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Abstract. We present SBTrust, a logical framework designed to formalize deci-
sion trust. Our logic integrates a doxastic modality with a novel non-monotonic
conditional operator that establishes a positive support relation between state-
ments and is closely related to a known dyadic deontic modality. For SBTrust,
we provide semantics, proof theory and complexity results, as well as motivating
examples. Compared to existing approaches, our framework seamlessly accom-
modates the integration of multiple factors in the emergence of trust.
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1 Introduction

Decision trust is defined as the willingness to depend on something (or somebody) with
a feeling of relative security, although negative consequences are possible. This notion
plays a central role in computer-mediated interactions. For instance, in e-commerce,
when there is an abundance of vendors in a marketplace offering nearly identical prod-
ucts, customers use trust to decide whom to buy from [42]. Similarly, in the next gen-
eration Internet of Things, smart sensors, edge computing nodes, and cloud computing
data centres rely on trust to share services such as data routing and analytics and to
assess who to communicate with [19]. Trust is becoming increasingly important also in
the interaction between AI-enhanced technologies and their users. In particular, a va-
riety of design methodologies and policies are required to foster trust toward artificial
decision-making processes [26]. In spite of their differences, in all scenarios, interac-
tions are governed by trust evaluations that depend on various conditions, e.g., repu-
tation scores, Quality of Service (QoS), transparency, perceived accuracy, ease of use,
and the trustee’s ability to behave as expected by the trustor.

Those facts drove the development of various models for assessing trust, see, e.g.,
[3, 12]. Yet, each existing model relies on specific conditions for the emergence of trust,
thus failing in environments where multifaceted aspects play a role in establishing trust
relations (see, e.g., [41] for trust in e-commerce, or [6], where it is shown that computer
science students use multiple sources of information to determine their trust in AI sys-
tems). This calls for Trust models combining multiple aspects to evaluate the presence
or lack of trust in the environment [43]. To address this need, we introduce SBTrust, a
logic that allows reasoning about decision trust relying on varied enabling conditions.

In our logic, trusting a formula φ means that the trustor is willing to accept the
formula as being true, although it might be false. This acceptance-based interpretation
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of trust is compatible with influential conceptual analyses of the notion of trust that
show that trusting a proposition boils down to using the proposition as a premise in
one’s reasoning, even though the proposition might be false [20].

In SBTrust, Trust is a derived operator whose constituents are a support connective
and a belief operator (hence the logic’s name). Whenever it is both believed that a
formula φ supports a formula ψ, and that φ is true, then ψ is φ-trusted.

The notion of support, establishing a form of positive influence between two state-
ments, is modeled through a novel dyadic operator⇝, where φ⇝ ψ is read as: in the
most likely φ-scenarios ψ holds. The operator⇝ yields a non-monotonic conditional
sharing properties with the KLM logic P of preferential reasoning [29] although without
validating cautious monotonicity. We characterize⇝ with semantics and proof theory;
its axioms and rules turn out to axiomatize the flat (i.e., non-nested) fragment of Åqvist
system F [7] – a foundational preference-based logic for normative reasoning. The no-
tion of belief (what is considered to be true from a subjective standpoint) is modeled
through a belief operator B, obtained through the normal modal logic KD4. Hence, our
Trust operator (Tφψ) is built using those ingredients - Bφ ∧ B(φ⇝ ψ)→ Tφψ.

In the following, we provide motivations for introducing yet a new logical frame-
work for decision trust. The key ingredient is the support operator ⇝, for which we
discuss in Section 2 the (undesired and) required properties. For our logic we present
syntax (Section 3), semantics (Section 3.2), and establish the connection between⇝
and Åqvist system F. Soundness, completeness, and complexity (for the satisfiability
and the model checking problem) for SBTrust are established in Section 4.

1.1 Decision trust: state of the art

Decision trust logical formalisms can be classified into the following paradigms [8]:

– Policy-based models: trust is obtained by implementing hard-security mechanisms
based on cryptographic protocols and access control, e.g., [39]. Logical frameworks
for policy-based mechanisms are defined in various papers, including [1].

– Reputation-based models: trust is obtained through indications of past interac-
tions that are evaluated by gathering and manipulating performance scores for those
interactions, see, e.g., [9]. Logical approaches in this setting include [2].

– Cognitive models: trust derives from the combination of various factors, including
the agent’s disposition, the importance/utility of a situation [33], and the agent’s
expectation and willingness [13]; several logics formalize such aspects [4, 17].

Although models within a given paradigm are employed in real-world applications
(e.g., [28]), they often rely on partial features of trust or assume very specific conditions,
making them limited. Policy-based models flatten trust on the use of (cryptographic)
protocols and regulations that fail whenever they circularly rely on some trust conditions
- the problem of trusting the policy-makers [27]. Reputation-based models flatten trust
on scores that often represent only a proxy for trust - the problem of the insufficiency
of reputation for trust [12]. Unlike other paradigms, cognitive models capture more
nuanced notions of trust, but rely on representing agents’ cognitive features, which
may not always be possible and can lead to complexity issues. This creates a trade-off
between effectively modeling various aspects of trust and the complexity of estimating
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all its constituting elements in real-world settings. The following example illustrates
how the three paradigms model agent trust and highlights their shortcomings.

Example 1. [Amazon] As a leading online retailer, Amazon prioritizes consumer trust
to drive transactions, enforcing protocols and vendor rules. Imagine a customer as-
sessing whether to trust the proposition “Amazon vendor Vi is reliable” ( GoodVi ).
In a policy-based model of trust, the customer would trust GoodVi only if Vi meets
Amazon’s internal policies (e.g., Vi is a registered company). Yet, this approach has
drawbacks: (i) requirements could be manipulated, giving the customer a false sense of
security; (ii) trust extends beyond regulations, as customers’ trust is not solely based on
vendors complying with policies; (iii) evaluating trust would be shifted from whether
a customer trusts Vi to whether it trusts Amazon (as a policy maker) and its policies
- trust that would depend on other policies Amazon has to abide by, ad infinitum (the
problem of establishing primitive trusted policy-makers). In a reputation-based model,
trust in GoodVi depends solely on Vi’s positive reviews. However, this has two limi-
tations: (i) new vendors lack reviews, making it difficult to establish trust; (ii) reviews
can be manipulated, (e.g., in 2017, The Shed at Dulwich restaurant became London’s
top restaurant on Tripadvisor, although serving fake food). A cognitive model of trust
allows trust estimations based on agents’ cognitive features (e.g., the intention of the
vendor to provide a good service). However, the trust triggers are limited to the cogni-
tive features representable within the model, restricting its application.

2 Support operator

We introduce the support operator,⇝, explaining our choice of a non-monotonic op-
erator and its key properties with examples. Henceforth, we will shorten the reading of
φ ⇝ ψ to: given φ, then ψ is most likely. Throughout this paper, we restrict to non-
nested applications of⇝ as it simplifies the technical aspects and adequately models
the scenarios of interest without unnecessary complexity.

2.1 Why yet another notion of support

Various notions of support and axiomatizations as a conditional operator appear in the
literature; see, e.g. [15] for three potential readings as an evidence operator. What all
authors agree upon is that the operator should be non-monotonic, i.e., given φ ⇝ ψ,
there is no reason why φ ∧ ξ ⇝ ψ should be the case. This is because additional in-
formation (ξ) may undermine the previously established supporting statement. We also
assume that support is a non-monotonic operator, but our rationale distinguish our view
from existing ones. In particular, contraposition ((ϕ ⇝ ψ) → (¬ψ ⇝ ¬ϕ)), combined
with right weakening (if ϕ |= ψ, then χ⇝ ϕ |= χ⇝ ψ), leads to monotonicity for the
⇝ operator. Differently from [15], to avoid monotonicity, we give up contraposition (as
motivated in Ex. 2) rather than right weakening, which is a reasonable assumption.

Example 2 (Contraposition and Modus Ponens). Assume that GoodVi supports that
Vi’s products are delivered fast ( FastV i ), i.e., GoodVi ⇝ FastV i. This should not
imply that if the delivery is slow, then it is most likely that the vendor is not a good
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one (¬FastV i ⇝ ¬GoodVi), as the delay may depend on other reasons. For analogous
reasons, we do not have that GoodVi and GoodVi ⇝ FastV i imply FastV i.

To proceed methodically, we draw upon the axiomatizations of non-monotonic con-
ditionals from [29], known as KLM systems, as they serve as cornerstones for non-
monotonic reasoning. We begin with an example demonstrating why the principle

CM (φ⇝ ψ) ∧ (φ⇝ χ)→ ((φ ∧ ψ)⇝ χ)
of cautious monotonicity is unfit for formalizing our notion of support (see also Rem. 5).

Example 3. Let DefCVi denote that customer C receives a defective item from vendor

Vi, CompCVi that C submits a formal complaint regarding Vi, and RefCVi that C
is refunded by Vi. It is most likely that C will complain after receiving a defective
item, DefCVi ⇝ CompCVi. In the Amazon marketplace, we also have that DefCVi ⇝
RefCVi. However, having DefCVi ∧ RefCVi does NOT mean that CompCVi is most
likely, and this invalidates CM.

Remark 1. CM is tightly connected to transitivity of the underlying semantic models. In
contrast to KLM logics, we do not assume transitive models, as discussed in Section 3.2.

2.2 Intuitive properties

We introduce the properties that we envision for the concept of support, illustrating their
rationale by refining the scenario in Ex. 1. As will be shown in Theorem 1, many of the
properties discussed below are inter-derivable, leading to a more concise axiomatization
for⇝. Henceforth, by axioms, we mean axiom schemata. The naming conventions for
the considered properties are taken from the KLM systems [29] and F [7, 34].

As the support operator⇝ applies to boolean formulas we expect all classical tau-
tologies to be provable. Moreover, since any fact intuitively supports itself, the axiom-
atization of⇝ should be able to derive the following axiom

ID : φ⇝ φ
The presence of this axiom highlights that⇝ does not establish a causal relation, see
Remark 2. Moreover, we want our support system to not support contradictions. In
essence, anything supporting a contradiction must be dismissed:

ST : (φ⇝ ⊥)→ ¬φ

Example 4. Let CompliantVi mean that vendor Vi is compliant with “Amazon Seller
Terms and Conditions” and let Vi be a vendor with an average rating of 4.5 stars
for her main product j ( TopRatingVi, j ). Assume that CompliantVi and TopRatingVi, j

support that Vi is a good vendor, i.e., (CompliantVi ∧ TopRatingVi, j) ⇝ GoodVi.
This implies that being compliant supports the connection between having good re-
views and being a good vendor, as expected by Amazon and their customers, i.e.,
CompliantVi ⇝ (TopRatingVi, j → GoodVi), which leads to the following axiom.

SH : ((φ ∧ ψ)⇝ χ)→ (φ⇝ (ψ→ χ))
This axiom expresses that deductions performed under strong assumptions may be use-
ful even if the assumptions are not known facts.
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It is quite natural to assume that if a statement supports two other statements, it
supports their conjunction, as expressed by the axiom

AND : (φ⇝ ψ) ∧ (φ⇝ χ)→ (φ⇝ (ψ ∧ χ))
Due to ST, this axiom can never be used to derive that a non-contradictory state-

ment supports a contradiction. We illustrate this with Example 5, involving the lottery
paradox [30], a stumbling block for default reasoning systems (see [35]).

Example 5. The paradox states that in a fair lottery, it is rational to assume that each
individual ticket is likely not to win. By allowing to infer from two statements being
likely that their conjunction is also likely, one concludes that two tickets are likely not
to win. By iterating this reasoning, we can infer that it is likely that no ticket will win,
which contradicts the fact that a winning ticket exists. The paradox does not apply to
⇝. Indeed, if we assume that every ticket is most likely not to win, ⊤⇝ ¬Ti, we can
infer ⊤⇝

∧
¬Ti by AND.

∧
¬Ti being a contradiction, using ST we could derive ¬⊤,

which is impossible. This implies that our original assumption was wrong. Therefore,
it cannot be assumed that ⊤⇝ ¬Ti for every ticket, thus stopping the paradox.

A support operator should also satisfy the CUT axiom, as illustrated by Example 6:
CUT : (φ⇝ ψ) ∧ ((φ ∧ ψ)⇝ χ)→ (φ⇝ χ)

Example 6. Let AuthVi stand for Vi is authenticated on the Amazon marketplace. Ob-
viously, an authenticated and compliant vendor is most likely to be a legitimate business
( LegitVi ), i.e., (AuthVi ∧ CompliantVi) ⇝ LegitVi. Moreover, due to Amazon’s poli-
cies, AuthVi ⇝ CompliantVi. This implies that given AuthVi it is already most likely
that Vi is legitimate, AuthVi ⇝ LegitVi.

Example 7. Let FairVi mean that Vi abides by the “Acting Fairly” policy of the “Ama-
zon’s Code of Conduct”. Assume we have both CompliantVi ⇝ GoodVi and FairVi ⇝
GoodVi. These two facts imply that it should be sufficient to satisfy CompliantVi or
FairVi to be considered a good vendor, i.e., (CompliantVi ∨ FairVi) ⇝ GoodVi. This
example leads to the following axiom.

OR : (φ⇝ ψ) ∧ (χ⇝ ψ)→ ((φ ∨ χ)⇝ ψ)

Example 8. Let GoodQoSVi, j mean that vendor Vi offers high QoS for product j. As-
sume that Vi sells two distinct products a and b, using the same commercial infrastruc-
ture (logistics, customer care, and so on). Hence, it would be absurd that Vi offers high
QoS only for one of the two products, i.e., ¬(GoodQoSVi,a ↔ GoodQoSVi,b) ⇝ ⊥.
Hence, whatever GoodQoSVi,a supports, it should also be supported by GoodQoSVi,b,
and vice versa. This example leads to the following axiom.

LL+ : (¬(φ↔ψ)⇝ ⊥)→ ((φ⇝ χ)↔ (ψ⇝ χ))

Example 9. Let GoodPriceVi and AmazonChoicei, j mean that Vi uses competitive
prices, and that the product j sold by Vi is labeled as “Amazon’s Choice”. By Ama-
zon’s policy, (GoodPriceVi ∧ FastVi ∧ TopRatingVi, j) → AmazonChoicei, j. Assume
GoodVi ⇝ GoodPriceVi (a good vendor is most likely to price well), GoodVi ⇝
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FastVi (a good vendor is most likely to deliver quickly), and GoodVi ⇝ TopRatingVi, j

(a good vendor is most likely to have good reviews). These supports together should
imply that GoodVi supports AmazonChoicei, j. This motivates the following rule.

RCK :
φ1 ∧ · · · ∧ φn → φn+1

(ψ⇝ φ1) ∧ · · · ∧ (ψ⇝ φn)→ (ψ⇝ φn+1)

of which Right Weakening (RW, see Remark 2), represents the particular case n = 1.

Example 10. Let Vi be a vendor selling product j and assume that GoodQoSVi, j ⇝
FastVi and ¬(AmazonChoicei, j ⇝ DefCVi). If these conditions hold, then customer C
will have a good purchasing experience. Given that this implication holds, under the
same hypothesis, it follows that C having a negative purchasing experience supports a
contradiction. This example leads to the following “S5-like" rule.

S5F :
[¬](φ1 ⇝ ψ1) ∧ · · · ∧ [¬](φn ⇝ ψn)→ χ

[¬](φ1 ⇝ ψ1) ∧ · · · ∧ [¬](φn ⇝ ψn)→ (¬χ⇝ ⊥)

where [¬](φi ⇝ ψi) stands for either (φi ⇝ ψi) or its negated version ¬(φi ⇝ ψi)
and the same formulas are negated in the premise as in the conclusion of the rule.
The rule is named because, when considered alongside other axioms and rules, S5F
grants the operator ⇝ all the properties of an S5-modality for the shallow fragment
(see Theorem 3). As shown in Section 4, S5F lets the operator⇝ behave locally like an
absolute operator, playing a crucial role in the completeness proof.

Remark 2. (Most of) The axioms and rules discussed above are present in well-known
systems. For instance, the KLM logic P of preferential reasoning, which interprets the
dyadic operator φ |∼ ψ as “φ typically implies ψ”, contains the rule RW (see below) and
axioms ID, CUT, AND and OR. I/O logics [32] and their causal versions [11], whose
dyadic operator is interpreted as a dyadic obligation and a causal relation, respectively,
share RW, CUT, AND and OR (but not ID). Note that KLM and (deontic and causal)
I/O logics also contain the rule LLE (weaker than axiom LL+) below:

RW :
φ1 → φ2

(ψ⇝ φ1)→ (ψ⇝ φ2)
LLE :

φ↔ ψ

(φ⇝ χ)↔ (ψ⇝ χ)

An important difference between these logics and our⇝ operator is the direct interac-
tion of support formulas and propositional formulas due to the rule S5F.

3 A logical framework for decision trust

Our logic SBTrust combines the⇝ operator with a belief operator B. For the former,
we use a (subset of) the discussed axioms and rules and for the latter a KD4 modality.3

3 Other normal modal logics could be used to formalize the epistemic/doxastic notion, e.g., a
KD45 modality (see [25] for a general discussion), without major effects on the logic.
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3.1 Syntax and axiomatization

The language L of SBTrust consists of a countable set of propositional variables or
atoms (ranging over p, q, . . . ), the connectives ∧ and ¬ of classical logic (the other
propositional connectives are defined as usual), the binary support operator⇝, and the
unary belief operator B. L is defined by the following two layers grammar:

φ := ⊥ | p | φ ∧ φ | ¬φ α := φ | φ⇝ φ | Bα | α ∧ α | ¬α

We use φ, ψ, χ, δ, and π for formulas of classical logic CL, and α and β for general
formulas in L. LT and LCL will denote the set of formulas of SBTrust and of CL, re-
spectively. We identify theoremhood in SBTrust with derivability in its Hilbert system.

Definition 1. SBTrust is obtained by extending any axiom system for propositional
classical logic: (indicating its axioms by) (CL) and the Modus Ponens rule MP, to-
gether with the following axioms and rules.

For the support operator the axiom schemata are:

(ID) φ⇝ φ (SH) ((ψ ∧ χ)⇝ φ)→ (ψ⇝ (χ→ φ))
(ST) (φ⇝ ⊥)→ ¬φ (LL+) (¬(φ↔ψ)⇝ ⊥)→ ((φ⇝ χ)↔ (ψ⇝ χ))

and the corresponding inference rules are RCK and S5F, with the restriction that their
applications yield formulas within the language L.

For the belief operator the axiom schemata are:

(KB) B(α→ β)→ (Bα→ Bβ) (DB) Bα→ ¬B¬α (4B) Bα→ BBα

and Necessitation for B (NB) which derives B(φ) whenever φ has been proven.

Trust arises as a combination of support and belief, i.e., Tφψ := Bφ ∧ B(φ⇝ ψ).

Definition 2. A derivation of φn is a sequence φ1, ..., φn where each φi is either an
axiom instance or follows from the previous ones by applying one of the rules. We write
Γ ⊢ φ if there is a derivation of φ or if ψ1 ∧ ... ∧ ψm → φ for some ψ1, ..., ψm ∈ Γ.

Remark 3. The newly defined trust operator inherits numerous properties from the sup-
port and belief axioms and rules. While a more comprehensive study of this operator
on its own is planned for future work, here we present a specific property as an initial
example. By definition, Tφψ → Bφ. Using axiom DB and rule NB, we derive ¬B⊥
which implies ¬T⊥ψ, meaning it is impossible to trust something based on a contra-
diction. Now, assuming Tφ⊥, we derive Bφ by definition. However, from the axioms
ST and KB, we can also derive B¬φ, leading to a contradiction by axiom DB. Thus,
it follows that ¬Tφψ is derivable whenever either φ or ψ (or both) are contradictions.
This property ensures that the trust operator does not permit trusting a contradiction or
trusting something based on a contradiction—a desirable feature in this framework.

We prove that all the axioms and rules stated in Section 2.2 are derivable in SBTrust.

Theorem 1. The rules RW and LLE, as well as the axioms AND, CUT, and OR are
derivable in the system for⇝.



8 A. Aldini et al.

Proof. We will show the case for LLE. We assume that the formula φ↔ ψ is provable,
then we can derive φ⇝ χ↔ ψ⇝ χ via the following:

(1) ¬(φ↔ ψ)→ ⊥ Hyp. + (CL)
(2) (¬(φ↔ ψ)⇝ ¬(φ↔ ψ))→ (¬(φ↔ ψ)⇝ ⊥) (RCK)
(3) ¬(φ↔ ψ)⇝ ⊥ (ID +MP)
(4) (φ⇝ χ)↔ (ψ⇝ χ) (LL+ +MP)

Remark 4. From RW and LLE, we can derive the replacement of equivalent formulas
within the support operator in compliance with the syntactic restrictions of the language.

Remark 5. Another reason for rejecting CM is that, in conjunction with CUT and RW,
it permits to derive REC - ((φ ⇝ ψ) ∧ (ψ ⇝ φ)) → ((φ ⇝ χ) ↔ (ψ ⇝ χ)), which
is too strong for a support operator since two statements that support each other do not
necessarily support the same statements.

A strong connection holds between⇝ and F, the dyadic deontic logic introduced
in [7] and axiomatized in [34] using MP and the necessitation rule for □, and the axioms

CL All truth-functional tautologies K□ □(φ→ ψ)→ □φ→ □ψ
T □φ→ φ 5 ♢φ→ □♢φ

COK ⃝(ψ→ χ/φ)→ (⃝(ψ/φ)→ ⃝(χ/φ)) Abs ⃝(φ/ψ)→ □⃝(φ/ψ)
Nec □φ→ ⃝(φ/ψ) Ext □(φ↔ ψ)→ (⃝(χ/φ)↔ ⃝(χ/ψ))
ID ⃝(φ/φ) SH ⃝(φ/ψ ∧ χ)→ ⃝(χ→ φ/ψ)
D∗ ♢ψ→ (⃝(φ/ψ)→ ¬⃝(¬φ/ψ))

where⃝(ψ/φ) stands for “ψ is obligatory under the condition φ”. The flat fragment
of the language of F –where □ and⃝ apply only to formulas of LCL– can be translated
into our language as follows:

Definition 3. Let χ be any formula in the flat fragment of F. The translation χ∗ is

φ∗ 7→ φ (□φ)∗ 7→ ¬φ⇝ ⊥ (⃝(ψ/φ))∗ 7→ φ⇝ ψ

Remark 6. The dual of □ gets translated to (♢φ)∗ := ¬(φ⇝ ⊥).

The theorem below establishes a first link between F and⇝.

Theorem 2. The translation ∗ of all axioms and rules of F – but 5 and Abs – are
derivable in the axiomatization for⇝.

Proof. The claim for T, Ext, ID, and SH follows directly from the translation. The
translation of axiom D∗ is ¬(φ ⇝ ⊥) → ¬((φ ⇝ ψ) ∧ (φ ⇝ ¬ψ)). Its contraposition
((φ⇝ ψ) ∧ (φ⇝ ¬ψ))→ (φ⇝ ⊥) is an instance of AND. The case K□ follows by:

(1) ((¬(φ→ ψ)⇝ ⊥) ∧ (¬φ⇝ ⊥))→ ψ (ST + ST + CL)
(2) ((¬(φ→ ψ)⇝ ⊥) ∧ (¬φ⇝ ⊥))→ (¬ψ⇝ ⊥) (S5F)

The translations of the axioms Nec and COK can be derived in a similar way and
are omitted.
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Remark 7. The translation of axioms Abs and 5 from F results in formulas containing
nested applications of ⇝. In Section 3.2, we will see that the axioms and rules for
⇝ axiomatize the shallow fragment of F. In this regard, the rule S5F, which does not
correspond to any rule known in the literature, does not follow from the remaining
axioms and rules for⇝, and it is needed to derive (some) flat formulas holding in F.

Example 11. Assume that a vendor V1 believes the two formulas supported by DefCVi

discussed in Example 3. If V1 sends a defective item to customer C (DefCV1), from
B(DefCV1) and B(DefCV1 ⇝ CompCV1) we derive TDefCV1 (CompCV1). Similarly, it
also holds that TDefCV1 (RefCV1). Now, assume that C does indeed receive the refund,
thus B(DefCV1 ∧ RefCV1). We show that V cannot trust that a complaint will not be
submitted, ¬TDefCV1∧RefCV1 (¬CompCV1). We use the following abbreviations to write
a concise derivation: Let d := DefCV1, r := RefCV1, and c := CompCV1, and, by
hypothesis, Td(c) ∧ Td(r), i.e., B(d) ∧ B(d⇝ c) ∧ B(d⇝ r). Hence:

(1) (d ∧ (d⇝ c))→ ¬(d⇝ ¬c) (ST+D∗)
(2) (d⇝ r) ∧ ¬(d⇝ ¬c)→ ¬((d ∧ r)⇝ ¬c) (CUT+CL)
(3) d ∧ (d⇝ c) ∧ (d⇝ r)→ ¬((d ∧ r)⇝ ¬c) (1 ∧ 2)

Then, applying rule NB to (3) and using the hypothesis together with axiom KB, we
derive B(¬((d ∧ r)⇝ ¬c)). This formula, by axiom DB, finally implies ¬Td∧r(¬c).

3.2 Semantics

For evaluating a formula of the form φ ⇝ ψ, we intuitively consider only the most
likely φ-scenarios and check whether ψ holds in those scenarios. This approach is in-
spired by preference-based logics [22], in which a conditional statement “If φ then ψ” is
interpreted as among the “best” possible scenarios in which φ is true, ψ is true as well.
Notice that in this approach transitivity of the relation is not assumed, in contrast to
the KLM systems. The semantics for SBTrust is built on preference-based models [40]
(for the support statements) and relational models (for the belief operator). Also used
in KLM logics and in Åqvist system F, preference-based models are triples ⟨S ,⪰,V⟩,
where S denotes a set of states, V a valuation function, and the preference relation
⪰⊆ S × S compares pairwise the states in S . In our context, w ⪰ v represents a pairwise
comparison stating that w is at least as likely as v (F uses a better than interpretation,
while the KLM logic P uses a preferred to interpretation).4 Our “as likely as” inter-
pretation has to be read as comparing two specific elements. Like in F, the relations
apply to pairs of worlds without imposing a global ordering, and therefore, they do not
necessarily have to be transitive; for an illustration, see Example 12. Although close to
F, our approach differs in two important aspects. First, in our semantics, we include a
component for belief formulas. Second, instead of having a unique preference frame, in
a Trust frame, the set of states S is partitioned into multiple preference frames ⟨S i,⪰i⟩;
this allows us to consider different support systems within the same model. Note that,

4 A preference frame consists of a set of worlds and a binary relation, exactly like a Kripke
frame. The difference lies in their different usages in the model.
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without partitioning, the unique given support system would necessarily have to be be-
lieved. In our interpretation, a statement φ ⇝ ψ is true in a state w ∈ S i if among all
the φ-states in S i (||φ||i) the most likely φ-states in S i (most(||φ||i)) satisfy ψ; most(||φ||i)
consists of the maximal elements in the set of all φ-states of S i according to ⪰i.

In line with systems F and P, our semantics include a limitedness condition:
||φ||i , ∅ ⇒ most(||φ||i) , ∅. Limitedness allows us to express when a formula φ is
impossible in a partition S i using φ⇝ ⊥. Hence, limitedness restricts SBTrust to sup-
port only non-contradictory options (with the exception of ⊥ ⇝ ⊥). Consequently, an
agent will never place trust in a blatant contradiction, nor will she place φ-based trust
in contradicting statements, invalidating Tφψ ∧ Tφ¬ψ. The definitions in this section
characterize the frames and models on which our logic is based.

Definition 4 (Trust frame). Let F := ⟨S , (S i)i∈I , (⪰i)i∈I ,R⟩ where
− ⟨S ,R⟩ is a serial and transitive Kripke frame;
− (S i)i∈I is a partition of S , i.e.,

⋃
i∈I S i = S and ∀i, j ∈ I : S i ∩ S j = ∅;

− For each i ∈ I: ⟨S i, (⪰i)⟩ is a preference frame (therefore ⪰i⊆ S i × S i).

Definition 5 (Trust model, truth conditions). LetM := ⟨S , (S i)i∈I , (⪰i)i∈I ,R,V⟩where
− F := ⟨S , (S i)i∈I , (⪰i)i∈I ,R⟩ is a Trust frame;
− V : Prop 7→ 2S is a Valuation function;
− For each i ∈ I, ⟨S i, (⪰i),V⟩ fulfills the limitedness condition: for every proposi-
tional formula φ, it holds that ||φ||i , ∅ ⇒ most(||φ||i) , ∅;
− M, s |= p iff s ∈ V(p);
− M, s |= ¬α iffM, s ̸|= α;
− M, s |= α ∧ β iffM, s |= α andM, s |= β;
− M, s |= φ⇝ ψ iff most(||φ||i) ⊆ ||ψ||i for s ∈ S i;
− M, s |= B(φ) iff ∀v : (sRv→M, v |= φ);
||φ||i := {v ∈ S i :M, v |= φ}; most(||φ||i) := {s ∈ ||φ||i : ∀v[(v ∈ ||φ||i ∧ v ⪰i s)→ s ⪰i v]}.

Semantic consequence (Φ |= α) and validity (|= α) are defined as usual.

Remark 8. Two observations are in order. Firstly, we do not assume any property on
the relations ⪰i to keep the model as general as possible, and in particular, we do not
require the relations to be transitive. This is related to the idea that the pairwise order-
ing between the states subsumes considerations about different contexts of evaluation,
i.e., the sets most(_), which are tied to the antecedents of support formulas. The use
of non-transitive models is consistent with the discussion presented in [18] about the
non-transitivity of descriptive theories of preferences (see also [10] and [38] about in-
transitive preferences within social choice theories). Note that assuming transitivity,
would closely connect most(||φ∧ ψ||i) and most(||φ||i), forcing cautious monotonicity of
the framework, which is an unwanted property for our use cases (see Examples 3 and
12). Secondly,M,w |= φ ⇝ ψ holds if w is part of a set of states in which φ supports
ψ is true. An agent may or may not believe φ ⇝ ψ, independently from the fact that
φ⇝ ψ holds or not. This gives us the possibility to capture an agent’s misinformation.

The example below, inspired by [37], illustrates the reason we do not assume tran-
sitivity in the preference relation.
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Example 12. Let V1, V2, and V3 be three vendors with competing offers for the same
product. Consider a scenario where the offers of V1 and V2 are similar, apart from a key
attribute (e.g., delivery time), for which V2 presents a significantly better offer. Hence,
it is more likely that V2 is preferred to V1. For analogous reasons but for a different
attribute (e.g., quality of reviews), it is possible that V3 is preferred to V2. However, it
could be that all the attributes of V1 and V3 are similar enough to be incomparable. This
situation is represented in the following model.

ψ1, ψ2, ψ3

φ3

s3

ψ1

φ2

s2

ψ1, ψ2

φ1

s1

Notice that, for simplicity, we use a single-element partition {s1, s2, s3} and omit the ac-
cessibility relation R. Moreover, each formula φi represents that the vendor Vi is chosen
(ignore, for the moment, the other formulas), and the solid arrows express the prefer-
ence relations. Thus, for example, s2 is more likely than s1, s3 is more likely than s2,
but it is not the case that s3 is more likely than s1 or vice versa. We use this example
to emphasize the relation between the lack of transitivity and the rejection of CM. Let
ψ1 denote that V1, V2, and V3 are Amazon vendors, ψ2 denotes that Amazon offers a
discount on products from long-standing vendors, and ψ3 that Amazon offers a discount
on products from new vendors. Assume that V1 and V3 are new vendors. Based on these
assumptions, which do not affect the preference relations shown above, the following
supports can be demonstrated easily: ψ1 ⇝ ψ2 and ψ1 ⇝ ψ3 (Amazon frequently sup-
ports discounts), but (ψ1 ∧ ψ2) ̸⇝ ψ3 (it is not usual that Amazon promotes different
discounts at the same time), which represent a violation of CM. Formally, given that
most(||ψ1||) = {s3}, the support statements ψ1 ⇝ ψ2 and ψ1 ⇝ ψ3 are satisfied; how-
ever, most(||ψ1 ∧ ψ2||) = {s1, s3} and s1 violates the formula (ψ1 ∧ ψ2)⇝ ψ3, implying
that the formula is not satisfied. Notice that if we imposed transitivity, thus relating s1
to s3, we would recover CM because in this case, most(||ψ1 ∧ψ2||) becomes {s3}. More-
over, with CM, we would also get REC (see Remark 5), which, given that ψ1 ⇝ ψ2
and ψ2 ⇝ ψ1 hold, implies (ψ1 ⇝ ψ3)↔ (ψ2 ⇝ ψ3). Since ψ1 ⇝ ψ3 holds, we would
also have ψ2 ⇝ ψ3, which is unreasonable since Amazon usually offers discounts on
different types of vendors at different times.

We now examine the relation between F and⇝. Theorem 2 has already highlighted
a syntactic connection (from F to ⇝ via the translation ∗ in Def. 3). Here, by using
their semantics, we uncover a stronger tie. Recall that F is sound and complete w.r.t. all
preference models ⟨S ,⪰,V⟩ which fulfill the limitedness condition, see [34]. We denote
by |=F the semantical consequence relation in F.

Theorem 3. For any set of formulas Γ and formula α in the language of F that do not
contain nested modal operators, we have: Γ |=F α⇔ Γ∗ |= α∗.

Proof. Both directions proceed by contraposition.
(⇒) We show that given a Trust model invalidating the semantical consequence for

support we can find a preference model invalidating the semantical consequence for F.
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Assume that Γ∗ ̸|= α∗. Hence, there exists a Trust modelM = ⟨S , (S i)i∈I , (⪰i)i∈I ,R,V⟩
and a state s ∈ S i such that ∀β∗ ∈ Γ∗ : M, s |= β∗ and M, s ̸|= α∗. We cut down the
Trust model into a preference model as follows M′ := ⟨S i,⪰i,V⟩. By definition, M′

is a preference model fulfilling the limitedness condition.5 Observe that no formula in
Γ∗ ∪ {α∗} contains the operator B. Hence, the evaluation of the formulas in Γ∗ ∪ {α∗} at
the state s ∈ S i coincides with the evaluation of the formulas in Γ ∪ {α} inM. We can
therefore conclude ∀β ∈ Γ :M′, s |= β andM′, s ̸|= α.

(⇐) Given a preference model invalidating Γ |=F α, we provide a Trust model
invalidating Γ∗ |= α∗. Assume to have the preference modelM = ⟨S ,⪰,V⟩, fulfilling
the limitedness condition and a state s ∈ S such that ∀γ ∈ Γ :M, s |= γ andM, s ̸|= α.
We extend it into a Trust model with only one element in the partition, as followsM′ :=
⟨S , (S i)i∈I , (⪰i)i∈I ,V,R⟩, with I := {1}, S 1 := S , ⪰1:=⪰ and R := S × S . By definition,
M′ is a Trust model. Again no formula in Γ∗ ∪ {α∗} contains the operator B. Hence the
evaluation of the formulas in Γ∗ ∪ {α∗} at the state s ∈ S coincides with the evaluation
of the formulas in Γ ∪ {α} inM. Hence ∀β∗ ∈ Γ∗ :M′, s |= β∗ andM′, s ̸|= α∗.

The Soundness and Completeness of SBTrust w.r.t. Trust models, proved in the next
section, implies that the axioms and rules of⇝ axiomatize the flat fragment of F.

4 Soundness, completeness and computational complexity

We start with the soundness of SBTrust w.r.t. Trust models.

Theorem 4 (Strong Soundness). Φ ⊢ α⇒ Φ |= α for any Φ ⊆ LT and α ∈ LT .

Proof. Proceed by induction on the derivation length, distinguishing cases according to
the last rule applied. We show below the details for axiom LL+ and rule S5F.

LL+: Given a Trust model M = ⟨S , (S i)i∈I , (⪰i)i∈I ,R,V⟩ and a state s ∈ S i such
thatM, s |= ¬(φ↔ψ) ⇝ ⊥, then we get most(||¬(φ↔ψ)||i) ⊆ ∅. Given the limitedness
assumption, this is equivalent to ||¬(φ↔ψ)||i = ∅ and furthermore to ||φ↔ψ||i = S i.
Hence, φ and ψ are equivalent in every state of S i. Therefore the sets most(||φ||i) and
most(||ψ||i) coincide, i.e., M, s |= (φ ⇝ χ)↔(ψ ⇝ χ). S5F: Given a Trust model
M = ⟨S , (S i)i∈I , (⪰i)i∈I ,R,V⟩, we assume ((¬)(φ1 ⇝ ψ1)∧ · · · ∧ (¬)(φn ⇝ ψn))→ χ to
be true in every state ofM. Given a state s ∈ S i such thatM, s |= ((¬)(φ1 ⇝ ψ1)∧· · ·∧
(¬)(φn ⇝ ψn)) holds, it follows that ∀w ∈ S i M,w |= ((¬)(φ1 ⇝ ψ1) ∧ · · · ∧ (¬)(φn ⇝
ψn)) because by virtue of the semantics of⇝, all the states of a given partition class
satisfy the same (negated) support formulas. Therefore, we have that ∀w ∈ S iM,w |= χ,
which means ||¬χ||i = ∅ and finallyM, s |= ¬χ⇝ ⊥.

Completeness is shown via the canonical model construction, adapted to our frame-
work from [22]. The needed modifications are the following. First, we have to ensure
that SBTrust allows us to derive all the axioms and rules required for the construction to
proceed. Furthermore, unlike the models considered in [22], Trust models incorporate
multiple preference frames, the belief operator B, and include the limitedness condition.

5 In [34], limitedness is stated for every formula of F. Since the truth sets of obligations and
modalities are those of ⊤ or ⊥, our limitedness condition is equivalent to the one given in F.



Support + Belief = Decision Trust 13

The modifications are implemented as follows. The required axioms and rules for
their proof to go through are those of F without D∗ (which corresponds to limitedness).
In Section 3.1 we have shown that with the exception of 5 and Abs the axioms of F are
derivable in SBTrust. We prove that we can derive all the necessary properties of the
canonical model even in the absence of axioms 5 and Abs, by relying on other rules of
SBTrust, primarily on S5F. The multiple preference frames are handled by partitioning
the maximal consistent sets used in the canonical model construction into equivalence
classes containing the same support formulas. The addition of belief is easy: We equip
the canonical model with the accessibility relation in the usual Kripke fashion. Incor-
porating the limitedness condition poses the challenge of guaranteeing that, in every
preference model of our canonical model, each non-empty set ||φ||i contains a maximal
element according to the preference relation. We address this by using the axiom ST.

Definition 6. A set Γ ⊆ LT is called a maximal consistent set (MCS for short) if (a)
Γ ⊬ ⊥, and (b) For every α ∈ LT either α ∈ Γ or ¬α ∈ Γ.

Although not all the states in a model validate the same support formulas, we still
need to make sure that all the states inside the same preference frame S i do. For that
reason, we partition the maximal consistent sets into equivalence classes, containing the
same support formulas. We also define a set⇝φ (Γ) containing all formulas which are
supported in a MCS Γ by a formula φ.

Definition 7. Given Γ, ∆ ⊆ LT and φ ∈ LCL we define:
− Γ⇝ := {χ⇝ ψ ∈ Γ} (We write Γ↭ ∆ if Γ⇝ = ∆⇝);
− ⇝φ (Γ) := {ψ : φ⇝ ψ ∈ Γ} (We call ∆ φ-likely for Γ if⇝φ (Γ) ⊆ ∆).

Fact 1 ↭ is an equivalence relation on the set of all MCSs. We write [Γ]↭ for the
equivalence class containing Γ.

Each equivalence class serves as a basis for a preference frame in our canonical
model. The maximal consistent sets which are φ-likely for Γ are our candidates for the
most likely φ states in the preference frame based on the equivalence class [Γ]↭, as
they contain all formulas supported by φ.

Before proceeding, we need a result stating that if ψ is not supported by φ in Γ, then
we can construct a MCS ∆ with the same support formulas as Γ, including the negation
of ψ and all the propositions supported by φ.

Lemma 1. Given a MCS Γ and a propositional formula ψ with ψ <⇝φ (Γ), then there
exists ∆ ∈ [Γ]↭ such that {¬ψ}∪⇝φ (Γ) ⊆ ∆.

Proof. We prove the consistency of the set A := {¬ψ}∪ ⇝φ (Γ) ∪ Γ⇝ ∪ {¬(χ ⇝
γ) : χ ⇝ γ < Γ}. If consistent, we can extend it to an MCS ∆ ⊆ [Γ]↭. Assuming
A ⊢ ⊥, there exist φ1, ..., φn ∈⇝φ (Γ), π1 ⇝ ψ1, ..., πm ⇝ ψm ∈ Γ

⇝, and ¬(χ1 ⇝
γ1), ...,¬(χk ⇝ γk) ∈ Γ such that ⊢ (α ∧ φ1 ∧ ... ∧ φn ∧ ¬ψ) → ⊥, where α := (π1 ⇝
ψ1) ∧ ... ∧ (πm ⇝ ψm) ∧ ¬(χ1 ⇝ γ1) ∧ ... ∧ ¬(χk ⇝ γk). Using CL axioms, we obtain
⊢ α→ ((φ1 ∧ ... ∧ φn)→ ψ). From S5F, we derive ⊢ α→ (¬(φ1 ∧ ... ∧ φn → ψ)⇝ ⊥),
and by Nec, we get ⊢ α → (φ ⇝ (φ1 ∧ ... ∧ φn → ψ)). By RCK and the maximal
consistency of the set Γ, this implies ψ ∈⇝φ (Γ), contradicting our assumption. Thus,
A is consistent.
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We define the states and preference relations ⪰Γ for our canonical model (the index
Γ is a representative of an equivalence class of the equivalence relation↭). The states
are (∆, φ, i) where ∆ is a MCS in the equivalence class [Γ]↭, i ∈ {0, 1, 2}, and φ is a
propositional formula. φ and i are used to pinpoint the maximal φ-states according to
the relation ⪰Γ and to ensure that the maximal elements of ⪰Γ coincide with the states
satisfying the supported formulas within Γ, see Corollary 2.

For a MCS Γ we use the following notation:
− S Γ := [Γ]↭ × LCL × {0, 1, 2} and [δ]Γ := {(∆, φ, i) ∈ S Γ : δ ∈ ∆}.

Definition 8. The preference relation ⪰Γ⊆ S Γ × S Γ is such that (∆, φ, i) ⪰Γ (Ω, ψ, j)
holds iff at least one of the following conditions holds:
− ∆ is φ-likely for Γ and φ ∈ Ω;
− (i = 1 and j = 0) or (i = 2 and j = 1) or (i = 0 and j = 2).

After having defined our preference relations we show that the maximal elements
in [δ]Γ are δ-likely for Γ. This is what we are aiming for as we want all the elements in
max([δ]Γ) to fulfill every formula supported by δ in Γ. Furthermore, if an MCS ∆ ∈ S Γ

is δ-likely for Γ then (∆, δ, i) is a maximal element in [δ]Γ. These results will be the
core of our completeness proof since they can be used to show that a support formula
is true in a state of S Γ if and only if the formula appears in Γ. To prove this, we start
proving the following technical lemma that establishes a connection between an (∆, φ, i)
appearing in max([δ]Γ) and the MCS Γ.

Lemma 2. Given (∆, φ, i) ∈ max([δ]Γ) then:
(a) ∆ is φ-likely for Γ; (b) ¬(δ→ φ)⇝ ⊥ ∈ Γ.

Proof. We assume i = 0. The other cases are similar.
(a) Given (∆, φ, 0) ∈ max([δ]Γ), we have (∆, φ, 1) ⪰Γ (∆, φ, 0) by construction of ⪰Γ.

This implies (∆, φ, 0) ⪰Γ (∆, φ, 1) by maximality. The latter only holds if ∆ is φ-likely
for Γ, and φ ∈ ∆ since no other condition applies.

(b) Assume to have a MCS Ω ∈ S Γ s.t. δ ∈ Ω but φ < Ω. For Ω we have
(∆, φ, 0) ⪰̸Γ (Ω, δ, 1), but (Ω, δ, 1) ⪰Γ (∆, φ, 0) which contradicts (∆, φ, 0) ∈ max([δ]Γ).
Hence, it follows that such an MCS Ω ∈ S Γ does not exist, which means [δ]Γ ⊆ [φ]Γ.
In other words, every MCS in S Γ contains the formula δ → φ. In particular, each
MCS Π with Π ∈ [Γ]↭ contains the formula δ → φ, which means [Γ]⇝ ∪ {¬(χ ⇝
γ) : χ ⇝ γ < Γ} ∪ {¬(δ → φ)} is inconsistent. This lets us infer [Γ]⇝ ∪ {¬(χ ⇝
γ) : χ ⇝ γ < Γ} ⊢ δ → φ, hence we can find finitely many support formulas in
Γ⇝ and finitely many negated support formulas in {¬(χ ⇝ γ) : χ ⇝ γ < Γ} s.t.
⊢ (φ1 ⇝ ψ1) ∧ · · · ∧ (φn ⇝ ψn) ∧ ¬(χ1 ⇝ γ1) ∧ ... ∧ ¬(χk ⇝ γk) → (δ → φ). By the
use of S5F we get ⊢ (φ1 ⇝ ψ1) ∧ · · · ∧ (φn ⇝ ψn) ∧ ¬(χ1 ⇝ γ1) ∧ ... ∧ ¬(χk ⇝ γk)→
(¬(δ→ φ)⇝ ⊥) and finally ¬(δ→ φ)⇝ ⊥ ∈ Γ.

Corollary 1. Given (∆, φ, i) ∈ S Γ then:
(a) (∆, φ, i) ∈ max([δ]Γ) implies ∆ is δ-likely for Γ;
(b) ∆ being δ-likely for Γ implies (∆, δ, i) ∈ max([δ]Γ).

Proof. (a) By (∆, φ, i) ∈ max([δ]Γ) and Lemma 2 we derive ¬(δ→ φ)⇝ ⊥ ∈ Γ. Using
the derivable rule LLE we get ¬(δ ↔ (δ ∧ φ)) ⇝ ⊥ ∈ Γ. Let us take an arbitrary
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γ ∈⇝δ (Γ); this means δ⇝ γ ∈ Γ. Since ¬(δ↔ (δ ∧ φ))⇝ ⊥ ∈ Γ we can apply LL+
to derive (δ ∧ φ)⇝ γ ∈ Γ. Furthermore, by applying SH, we get φ⇝ δ → γ ∈ Γ. By
Lemma 2 we know that ∆ is φ-likely for Γ, therefore δ → γ ∈ ∆. By assumption, we
have δ ∈ ∆, which lets us conclude γ ∈ ∆. Since γ was arbitrary we get⇝δ (Γ) ⊆ ∆.

(b) As ∆ is δ-likely for Γ, by axiom ID we have δ ∈⇝δ (Γ) ⊆ ∆ and hence ∆ ∈ [δ]Γ.
Taking an arbitrary MCS Ω ∈ S Γ with Ω ∈ [δ]Γ and an arbitrary propositional formula
π, we end up with (∆, δ, i) ⪰Γ (Ω, π, j) by Definition 8.

We can finally show that our construction works as intended, namely that every for-
mula ψ supported by a formula δ according to a MCS Γ is contained in all the maximal
δ states in the equivalence set of Γ.

Corollary 2. Given a MCS Γ and two propositional formulas δ and ψ, it holds that
δ⇝ ψ ∈ Γ if and only if for all (∆, φ, i) ∈ max([δ]Γ) : ψ ∈ ∆.

Proof. Given (∆, φ, i) ∈ max([δ]Γ), Corollary 1 ensures that ∆ is δ-likely for Γ. Since
ψ ∈⇝δ (Γ) ⊆ ∆, the claim follows. Now, by contraposition, we assume ψ <⇝δ (Γ). By
Lemma 1, there is an MCS ∆ ∈ [Γ]↭ such that {¬ψ}∪⇝δ (Γ) ⊆ ∆. Then, ∆ is δ-likely
for Γ, and Corollary 1 gives (∆, φ, i) ∈ max([δ]Γ). We conclude ψ < ∆ by consistency.

Let us fix a set I consisting of one representative of each equivalent class of↭.

Definition 9 (Canonical model). LetMCan := ⟨S , (S Γ)Γ∈I , (⪰Γ)Γ∈I ,R,V⟩ where:
− S :=

⋃
Γ∈I S Γ;

− V(p) := {(∆, φ, i) ∈ S : p ∈ ∆};
− the preference relation ⪰Γ⊆ S Γ × S Γ is as in Definition 8;
− R ⊆ S × S is defined as (∆, φ, i)R(Ω, ψ, j) if for all α ∈ LT : (B(α) ∈ ∆⇒ α ∈ Ω).

We begin the final steps of our completeness proof: the truth lemma and the proof
that the canonical modelMCan (from Def. 9) is a Trust model, starting with the truth
lemma. Let (∆, π, i) be a state of the canonical modelMCan, s.t. ∆ is a MCS (Def. 6), and
(π, i) are used to pinpoint arbitrary maximal π-states. This lemma says that a formula α
is satisfied by the pointed-canonical modelMCan, (∆, π, i) iff α ∈ ∆.

Lemma 3 (Truth lemma).MCan, (∆, π, i) |= α iff α ∈ ∆.

Proof. Proceeds by structural induction on α. If α ∈ LCL, the claim follows from CL.
By i.h., we derive ||φ||Γ = [φ]Γ and most(||φ||Γ) = max([φ]Γ) for all φ ∈ LCL.

Let α be φ ⇝ ψ. We start with the case α ∈ ∆. Take Γ with ∆ ∈ [Γ]↭. Given
an arbitrary (Ω, γ, j) ∈ S Γ with (Ω, γ, j) ∈ max(||φ||Γ) we get (Ω, γ, j) ∈ max([φ]Γ)
by the i.h. Because ψ ∈⇝φ (Γ) Corollary 2 implies that ψ ∈ Ω. By the induction
hypothesis, we conclude (Ω, γ, j) |= ψ, implying (∆, π, i) |= φ ⇝ ψ. For the other
direction, assume α < ∆. In this case, we have to find a maximal φ state which does not
satisfy ψ. The assumption ψ <⇝φ (∆) lets us derive ψ <⇝φ (Γ). By Corollary 2, we
obtain a (Π, χ, i) ∈ max([φ]Γ) with ψ < Π . By induction hypothesis we get (Π, χ, i) ∈
max(||φ||Γ) and (Π, χ, i) |= ¬ψ. This means (∆, π, i) ̸|= φ⇝ ψ.

If α is of the form B(φ) both directions of the claim follow directly from the induc-
tion hypothesis and the construction of R in Definition 9.
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Lemma 4. MCan is a Trust model.

Proof. First, we prove that for each Γ ∈ I ⟨S Γ, (⪰Γ),V⟩ fulfils the limitedness condition.
Let φ ∈ LCL and Γ ∈ I with [φ]Γ , ∅. Hence there exists a MCS ∆ ∈ [Γ]↭ with φ ∈ ∆.
ST tells us that ¬(φ⇝ ⊥) ∈ ∆. This implies φ⇝ ⊥ < ∆ and finally ⊥ <⇝φ (Γ). Given
that the set⇝φ (Γ) is closed under consequences because of RCK, we conclude that it
is consistent. By Lemma 1, we can extend⇝φ (Γ) to a MCSΠ ∈ [Γ]↭. By construction
Π is φ-likely for Γ. By Corollary 1(b) we obtain (Π, φ, i) ∈ max([φ]Γ), which makes
max([φ]Γ) non-empty. By Lemma 3 it follows ||φ||Γ , ∅ ⇒ most(||φ||Γ) , ∅. Since φ
and Γ were arbitrary we are done. Finally, the fact that the relation R is transitive and
serial, follows from the axioms for B as in standard Kripke semantics.

Theorem 5 (Strong Completeness). Φ |= α⇒ Φ ⊢ α, for all Φ ⊆ LT and α ∈ LT .

Proof. By contraposition. From Φ ⊬ α it follows that Φ ∪ {¬α} is consistent and can
therefore be extended to a MCS ∆. By Lemma 3 every formula in ∆ holds in the canon-
ical model in a state of the form (∆, γ, i). Hence ∀β ∈ Φ : (∆, γ, i) |= β and (∆, γ, i) ̸|= α,
which gives us Φ ̸|= α by Lemma 4.

Remark 9. Since the deduction theorem holds in SBTrust, Th. 5 implies compactness.

We discuss the computational complexity of SBTrust, splitting the problem into two
parts: (i) reducing SBTrust by ignoring its support part and focusing on the Boolean and
belief parts, and then (ii) reinstating the support part, to complete the proof.

Definition 10. The SBTrust-reduction is obtained by reducingLT toL′T and transform-
ing a modelM := ⟨S , _, _,R,V⟩ into a modelM′ := ⟨S ,R,V ′⟩ as follows:
− φ formulas of LT remain unchanged in L′T ;
− All α ∈ LT of the form φ⇝ φ, are mapped to fresh atoms taken from a set Prop′,
where Prop′

⋂
Prop = ∅; all the other α formulas are adjusted accordingly;

− V ′ extends V to include in its domain Prop′, according to the following rule: if
M, s |= φ⇝ ψ and p′ is the atom corresponding to φ⇝ ψ, then s ∈ V ′(p′).

Theorem 6. The decision problem for SBTrust is PSPACE-complete.

Proof. The result for a SBTrust-reduction follows from the fact that L′T is a set of KD4
formulas and the M′s are serial and transitive models [23]. Now, take a conjunction
of the support formulas corresponding to the atoms of Prop′ that are mapped to true.
The SAT problem for the support formulas is PSPACE: in [36], it is shown that the
satisfiability problem for the logic F is NP-complete. The result follows by Theorem 3.

Finally, we state the complexity of the model checking problem for SBTrust.

Theorem 7. GivenM := ⟨S , _, _,R,V⟩ and α ∈ LT , let n be the number of states in
S and r the number of pairs sRv. Let k be the number of support formulas, and k′ the
number of belief modalities, plus the number of atomic propositions and of connectives
in α. The complexity of the model checking problem is O(k · n2 + (k + k′) · (n + r)).
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Proof. We use the splitting methodology: we first consider the modal part of the for-
mula α and then the support part. For the first stage, apply a SBTrust-reduction toM
and α. This takes at most k + k′-steps. What is left is a model-checking problem for a
modal formula within a pointed Kripke model: its complexity is O((n+r) · (k+k′)) [16].
Then, translate back the new atoms to their respective support formulas. Take the par-
tition S i containing the state of evaluation s. To evaluate φ⇝ ψ, compute the two sets
most(||φ||i) and ||ψ||i. The latter is straightforward. The former requires at most n2-steps
(assuming the worst case: ||φ||i = S i = S ). This must be done for all k support formulas,
thus, the complexity of the whole procedure is O(k · n2).

5 Conclusions and Future Works

SBTrust is a logical framework for reasoning about decision trust, built on belief and
support. To formalize support, we introduced a novel non-monotonic conditional oper-
ator, axiomatizing the flat fragment of the logic F, and based on preference semantics.

Due to the generality of these concepts, SBTrust can integrate elements from the
approaches mentioned in Section 1.1 within a unified framework. More precisely, SB-
Trust can naturally and flexibly represent relevant factors for trust through the support
conditional. For example, we can express the importance of cognitive conditions for the
emergence of trust without having to give an explicit formalization of them but relying
on their implicit support of trust. Following up the discussion initiated in Example 1,
we illustrate how SBTrust can be used to combine different elements that contribute to
establishing trust and match those to the various paradigms described in Section 1.1.

Example 13. Assume that to trust GoodVi, customer C seeks to fulfill three condi-
tions: i) a cognitive-based one; ii) a reputation-based one; iii) a policy-based one. The
cognitive-based condition could be captured by the notion of occurrence Trust (denoted
by formula OccTVi) given in [24], which depends on multiple cognitive features of
the agents involved such as the goals of C, the ability and intentions of Vi, and the
effects of the actions of Vi on the goals of C. The reputation-based condition could
be represented, e.g., by proposition TopRatingVi, j, while the policy-based condition by
proposition AuthVi. Then, the formula TΓ(GoodVi) will indicate that customer C trusts
Vi as a good vendor for reason Γ, where Γ stands for (OccTVi∧TopRatingVi, j∧AuthVi).

The flexibility of SBTrust to express different conditions comes, however, at the
expense of reduced deductive power, e.g., we are unable to use the internal structure of
cognitive conditions to derive conclusions.

We also claim that our framework is versatile enough to encompass other notions
of trust, particularly those based on supportive information, as in [21]. Notably, it also
shares similarities with argumentation-based formalizations of trust [5].

Our future research will proceed in two main directions: exploring potential applica-
tions of SBTrust and the support operator, and extending the technical results presented
in this paper. Application-wise, we plan to use SBTrust to describe trust dynamics in
edge computing scenarios [19], by integrating various existing approaches to trust gen-
eration - policies, reputation, and cognitive features - within our unified framework. We
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also expect to leverage SBTrust to model the combination of the various (explainabil-
ity, legal, privacy- and security-related) factors influencing the trust perception when
using generative AI models [31]. From the technical point of view, we plan to study
the derived operator T in isolation and identify its properties independently of support
and belief. Moreover, we intend to extend SBTrust by: (i) using beliefs within support
statements; (ii) providing a proof calculus, along the lines of that in [14], equipped with
a prover; (iii) moving towards a quantitative, dynamic, and multi-agent setting.
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