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Proof theory of non-classical logics

Analytic and modular calculi for classes of logics

m Proof search
m Prove meta-logical properties in a constructive way

A jungle of formalisms
(sequents, hypersequents, labelled sequents,
nested sequents, display calculus, calculus of structures. . .)

Embeddings
m Expressiveness relations between formalisms
m Transfer of results (avoiding repetitions and mistakes)

[Wansing, 1998], [Fitting, 2012],
[Goré and Ramanayake, 2012], [Ramanayake 2015, 2016]. ..
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Sequent calculus [Gentzen, 1935]



Sequent calculus [Gentzen, 1935]

Some sequent rules:
I'NA,B= A (In)
I'AAB=A

I'=A A=A
'=A

(cut)

I'=> A
T A=A (W)

V]



The method of structural rules

To obtain analytic and modular calculi

m Fix an analytic base calculus

m Define a translation from axioms
to (analyticity-preserving) rules

m Obtain a general systematic framework

Large classes of logics captured
[Ciabattoni et al., 2008]
[https://www.logic.at/tinc/webaxiomcalc/ |

]



Beyond sequents

Sequents are simple and versatile
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Beyond sequents

Sequents are simple and versatile

but not enough to define modular analytic
proof systems for many interesting logics

-—-Av-A Jankov
(A-B)v(B—A) Gédel
Av(A-> (Bv(B~-C))) Bds

Consider the axioms for
intermediate logics:

No sequent structural rule can capture these axioms
[Ciabattoni et al., 2012, Ann. Pure Appl. Logic]
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More structure

The linearity axiom characterises Gédel logic

(A B)v (B A)

We can define structural rules based on the syntax of this axiom
using two (simple) generalisations of sequents:

HYPERSEQUENTS SYSTEMS OF RULES
[Mints, 1968] [Negri, 2014]
[Pottinger, 1983]
[Avron, 1987]

and
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Multiset of sequents (interpreted disjunctively)
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Hypersequents [Mints, 1968], [Pottinger, 1983], [Avron, 1987]

Multiset of sequents (interpreted disjunctively)

F1:>A1|...|Fn:>An

We can represent the linearity ariom as
A=B|B=A

and transform this into the rule

Q\B,F1:>A1 g]A,F2:>A2
g|A,F13A1|B,F23A2




Example of hypersequent derivation

G| B, Ty = A G| A Ty = Ay gIl'=A|l'=A
(com) —_— (EC)
G|AT; = A1 |B,I's = Ay g|I=A

B> B inat. A= A 1nat.
A=B | B=A (com)
A=B |=B-A (=7)
=A->B| =>=B->A (=7)
=A->B|=(A->B)v(B-A) (vr)
= (A>B)V(B=A) | = (A>B)v (B> A) &2)
=(A->B)v(B-A)
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Systems of rules [Negri, 2014, J. Logic Comput]

Set of rules with:

m order constraints
m shared formula meta-variables

Very expressive formalism

Systems of rules on labelled sequents (e.g., “cRy,T' = A,y: A”)
capture all normal modal logics formalised by Sahlqvist formulae



Systems of rules

Set of rules with:

m order constraints
m shared formula meta-variables

We will consider
purely syntactical two-level systems:

I'l=Ap ... = A . Iy = A} . T = AP .
F1:>A1 (Opl) FkSAk (Opk)
I'=A I'=A (bottom)

]



Example of system

We represent the axiom (A — B) v (B - A) as the system

B,F13A1 ( A,F2:>A2
AT, 5 A, (om) BT, 5 A, (©0m2)
= A r=A

(ec)



Example of system of rules derivation

B, T = Ay A, Ty = Ay
AT = A, (coma) B,T; = A; (coma)
F::>A = A (ec)
I'=A
Bo B inat. A5 A inat.
Ao B o) B = a (com)
—Ai-5C" —p-4"
S A-B) v (Boa) V) S (A B) v (BoA) )

=(A->B)v(B-A) (ec)
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Example of system of rules derivation

B, T = Ay A, Ty = Ay
AT = A, (coma) B,T; = A; (coma)
= A — = A (ec)
Bo B inat. A5 A inat.
A= B (coma) B=A (coma)
EVES: Aaile a0
=(A->B)v(B->A) =(A->B)v(B-A)
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A casual resemblance?

B./F] = A A.,F2:>AQ
A,F] = A B,F2:>A2
g|B,F1$A1 g|A,F2:>A2 I‘:A F:A
g|A7F1:>A1|B7FQ:>A2 I'=>A

The two formalisms seem to be related

Can we formalise this intuition in its full generality?

Where does this lead to?



The Embedding

[Ciabattoni and Genco. Journal version in preparation. ]



Rule translation

m Any hypersequent rule can be rewritten as a two-level
system of rules

m Any two-level system of rules can be rewritten as a
hypersequent rule

G| =A] Q|I’;§:>A;€
GITh=A1|...|Ty= A,

S1,...,8, sets of sequents U S1u-uS, = {T% = Al bicisk

S _ S
1—‘1:'>A1 Fn:>An
r=A o =A

I'=>A



Rule translation

m Any hypersequent rule can be rewritten as a two-level
system of rules

m Any two-level system of rules can be rewritten as a
hypersequent rule

G| =A] Q|I’;§:>A;€
GITh=A1|...|Ty= A,

S1,...,8, sets of sequents ﬂ S1u-uS, = {T% = Al bicisk

S _ S
1—‘1:'>A1 Fn:>An
r=A o =A

I'=>A

13 /32



Derivation translation

Any hypersequent derivation can be translated into a two-level
systems derivation using corresponding rules, and vice versa

m Individual translations are quite simple and natural
m The order of rule applications is preserved

m The general proof, on the other hand, is complex:

m non-locality of systems of rules
m general form of rules



Example of derivation translation

B=DB A=A __B=B
A=A A=B|B=A A= B|B=1B

(EW)
A= A|B=ANAB A=B|B=AAB (Ar)
A= ANB|B= AAB
AsAB=BoArE) 7
A (ArNB) =B (AnE 7
S AL (ArNB) = (A= (ArB) v (B=(AnrE)
(A5 (AAB)V (B> (AAB)) |= (A= (AAB) v (B> (AAB))

(EW)
(A7)

(vr)

= (A-> (AAB))v(B—-(AAB)) (EC)
B=B ( ) II A=A ( )
A=A A=B (::\(:r)ru B= A comz B=B (Ar)
A= AAB (=) B=AAB (=)
= A—-> (AAB) = B> (AAB)

(

A (AnB) v (Bo(AnEy) = (A—>(AAB))v(B— (AAB)) (

= (A—-> (AAB))v (B - (AAB))

\%
e

r)

<)



How far does this go?
The two formalisms are equivalent
w.r.t. intermediate logics

Nonetheless, the embedding does not depend
on the logical rules in an essential way

16 / 3:



How far does this go?

The two formalisms are equivalent
w.r.t. intermediate logics

Nonetheless, the embedding does not depend
on the logical rules in an essential way

U

It can be naturally extended to other calculi
(e.g., the hypersequent calculi for modal logics
in [Kurokawa, 2013|[Lahav, 2013|[Indrzejczak, 2015])



Applications of the Embedding



Systems of rules made local

By the embedding we can
represent any two-level system of rules in a local form:

B,y = Ay ATy = Ay
A,Fl.:>A1 B,F2'2>A2 g|B,F1=>A1 Q|A,F2:>A2
: : 7 AT, > A, | BIy=A
I'=A I'=A Gl A=A ] Bl = A

I'=A



Systems of rules made analytic

Given any structural two-level system of rules we can:

1 Translate the system of rules into a hypersequent rule
[embedding]

]
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Systems of rules made analytic

Given any structural two-level system of rules we can:

1 Translate the system of rules into a hypersequent rule
[embedding]

2 Apply the completion procedure
[Ciabattoni et al., 2008, LICS]

3 Translate the result back
[embedding]

To obtain an analytic 2-level system of rules



Hypersequents made natural

The embedding provides a connection
between hypersequents and N.D. as well



Hypersequents made natural

The embedding provides a connection
between hypersequents and N.D. as well

B,F1=>A1 A,F2=>A2
B7 Fl == A]_ A,Fz = AQ ét"bbﬁlddi”!]\ A7F1 _3 Al B’ F2 _:> AQ
A,F1:>A1|B7F2:>A2 ”
= A = A
'=A

gl
SRR [y



The Computational Meaning



The computational meaning of hypersequents

[Avron, 1991]

Intermediate logics formalised by hypersequent calculi
could serve as base for parallel A-calculi



The computational meaning of hypersequents

[Avron, 1991]

Intermediate logics formalised by hypersequent calculi
could serve as base for parallel A-calculi

The Problem

Find computational interpretations for these logics

. Embedding
Logic ==  Hypersequents == Systems of Rules

ft U

Curry—Howard Correspondence

A-Calculus < N.D.

V)
N

%]



The Curry—Howard correspondence [Howard, 1930

Logic { ______________



The Curry—Howard correspondence [Howard, 1930

SR —
f

correspond to correspond to

Computation { ‘ —————————————— Programs



The implication rules, for example

t:A—-> B

u -

A

tu: B

[x : A]

t:B

M.t:A—- B

V]

%]



Moving to Godel logic

The linearity rule

N
o

%]



Moving to Godel logic

The linearity rule

)
4

o~

Q=

N
o
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Moving to Godel logic

The linearity rule

»

D
Y

)
4

o~

Q=

Sllet: F

N
o

%]



Moving to Godel logic

The linearity rule

[e:A—>B|] wu:A [e:B—->A] v:B
eu:B ev:A
s:‘F t:‘F

slet: F

N
=1



A derivation, a program

[2: (A~ B) > F)r((B~A4) > F)]
7T1:L':(B—>A)—>F [6:B—>A]2
(mx)e: F

[0: (A= B) = F) A (B = 4) > F)]!
mox:(A—>B)—>F [e: A — B)?
(mox)e: F (miz)e: F )
(moz)e ||le (miz)e: F
Az.(mox)e |le (mz)e: (A= B)>F)A(B—-A)>F)->F

1
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1




A derivation, a program
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A derivation, a program
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Normalisation, computation

Normalisation procedure

m removing detours

m subformula property

Proof transformation steps

U

Steps of the computation



Implication reduction, for example

FO’[J":A]l

: Iy
_uwB P w
AXu:A—->B t: A

(Az.u)t: B

FOvt:A

u[t/x] :B



Cross reductions

Cleu] [le Dlev]

el B
el P B

]



Cross reductions

—[>

SV b

]



Cross reductions

Cleu] e Dlev] =

(D[] | Cleu]) o (CLv& @] ||, Dlev])

r A A T r
T Py A
P1 P
B A ~ : :
F - F e 7 e o

Neeenl D >



Communications

A [Enput 5]

A [input 2]

%]



Results

Curry—Howard correspondence
for propositional Goédel logic

[Aschieri, Ciabattoni and Genco. Submitted. ]

m Normalisation
m Subformula property

m Meaningful computational reductions
(e.g., in terms of optimisation via code mobility)



Future work

Find other computational interpretations of logics
formalised by hypersequent calculi






[.TA‘: A]

u:B t:A>B u:A
4 A Mzdu:A— B tu: B

u:A t:B u:AAB u:AAB
(u,t): ANB umy: A um : B

[a*~": A - B] [a®~*: B - A]

u:C v:C
ullgv:C

IF'Fu:lL
I'+efqp(u): P

with P atomic, P # 1.
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