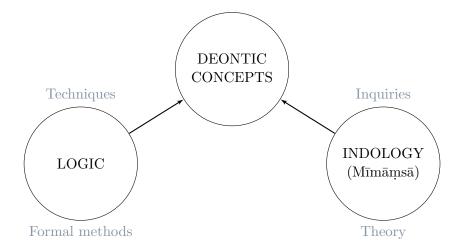
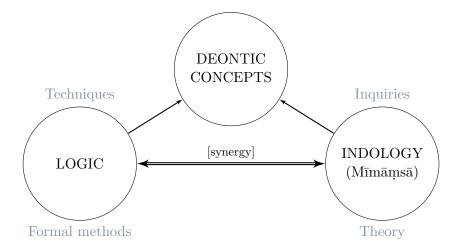
Mīmāmsā deontic logic: proof theory and applications

TU WIEN

Agata Ciabattoni Björn Lellmann Francesco A. Genco

Austrian Academy of Sciences


Elisa Freschi



The Big Picture

The Big Picture

 $M\bar{i}m\bar{a}ms\bar{a}$ (last centuries BCE - beginning of 20th c.)

Indian school of philosophy focused on the **interpretation of the Vedas** (sacred texts, II - I millennium BCE).

 $M\bar{i}m\bar{a}ms\bar{a}$ (last centuries BCE - beginning of 20th c.)

Indian school of philosophy focused on the **interpretation of the Vedas** (sacred texts, II - I millennium BCE).

चाःआग्रम्भग्रस्तिगञ्जभ्वनेगम्भ्रथं जम्मयूत्रभाषं एवगदिवेगदेवेग्त्रासं वीरवेग्नमंगञ्जमेत्रं यूत्तं ज्यूज्ये विश्वतं प्रमुक्त्रिंगजातीगस्त अत्त हिवेषु ग छत्ति ज्यूम्न गतेती क्रिय्कं द्व अस्तर विज्ञक्रेवः त्तराध्र वः रहेवे जाग्रम् स्रा १भयत् जांग राष्ट्रपत्तं जम्मे भूद्र क्रिय्यास्त्री त्वे अत्य स्त्रं ज्याग्रम्

Analysis of the **prescriptive** portions.

Interpretative principles $(ny\bar{a}yas)$

Rules formulated for the **interpretation** of Vedic **prescriptions**: hermeneutic, linguistic and **deontic**.

Interpretative principles $(ny\bar{a}yas)$

Rules formulated for the **interpretation** of Vedic **prescriptions**: hermeneutic, linguistic and **deontic**.

General rules, also applied in Indian jurisprudence (*Dharmaśāstra*).

Interpretative principles $(ny\bar{a}yas)$

Rules formulated for the **interpretation** of Vedic **prescriptions**: hermeneutic, linguistic and **deontic**.

General rules, also applied in Indian juris prudence $(Dharma s \bar{a} stra)$.

Main sources:

- **Pūrva Mīmāṃsā Sūtra** (**PMS**) by Jaimini, last centuries BCE;
- Śābarabhāṣya (ŚBh) by Śabara, first centuries CE.

Inferential reasoning

It was **employed** and **discussed** by Mīmāmsā authors: concept of **chain of inferences**.

Inferential reasoning

It was **employed** and **discussed** by Mīmāmsā authors: concept of **chain of inferences**.

A central concern: the absence of contradictions.

The Śyena controversy

1. श्येनेनाभिचरन् यजेत

2. न हिंस्यात् सर्वा भूतानि

The Śyena controversy

1.

If one wants to harm his enemy, one must perform the Śyena sacrifice

2.

One must not perform violence on any living being

The Śyena controversy

1.

If one wants to harm his enemy, one must perform the Śyena sacrifice

2.

One must not perform violence on any living being

1. and 2. cannot be contradictory, because the Vedas are not (by assumption).

Many different **explanations** have been proposed.

A Deontic Logic of Mīmāmsā

To capture Mīmāmsā reasoning:

A Deontic Logic of Mīmāmsā

To capture Mīmāmsā reasoning:

Basic Mīmāmsā Deontic Logic (bMDL)

Formalisation of the **deontic system employed** by the Mīmāmsā school.

A Deontic Logic of Mīmāmsā

To capture Mīmāmsā reasoning:

Basic Mīmāmsā Deontic Logic (bMDL)

Formalisation of the **deontic system employed** by the Mīmāmsā school.

Extraction of a new logic from nyāyas.

The Logic bMDL

Ingredients:

Classical Logic

 \blacksquare Reductio ad absurdum is admitted by Mīmāmsā authors.

When there is a contradiction (φ and not φ), at the denial of one alternative, the other is known (to be true).

Jayanta's Nyāyamañjarī, 9th c. CE

The Logic bMDL

Ingredients:

Classical Logic

 \blacksquare Reductio ad absurdum is admitted by Mīmāmsā authors.

When there is a contradiction (φ and not φ), at the denial of one alternative, the other is known (to be true).

Jayanta's Nyāyamañjarī, 9th c. CE

Dyadic deontic operator $\mathcal{O}(/)$

- $\mathcal{O}(\varphi/\psi)$ is for " φ is prescribed in case ψ is true".
- The addressee of a prescription is the one that desires its results (*adhikāra*).

The Logic bMDL

Ingredients:

Classical Logic

 \blacksquare Reductio ad absurdum is admitted by Mīmāmsā authors.

When there is a contradiction (φ and not φ), at the denial of one alternative, the other is known (to be true).

Jayanta's Nyāyamañjarī, 9th c. CE

Dyadic deontic operator $\mathcal{O}(/)$

- $\mathcal{O}(\varphi/\psi)$ is for " φ is prescribed in case ψ is true".
- The addressee of a prescription is the one that desires its results (*adhikāra*).
- Modal operator \square (logic S4)

From $Ny\bar{a}yas$ to Hilbert Axioms

The properties of the **deontic operator** $\mathcal{O}(/)$ are extracted from $ny\bar{a}yas$.

From $Ny\bar{a}yas$ to Hilbert Axioms, an Example

यत्र तूत्पत्त्यादयो न विध्यन्तरसिद्धास् तत्र स्वयमेव स्वसम्बन्धिनामुत्पत्त्यादिचतुष्टयं करोति

Rāmānujācārya's Tantrarahasya IV.4.3.3 (14th c. CE)

From $Ny\bar{a}yas$ to Hilbert Axioms, an Example

After many interactions with Indologists:

If a prescription enjoins something which has requirements, then it enjoins the requirements as well.

From $Ny\bar{a}yas$ to Hilbert Axioms, an Example

After many interactions with Indologists:

If a prescription enjoins something which has requirements, then it enjoins the requirements as well.

Axiom (1):

$$\Box(\varphi \to \psi) \land \mathcal{O}(\varphi/\theta) \to \mathcal{O}(\psi/\theta)$$

Basic Mīmāmsā Deontic Logic (bMDL)

The logic **bMDL** extends any Hilbert system for $\mathbf{S4}$ with the following axioms:

Mīmāmsā axioms

(1) $\Box(\varphi \to \psi) \land \mathcal{O}(\varphi/\theta) \to \mathcal{O}(\psi/\theta)$

(Rāmānujācārya's Tantrarahasya IV.4.3.3)

(2)
$$\Box(\psi \to \neg \varphi) \to \neg(\mathcal{O}(\varphi/\theta) \land \mathcal{O}(\psi/\theta))$$

(Kumārila's Tantravārttika on PMS 1.3.3)

(3) $\Box((\chi \to \theta) \land (\theta \to \chi)) \land \mathcal{O}(\varphi/\chi) \to \mathcal{O}(\varphi/\theta)$

(ŚBh on PMS 6.1.25)

Essential Logical Questions

Use of bMDL for **effective reasoning**

Is bMDL consistent? Is it decidable? How complex is it?

Essential Logical Questions

Use of bMDL for **effective reasoning**

Is bMDL consistent? Is it decidable? How complex is it?

Extraction of a suitable **analytic system** from the Hilbert axioms.

Essential Logical Questions

Use of bMDL for **effective reasoning**

Is bMDL consistent? Is it decidable? How complex is it?

Extraction of a suitable **analytic system** from the Hilbert axioms.

We employed the method in (Lellmann & Pattinson 2013) to define a **cut free sequent system** for bMDL:

 $\mathrm{G}_{\mathrm{bMDL}}$

The System G_{bMDL}

Standard propositional sequent rules. Modal rules of G_{bMDL}:

$$\frac{\Gamma^{\Box} \Rightarrow \varphi}{\Gamma \Rightarrow \Box \varphi, \Delta} 4 \qquad \frac{\Gamma, \Box \varphi, \varphi \Rightarrow \Delta}{\Gamma, \Box \varphi \Rightarrow \Delta} T$$

$$\frac{\Gamma^{\Box}, \varphi \Rightarrow \psi}{\Gamma, \mathcal{O}(\varphi/\theta) \Rightarrow \mathcal{O}(\psi/\chi), \Delta} Mon$$

$$\frac{\Gamma^{\Box}, \varphi \Rightarrow}{\Gamma, \mathcal{O}(\varphi/\theta) \Rightarrow \Delta} D_1 \qquad \frac{\Gamma^{\Box}, \varphi, \psi \Rightarrow \Gamma^{\Box}, \theta \Rightarrow \chi}{\Gamma, \mathcal{O}(\varphi/\theta), \mathcal{O}(\psi/\chi) \Rightarrow \Delta} D_2$$

where Γ^{\Box} contains all formulae of the form $\Box \xi$ contained in Γ .

The System G_{bMDL}

Standard propositional sequent rules. Modal rules of G_{bMDL} :

$$\frac{\Gamma^{\Box} \Rightarrow \varphi}{\Gamma \Rightarrow \Box \varphi, \Delta} 4 \qquad \frac{\Gamma, \Box \varphi, \varphi \Rightarrow \Delta}{\Gamma, \Box \varphi \Rightarrow \Delta} T$$
$$\frac{\Gamma^{\Box}, \varphi \Rightarrow \psi \quad \Gamma^{\Box}, \theta \Rightarrow \chi \quad \Gamma^{\Box}, \chi \Rightarrow \theta}{\Gamma, \mathcal{O}(\varphi/\theta) \Rightarrow \mathcal{O}(\psi/\chi), \Delta} Mon$$

$$\frac{\Gamma^{\Box}, \varphi \Rightarrow}{\Gamma, \mathcal{O}(\varphi/\theta) \Rightarrow \Delta} D_1 \qquad \frac{\Gamma^{\Box}, \varphi, \psi \Rightarrow \Gamma^{\Box}, \theta \Rightarrow \chi \quad \Gamma^{\Box}, \chi \Rightarrow \theta}{\Gamma, \mathcal{O}(\varphi/\theta), \mathcal{O}(\psi/\chi) \Rightarrow \Delta} D_2$$

where Γ^{\Box} contains all formulae of the form $\Box \xi$ contained in Γ .

Properties of our Calculus

■ The system G_{bMDL} + Cut is **sound and complete** for the logic **bMDL**.

$$\frac{\Gamma \Rightarrow \varphi, \Delta \quad \Sigma, \varphi \Rightarrow \Pi}{\Gamma, \Sigma \Rightarrow \Delta, \Pi} \text{ Cut}$$

Properties of our Calculus

■ The system G_{bMDL} + Cut is **sound and complete** for the logic **bMDL**.

$$\frac{\Gamma \Rightarrow \varphi, \Delta \quad \Sigma, \varphi \Rightarrow \Pi}{\Gamma, \Sigma \Rightarrow \Delta, \Pi} \text{ Cut}$$

- **Theorem. Cut elimination** holds for G_{bMDL} + Cut.
 - **Corollary**. The logic **bMDL** is **consistent**: $\perp \notin$ bMDL.

Properties of our Calculus

■ The system G_{bMDL} + Cut is **sound and complete** for the logic **bMDL**.

$$\frac{\Gamma \Rightarrow \varphi, \Delta \quad \Sigma, \varphi \Rightarrow \Pi}{\Gamma, \Sigma \Rightarrow \Delta, \Pi} \text{ Cut}$$

- **Theorem. Cut elimination** holds for G_{bMDL} + Cut.
 - **Corollary**. The logic **bMDL** is **consistent**: $\downarrow \notin$ bMDL.
- The termination of the *proof search procedure* guarantees the **decidability** of the logic.
- $bMDL \in EXPTIME$.

Back to the Śyena Controversy

- **1.** "If one wants to harm his enemy, one must perform the Syena sacrifice"
- 2. "One must not perform violence on any living being"
 - The Śyena harms the enemy
 - The enemy is a living being

Back to the Śyena Controversy

- 1. "If one wants to harm his enemy, one must perform the Syena sacrifice" $\sim \mathcal{O}(\text{syena/des_harm})$
- "One must not perform violence on any living being"
 → O(¬harm/T)
 - The Śyena harms the enemy, hence: syena \rightarrow harm_e
 - \blacksquare The enemy is a living being, hence: harm_e \rightarrow harm

A Syntactical Viewpoint on the Syena Controversy

Proposition. From the following set, in bMDL, \perp cannot be derived: {harm_e \rightarrow harm, syena \rightarrow harm_e, $\mathcal{O}(\neg \text{harm}/\intercal)$, $\mathcal{O}(\text{syena/des_harm})$ }

A Semantics

Countermodels, insights and explanations.

A Semantics

Countermodels, insights and explanations.

Semantics for **bMDL**:

- S4 **frame semantics** for □ (transitive and reflexive accessibility relation);
- **neighbourhood semantics** for *O* (each neighbourhood contains pairs of sets of worlds, only accessible worlds are considered).

We defined a **model** for

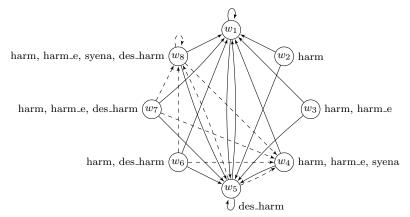
 $\Box(\mathrm{harm}_{-}\mathrm{e} \to \mathrm{harm}) \land \Box(\mathrm{syena} \to \mathrm{harm}_{-}\mathrm{e}) \land \Box(\mathcal{O}(\neg \mathrm{harm}/\intercal)) \land \Box(\mathcal{O}(\mathrm{syena}/\mathrm{des}_{-}\mathrm{harm}))$

The existence of this model proves that \perp cannot be derived in bMDL from the set {harm_e \rightarrow harm, syena \rightarrow harm_e, $\mathcal{O}(\neg \text{harm}/\top)$, $\mathcal{O}(\text{syena/des_harm})$ }

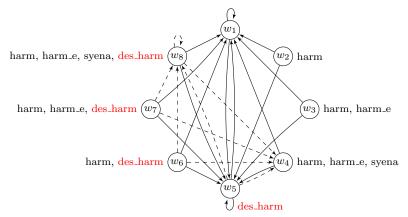
 $\left(\begin{array}{c} \text{Weak Deduction Theorem. For every sequent } \Gamma \Rightarrow \Delta:\\ \{\Rightarrow \varphi \mid \varphi \in \mathcal{A}\} \vdash_{\text{GDLCut}} \Gamma \Rightarrow \Delta \quad iff \quad \vdash_{\text{GDL}} \Box \mathcal{A}, \Gamma \Rightarrow \Delta. \end{array}\right)$

An $Adhik\bar{a}ra$ -based Model

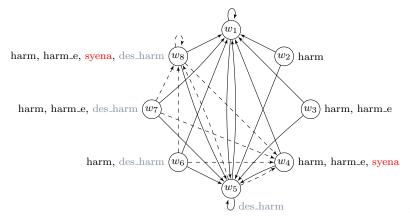
The model is based on the concept of $adhik\bar{a}ra$ (desires \sim responsibility \sim agency).

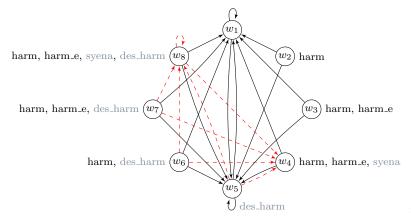

The model is based on the concept of $adhik\bar{a}ra$ (desires \sim responsibility \sim agency).

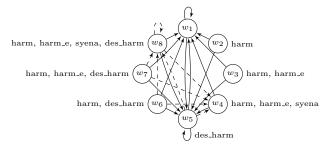
- A world of the model
 - represents a **possible state** w.r.t. *adhikāra*;
 - is a possible combination of relevant elements: desires, outcomes of prescriptions, and actions.
- E.g., {harm, harm_e, des_harm}, {harm, syena, des_harm}.


The model is based on the concept of $adhik\bar{a}ra$ (desires \sim responsibility \sim agency).

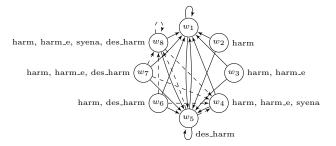
- A world of the model
 - represents a **possible state** w.r.t. *adhikāra*;
 - is a possible combination of relevant elements: desires, outcomes of prescriptions, and actions.
- E.g., {harm, harm_e, des_harm}, {harm, syena, des_harm}.


harm = harming a living being syena = performing sacrifice harm_e = harming the enemy
des_harm = desiring to harm an enemy


harm = harming a living being syena = performing sacrifice harm_e = harming the enemy
des_harm = desiring to harm an enemy


harm = harming a living being syena = performing sacrifice harm_e = harming the enemy
des_harm = desiring to harm an enemy

harm = harming a living being syena = performing sacrifice harm_e = harming the enemy
des_harm = desiring to harm an enemy


The Indological Reading

The Vedic state

Staying in w_1 all prescriptions are fulfilled and no conflict occurs.

The Indological Reading

Prabhākara's solution $(7^{\text{th}} \text{ c. CE})$

"A prescription regards what has to be done. But it does not say that it has to be done" (Brhatī I, p. 38, l. 8f).

Future Work

We have considered about $200 ny\bar{a}yas$, and many others are still in Sanskrit only.

Future Work

We have considered about $200 ny\bar{a}yas$, and many others are still in Sanskrit only.

Possible **extensions** of bMDL:

■ First-order quantification

The agent of a duty needs to be the one identified by a given prescription (PMS 6.1.1–3).

Temporal operators

Distinction between different repetitions of the same action.

• Handling of different authorities

The Vedas prevail over other authoritative texts (SBh 1.1.1).

Distinction between Obligations and Prohibitions

Different logics for different authors