δKt + ρ is a display calculus for the tense logic Kt + �^p → ^�p

Since �^p → ^�p ↔ ^�p → �^p

δK + ρ is a display calculus for the modal logic K + ^�p → �^p
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Another look at constructing display calculi

We have seen how to construct a display calculus for δKt . This raises several
questions.

How did we know which structural connectives to add?
How to choose the display rules to ensure display property?
Why did we consider Kt and not K ?
Under what conditions can the program of adding structural connectives,
display rules be used to obtain analytic calculi?
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Residuation crucial to constructing new calculi

To add the tense operators we used the observation:

�A→ B ∈ Kt ⇔ A→ �B ∈ Kt

We then assigned the structural connective • to (�,�).

Residuation is the key to constructing new display calculi.

Let us illustrate by constructing a calculus for bi-intuitionistic logic. . .
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Bi-intuitionistic logic

Intuitionistic logic Ip ⊂ Cp and Ip + p ∨ ¬p = Cp.
Aside: Gentzen observed that restricting the succedent of the sequent
calculus SCp to at most one formula gives a sequent calculus SIp for Ip
Ie. use sequents of the form X ` A and X ` instead of X ` Y
(try to derive ` p ∨ ¬p in SIp and see what happens!)
The language of bi-intuitionistic logic Bi−Ip extends the language of Ip
with the connective→d (dual-implication).
Axiomatisation for Bi−Ip were given by Rauszer, 1974.

Revantha Ramanayake (TU Wien) An introduction to the display calculus 47 / 66



Residuated pairs for bi-intuitionistic logic

The following are theorems of Bi−Ip.

A→ (B → C) ⇔ A ∧ B → C ⇔ B → (A→ C)

B → (A ∨ C) ⇔ (A→d B)→ C ⇔ A→ (B ∨ C)

Assign the structural connective ◦ for (∧,→) and • for (→d ,∨). This
immediately gives us the display rules:

X ` Y ◦ Z
X ◦ Y ` Z
Y ` X ◦ Z

X ` Y • Z
X • Y ` Z
Y ` X • Z

and the following rewrite rules:

A ◦ B ` Y
∧lA ∧ B ` Y

X ` A ◦ B
→r

X ` A→ B

A • B ` Y
→d l

A→d B ` Y
X ` A • B

∨r
X ` A ∨ B
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Computing the decoding rules

A ◦ B ` Y
∧lA ∧ B ` Y

X ` A ◦ B
→r

X ` A→ B

A • B ` Y
→d l

A→d B ` Y
X ` A • B

∨r
X ` A ∨ B

Here are the missing introduction rules (decoding rules in the terminology of
Goré, 1998).

X ` A Y ` B
X ◦ Y ` A ∧ B

X ` A B ` Y
A→ B ` X ◦ Y

X ` B A ` Y
X • Y ` B →d A

A ` X B ` Y
A ∨ B ` X • Y

Constructing the decoding rules is systematic (but not obvious, reasoning not
shown here) and enforces:

Lemma
Every rewrite rule is invertible.
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Some technical points

To be really precise, the semantics we used would actually lead to the
non-associative Bi-Lambek (substructural) logic
Ie. the first residuation property is
a ≤ (c ← b) ⇔ (a ⊗ b) ≤ c ⇔ b → (a→ c)
Since we were aiming for Bi−Ip we have used the properties of
exchange, contraction, weakening and associativity. . .
. . . to collapse

← and→
⊗ and ∧
⊕ and ∨

The point is that we need to add structural rules for exchange,
contraction, weakening and associativity!
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Adding weakening, contraction, exchange,
associativity

X ` Y
X ` Y • Z

X ` Y
X ◦ Z ` Y

X ` Y • Z
X ` Z • Y

X ◦ Z ` Y
Z ◦ X ` Y

X ` Y • Y
X ` Y

X ◦ X ` Y
X ` Y

X ` (Y • Z ) • U
X ` Y • (Z • U)

(X ◦ Y ) ◦ Z ` U
X ◦ (Y ◦ Z ) ` U

Finally, the following structural rules are the unit rules for conjunction,
disjunction.

I ◦ X ` Y
X ` Y

X ◦ I ` Y

X ` Y • I
X ` Y

X ` I • Y
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A display calculus for Bi−Ip

A display sequent X ` Y is constructed from structures

Struc ::= Bi-Int formula | I | (X ◦ X ) | (X • X )

I ` X
>l

> ` X
X ` I

⊥r
X ` ⊥

A ◦ B ` X
∧lA ∧ B ` X

X ` A X ` B
∧r

X ` A ∧ B
A ` X B ` X

∨lA ∨ B ` X
X ` A • B

∨r
X ` A ∨ B

X ` A Y ` B
→ lA→ B ` X ◦ Y

X ` A ◦ B
→ r

X ` A→ B
B • A ` X

→d l
B →d A ` X

X ` B Y ` A →d r
X • Y ` B →d A
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The display rules:

Y ` X ◦ Z
X ◦ Y ` Z
X ` Y ◦ Z

X ` Y ◦ Z
X ◦ Y ` Z
Y ` X ◦ Z

X • Z ` Y
X ` Y • Z
X • Y ` Z

X • Y ` Z
X ` Y • Z
X • Z ` Y

Define the interpretation functions l and r from structures into Bi-Ip formulae:

l(A) = A r(A) = A
l(I) = > r(I) = ⊥

l(X ◦ Y ) = l(X ) ∧ l(Y ) r(X ◦ Y ) = l(X )→ r(Y )

l(X • Y ) = l(X )→d l(Y ) r(X • Y ) = r(X ) ∨ r(Y )

A sequent X ` Y is interpreted as l(X )→ r(Y ).
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Another look at constructing display calculi

Suitable gaggle semantics for a logic can be used to construct display
calculi via the residuation property (Goré, 1998). Think non-associative
Bi-Lambek calculus.
The residuation property gives the display rules.
Add new structural connectives and interpret as logical connectives
(rewriting rules).
Add remaining introduction rules (decoding rules).
axioms for weakening, contraction etc. are converted to structural rules.

This approach provides an answer to: which structural connectives to add?
how to choose display rules?
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Why did we consider Kt and not K ?

Consider the residuation property once more in Bi−Ip:

B → (A ∨ C) ⇔ (A→d B)→ C ⇔ A→ (B ∨ C)

Addition of the corresponding display rules leads to the addition of the
dual-connective→d .
As noted before: we can delete the introduction rules in δBi−Ip to get the
display calculus δIp for Ip.
Result follows by cut-elimination and conservativity of Bi−Ip over Ip.
However, the translation of sequents in δIp is into Bi−Ip.

In the same way, the property �A→ B ⇔ A→ �B (and the ensuing display
rules) necessitate a detour into Kt .
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Structural rule extensions of display calculi: a general
recipe

Logic L

suitable axiomatic extension
��

oo // base display calculus C

structural rule extension
��

L + {A1, . . . ,An} oo // C+ ρ1 + . . .+ ρm

Generalises method for obtaining hypersequent structural rules from
axioms (Ciabattoni et al., 2008)
The approach is language and logic independent; purely syntactic
conditions on the base calculus
Extends Kracht’s theorem on primitive tense formulae.
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Obtaining a structural rule from a Hilbert axiom

δKt is a display calculus for the tense logic Kt satisfying C1–C8. Let us obtain
the structural rule extension of δKt for the logic Kt ⊕ ^�p → �^p.

STEP 1. Start with the axiom (below left) and apply all possible invertible
rules backwards (below right).

I ` ^�p → �^p

stop here: �l ,^r not invertible
∗ • ∗�p ` •^p

^l
^�p ` •^p

�r
^�p ` �^p

→r
I ` ^�p → �^p

So it suffices to introduce a structural rule equivalent to ∗ • ∗�p ` •^p.
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STEP 2. Apply Ackermann’s Lemma.

Lemma

The following rules are pairwise equivalent

S ρ1
X ` A

S A ` L ρ2
X ` L

S
δ1A ` X
S L ` A

δ2
L ` X

where S is a set of sequents, L is a fresh schematic structure variable, and A
is a tense formula.

∗ • ∗�p ` •^p
d.p.
⇔

�p ` (∗ • ∗) • ^p
lem
⇔

L ` �p

L ` (∗ • ∗) • ^p

d.p.
⇔

L ` �p

•(∗ • ∗)L ` ^p
lem
⇔

L ` �p ^p ` M

•(∗ • ∗)L ` M

Stop when there are no
more formulae in the
conclusion
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STEP 3. Apply all possible invertible rules backwards.

L ` �p ^p ` M
•(∗ • ∗)L ` M

⇔

L ` •p
L ` �p

∗ • ∗p ` M

^p ` M
•(∗ • ∗)L ` M

The following rule is not a structural rule.

L ` •p ∗ • ∗p ` M
ρ

•(∗ • ∗)L ` M

By Belnap’s general cut-elimination theorem, δKt + ρ has cut-elimination but
not subformula property.
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STEP 4. Apply all possible cuts (and verify termination)

L ` •p ∗ • ∗p ` M
ρ

•(∗ • ∗)L ` M

d.p.
⇔

•L ` p p ` ∗ • ∗M
•(∗ • ∗)L ` M

⇔
•L ` ∗ • ∗M

ρ′
•(∗ • ∗)L ` M

One direction is cut, the other direction is non-trivial.

We conclude:

δKt + ρ′ is a calculus for Kt +^�p → �^p with cut-elimination and subformula
property.
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Summary of the recipe

(1) Invertible rules (2) Ackermann’s lemma (3) invertible rules (4) all possible
cuts

Only certain axioms are suitably decomposable

Suppose we start with the axiom ^�p → �^�p.

I ` ^�p → �^�p
(1)
⇔

∗ • ∗�p ` •^�p

(2)
⇔

L ` �p ^�p ` M

•(∗ • ∗)L ` M

(3)
⇔

L ` •p ∗ • ∗�p ` M
⇔??

•(∗ • ∗)L ` M

From the display property, the last rule is equivalent to the following. Observe
that we can no longer apply cut.

•L ` p �p ` (∗ • ∗)M
•(∗ • ∗)L ` M
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Definition. Amenable calculus

Let C be a display calculus satisfying C1–C8. l and r are functions from structures into
formulae s.t. l(A) = r(A) = A . Also:

(i) X ` l(X ) and r(X ) ` X are derivable.

(ii) X ` Y derivable implies l(X ) ` r(Y ) is derivable.

There is a structure constant I such that the following are admissible:

I ` X IlY ` X
X ` I IrX ` Y

There are associative and commutative binary logical connectives ∨,∧ in C such that

(a)∨ A ` X and B ` X implies ∨(A,B) ` X

(b)∨ X ` A implies X ` ∨(A,B) for any formula B.

(a)∧ X ` A and X ` B implies X ` ∧(A,B)

(b)∧ A ` X implies ∧(A,B) ` X for any formula B.
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The intermediate logic Ip + Bd2

Consider the intuitionistic axiom Bd2: p2 ∨ (p2 → (p1 ∨ ¬p1)).

Here is the corresponding structural rule

M ` L K ` N ρ
` L • (M◦ (N • (K ◦ I)))

such that δIp + ρ is a cut-free calculus for Ip + Bd2.

Revantha Ramanayake (TU Wien) An introduction to the display calculus 63 / 66



Recovering the display calculus δCp

Work out the structural rule ρ corresponding to p ∨ ¬p (ie. p ∨ p → ⊥).
Observe that this is not exactly the calculus δCp we presented before.
Fun exercise. Work out how to obtain δCp from δIp + ρ.
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Summary I

The display calculus generalises the sequent calculus by the addition of
new structural connectives.
Display rules yield the display property.
The display property is used to prove Belnap’s general cut-elimination
theorem.
Residuation property central to choosing structural connectives, display
rules.
Relationship between cut-elimination and algebraic completions (recall
Terui’s remark)
Remember: the display calculus is one of several proof-frameworks
proposed to address the (lack of) analytic sequent calculi for logics of
interests.
Some other frameworks include hypersequents, nested sequents,
labelled sequents.
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Summary II

In some frameworks such as the calculus of structures, we can operate
‘inside’ formulae (deep inference). The display calculus (below right)
seems to mimic some notion of deep inference.

` �B
` �(B ∨ B′)

I ` •B
•I ` B
•I ` B,B′

I ` •(B,B′)
Structural rules in the display calculus means that it is difficult to control
proof-search (for example)
However it is a good starting point for constructing an analytic calculus.
Recent work used a display calculus as the startting point for an analytic
calculus for Full intuitionistic linear logic (MILL extended with par). A
(deep inference) nested sequent calculus is then constructed to obtain
complexity, conservativity results (Clouston et al., 2013).
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