RESOLUTION THEOREM PROVING: A LOGICAL POINT OF VIEW

ALEXANDER LEITSCH

§1. Introduction. Logical calculi were invented to model mathematical think-
ing and to formalize mathematical arguments. The calculi of Boole [8] and of
Frege [15] can be considered as the first mathematical models of logical inference.
Their work paved the way for the discipline of metamathematics, where math-
ematical reasoning itself is the object of mathematical investigation. The early
calculi, the so-called Hilbert type- and Gentzen-type calculi [25], [17] developed
in the 20th century served the main purpose to analyze and to reconstruct math-
ematical proofs and to investigate provability. A practical use of these calculi,
i.e. using them for solving actual problems (e.g. for proving theorems in “real”
mathematics), was not intended and even did not make sense.

But the idea of a logical calculus as a problem solver is in fact much older
than the origin of propositional and predicate logic in the 19th century. Indeed
this idea can be traced back to G.W. Leibniz with his brave vision of a calculus
ratiocinator [29], a calculus which would allow solution of arbitrary problems by
purely mechanical computation, once they have been represented in a special
formalism. Today we know that, even for restricted languages, this dream of a
complete mechanization is not realizable — not even in principle (we just refer to
the famous results of Gédel [20] and Turing [39]). That does not imply that we
have to reject the idea altogether. Still it makes sense to search for a lean version
of the calculus ratiocinator. Concerning the logical language, the ideal candidate
is first-order logic; it is axiomatizable (and thus semidecidable), well-understood
and sufficiently expressive to represent relevant mathematical structures. By
Church’s result [10] we know that there is no decision procedure for the validity
problem of first-order logic; thus there is no procedure which is 1. capable of
verifying the validity of all valid formulas and 2. terminating on all formulas. So,
even in first-order logic, we have to be content with the verification of problems.
The only thing we can hope for is a calculus which offers a basis for efficient
proof search.

It is not surprising that the invention of the computer lead to a revival of
Leibniz’s dream. Indeed one of the first enterprises in the field we are calling
Artificial Intelligence today was the problem of automated theorem proving. The
very first systems were the geometry prover of Gelernter [16] and Gilmore’s
first-order prover [18]. Gilmore’s approach was based on Herbrands’s theorem
and used a “projection” of predicate logic to propositional logic. By Herbrand’s
theorem, a universal formula F' is unsatisfiable iff there exists a finite conjunction
F' consisting of instances of the matrix which is unsatisfiable too. This gives
a simple reduction of predicate logic to propositional logic which looks quite
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natural from the point of view of logical complexity. But computationally the
method proved to be highly ineffective. In fact there are two main sources of
inefficiency: 1. the size of F' and 2. the inference on F’ itself. While the
efficiency of 2. was considerably increased by the method of Davis and Putnam
[11], the search for F' and also the large size of F' remained serious obstacles
even in proving most simple first-order theorems. Obviously there was a need
for a natural technique employed by humans in the finding of proofs, which
did not receive much attention in mathematical logic so far. This technique is
unification and the invention of the unification principle by J.A. Robinson [37] in
the early sixties brought the decisive breakthrough and marks the very beginning
of automated deduction. Indeed the consequent use of the unification principle
lead to a substantially new type of calculus. Robinson’s resolution principle, a
combination of most general unification and atomic cut on conjunctive normal
forms, opens the way for a large variety of computational calculi and still forms
the logical basis of the most efficient theorem proving programs.

But even on the basis of the unification principle theorem proving programs
turned out too weak to automatically handle substantial or even unsolved prob-
lems of real mathematics. One of the few exceptions is the solution of Robbin’s
problem by W. McCune [35]. This problem is purely equational and its solution
requires special techniques of equational reasoning which will not be presented
in this paper. On the other hand, the resolution principle had a strong impact
on computer science and became the decisive tool in the development of logic
programming. Other interesting applications of resolution can be found in math-
ematical logic itself. Two of them, the decision problem of first-order logic and
cut-elimination, will be presented in this paper. Our aim is to illustrate that the
resolution calculus is more than just a principle for a (partial) automatization
of logical inference. In some sense resolution is the assembler language of deduc-
tion, which — by its simplicity — makes it possible to recognize new features of
deductions and to develop a new understanding of formal proofs and of inference
in general.

§2. The Logical Basis of Resolution. In contrast to most logic calculi
for first-order logic resolution does not work on the full syntax of predicate
logic but on normal forms. These normal forms, in fact clausal normal forms,
have the advantage to admit simpler inference systems and thus a more efficient
way of proof search. Roughly speaking the clausal form is a logic free form,
where the whole logical structure of the original formula is coded on the level
of atomic formulas. A proof of a first-order formula A via resolution is based
on the refutation of a normal form of —A, the general principle being proof by
contradiction on normal forms. So we distinguish two phases in a proof of a
sentence A:

e Transform —A to a clause form C.
e Apply resolution to C.

2.1. Normal Forms. In constructing normal forms we have to take care
that the following conditions are fulfilled: 1. soundness, 2. efficiency and 3.
preservation of structure. Point 1 is the most important one, though we will see
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that the concept of soundness need not be the usual one. Without taking care
of point 2 the enterprise of computational inference does not really makes sense.
Note that a sound transformation to normal forms would be to replace every
unsatisfiable formula by falsum and every satisfiable one by itself; then proof
by contradiction becomes trivial as falsum would be the only normal form for
unsatisfiable formulas. The pathological aspect in such a transformation clearly
is that it involves the whole complexity of theorem proving itself, i.e. to detect
the unsatisfiability of a formula. Thus we have to take care that the computation
of normal forms is simple, at best within polynomial time. Moreover it should be
decidable within polynomial time whether a given formula is in normal form or
not. Point 3 in the least trivial because is not completely clear which structure
we mean and why it has to be preserved. We will address this point later and
particularly in Section 3. Before we give a formal definition of a transformation
to clause form we illustrate the main steps in an example:

EXAMPLE 2.1. Let A be the formula

[(V2)3y) Pz, y) A (Fu) (Vo) (P(u,v) = Q(v))] = (32)Q(2).
The first step consists in transforming - A to a formula F; which does not contain
— and where negation only occurs in front of atoms. To this aim we apply the
transformations
(A—-B)=(-AVB),
-(A - B)=(AAN-B),
=(Fv)A = (VYv)-A.

and obtain the formula

Fy: [(Va)(3y) Pz, y) A (Gu) (Vo) (=P (u,v) V Q)] A (V2)Q(2).
Clearly all the transformations preserve logical equivalence and therefore Fj is
logically equivalent to —A.

In the next step we eliminate the existential quantifiers by a technique which
is generally called “skolemization”. Roughly spoken, we delete an existential
quantifier and replace its variable by a functional term containing all variables
of universal quantifiers which are “above” the existential one. By this technique
we replace (Vz)(Jy)P(z,y) by (Vz)P(z, f(z)) and (Fu)(Vv)(=P(u,v) vV Q(v)) by
(Vv)(=P(a,v) V Q(v)); so we obtain
Fy: (Vo) P(z, f()) A (Vv)(=P(a,v) V Q(v)) A (V2)=Q(2).

Note that F5 is not logically equivalent to Fi, the formulas are merely equivalent

with respect to satisfiability (in this case they are both unsatisfiable)!

In F, the quantifiers do not carry much “information” anymore; in particular
they can be shifted in front and arbitrarily commuted without destroying the
logical equivalence to F,. Thus we simply drop the quantifiers and obtain

F3: P(z, f(x)) A (=P(a,v) V Q(v)) A ~Q(2).
F3 is quantifier free and any universal closure of F3 is logically equivalent to F5.

In fact F3 is already in conjunctive normal form, i.e. it consists of a conjunction
of disjunctions where the disjunctions are composed of literals (i.e. of negated
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and unnegated atoms). We can easily represent this formula without any logical
connective using a representation by sequents: we replace any disjunction con-
taining the positive literals Ay,... , A, and the negative literals By,... , By by
the expression

By,...,BnhF A, ... A,
These logic free expressions are called clauses. In particular F3 yields the clauses
C =+ P(z, f(x)),
Cy = P(a,v) F Q(v),
Cs=Q(2)F.

F3 as a whole can eventually be represented by the set of clauses C: {C, Ca, Cs}.
C is called a clause form of the original formula —A. i

The example above shows the typical three stages of a standard normal form
transformation:

e Transformation to negation normal form,
e transformation to Skolem form,
o transformation to conjunctive normal form.

Below we give formal definitions of the various (intermediary) normal forms
obtained in the transformation to clause form:

DEFINITION 2.1. Let A a closed first-order formula. A is in negation normal
form (NNF) if it fulfils the following conditions:

1. the propositional connectives of A are in {A,V, -},
2. = occurs only in front of atoms.

Informally expressed, a formula is in NNF if only atoms are of negative polar-
ity. An obvious way to transform a formula into an equivalent formula in NNF
consists in 1. replacing — by V, 2. apply the rules of de Morgan, and 3. shift
negations over quantifiers and dualize them, 4. eliminating multiple negations.

After transformation to NNF existential quantifiers are “really” existential
in the semantic sense. For technical reasons we assume that the formulas are
rectified, i.e. every variable is quantified at most once in the formula. In the
next step the existential quantifiers of the formula are eliminated and a purely
universal formula is produced. If (Qz) is a quantifier in A ((Qz) is uniquely
determined as A is rectified) we write A_(g,) for the formula A after omission
of the occurrence of (Qz).

DEFINITION 2.2. Let A be a formula in negation normal form. We define an
operator sk in the following way:
If A does not contain existential quantifiers then sk(A) = A. Now assume that
A contains existential quantifiers and that (3z) is the first one. We distinguish
two cases:

o If (3z) is not in the scope of universal quantifiers then
sk(A) = sk(A_(zz){z < a})

where a is a constant symbol not occurring in A.
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e If (3z) is in the scope of the universal quantifiers (Vy1), ..., (Vym) then
sk(A) = sk(A_zo){z < f(y1,--- ,ym)})

where f is an m-ary function symbol not occurring in A.
sk(A) is called the Skolem form of A. i

Remark: Note that the recursive definition of sk is well-founded: if there are
existential quantifiers in the formulas then the argument of sk on the right
hand side has always one existential quantifier less. For illustration let A be
(My)(32)(3z) P(y, z,z). Then

f#

As we already pointed out in Example 2.1 sk does usually not preserve logical
equivalence. Nevertheless the transformation is weakly sound i.e. it preserves
sat-equivalence:

THEOREM 2.1. Let A be a formula in negation normal form. Then sk(A) ~sqt
A, i.e. sk(A) is satisfiable iff A is satisfiable.

PROOF. We only give the idea of the proof; a full formal proof can be found
in [30].

By definition of sk it is easy to see that sk(A) — A is valid. Thus the sat-
isfiability of sk(A) implies that of A. For the other direction assume that A is
satisfiable and that M is a model of A. Then a model M’ for sk(A) is obtained by
extending M by an appropriate interpretation of the new function symbol. -

In particular A is refutable iff sk(A) is refutable. Thus, in some sense, we are
not proving —A itself, but rather —sk(A). But such problem reductions are quite
natural and standard in the practice of mathematical proofs.

Once we have constructed a Skolem form it remains to transform the formula
to conjunctive normal form. Again there exists a straightforward method using
the rules of distributivity. Although this method is quite simple it can lead
to an exponential blow up of the formula size and, much worse, to an even
nonelementary increase of proof length. We will come back to this problem in
Section 3 where we present an alternative way of constructing clause forms.

DEFINITION 2.3. Let A;,...,A4,,B1,...,B; be atom formulas. Then the
expression C': Ay,... ,A, + By,...,By, is called a clause. C represents the
formula F: =A; V---V-A, VB V---V By. The empty clause F represents
falsum. Assume that the clauses C; represent the formulas F; for i = 1,... ,k;
then {C4,...,Cy} represents the universal closure of Fi A --- A Fy,. #

To sum up, in proving A by contradiction we reduce —A to a set of clauses C
representing the universal closure of a conjunctive normal form obtained via the
transformation steps described above. These sets C are the very raw material
for resolution.
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2.2. The Resolution Principle. In some sense the resolution principle is
the simplest first-order calculus which is possible at all. It is based on one single
rule which combines substitution and atomic cut. Its most typical feature is a
binary substitution rule computing a minimal (i.e. most general) substitution
which makes two atoms equal.

ExAMPLE 2.2. Let A be the formula
[(V2) Fy) P(z,y) A (Fu) (Vo) (P(u,v) = Q(v))] = (32)Q(2).
of Example 2.1. We have shown that the clausal form of —A4 is
C: {F P(z, f(z)), P(a,v) - Q(v), Q(z) F}.

We refute C by using two rules 1. substitution and 2. the atomic cut rule
Fl F Al,A A,FQ + AQ
Fl, FQ l_ Al, A2

But the substitution rule is tied to the cut and serves as preparatory step.
The following derivation ¢ illustrates this property:

cut

F P(z, f(z)) g P(a,v) - Q(v) g
"Paf@)  Pe/@FIW ,, 6t
Q(f(a)) Q(f(a)) F
F cut

¢ is indeed a refutation of the formula represented by C. The substitution rule
is sound by the validity of the substitution axioms and by the fact that a clause
represents the universal closure of a disjunction. The cut rule is sound because
it “represents” the rule

BvA -AvC
BvC

#

In general there are infinitely many substitutions unifying two atoms, but only
the most general ones are actually needed. The observation of this effect and the
invention of the wunification principle by J.A. Robinson (see [37]) is a landmark
in the history of computational logic and automated deduction.

We may compare substitutions and expressions with regard to their “general-
ity”, i.e., whether they can be obtained from other substitutions (expressions)
by instantiation.

DEFINITION 2.4 (generality). Let E; and E; be expressions. We say that
E; is more (or equally) general than E, (notation E; <, E») if there exists a
substitution ¢ such that Fyo = E5. Let 0,7 be two substitutions. We define
o <, T (0o is more general than 7) if there exists a substitution ¥ such that
oY =r1.

We can go back now to the problem of unifying atoms, literals, and terms (i.e.,
expressions) by substitutions.
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ExAMPLE 2.3. Consider the atoms

Al = P(CL’, f(y)af(y)) and

Az = P(xlayla f(wl))
Let ¢ be an arbitrary term different from x and z’. Then the substitution
op: {z + ty « t, o' « t,y « f(t)} fulfils

P(z, f(y), f(y))or = P(a',y', f(z'))on
=P(t, f(t), f(t))-
The same property holds for the substitution

o={y+uz, o' =z y « f(z)}.
Clearly o <; oy by o{z < t} = 0. it
The example above motivates the following definition.

DEFINITION 2.5 (unifier). Let E be a nonempty set of expressions. A substi-
tution o is called a unifier of E if for all e,e' € F eoc = €'o. o is called a most
general unifier (m.g.u.) of E if for every unifier 6 of E we have o <, 6.

Remark: A unifier of a two-element set {e,e'} is frequently called a unifier of
e and e'. If the set of expressions E consists of one element only then every
substitution is a unifier of E, and the identical substitution € is the m.g.u. of E.

f

Still two questions arise:

1. Is there always an m.g.u. of a unifiable set of expressions?
2. Are m.g.u.s effectively computable?

Fortunately the answer to both questions is yes as we will point out below.
Note that computing a unifier of a set of atoms {A1, ..., A,}, i.e. a substitution
0 with A;0 = ... = A,#6, can easily be reduced to the problem of unifying two
atoms and even of unifying two terms. E.g. any unifier 8 of { P(z), P(y), P(f(2))}
is also a unifier of the two terms g(z,y, f(2)) and g(x,z,z) and vice versa.

We call any algorithm computing an m.g.u. in case of unifiability and decid-
ing unifiability a wunification algorithm. As the performance of theorem provers
strongly depends on the efficiency of unification algorithms, many sophisticated
algorithms for computing m.g.u.s have been developed so far. Besides the origi-
nal algorithm in Robinson’s paper [37] we just mention the algorithm of Martelli
and Montanari [33]. In this algorithm, unification is considered as the problem
of finding a most general solution for a system of term equations. We also follow
this line and present a simple rule based approach like in [2].

ExXAMPLE 2.4. Let
A e P(g(x),f(;v,z)) and
Az = P(g(g(u)),v).-
The problem of unifying A; and A, can be reduced to solving the system of

equations
&1 {g(x) = 9(g(w)), v = f(z,2)},
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i.e. we are searching for a substitution 6 s.t.
9(2)0 = g(g(u))8, v0 = f(z,2)6.

(called a solution) s.t. for all other solutions 17 we have 6 <, 7.
Clearly the equations cannot be “read” as a substitution directly. But we
observe that 6 is a solution of &; iff 6 is a solution of & for

& = {SL’ = g(u)a v = f(.’E,Z)}
& and & are equivalent because substitutions are homomorphisms on terms.
Thus we are allowed to decompose the equation g(z) = g(g(u)) into z = g(u).
The system & can be “interpreted” as the substitution 8: {z + g(u),v
f(z,2)}; but 6 is not a unifier. Indeed A16 # A26. So we apply another trans-
formation and interpret the equation z = g(u) as a substitution on the system
&>. This gives us the equivalent system

&: {z = g(u), v = f(g(u),2)}.
In &3 every equation is of the form z = ¢, where z is a variable and ¢ is a term,
and the variables on the lefthandside of the equations occur only once in the
whole system. What we have obtained is a system in solved form. Indeed, if we
read the equations as substitution

o {z+ g(u), v+ f(g(w),2)}
then o is indeed a most general solution of &3 and thus of ;. Clearly o is also
an m.g.u. of A; and A,. it

Thus finding a most general unifier means to find a most general solution of
a system of term equations. And solving such a system of equations means to
transform it into an equivalent solved form. Clearly we must also define criteria
for the unsolvability of such systems and to ensure that our transformations on
the systems terminate.

DEFINITION 2.6. A system of term equations is a finite set of the form
E: {81 itl,... ySn itn}

where s;,t; are terms for i = 1,...,n. A substitution 6 is called a solution of £
ifforalli =1,...,n: s;60 = t;0. A solution o is called a most general solution of
£ if for all solutions 6 of £ o <; 6. Two systems £ and &’ are called equivalent
if they have the same set of solutions.

We say that £ is in solved form if

o {s1,...,8,1 CV and

e every s; occurs only (and thus exactly) once in £ (for i =1,... ,n).

By definition a solved form represents a substitution. It is easy to see that for
a solved form
E: {.’L‘l :'tl,... s Ly itn}
the substitution o: {1 « t1,... ,2, < t,} is a most general solution of £. o is
also called the substitution defined by .
Equality is reflexive; thus any equation of the form s = s is redundant. By
the symmetry of equality s = t is equivalent to t = s. As we are interested in
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interpreting some equations as substitutions, equations of the form ¢ = z, for a
term ¢ which is not a variable, are transformed to x = ¢t. The observation above
leads to the following two transformation rules:

(trivial): If the system & contains an equation s = s then replace £ by
E\{s=s}.

(orient): If £ contains an equation of the form ¢ = v, where v is a variable

and ¢ is not, then replace £ by (£ \ {t = v}) U {v =t}.

There are systems which are unsolvable and thus cannot be transformed into
solved form. As we have to avoid nonterminating procedures we have to detect
some typical cases of unsolvability. If we recognize the unsolvability of a system
S we reduce it to L (where L can be interpreted as a fixed unsolvable system).

DEFINITION 2.7 (failure rules). Let £ be a system of term equations and s = ¢
be an equation in £.
(symbol clash): If s and ¢ are functional terms having different leading sym-
bols then £ is replaced by L.
(occurs check): If s is a variable s.t. s # ¢t and s occurs in ¢ then replace £
by L. i
EXAMPLE 2.5. Let
E: {z =y,z =gy}
£ is unsolvable: there exists no substitution 6 s.t. 6 = y6 and z6 = g(y)0; for
otherwise y = g(y)0 = g(y#), which is impossible. However, neither (symbol

clash) nor (occurs check) is actually applicable. But if we apply z = y as
substitution {z < y} to the other equation we obtain the equivalent system

& {z=y,y =9}
which can be reduced to L via (occurs check). i
The example above shows that we need additional rules for deciding unifia-

bility and for computing most general unifiers. These rules, decomposition and
replacement, are in fact the most important ones.

(decomposition): Let s =t be an equation in &£ s.t. there exists a function

symbol f € FS,, and terms sy,...,8n, t1,... ,t, With
S=f(81,...,8n),
t=f(t1,... ,tn)-

Then replace £ by the system
E: (EN{s=t}HhU{s1 =t1,...,80 =tn}-

(replacement): Let s = ¢ be an equation in £ s.t.
(1) sis a variable and
(2) s does not occur in ¢ and
(3) soccursin £\ {s =t}.
Then replace £ by the system

& (E\{s=tH{s—t}U{s =t}
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DEFINITION 2.8. Let R be the set of rules {(trivial), (orient), (symbol clash),
(occurs check), (decomposition), (replacement)}. If £ is transformed to £’ via
a rule in R we write £ =% £'. For the reflexive and transitive closure of the
relation >5 we write >5. A system & is called irreducible if none of the rules in
R is applicable to £. L is irreducible by definition. i

According to the definitions above, unification means nothing else than reduc-
tion of a system to an irreducible form (where an arbitrary order of applications
of rules in R is admitted).

EXAMPLE 2.6. We take the system £ from Example 2.4 where

& ={g(z) = g(g(u)), v=f(z,2)}.

Then £ =g &' (via (decomposition)) where
& ={z=g), v=f(z,2)}
Now (replacement) is applicable and £’ =% £", where
&' ={z = g(u), v = f(g(u),2)}.
E" is irreducible and in solved form. il

Remark: Note that every solved form is irreducible. On the other hand every
irreducible form is either a solved form or L.

THEOREM 2.2 (unification theorem). R is a unification system, i.e

o R always terminates.
o If the system & is solvable then & =3 &' s.t. £ is in solved form and the
substitution defined by £' is a most general solution of £.

ProoOF. (sketch)

For a full proof see [2]. The most involved part is termination.

If we know that the system is terminating our task is easier: all rules in R
preserve the equivalence of systems. So let £ be an irreducible system obtained
from £. If &' = L then &£ and & itself are unsolvable; else £’ must be in solved
form (for otherwise it would not be irreducible). Thus the substitution defined
by £' is a most general solution of £’ and of £ itself. =

We have seen in Example 2.2 how an unsatisfiable set of clauses can be refuted
via unification and cut. The example below shows that unification cannot be
restricted to atoms of different clauses but must also be applied within clauses.

EXAMPLE 2.7. Let C = {C1, C,} for
Ci =+ P(z),P(y),
Cy = P(u),P(v) .
Clearly C is unsatisfiable, but we will see that without an additional technique
F cannot be derived.
Even if we permute P(z) and P(y) within C; and P(u), P(v) within Cy and
try all unifications between atoms in C; and Cy we obtain a variant of the clause

C3: P(z) F P(y). But, modulo variable renaming, C; with C3 gives Cy and
Cs with C3 gives C>. We see that cutting out single atoms does not suffice to
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derive contradiction. What we need is unification within a clause followed by a
contraction rule.
Let us apply the substitution A: {z < y} to Ci; then we obtain the clause

F P(y), P(y)-

But  P(y), P(y) represents (Vy)(P(y) V P(y)) which is logically equivalent to
(Vy)P(y). Thus we may apply contraction within - P(y), P(y) and obtain C}: +
P(y). Similarly we obtain by p: {u < v} the clause C4: P(v) F from C2. Now by
unifying P(y), P(v) via the m.g.u. o: {y < v} we eventually obtain C{': + P(v)
and CY : P(v) F which resolve to - via atomic cut. C] and C} are called factors
of Cy and of Cy respectively. The steps are illustrated in the derivation below
(S stands for substitution as preparation for the cut and F for factoring):

FP@LP@)F
FP@)S PWLP@N-F
F P(v) Pw)F
F cut

DEFINITION 2.9 (factor). Let
C : T'F Al,Al,... ;An;An;An—i-l

(C: A A1, AR A, A B T) be a clause where n > 1 and the A; are
(possibly empty) sequences of atoms. Moreover let ¢ be a most general unifier
of {4,...,A,}. Then

C': Tot Ayo,..., A0, Ano
(C': Apo,Avo, ... ,Apo F Do) is called a factor of C. it

Remark: If the clause does not contain variables then a factor is obtained just by
contraction of identical atoms. If in Definition 2.9 n = 1 then o is the identical
substitution and the atom A; is put to the extreme right, respectively left, of the
clause. Thus we are using factoring also to position the atoms at the appropriate
places for the following cut. i

DEFINITION 2.10 (binary resolvent). Let Cy: Ty - Ay, A and Cy: B, Ty F Ay
be two clauses which are variable disjoint and A, B be unifiable with m.g.u. o.
Then the clause

Fld, FQU I— Alo, AQU
is called a binary resolvent of C; and Cs.

After these preparations we are ready for the definition of the general resolu-
tion rule.

DEFINITION 2.11 (resolution). Let Ci,Cy be two clauses and C], C) be vari-
able disjoint variants of factors of C1,C2 and C be a binary resolvent of C] and
C). Then C is called a (general) resolvent of Cy and Cs.
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By Definition 2.11 it is possible to define infinitely many resolvents of two
clauses, as there are infinitely many possible variable renamings. We can avoid
this effect by a standard renaming of the resolvent by variables {z1,...,z,}.
Using such a standard renaming there are indeed only finitely many resolvents
of two clauses.

ExAMPLE 2.8. Let
Cl = R(Jﬁ,y) - P(.T),P(y),

Then, under a standard renaming, the following clauses are resolvents of C'; and
02:

C3 = R(z1, f(22)), Q(x2) I P(21), S(22,22),
Cy = R(f(21),72),Q(z1) F P(22), S(21,71),
Cs = R(f(21), f(21)), Q(x1) = S(21,21)- §

The following deduction principle on clause logic is characterized by using only
one single inference rule, namely resolution.

DEFINITION 2.12 (resolution deduction). A resolution deduction (R-deduction)

of a clause C' from a set of clauses C is a sequence of clauses C1, ... ,C, with the
following properties:
1. ¢, =C.
2. For every ¢ with i € {1,... ,n} we have: either C; is a clause in C or Cj is
a resolvent of two clauses C;, Cy, with j, k < 4.
An R-deduction of F from C is called an R-refutation of C. i

EXAMPLE 2.9. Let

C={F P(z, f(z)); P(a,v) - Qv); Q(z) F}.
Then
¢: F Pz, f(z); Pla,v) FQ); FQ(f(a); Q2) s +

is an R-refutation of C. In tree format ¢ is of the form

F Pz, f(2)) P(a,v) FQ(v) R
FQ(f(a)) Qx) -
l_

R

Modulo the clause form transformation ¢ can be considered as a proof by
contradiction of the formula

[(V2)Fy) P(z,y) A (Fu) (Vo) (P(u,v) = Q(v))] = (32)Q(2)- #

Resolution is a complete inference principle on clause logic and, together with
normal form transformations, a refutationally complete inference system for first-
order logic.

THEOREM 2.3. Resolution is complete, i.e. if C is an unsatisfiable set of
clauses then there exists an R-refutation of C.
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PROOF. We merely give the main line of the proof; a detailed proof can be
found in [30].

By Herbrand’s theorem a set of clauses C is unsatisfiable iff there exists a finite
set C' of ground (i.e. variable-free) clauses, obtained by instantiation of clauses
in C, which is unsatisfiable. Thus the unsatisfiability of the first-order problem
C is reduced to that of the propositional problem C'.

Then it is proved that resolution is complete on sets of ground clauses. As a
consequence there exists an R-refutation ¢’ of C’.

Finally the refutation ¢ is lifted to a refutation ¢ of C. Lifting is a technique
replacing a resolvent C' of instances C, C, of clauses C1,C> by a resolvent C' of
C1,C4 s.t. C' is an instance of C.

_|

The lifting principle is the most significant feature of first-order resolution.
Instead of producing infinitely many resolvents of instances of two clauses it is
enough to use the general resolvents which are based on most general unification
only. We give a simple example illustrating this principle.

ExAMPLE 2.10. Let

C={FP(z); Pu)F Qu); Q(f(2)) F}.

Let ¢ be an arbitrary ground term over the signature {f,a} and

C'={F P(f()); P(f(t)F Q(f(1); Q(f(®))F}-
Then

¢ FP(f(1); P(F() F QD) FQU(D); QU () F

is an R-refutation of C'. But

ot = ¢{z + f(t),u < f(t),z + t}
for
¢ =F P(z); P(u) - Qu); FQu); Q(f(¢) ks +.
But ¢ is an R-refutation of C. it

§3. Resolution and LK.

3.1. The calculus LK. Traditional logic calculi work on the full syntax of
logic and not on normal forms. This has the advantage that the logical structure
of the theorems is preserved and the semantical meaning is well-presented in the
different steps of a derivation. The resolution calculus, in contrast, works on
simple normal forms which favor efficient inference, but on the other hand its
derivations look ugly and “unnatural”. Moreover we even risk to lose structural
information which is useful in defining good and/or short proofs. We will show in
this section that there is a remedy for this defect of resolution, namely structural
clause form transformation. This technique allows us to define an “interface” to
standard logic calculi and to store the structure of full first-order logic without
sacrificing efficiency. As “traditional” logic calculus we choose Gentzen’s LK
because it is the most elegant and “semantic” calculus for classical first-order
logic. The elements LK is working with are sequents:
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DEFINITION 3.1 (sequent). A sequent is an expression of the form I' F A
where T" and A are finite multisets of PL-formulas (i.e. two sequents I'; F A;
and I'; F Ay are considered equal if the multisets represented by I'; and by I's
are equal and those represented by Aq, A, are also equal). #

Note that clauses are sequents containing only atomic formulas.

DEFINITION 3.2 (the calculus LK). The initial sequents are A + A for first-
order formulas A. In the rules of LK we always mark the auxiliary formulas
(i.e. the formulas in the premise(s) used for the inference) and the principal (i.e.
the inferred) formula using different marking symbols. Thus, in our definition,
A-introduction to the right takes the form

rFAY A [k Ay, BT
I, To- A, AANB* Ay

We usually avoid markings by putting the auxiliary formulas at the leftmost
position in the antecedent of sequents and in the rightmost position in the con-
sequent of sequents. The principal formula mostly is identifiable by the context.
Thus the rule above will be written as

I'ikFALA I'sF A B
',I'aFA1,A2,ANB

The version of LK we are using here is that in [4] and slightly deviates from
Gentzen’s original version [17]. The differences however are without importance
to the results presented in this section. Readers who are interested in a detailed
definition of LK are referred to [17] or to [38] i

The main result of Gentzen’s famous paper [17] was the cut-elimination theo-
rem. It shows that, in arbitrary LK-proofs, the cut rule

Ty FALA ATyF Ay
F13F2 F A13A2

cut

can be eliminated; the result is a proof with the subformula property, i. e.,
the whole proof is made of the syntactic material of the end sequent. By this
property Gentzen’s cut-free LK can be used as a basis for proof search and
automated deduction when combined with the unification principle; the corre-
sponding calculus is the tableauz-calculus [22]. For illustration we give a simple
cut-free LK-proof of the sequent

P(a), (Vz)(P(z) = P(f(2))) - P(f*(a))

which (semantically) stands for the formula

[P(a) A (Y2)(P(x) = P(f(2)))] = P(f*(a))-
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P(f(a)) F P(f(a)) P(f*(a)) F P(f*(a)) Ny

P(a) - P(a) P(f(a), P(f(a)) = P(f*(a)) - P(f*(a)) Ny

P(f(a)) = P(*(a)), P(a) = P({(a))), P(a) - P(f*(a)) V.1
(Vz)(P(z) = P(f(2))), P(a) = P(f(a)), P(a) b P(f*(a)) 'v .
(Vz)(P(z) = P(f(2)), (Vz)(P(x) = P(f(2))), P(a) b P(f*(a)) ol

(Vz)(P(z) = P(f(2))), P(a) - P(f*(a))

3.2. Structural Clause Form. The key to the simulation of cut-free LK

by resolution is the structural normal form transformation. In contrast to the

standard normal form transformation presented in Subsection 2.1 the structural

one is based on introductions of new predicate symbols. Let F' be the formula

to be transformed into clause form. The idea is the following one: For any
subformula A in F' create a new predicate symbol P4 and “define” P4 by A:

Suppose, for illustration, that A = A; o Ay for o € {A,V,—} and that X is the
set of variables free in A. Furthermore let Y be the set of variables free in A,
and Z the set of variables free in As. Then clearly X = Y U Z. Define vectors
of variables z, g, zZ from the sets X,Y, Z. Then the defining formula for P4 is:

(VZ)[Pa(Z) ¢ (Pa, () © Pa,(2))].
Similarly the defining formula for A = =B is (VZ)(Pa(Z) < —Pp(Z)) and for
= (Qy)B it is
(Vz)(Pa(z) © (Qy)P5(2,y))-
Note that the defining formulas just represent a mathematical tool which is
widely used in mathematics, namely extension by definition. The extension for-
mulas directly yield the structural clause form.

DEFINITION 3.3. Let F' be a closed formula and F be the set of all defining

formulas obtained from F. Then the structural clause form of F' is the set
Vstruc(F) defined by

’YStruc U{VO |B € '7:} U {|_ AF}

where v is the operator of the standard clause form transformation and in all
defining formulas 7o (G < H) is defined by v ((G — H) A (H = G)).

Like g also vstruc is satisfiability preserving and thus weakly correct (a formal
proof can be found in [12]). For practical reasons one can avoid to construct
defining formulas for atoms. These would have the form (VZ)(Pg(Z) + Q(Z)). It
is easy to see that this results only in a renaming of the atoms themselves making
the corresponding clauses redundant. The structural normal form subjected to
this improvement is denoted by e (F).

EXAMPLE 3.1. Let F = (Vz)P(z) V (P(a) A Q(b)).
The defining formulas (omitting the atomic level) are the following ones:
=Ap & (A1 V 4r),
=A; & (Vz)P(z),
E3 = Ay ¢ (P(a) A Q(D)).
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We now compute the standard clause forms C;: vo(E;) and obtain
Ci={Arpt A1, As; A1+ Ap; AsF Ap},
Co={A1 F P(z); P(c) F A1},
C3 ={A2F P(a); A2 F Q(b); P(a),Q(b) - A2}

Now
ry;truc(F) = {l_ AF} u Cl UC2 UCg.

Note that in computing C; we have to apply skolemization and thus obtain
the new constant symbol c. #

In Example 3.1 the structural clause form consists of nine clauses, while
Y% (F) = {+ P(z),P(a); - P(z),Q(b)} and thus consists of two clauses only.
It might appear that structural transformation is much more expensive, but this
is deceptive: the worst-case complexity of 7struc is quadratic (in propositional
logic even linear), but that of vy is exponential (even for propositional prob-
lems). Moreover ~grye preserves the structure of the formula and may lead to
much shorter proofs. In fact it is proven in [3] that there exists a sequence of
clause sets C,, fulfilling the following conditions:

* Ystrue(Cn) has resolution refutations of length < 22"
e all resolution refutations of v¢(C,) are longer than s(n — 1), where s is a
nonelementary function defined by s(0) = 1, s(n + 1) = 25(%).
Note that s(n) grows faster than any fixed iteration of the exponential function.
The result above is obtained by using the complexity of cut-elimination (which
is nonelementary) and the simulation of cut-free LK (and of LK with analytic
cut) shown in the next subsection.

In [13] Egly and Rath proved that structural clause form transformation is not
only superior in theory but also in practice. They gave a thorough experimental
comparison with the standard transformation: the version of the prover using
structural transformation did not only behave better in average but could handle
problems unsolvable with the standard version. This shows that preservation of
logical structure in normal form computations pays out also in practice.

3.3. Simulation of LK by Resolution. With 74,y we have an operator
which does not only map a formula into a set of clauses but also encodes all of its
subformulas by new labels represented by new predicate symbols. This makes it
possible to simulate inferences in LK by resolution deductions. For simplicity
we only present the propositional case, for the full first-order simulation see [12]
or [3].

In the first step we map sequents into clauses; all we have to do is to use
atomic labels for formulas like in structural clause transformation. So a sequent
of the form

F,...,F,FGq,... , G,
is represented by the clause
Ap, ..., Ap, F Ag,,... ,Ac

Now assume that we have a cut-free proof ¢ of the sequent F' F (which proves
that F' is unsatisfiable). Then we construct Jstruc(F'). The simulation of logical

n*
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introduction rules then is performed via resolution using the clauses encoding
these introductions. We show the procedure for A : r and — : [ which suffices to
illustrate the nature of this transformation.

Let 71, m2 LK-proofs and 7 be a subderivation of 3 of the form:

(m1) (12)
Sl: Fl I— Al,G SQZ FQ }— AQ,H
Ss3: I'y,Ts = Al,AQ,G/\H

Now let C1: A1 F ©1,Ag and Cy: As F ©O2, A be the clauses corresponding
to S1,S2. Assume inductively that resolution derivations A; of C; and A2 of Cs
already exist. We construct a resolution derivation of C, the clause representing
S3. By definition of ~gtruc(F) and by the fact that the formula G A H is a
subformula of F' (note that we have the subformula property!) the set Ystruc(F')
contains the clauses

Aq,Ar b Agam; Aanr b Ag; Agar b Am.

Using these clauses we can construct the following resolution derivation A:

A:r

(A1)
(A2) A FO1,A¢ Ag,Ar bt Agrn R
Ay -0y, Ay Aa, A F O, Agan

R
A27 Al - 917 927 AG/\H
which is a resolution derivation of a clause representing S3. So A simulates 7.
Now we illustrate the case of the negation introduction to the left. Let 7 be a
subproof of ¥ of the form

(')
S THAG
S: G TFA i

and X be a resolution proof of the clause A F ©, Ag representing S’. As -G is a
subformula of F the set Ys¢ruc(F') contains the clauses F Ag, A-g and Ag, A-g F.
But then the following resolution derivation A
\)
AFO,Ag Ag,A-gt
Ag,A-0O

yields a representation of S.

Similar transformations can be constructed for the other connectives and infer-
ences. Finally we obtain a resolution derivation p simulating . p is a resolution
derivation of the clause Ar . The final step uses the clause F Ar which is in
Ystrue (F) by definition and eventually yields the resolution refutation

(p)
Ap b F Ap

I_

which is a refutation of Ygirue (F')UD where D is a set of tautological clauses of the
form Ap - Ap representing the initial sequents of ¥. Note that every resolution
refutation can be transformed into another (even shorter) one which is tautology-
free (see e.g. [30]); therefore we can get rid of the set D and eventually obtain a
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refutation p’ of Ystruc(F') alone. Note that the whole simulation is polynomial: the
length of the resolution proof (counting the number of occurrences of formulas
in a proof) is linear in the length of the LK-proof; the symbolic length can be
quadratic due to the introduction of Skolem terms.

With ~s¢ruec we can not only simulate the cut-free LK but also LK with analytic
cut (a cut is called analytic if the cut formula occurs as subformula in the end
sequent). Indeed if A is the cut formula in an inference of an LK-proof ¢ of
F I and G is subformula of F' we have an atom Ag(Z) and the defining formula
for G; thus the cut with G can be simulated by resolution with Ag(#). If we
add arbitrary formulas G and construct Ystruc(G) we can even polynomially
simulate full LK. This stronger form of structural transformation is called the
extension principle; it was introduced (for first-order logic) by E. Eder [12]. Thus
resolution + extension is capable of simulating virtually every logic calculus in
an easy way: once we have simulated LK we can use Gentzen’s transformations
in [17] to simulate natural deduction and Hilbert type calculi.

§4. Resolution Refinements. As resolution is a calculus for proof search,
a main direction of improvement was (since the very beginning of resolution
theorem proving) the reduction of possible resolution deductions under preser-
vation of completeness. Generally we call any restriction of resolution deduction
a resolution refinement. Restrictions of the resolution principle did not only
improve the efficiency of theorem provers but also lead to the development of
logic programming and decision procedures; the latter application area will be
treated in Section 5. In many applications of resolution we are not interested
in the deductions themselves but rather in the deductive closure (i.e. in the set
of derivable clauses). This aspect of deduction is best described by resolution
operators.

DEFINITION 4.1 (resolution operator). Let C be a set of clauses and Res(C)
denote the set of all resolvents definable from C and subjected to a normalization
under a standard renaming of variables. Then we define the operator R, the
operator of unrestricted resolution and its deductive closure R* by

R(C) =CUTRes(C), R°(C)=C,
R™Y(C) = R(R'(C)), R*(C)=J R () ¢

ielN
Note that, by the completeness of the resolution principle, we have Fe€ R*(C)
for unsatisfiable sets of clauses C. By the undecidability of clause logic R*(C)
must be infinite for some satisfiable sets of clauses C.
Refinement operators can be defined in a similar way; we only have to replace
Res by another operator.

DEFINITION 4.2 (refinement operator). A resolution refinement operator R,
is a mapping from sets of clauses to sets of clauses defined in the following way:
There exists a (one-step) operator g; s.t.

* R,(C) =CUp:(C),

e o, is recursive,

e 0,(C) is a finite subset of R*(C).
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Again the deductive closure is defined as
R3(C) =C, Ry (C) = Ru(R;(C)),
R;(C)=J R.(0)- ¢

ieIN

The requirement g,(C) C R*(C), instead of p,(C) C Res(C), serves the pur-
pose to encompass methods of macro-inference (several resolution steps may be
considered as primitive inference step). Such a principle is hyperresolution which
will be described in this section. Not all refinements can be formulated within
the framework of operators; indeed linear refinements are defined via the restric-
tion of the resolution tree, which cannot be formalized by operators (for details
see [30]).

4.1. Ordering Refinements. The use of ordering refinements is based on
the idea to keep resolvents “small”. This does not only lead to smaller clauses
during deduction but also to an improved termination behavior of operators. The
most common ordering principle of this type is atom ordering; in this restriction
no resolvents are admitted which contain atoms more complex than the resolved
one.

DEFINITION 4.3. An A-ordering (atom ordering) < is a binary relation on
atoms with the following properties:
A1 < isirreflexive,
A.2 < is transitive,
A.3 For all atoms A, B and for all substitutions §: A < B implies A6 < Bf. {

The property A.3 guarantees the lifting property for A-orderings which is vital
to completeness.

ExampPLE 4.1. Let A and B be two arbitrary atoms. We define the depth
ordering <4 by

A<y B iff
dl. 7(4) < 7(B),
d2. var(A) C var(B) and Tmax(Z, A) < Tmax(z, B) for x € var(A).

where 7 is the term depth and 7Tiax(z, A) the maximal depth of the variable x
in A.

It is easy to see that the depth ordering <4 fulfils A.1,A.2,A.3 and thus is
indeed an A-ordering. Note that by condition d1. alone this would not be the
case:

Assume that P(z) <4 P(f(a)). Then by A.3 (using § = {z + f(a)}) we have
P(z)8 <4 P(f(a))d, i.e. P(f(a)) <q P(f(a)). But the last relation contradicts
A.1. Generally A < B is impossible for unifiable atoms A and B.

Some further examples for the < -relation:

P(way) <d P(f(w),f(y)), P(.’L‘,.’L‘) =d Q(g(way))7
Q(z) A4 Q(f(a)): d2. is violated,
Q(f(a)) A4 Q(z): dl. is violated. i

Another A-ordering which will turn out useful in the next section is comparing
rather the size than the depth of terms.
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EXAMPLE 4.2. We define an ordering by first comparing functional terms:

two functional terms are called similarif s = g(r1,... ,r,) and t = f(w1,... ,wy)
and {ry,...,mn} = {wi,... ,w,}. Similar terms may have different top symbols
but their arguments are equal under permutations.

A functional term s dominates a functional term ¢ if ¢ has less arguments than
s or more formally

e s=f(ri,...,m), t=g(wi,... ,wn),

e n>m,

o {wi,...,wn}tC{ry,...,r}.

The concepts above can be used in defining the term ordering <1, where s <; ¢
iff

e s properly occurs in ¢ or

e { dominates s or

e t contains a proper subterm which dominates s or is similar to s.

Some examples for <;:
f(z,y) <1 h(z,y,z): the second term dominates the first one.
f(z,y) #1 g(x,y): the terms are similar.
g(y,z) <1 g(f(z,y),z): the second term contains a proper subterm which is
similar to the first term.

The ordering <; can easily be extended to an atom ordering <, defined by:
A <9 B iff there exists an argument ¢ of B such that for all arguments s of A
we have s <; t.

Some examples for <s:

P(z,y) <2 Q(f(z,y)): by z <1 f(z,y) and y <1 f(z,y).
P(z,2) A2 Q(f(z,9)): by z A1 f(z,y). il

We define the A-ordering refinement via g (C), which describes the set of all
<-resolvents in C. The resolved atom of a resolution is the atom cut out by
resolution (after application of the m.g.u.s).

DEFINITION 4.4 (ordered resolution). Let C be a set of clauses and < be an
A-ordering. We define C € p<(C) iff C' € Res(C) and for no atom B in C:
A < B, where A is the resolved atom of the corresponding resolution.

Remark: Definition 4.4 restricts resolvents in a way that only maximal atoms in
a clause may be resolved. But note that the ordering has to be considered after
application of the m.g.u. (this ordering principle is called aposteriori ordering).

#
ExamPLE 4.3. Let <4 be the ordering from Example 4.1 and
C = {r P(a); P(z) - R(f(2)); R(y) - R(f(¥)); R(f*(a)) F}.
Then
R%d (C)
R%,(C)
R%,(C)

CU{R(f(@) F, P(f(a) F},
R, () U{R(a) F, P(a)+},
R2,(0) = R2,(€) U{H}.
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Note that there are more clauses in R*(C). E.g. + R(f(a)) € Res(C), but
here P(a) is the resolved atom and P(a) <4 R(f(a)), thus - R(f(a)) & 0<,(C).
Similarly P(z1) F R(f?(z1)) € Res(C)—0<,(C), as the resolved atom is R(f(x1))
and R(f(21)) <4 R(f*(21)). #

Kowalski and Hayes have shown in [28] that R~ is complete for any A-ordering
<, i.e. € R%(C) whenever C is unsatisfiable. We will show in Section 5 that
completeness and good termination properties make ordering refinements the
ideal tool for resolution decision procedures.

4.2. Hyperresolution. While ordered resolution uses the complexity of atoms
to restrict resolution, hyperresolution concentrates on the sign of clauses. We
call a clause positive if it is of the form F A;,...,A,. Roughly speaking hy-
perresolution is the deduction principle where only positive clauses (and ) are
derivable; this is only possible if one-step resolution is replaced by many-step
inferences. The following example motivates this principle of macro-inference:

ExXAMPLE 4.4. Let C be the set of clauses {Cy,C2,C3,Cy} for
{Cl =+ P(aa b)702 =+ P(ba (l),Cg = P(w;y)aP(sz) = P(-’E,Z),C4 = P(aaa) '_}

Then in the following resolution refutation one of the resolving clauses is always
positive:

F P(b,a) P(z,y),P(y,z)F P(z,z)
t P(a,b) P(z,b) - P(z,a R
F P(a,a) R P(a,a)
F R

The clause P(z,b) - P(x,a) can be interpreted an intermediary result leading
to the clause F P(a,a). So we say that - P(a,a) is a hyperresolvent of the clash
sequence (C3;C1,C2). In this sense the only “macro-resolvents” are F P(a,a)
and . Note that C3 may not be resolved with C4 as none of them is positive.

DEFINITION 4.5. Let C be a nonpositive clause and D, ..., D, be positive
clauses; then S: (C;Dq,...,D,) is called a clash sequence. Let Cyp = C and
Ciy1 € Res({Cs, Diq1}) fori=1,... ,n— 1. If C, is defined and positive then
it is called a hyperresolvent of S. We define the set of all hyperresolvents from
a set of clauses C as g (C). The corresponding resolution operator Ry is called
the operator of hyperresolution.

Remark: The operator Ry plays an important role in logic programming. In
particular Ry coincides with the operator Tp (P being a logic program) in
Horn logic; Tp defines the least fixed point of a logic program in the declarative
semantics [31]. #

Hyperresolution was shown complete by J.A. Robinson in [36]. The construc-
tion of hyperresolvents can be subjected to various additional restrictions, like re-
striction of factoring to positive clauses and strict ordering of nonpositive clauses
(see [30]).

If we take C as in Example 4.4 then R} (C) = C U {F P(a,a),F} and all
produced clauses contain at most one atom. Indeed, on Horn logic, Ry produces
only positive unit clauses and (possibly) F (a clause is Horn if it is of the form
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Ar,..., A, For Ay,... A, F B for n > 0). On satisfiable sets of Horn clauses
Ry can be interpreted as a model builder: If Ry (C) = C and F¢ C then the
positive clauses in Ry (C) represent a (minimal) Herbrand model of C (for a
proof see e.g. [30]).

EXAMPLE 4.5. Let
C ={F P(a); P(x) F P(f(x)); P(b) F}.
Then C is satisfiable and
Ry (€C) =CU{r P(f"(a))ln > 1}.

Note that R};(C) is a fixed point of the operator Ry and F¢ R}, (C).

The set of positive clauses in R} (C) is just A: {F P(f"(a))ln > 0}. The
corresponding atoms define a Herbrand model T' where a ground atom A is true
iniff - A € A. Note that P(f"(b)) is false in I for all n > 0.

Unfortunately R}, (C) is infinite and thus this model is not produced in finitely
many steps. If we apply R, to C then it is easily verified that R* (C) = C;
this gives us the answer that C is satisfiable, but we do not have any information
about models.

§5. Resolution and the Decision Problem.

5.1. The Decision Problem. The decision problem (or the “Entscheidungs-
problem”) of first-order logic can be traced back into the early years of the 20th
century. Around 1920 Hilbert formulated the problem to find an algorithm which
decides the validity of formulas in first-order predicate logic (see e.g. [24]). He
called this decision problem the fundamental problem of mathematical logic.

Between 1920 and 1930 a positive solution of the decision problem seemed
to be merely a question of mathematical invention. Indeed some progress was
achieved soon as decidable subclasses of predicate logic were found. The decision
algorithms provided for these classes were clearly effective in any intuitive sense
of the word (note that before publication of Turing’s landmark paper, no formal
concept of algorithm was available). Omne of the first results (achieved even
before the general problem was formulated by Hilbert) was the decidability of
the monadic class [32] (i.e. the class of first order formulas containing only unary
predicate— and no function symbols). In the same paper Lowenheim proved
that dyadic logic (i.e. the subclass where all predicate symbols are binary) is
a reduction class, i.e. a class of first-order formulas effectively encoding full
predicate logic. In the time between world war I and world war IT prominent
logicians attacked this problem. The initial strategy (probably) was to enlarge
the decidable classes and to “shrink” the reduction classes till they eventually
meet at some point (the outcome would have been the decidability of first-order
logic). But in 1936 A. Church succeeded to prove the undecidability of first-
order logic and thus the unsolvability of the (general) decision problem [10]. An
immediate consequence of Church’s result was the undecidability of all reduction
classes. Despite this negative result, the interest in the decision problem was kept
alive, the focus shifting to the exploration of the borderline between decidable
and undecidable classes.
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In more recent research on the decision problem the satisfiability problem
instead of the validity problem is investigated. Basically this is just a matter of
taste as A is valid iff = A is unsatisfiable.

Above we mentioned the monadic and the dyadic classes which are charac-
terized by the arity of predicate symbols. Another type of syntax restriction
concerns the quantifier prefix of prenex formulas. Some of the prenex classes
shown decidable (i.e. the satisfiability problem of these classes was proved de-
cidable) before publication of Church’s result are: V3* (the Ackermann class [1]),
WW3* (the Gidel class [21]), and 3*V* (the Bernays—Schinfinkel class [7]).

Slight changes in the prefixes above lead to undecidable classes, e.g. VIV
and VYVV3 define prenex classes with undecidable satisfiability problems. For a
thorough treatment of the decision problem as a whole see [9].

The methods applied to prove decidability of classes are at least as interest-
ing as the classes themselves. In particular, the decidability of the Bernays—
Schonfinkel class can be proved via the finite-model-property of this class (i.e.
there exists a finite model iff there exists a model at all). A class enjoying this
property is called finitely controllable. Most of the original proofs of decidability
for the classes mentioned above were based on the finite—-model-property. In fact
the set of all first-order formulas having finite models is recursively enumerable.
Thus in performing search for a refutation and for a finite model in parallel, we
obtain a decision procedure. Clearly these model-theoretic methods were de-
signed to prove decidability rather than to give efficient decision algorithms. In
fact, the algorithms extracted from this method are based on exhaustive search
and hardly are candidates for an even modest calculus ratiocinator. It turned
out that the satisfiability problem of decidable classes can be handled by proof
theoretic means on a larger scale. The most appropriate candidate for such a
proof theoretic approach is resolution.

5.2. Resolution Decision procedures. Suppose that we start a theorem
prover (i.e. a complete resolution refinement R,) on a set of clauses C which
may be satisfiable or unsatisfiable. Obviously there are three possibilities:

1. R, terminates on C and refutes C.
Because R, is correct and € R, (C) we know that C is unsatisfiable.

2. R, terminates on C without deriving F.
By the completeness of R, C must be satisfiable.

3. R, does not terminate on C:
In this case R%(C) (the set of all clauses derivable by R, from C) is infinite
and ¢ R%(C) (we assume that the production of new clauses is stopped as
soon as F is derived). Like in case 2) C is satisfiable, but we cannot detect
this property just by computing R%(C).

As clause logic — being a reduction class of first-order logic — is undecidable we
know that for every complete refinement operator R, there must exist a (finite)
set of clauses C s.t. R%(C) is infinite. That means it is, in principle, impossible
to avoid nontermination on all sets of clauses. Let us investigate this point in
somewhat more detail:

Let F be a sentence of (first-order) predicate logic. Using a normal form
transformation we can transform F into a sat-equivalent set of clauses C. By
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the arguments above R, must be nonterminating on some finite, satisfiable sets
of clauses; therefore case 3) mentioned above cannot be avoided in general. But
avoiding case 3) for specific subclasses of clause logic is precisely the principle
of resolution decision procedures! It leads to the following method for proving
decidability of (the satisfiability problem of) a first-order class T:

a: Transform the formulas in I into their sat-equivalent clause forms (resulting
in a clausal class I'' corresponding to T').
b: Find a complete resolution refinement which terminates on I".

This principle is quite general and can be applied with other calculi than res-
olution and other normal forms than clause form. In 1968 S.Y. Maslov proved
the decidability of the so called K—class (a decision class properly containing the
Godel class) using a similar approach; it is based on the so called inverse method,
which is a resolution—type method formulated within the framework of a sequent
calculus [34].

In the same spirit as Maslov, but on the basis of the resolution calculus, Joyner
showed in his thesis [26] that resolution theorem provers can be used as decision
procedures for some classical prenex classes (e.g. the Ackermann— and the Godel
class). His idea to find complete resolution refinements R, which terminate on
clause classes corresponding to prenex classes, lead to the general methodology
of resolution decision procedures developed in [14].

Even unrestricted resolution can be useful in proving the decidability of first-
order classes. An example is Herbrand’s class HC [23], where HC is the class of
all first-order formulas of the form

(lel) Tt (Qnm'n)(Ll A A Lm)
for function-free literals L1, ... , L,,.

THEOREM 5.1. The satisfiability problem of HC is decidable.

PROOF. Skolemization of formulas in HC directly yields a clausal class HC’
consisting of finite sets of unit clauses. Now let

C={|_A1,...,|_Am,B]_ F,,BHF}

for some atoms Ai,...,An,,B1,...,By; then, clearly, R*(C) = C or R*(C) =
C U {F}. Thus for all C € HC’ R*(C) is finite and, consequently, unrestricted
resolution decides HC’ and thus HC. -
The proof of the theorem above shows the power of the unification principle
which renders an originally complicated problem trivial.
However unrestricted resolution fails on very simple (satisfiable) sets of clauses:

EXAMPLE 5.1. Let F' = P(a) A(Vz)(P(z) < —~P(f(x))). Then F is satisfiable
and (via the standard transformation) yields the set of clauses
C ={F P(a); F P(x), P(f(2)); P(x),P(f(x)) F}.

As C is satisfiable ¢ R*(C). Moreover, - P(z), P(f?"*1(z)) € R*(C) for all
n € IN, thus R*(C) is infinite and resolution does not terminate on C.

Applying the A-ordering refinement R, (see Example 4.1) to the set of clauses
C in Example 5.1 we just obtain R% (C) = CU{P(z) - P(z)}. So -¢ R% (C)
and, by the completeness of R~ ,, we conclude that C is satisfiable. i
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R, does not only work in Example 5.1 but gives a decision procedure of some
well-known first-order classes, in particular of the Ackermann class:
Let us consider a formula of the form

F: Az1) - Fzmn)Vy)(321) - (Fzi) M (21, - s Ty 20,5001 5 28, Y)

where k,m > 0 and M is a function— and constant free matrix. By skolemizing
F we obtain a formula

F': (V)M (ct,... s em, f1®), - fe®),v),

where ¢y, ... ,cn are (different) constant symbols and fy, ..., fr are (different)
one-place function symbols. In transforming the matrix of F’ into conjunctive
normal form (via the standard transformation) we obtain a set of clauses C
fulfilling the following properties:

1) All clauses contain at most one variable,

2) all function symbols occurring in C are unary,

3) the term depth of all clauses C in C is < 1.

In particular all sets of clauses obtained from the Ackermann class belong to
the more general one-variable class introduced in the following definition:

DEFINITION 5.1. The class VARI (also called the one—variable class) is the
set of all finite sets of clauses C fulfilling the following condition: All C' € C
contain at most one variable.

We have seen that the clause forms of the formulas of the Ackermann class
belong to VARI; on the other hand there exist sets of clauses in VARI which can-
not be obtained by transforming Ackermann formulas into clause form. Clearly a
decision procedure for VARI yields a decision procedure for Ackermann’s class.

THEOREM 5.2. The class VARI can be decided by the A—ordering <q or more
ezactly: RY, (C) is finite for all C € VARI.

ProoOF. In [30]. In fact a more general result is actually proven as VARI is
not invariant under R,. So VARI is extended to a class K which is invariant
under R, (even under unrestricted resolution R). Then it is shown that Ry,
terminates on K. -

Remark: The termination of R, on VARI only yields its decidability because
R, is complete! But the completeness of A-ordering refinements is a general
result in automated deduction. Also the proof that < is indeed an A-ordering
is quite simple. Thus the the major complexity of the proof lies in showing
termination. i

It is not just VARI and the Ackermann class which can be decided by ordered
resolution. In fact there is a broad range of traditional and new classes which
can be decided by some ordering refinement (see [14]). Another example is the
monadic class which can be decided via the A-ordering <, defined in Exam-
ple 4.2; we only have to apply R, to the clausal representation MON’ of the
monadic class:

DEFINITION 5.2. Let MON be the monadic class. Then MON” is the class of
all sets of clauses C obtained via the standard clause form transformation from
MON.



26 ALEXANDER LEITSCH
THEOREM 5.3. R, decides MON’, i.e. for allC € MON’ R%,_(C) is finite.
PROOF. in [27] and [30]. 4
ExAMPLE 5.2. Let F' be the monadic formula

(Fz1)(Fz2) (Vy1) (Vy2) 3z3) (P(21) A (=P(y1) V P(z3)) A ~P(z2)).

Then the corresponding set of clauses is

C: {F P(a); P(y1) = P(f(y1,92)); P(b) F}.

It is easy to see that R%, (C) = C, which gives a trivial proof of the satisfiability
of C. On the other hand unrestricted resolution does not terminate on C. #

Note that termination of resolution decision procedures is the key for proving
decidability of classes. But the termination of resolution refinements is much less
dependent on the signature of problems than the applicability of model theoretic
methods. Therefore resolution decision theory leads to several syntactic exten-
sions of the traditional first-order decision classes [14]. Concerning the decision
problem itself resolution refinements thus offer an elegant tool to prove decidabil-
ity of first-order classes; therefore they can be considered as a general theoretical
methodology in mathematical logic. Moreover they are useful for solving concrete
satisfiability problems and are most essential to the efficiency of theorem proving
programs.

§6. Cut-elimination by Resolution. Cut-elimination is one of the most
important techniques of proof transformation. Roughly speaking, eliminating
cuts from a proof generates a new proof without lemmas, which essentially con-
sists of the syntactic material of the proven theorem; i.e. we obtain proofs fulfill-
ing the subformula property. Traditionally cut-elimination served the purpose to
show consistency of calculi and thus played a central role in metamathematics.
In this traditional context the aim is to define just a constructive method for elim-
inating cuts, its actual use as an algorithm is of minor importance. But in more
recent time J.Y. Girard demonstrated that cut-elimination on real mathemati-
cal proofs may produce valuable mathematical information [19]. In particular he
showed, how a proof of van der Waerden’s theorem using concepts of topology
can be transformed into an elementary combinatorial proof by means of cut-
elimination. Thus it makes sense to investigate cut-elimination for single proofs,
in order to obtain additional mathematical information on a theorem. But then
an algorithmic approach to cut-elimination becomes more interesting.

The standard method of cut-elimination is that of Gentzen defined in his fa-
mous “Hauptsatz” [17]. The method is essentially a nondeterministic algorithm
extracted from his (constructive) proof. Its characteristic feature is a stepwise
reduction of cut complexity. In this reduction the cut formulas are decomposed
w.r.t. their outermost logical operator (leading to a decrease of the logical com-
plexity). Moreover, the cut formulas to be eliminated must be rendered principal
formulas of inferences by adequate proof transformations (leading to a reduction
of the rank). Despite its elegance, Gentzen’s method is algorithmically very
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costly (of course we cannot blame Gentzen, as his aim was not to define an algo-
rithm!). The reason is that the method is largely independent of the derivations
and of the inner structure of the cut formulas.

The availability of resolution theorem proving and the fact that resolution is
in some sense a “subcalculus” of LK (see Section 3) makes resolution a natural
candidate in the investigation of cut-elimination. In this section we will infor-
mally present an algorithmic method of cut-elimination by resolution, an exact
and exhaustive treatment can be found in [5]. The resolution method substan-
tially differs from Gentzen’s one. In the first step a set of clauses is generated
from the derivations of the cut formulas. These sets of clauses are always unsat-
isfiable and thus have a resolution refutation. The construction of the resolution
refutation is the second step of the procedure. Note that this step represents
a direct application of automated theorem proving. The resolution refutation
obtained from the theorem prover then serves as a skeleton of an LK-proof with
only atomic cuts; this LK-proof is obtained by filling the skeleton with parts of
the original LK-proof (actually with proof projections). The last step consists
of the elimination of atomic cuts.

Although cut-elimination gave the original motivation to the development of
the resolution method, the approach is far more general: indeed, the elimination
of cuts appears as a special case of redundancy-elimination in LK-proofs. E.g.
it suffices that the left cut formula logically implies the right one; they need
not be syntactically equal. In fact the resolution method is largely a semantic
one. Furthermore the method can be generalized to a method of occurrence
elimination in LK-proofs which sheds more light on the role of redundancy in
proofs.

In the first step we reduce cut-elimination to formula-elimination: that means
we transform a proof ¢ with cuts into a cut-free proof ¢ of an extended end-
sequent; this transformation (unlike “real” cut-elimination) is harmless in the
sense that the time complexity is linear in the size of ¢.

DEFINITION 6.1. We define a mapping T,; which transforms an LK-proof
of a sequent S: I' F A with cut formulas A;,... A, into an LK-proof * of

V(Al —)Al)/\/‘\V(An—)An),Fl—A

in the following way: Take an uppermost cut and its derivation x:

(x1) (x2)
MFALA AlLFA;
O, I F A, A, Y
occurring in 1 and replace it by x’
(x1) (x2)
ImFAL,A ATLF A,
—:1

A= ATl I F Ay A

Afterwards apply V : l-inferences to the end-sequent of x' on the free variables
in A — A resulting in a proof x" of V(A — A),II;,IIs F Ay, As. Iterate the
procedure on the next uppermost cuts till all cuts are eliminated and keep all
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other inferences unchanged. The result is a proof ¢’ of the sequent S’ :

Finally 9* is obtained by contractions and A : I.
We call the new sequent S’ : the cut-extension of S w.r.t. 1. #

It is easy to see that Tcu:(¢) is indeed a cut-free proof of the cut-extension
of S w.r.t. ¥. The only nontrivial point is the preservation of the eigenvariable
conditions.

After transformation of the proof ¢ of S to T¢yi(1)) of the cut-extension S’ the
problem of cut-elimination in v can be reduced to the construction of a cut-free
proof of S from T¢y:(¢). The new problem then consists in the elimination of
the formula B: V(4; — A1) A...AV(4, — A,) on the left-hand-side of the end-
sequent. For technical reasons we assume that the end sequent of S is skolemized.
Note that LK-proofs can be skolemized by a polynomial transformation defined
in [4].

The first step in the formula-elimination procedure consists in the construction
of a set of clauses. This set corresponds to a left occurrence of a (valid) formula
in the end-sequent of an LK-proof. Roughly speaking we trace the derivation
of the formula B (encoding the cut formulas of the original proof) back to the
initial sequents. In the initial sequents we separate the parts which are ancestors
of B and obtain a set of clauses C where each C' € C is of the form -, AF, F A
or AF A. Going down in the proof we look whether the corresponding inference
works on ancestors of B or not. In the first case we have to subject the sets of
clauses to union, in the second one to a product. The formal definition is given
below:

DEFINITION 6.2. Let 9 be a cut-free proof of S and a be an occurrence of a
formula in S. We define the set of characteristic clauses CL(1),a) inductively:
Let i be an occurrence of a sequent S’ in 9; by anc(n,a) we denote the sub-
sequent S” of S’ which consists exactly of the formulas with occurrences being
ancestors of the occurrence a in S. Let 5 be the occurrence of an initial sequent
AF Ain ) and m (2) be the left (right) occurrence of A in A+ A. If neither
71 nor 152 is an ancestor of a then C,, = {F}; If both 7; and 7, are ancestors of «
then C,, = . Otherwise (exactly one of 11, 1 is ancestor of ) C;, = {anc(n, )},
ie. Cp = {AF}if my is ancestor of o and C;, = {F A} if 1, is ancestor of a.

Let us assume that the clause sets C) are already constructed for all sequent—
occurrences \ in ¢ with depth()\) < k (where the depth of an occurrence A is the
length of the path in the proof tree from the root to ).

Now let A be an occurrence with depth()\) = k+1. We distinguish the following
cases:

a: A is the consequent of u, i.e. a unary rule applied to u gives A. Here we
simply define Cy = C,,.
b: ) is the consequent of p; and ps, i.e. a binary rule X applied to g and
2 gives A.
bl: The auxiliary formulas of X are ancestors of «, i.e. the formulas
occur in anc(p, ), anc(pa, ). Then Cy =Cp, UC,,.
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b2: The auxiliary formulas of X are not ancestors of a. In this case we
define Cy = C,, ® C,, where
Finally CL(¢, ) is set to C, where v is the occurrence of the end-sequent. Note
that a is an occurrence in v and its own ancestor. #

ExaAMPLE 6.1. Let 4 be the proof (for u, v free variables, a a constant symbol)
1 )
(V2)(P(z) = Q=) - By)(P(a) = Q(y) ™
where 1); is the LK-proof:

t

E)(P@ = QW) F By(P@ = QW) ',
(V2)(Fy)(P(z) = Q)" F Fy)(Pla) = Qy))

The ancestors of the cut formula in ¢; and 12 are marked by *. From 9 we con-
struct the cut-extension ', where A denotes the cut formula (Vz)(3y)(P(z) —

Q(y)) of ¢

Y ()
A= A, (Vo) (P(z) = Q(z)) - Fy)(P(a) = Qy))
Let a be the occurrence of A — A in the end sequent S’ of ¢)'. We compute
the characteristic clauses CL(¢', a):

—:1

From the *-marks in the proofs ¢; and 12 (which indicate the ancestors of «)
we first get the sets of clauses corresponding to the initial sequents:

Ci={P(u) F}, C2 ={F Q(u)}, Cs3 ={F P(a)}, C4 = {Q(v) F}.
The first inference in ; (it is —: ) takes place on nonancestors of o — the
auxiliary formulas of the inference are not marked by *. Consequently we apply
® and obtain the set C1 2 = {P(u) F Q(u)}. The following inferences in ¢; are
all unary and so we obtain
CL(¢1, 1) = {P(u) F Q(u)}

for a; being the occurrence of the ancestor of « in the end-sequent of ;.
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The first inference in 12 takes place on ancestors of a (the auxiliary for-
mulas are %-ed) and we have to apply the U on C3,Cs. We obtain C34 = {F-
P(a), Q(v) F}. Like in 4 all following inferences in ¢, are unary leaving the
set of clauses unchanged. Let ay be the ancestor of « in the end-sequent of 5.
Then the corresponding set of clauses is

CL(¢2,a2) = {F P(a), Q(v)F}.

The last inference —: [ in 9’ takes place on ancestors of @ and we have to apply
Uon C 2 and C3 4. This eventually yields

CL(Y',a) ={P(u) - Q(u), + P(a), Q(v)F}. 4

It is easy to verify that the set of characteristic clauses CL(¢', @) constructed
in the example above is unsatisfiable. This is not merely a coincidence, but a
general principle expressed in the next proposition.

PROPOSITION 6.1. Let ¢ be a cut-free proof of the sequent S and o be a left-
occurrence of a valid formula occurring in S. Then the set of clauses CL{1), @)
is unsatisfiable.

PROOF. in [4]. Basically it is shown that B b, for B occurring at «, (which is
an unsatisfiable sequent) is derivable in LK from the initial axioms CL(¢, ).

Remark: The proof of Proposition 6.1 might suggest that the set of clauses
CL(%, @) is just a clausal normal form of the formula —B corresponding to the
sequent B F; but this is not the case! As a simple counterexample consider the
following derivation :

Q) - Q(v)
FQ(0) = Q) y
P(a) = P(a) F Q(b) = Q) '~

The only initial sequent of ¢ is Q(b) F Q(b). Neither the left- nor the right
occurrence of Q(b) in this sequent is an ancestor of the occurrence a of P(a) —
P(a) in the end sequent. Thus the set of clauses C corresponding to the node
of the initial sequent is {F}. As there are only unary rules in ¢ we finally
obtain CL(¢,a) = C = {F}. On the other hand no traditional transformation to
normal form (like standard- or structural transformation) transforms the formula
—(P(a) — P(a)) into {F}. In particular the standard transformation gives the
set of clauses D: {F P(a), P(a) F}. The example above illustrates that the set
of clauses CL(¢, @) strongly depends on the derivation ¢ and not only on the
form of the formula on position a! We will see in the following presentation of
the method that the construction of CL(4,a) from the proof ¢ plays a central
role in the so-called proof projection (which cannot be performed on the basis
of ordinary clause forms). i

Now let CL(%, ) be the (unsatisfiable) set of clauses extracted from the LK-
proof of the extended sequent S. By the completeness of the resolution principle
there exists a resolution refutation v (in form of a tree) of the set of clauses
CL(%, @). 7y can be transformed into a ground refutation of CL(%, a):
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PROPOSITION 6.2. Let v be a tree resolution refutation of a set of clauses C.
Then there exists a ground instance ' of v s.t. ' is a tree resolution refutation
of C' where C' is a set of ground instances from C.

Proor. Let A be the simultaneous most general unifier of all the resolutions
in 7. Then A is also a resolution refutation where the resolution rule reduces
to atomic cut and contractions (i.e. to a mix, see [17]). Let o be an arbitrary
ground substitution of the variables of vA; then +': yAo is the desired resolution
refutation. =

Remark: We call the refutation v defined above a ground refutation correspond-
ing to 7. #

Now let 4’ be a ground refutation corresponding to a resolution refutation
v of CL(4,a). By our definition of resolution 4’ can easily transformed to an
LK-proof of + from C' with atomic cuts. Indeed, only additional contractions
are necessary to simulate factoring. The resulting LK-proof 7' will serve as a
skeleton of an LK-proof ¢ of I' - A with atomic cuts. Recall that S may be a
cut-extension B,I' - A of ' - A.

Thus ¢ corresponds (modulo the transformation T,;) to a reduction of a proof
with cuts to a proof with atomic cuts. The construction of ¢ from ' is based
on so called projections replacing the proof 1) of the cut-extension S by proofs
Y[C] of P,T F A,Q for clauses C: P - Q in C', where C’' is the set of ground
instances refuted by «'. The existence of such projections of 1) w.r.t. clauses
in C’', guaranteed by the lemma below, is the most important property of the
cut-elimination method based on resolution.

LEMMA 6.1. Let ¢ be a cut-free proof of a sequent S: B, F A s.t. T+ A is
skolemized, B is valid and « is the occurrence of B in S. Let C: P+ QQ be a
clause in CL(1),a). Then there exists a cut-free proof ¥[C] of P,T F A, Q with
I(W[C]) < U(¢) (wherel denotes the length of the proof, i.e. the number of nodes
occurring in the derivation tree).

PrOOF. We only give a proof sketch; a full formal proof can be found in [5].

The proof goes by induction on the depth of inference nodes in 1. In con-
structing ¥[C] we skip all inferences in 1 leading to the extension formula B.
In the other inferences with auxiliary formulas which are not ancestors of B we
select two clauses from the corresponding set of clauses and construct the corre-
sponding projections via the induction hypothesis. We concentrate on a binary
inference rule Xand the following proof x:

(p1) (p2)
(1) Ti B Ay (p2) Ta - Ay

(A) Iy, Iy = AL Ay
where p1, o, A are the nodes in the proof tree ¢ and P F @ is a clause in Cj.
We assume that the auxiliary formulas of X are not ancestors of a and that the
subsequents of T'; = A; defined by formulas which are not ancestors of B are
IT; - A; for 4 = 1,2. Then, by Definition 6.2, we have Cx = C,, ®C,,. Therefore
there are clauses P, - Q1 € Cy, and P2 F Q2 € C, s.t.

PEQ=P,,PF Q1,Qo.
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By induction hypothesis we obtain proofs pf of P;,II; - Ay, Q1 and ph of Py, II, -
As, Qo with 1(p}) < 1(p1) and I(ps) < I(p2). Then the projection corresponding
to the node A is x':

w6
P17H1|_A17Q1 P27H2}_A27Q2
PI;P%H;_)HIZ'_AIDAIWQI)QZ

Clearly I(x") < l(x)- =

Remark: For the projections ¥[C] we need the set of clause CL(t), a) as defined
in Definition 6.2. Here it is important that C: CL(v, @) is constructed from the
proof 1 itself! Thus C is not an ordinary clause form of =B constructed from the
syntax of B, but a clause form belonging to the derivation of B F within ¢. §

Once we we have constructed the projections ¢¥[C] we can “insert” them into
the resolution refutation . The formal procedure is defined below:

DEFINITION 6.3. Let 9 be a cut-free proof of S: B,I' - A s.t. B is valid,
' F A closed and skolemized and « the occurrence of B in S. Let 7/ a ground
refutation corresponding to a resolution refutation v of CL(%,a) s.t. 7' = ~vo.
We define an LK-proof v'[¢] inductively:

Let N be a leaf node in v labelled with a clause Co for C' € CL(%, a) and let
Co = PF Q. To N we assign the proof wy : ¥[C]o, where ¥[C] is the projection
of 1 to C as defined in Lemma 6.1 By definition wy is a cut-free proof of the

sequent I?,Fa - A_U,Q. By assumption S is closed and thus wy is a cut-free
proof of P,T'F A, Q.

Assume that N is a node in «y labelled with C' and with parent nodes N; labelled
with C7 and N> labelled with C5. Then, by definition of a resolution derivation, C
is a (ground) resolvent of C; and Cs. Therefore C; = P+ Q,A",Cy = A, R+T
and C = P, R+ Q, T for multisets of atoms P,Q, R, T and an atom A occurring
r-times in C; and s-times in Cy

Let wn, and wy, be the LK-proofs corresponding to N; and N,, respectively.
Assume that wy, is a proof of P,T* - A*¥ @, A" and wy, of A*, R,T' - AL, T
for k,1 € IN. Then wy, the LK-proof corresponding to IV, is defined as

C wm) (@)

P,T* AR Q, A7 A5 RT'F Al

P,TFrFAR QA " A RTFAL
P R TF - AR G T

, T "
T c:
cut

Let N, be the root node of '; then ~'[¢] is defined as wy, . #

If ¢ is a cut-free proof of B,T"' - A then 4'[¢/] in Definition 6.3 is a proof with
atomic cuts of T',... ,T'F A, ... ;A (note that the clause belonging to the root
node of 4" is F). Only additional contractions are necessary for getting a proof
4[] with atomic cuts of I' F A itself. It remains only to eliminate the atomic
cuts; to this aim any cut-elimination procedure (e.g. this in [17]) does the job.
The length of the proofs with atomic cuts is essentially defined by the length of

!

v
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THEOREM 6.1. Let 1) be a cut-free proof of a closed sequent S: B,I' = A, where
B is a valid formula occurring at o in S and T + A is skolemized. Furthermore let
~' be a ground refutation which corresponds to a resolution refutation of CL(1, a)
and ||v]| = max{||C|| | C in~}. Then there exists a proof 4[¢)] of T F A with
atomic cuts and [([¢]) < 2-1(D)(7)(2||v]] + 1).

PROOF. see [5] n

To illustrate the whole procedure described above we continue with Exam-
ple 6.1.

EXAMPLE 6.2. Let ¢’ be the proof of the sequent

S: A= A, (Va)(P(z) = Q(z)) F (Fy)(P(a) = Qy))
as defined in Example 6.1. We have shown that

CL(¥',a) = {P(u) F Q(u), +P(a), Qv)F}
where « is the occurrence of A — A in S.
We first define the projections of ¢’ w.r.t. clauses in CL(¢', a):

We start with ¢'[C1], the projection of ¥’ to C;: P(u) F Q(u):
The problem can be reduced to the construction of ¢ [C}] because of
CL(¥1, 1) = {P(u) - Q(u)}-
By definition of ¢; and of the projection, 11 [C1] is a proof of

P(u), (Vz)(P(z) = Q(z)) F Q(u).
The last inference in ¢’ applies to ancestors of a and thus ¢’'[C}] is defined as
(¢1[C1])
P(u), (Vz)(P(z) = Q(z)) - Q(u)
P(u), (Vz)(P(z) = Q(z)) F (Fy)(P(a) = Q(y)), Q(u)
We proceed “inductively” and construct ¢4 [C1]:
P(u) - P(u) Qu) F Q(u)
P(u), P(u) = Qu) - Q(u)
P(u), (Vz)(P(z) = Q(z)) F Q(u)
Putting the parts together we eventually obtain ¢'[C1]:
P(u) F P(u) Qu) - Q(u) Ny
P(u), P(u) = Q(u) - Q(u) 'v .
P(u), Vz)(P(z) = Qz)) F Q(u) "~
P(u), (Vz)(P(z) = Q(z)) - (Jy)(P(a) = Q(y)), Q(u)
For Cy =+ P(a) we obtain the projection ¢'[Cs]:
P@FP@
P F P@, )
F P(a) = Q(v), P(a) .
F (3y)(P(a) = Qy)), P(a) .
(¥2)(P(z) = Q@) F (3y)(P(a) = Q(v)), P(a) '~

w:r

—: 1
V:l

w:r
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In the next step we take a resolution refutation -y of CL(%, @), construct a ground
instance yo via a ground substitution ¢ and insert appropriate instances of ¥[C|o
into yo. The result is a proof with (only) atomic cuts of a sequent S’ in which
the occurrence « is eliminated.

Recall that

CL(®W',a) ={Cy: P(u) F Q(u), C2: F P(a), C3: Q(u) +}.
First we define a resolution refutation § of CL(¢)', a):
FP(a) P(u)tF Qu)

F Q) B owr
l_

R

and a corresponding ground refutation +:
b P(a) P(a)t Qa) R
FQ(a) Q(a) F
|_

The ground substitution defining the ground refutation is

R

o={u+ a,v+ a}.
Let x1 = ¢'[Ci]o, x2 = ¢'[Cslo and x3 = 9¥'[C3]o. For a more compact
representation let us write B for (Vz)(P(z) — Q(z)) and C for (Jy)(P(a) —

Q))-
Then #[¢'] is of the form

(x2) (x1)
Bt C,P(a) P(a),BF C,Q(a) (x3)
cut
B,Bt+ C,C,Q(a) Q(a),BFC
B.B.BFC.C.C et
BFC contractions

#[4'] can be considered as the result of a transformation eliminating the occur-
rence of A - A in S. ¢’ was defined as T¢y()) where ¢ is a proof of B + C.
Therefore 4[¢)'] is a proof of the same end-sequent with only atomic cuts. i

To put things together we obtain a procedure for occurrence-elimination, which
can be transformed into a cut-elimination procedure via T,;. We call this pro-
cedure OCERES (OCcurence-Elimination by RESolution) and display the main
steps below:

procedure OCERES(¢)):

input: A (skolemized) proof ¢, a left-occurrence a of a valid formula in the end-
sequent S of 1.
output: A cut-free proof x of the end-sequent S without the formula occurring
at a:

1. Compute CL(%, a).

2. Compute a ground resolution refutation v of CL(%), @).

3. Compute ¢ : A[¢].

4. Eliminate the atomic cuts in ¢.
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Then the cut-elimination procedure itself is simply defined as
CERES(v) = OCERES(T s (¥))-

Remark: As the worst-case complexity of cut-elimination is nonelementary (i.e.
its time complexity cannot be bounded by a fixed iteration of the exponential
function) we cannot expect CERES to be simply a fast algorithm. However it is
shown in [5] that, for some sequences of LK-proofs, CERES gives a nonelemen-
tary speed-up of Gentzen’s procedure. This speed-up is based on a “redundancy”
at the atomic level of the proofs which can be detected in the construction of
the set of clauses CL(%), @), but not by Gentzen’s procedure. By the availability
of efficient refinements and search strategies for resolution CERES also performs
quite well in experiments (see [6]). il
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