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ABSTRACT
Combining temporal reasoningwith normative requirements presents

significant challenges. In this paper, we tackle the most relevant

challenges in the literature from a computational perspective, using

Answer Set Programming (ASP). We integrate Temporal Equilib-

rium Logic, the foundation of Temporal ASP, with Deontic Equi-

librium Logic with Explicit Negation, to reason about norms in a

temporal context. Our approach is validated by: (i) addressing key

benchmarks for temporal normative systems, providing (ii) a nor-

mal form reduction that enables the use of existing tools, and (iii) a

polynomial LTL reduction for a relevant logic fragment.
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1 INTRODUCTION
Norms — whether social, ethical, or legal — are fundamental to hu-

man society, but they are also crucial for the effective functioning of

AI agents. Incorporating norms into these agents to guide behavior

and foster coordination requires the development of computational

frameworks for normative reasoning; such frameworks must ac-

count for some non-monotonic features such as defeasibility [44].

Normative reasoning falls under the domain of deontic logic,

where obligations and related concepts are at the forefront. In this

context, aside from DDL [36], defeasibility has received limited

attention, and efficient reasoning tools remain scarce. These fea-

tures are offered by Answer Set Programming (ASP) — among the

most successful paradigms of knowledge representation and rea-

soning for problem solving [13]. ASP builds on a logic-based rule

language, interpreted under answer set semantics for evaluating

defeasible negation (negation as failure) [30]. The availability of

efficient solvers as well as its solid theoretical foundations have
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made ASP a popular tool. The logical characterization of ASP based

on Equilibrium Logic (EL) [45] has also enabled several extensions,

including the integration of temporal [3, 21] and deontic opera-

tors (e.g. [18, 31–33]). Additionally, normative reasoning has been

simulated through encodings in ASP [34, 38] and to the related para-

digm of Abductive Logic Programming [41]. Notably, though many

practical norms involve deadlines, and normative dynamics often

depend on temporal factors, the integration in ASP of temporality

and norms has been overlooked, with the exception of [32].

Temporal deontic reasoning is inherently complex, even in the

context of a single agent. As discussed in [8, 16], beyond the typical

intricacies of dealing with norms, such as managing contrary-to-

duty (CTD) scenarios — where new obligations arise when other

obligations are violated — the temporal dimension introduces new

types of norms (e.g., [6, 35]). These include punctual obligations,
which must be fulfilled at once upon being triggered; maintenance
obligations, which must be continuously upheld until a specified

deadline; and achievement obligations, which require meeting a

condition at least once before a deadline.

We introduce DeoTEL, a novel non-monotonic framework for

temporal deontic reasoning that can be effectively handled by ex-

isting ASP solvers. We integrate normative concepts with Tempo-

ral Equilibrium Logic (TEL) [2], which combines Linear Temporal

Logic (LTL) [43] and EL [45]. Following [18], rather than extend-

ing TEL with a modal language, we reason about temporal norms

constructed from literals with explicit negation [12]. As a design

choice, instead of defining temporal obligations as obligations over

temporal formulas, as in [32], we capture them using a single tem-

poral template — the repeater — which controls the propagation

of obligations over time. Our approach tackles deontic challenges,

such as (temporal) CTD norms inducing dilemmas, as in the well-

known Gentle Murder paradox [29] (see Example 3.5) where an

agent is forbidden to kill, but if it does, it must kill gently, implying

both an obligation to kill and a prohibition against it (a dilemma).

We evaluate our framework using established benchmarks aris-

ing in defeasible normative reasoning with temporal norms (Sec-

tion 4), focusing on the single-agent setting to lay a solid foundation

for future exploration of more complex multi-agent system (MAS)

dynamics. We provide a normal form for the introduced logic, en-

abling the use of standard ASP tools (e.g., telingo [22]) to compute

its equilibrium models (Section 5). Although the satisfiability prob-

lem for DeoTEL is EXPSPACE-complete, we show (in Section 6) that

a PSPACE-complete fragment —capable of representing classical
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planning domains with deontic preconditions, action effects, and

temporal deontic goals— can be polynomially encoded in LTL.

Related Work. Many authors have explored deontic reasoning

over time (e.g., [1, 35, 37, 39, 49]; also for MAS [5, 15, 40]), but these

lack a clear path to implementation. E.g, temporal defeasible logic

has been used for deontic reasoning [35, 37], but a theorem prover is

not yet implemented, and this formalism does not include temporal

modalities, reasoning instead over specific time points or intervals.

DeoTEL inherits the high expressivity of TEL, which can encode

the EXSPACE-hard conformant planning problems [11], finding an

action sequence that ensures reaching a goal despite incomplete

knowledge of the initial state and environmental uncertainties [9,

25]. Such expressivity comes with the price of higher complexity

with respect to other temporal deontic formalisms, e.g.[35, 37].

The most similar approach is [32], which integrates temporal and

deontic operators with logic programs under answer set semantics,

sharing several features with DeoTEL such as the ability to model

various types of temporal obligations and non-monotonically cancel

them. However, [32] relies on the obligation operator of Standard

Deontic Logic (SDL) [51] (the modal logic KD), where the simulta-

neous obligation and prohibition of the same fact is inconsistent;

thus, it cannot handle dilemmas, as in the Gentle Murder paradox.

The programs in [32] are based on dynamic LP syntax, while our

approach provides a complete semantics for any arbitrary temporal

theory, allowing the free combination of temporal, deontic, and

LP operators such as rules (seen as implication), default negation,

and explicit negation. Moreover, in our formalism, strong equiva-

lence [42] is implied by an equivalence of formulas. The simplicity

of DeoTEL limits its ability to derive temporal obligations, which

may be seen as a drawback. However, this also safeguards against

the unintended derivation of fulfilments and violations from tem-

poral norms that are logically derived but not explicitly stated

(Remark 2). Finally, [32] would require an ad hoc implementation,

whereas our programs are amenable to existing tools.

2 PRELIMINARIES
Equilibrium Logic has been extended in multiple ways. In this paper,

the extension we use as a starting point is Temporal Equilibrium

Logic (TEL) [2], in particular, the variant of TEL [3] with the ad-

dition of explicit negation. Given a countable set of propositional

atoms 𝒫 , a (temporal) formula 𝜑 is defined by (𝑝 ∈ 𝒫)

𝜑 ::=� ⋃︀ 𝑝 ⋃︀ ∼𝜑 ⋃︀ 𝜑 ∨ 𝜑 ⋃︀ 𝜑 → 𝜑 ⋃︀ 𝜑 ∧ 𝜑 ⋃︀ ○ 𝜑 ⋃︀ 𝜑 U 𝜑 ⋃︀ 𝜑 W 𝜑 (1)

The connectives ○ , U, andW are temporal operators. The first two,

respectively read as “next” and “until”, are standard operators in

LTL. As usual, ○𝜑 means that 𝜑 is true in the next state and 𝜑U𝜓
means that 𝜑 is true until𝜓 becomes true. The third connective is

called “while” and it is known how it can be expressed in terms

of U in LTL but not in TEL. The formula 𝜑W𝜓 means that 𝜑 is

true while the condition 𝜓 holds. The formula ∼𝜑 is the explicit

negation of 𝜑 , but we will also handle a (weaker) default negation
defined as ¬𝜑 ∶= 𝜑 → �. An (explicit) literal is an atom 𝑝 ∈ 𝒫 or

its explicit negation ∼𝑝 . A subset 𝑇 of Lit, i.e. the set of all explicit
literals for atoms in𝒫 , is said to be consistent if it contains no pair of
complementary literals; that is, there is no 𝑝 for which {𝑝,∼𝑝} ⊆ 𝑇 .

We also consider the following derived operators:

𝜑 ↔𝜓 ∶= (𝜑 →𝜓) ∧ (𝜓 → 𝜑) ⊺ ∶= ∼� ◊𝜑 ∶= ⊺ U 𝜑

𝜑⇔𝜓 ∶= (𝜑 ↔𝜓) ∧ (∼𝜑 ↔ ∼𝜓)
𝜑 R 𝜓 ∶= ∼(∼𝜑 U ∼𝜓) ○̂𝜑 ∶= ∼○ ∼𝜑 ◻𝜑 ∶= � R 𝜑

Intuitively, 𝜑R𝜓 is read “release” and means that𝜓 is true forever

or holds until 𝜑 ∧𝜓 becomes true, ◻𝜑 means that 𝜑 is always true,
and ◊𝜑 means that 𝜑 is eventually true. Meanwhile, the formula

○̂𝜑 is a weaker version of “next” which becomes trivially true if it

occurs at the end of a finite trace. We sometimes write ○𝑖𝜑 for 𝑖 ≥ 0

defined as ○0
𝜑 ∶= 𝜑 and ○𝑖𝜑 ∶= ○ ○𝑖−1

𝜑 . A (temporal) theory is a set

of (temporal) formulas; such theories are interpreted over traces.

In standard LTL, a trace T of length 𝜆 is a sequence T = (𝑇𝑖)𝜆𝑖=0

where each 𝑇𝑖 is a propositional interpretation, a subset of atoms

𝑇𝑖 ⊆ 𝒫 we usually call state. We extend this definition in two

directions. As a first extension, rather than sets of atoms, states will

have the form of consistent sets of explicit literals 𝑇𝑖 ⊆ Lit. Thus,
for instance, we may have a trace of three states like T = {double} ⋅
{double,∼smoker} ⋅ {∼smoker} where we initially booked a double

room with no particular options, then stated we did not want a

smoker room, and ended up having no preference about double

or single room, while the room should be non-smoking. A second

extension is a weakening of certainty related to default reasoning

and the model selection criterion we introduce later on. In each

state 𝑇𝑖 we distinguish a (consistent) subset of literals 𝐻𝑖 ⊆ 𝑇𝑖 we
will say to be “certain”, whereas the remaining ones in 𝑇𝑖 ∖𝐻𝑖 hold

“by default”. Thus, states are now pairs of consistent sets of literals:

we may have a state ∐︀𝐻𝑖 ,𝑇𝑖̃︀ with𝑇𝑖 = {double,∼smoker, breakfast}
and 𝐻𝑖 = {double} meaning that double ∈ 𝐻𝑖 is certainly true

whereas smoker and breakfast are respectively false and true by

default, but none of them are certain. Formally, we define a trace
as a sequence of pairs ∐︀𝐻𝑖 ,𝑇𝑖̃︀ of consistent sets of explicit literals
satisfying 𝐻𝑖 ⊆ 𝑇𝑖 ⊂ Lit for every 𝑖 such that 0 ≤ 𝑖 < 𝜆, where

𝜆 ∈ N ∪ {𝜔} and 𝜆 > 0 is the length of the trace. Note that we

allow finite 𝜆 ∈ N and infinite 𝜆 = 𝜔 traces. We write 𝑘 ∈ (︀𝑎,𝑏)
for 𝑎 ≤ 𝑘 < 𝑏. Alternatively, we also represent the trace as a pair

of sequences ∐︀H,T̃︀ where H = (𝐻𝑖)𝑖∈(︀0,𝜆) and T = (𝑇𝑖)𝑖∈(︀0,𝜆). A
trace is total when H = T, namely, 𝐻𝑖 = 𝑇𝑖 for all 𝑖 ∈ (︀0, 𝜆). For
simplicity, a total trace ∐︀T,T̃︀ is sometimes written simply as T.
Intuitively, in a total trace, all literals are “certain” (none of them

holds “by default”). Given a trace I = ∐︀H,T̃︀, we write I𝑡 to stand

for the corresponding total trace I𝑡 = ∐︀T,T̃︀.
The semantics of TEL (with explicit negation) is defined in two

steps. First, we define a monotonic logic, Temporal Here-and-There
(THT) and then, equilibrium models are defined through a model

selection criterion among the THT models. The usual semantics

for THT is an orthogonal combination of the intermediate logic of

Here-and-There (HT) (also known as 3-valued Gödel logic) with the

standard LTL temporal modalities. The addition of explicit negation

further requires enriching the THT satisfaction relation ⊧ with a

falsification one â. The complete description of these two dual

relations is shown in the table of Figure 1.

A trace I is a model of a theory Γ, written I ⊧ Γ, if I, 0 ⊧ 𝜑 for all

𝜑 ∈ Γ. A formula 𝜑 is a tautology (or valid), written ⊧ 𝜑 , iff I, 𝑖 ⊧ 𝜑
for any trace I and any 𝑖 ∈ (︀0, 𝜆I). We call THT the logic induced

by the set of all tautologies.

Definition 2.1 (Temporal equilibrium/answer set). A total trace

∐︀T,T̃︀ is a temporal equilibrium model of a theory Γ if ∐︀T,T̃︀ is a



𝜑 Satisfaction: I, 𝑖 ⊧ 𝜑 when Falsification: I, 𝑖 â 𝜑 when

⊺ (�) always (never) never (always)

𝛼 ∧ 𝛽 I, 𝑖 ⊧ 𝛼 and I, 𝑖 ⊧ 𝛽 I, 𝑖 â 𝛼 or I, 𝑖 â 𝛽

𝛼 ∨ 𝛽 I, 𝑖 ⊧ 𝛼 or I, 𝑖 ⊧ 𝛽 I, 𝑖 â 𝛼 and I, 𝑖 â 𝛽

𝛼 → 𝛽 I′, 𝑖 ⇑⊧ 𝛼 or I′, 𝑖 ⊧ 𝛽 for I′ ∈ {I, I𝑡} I𝑡 , 𝑖 ⊧ 𝛼 and I, 𝑖 â 𝛽

∼𝛼 I, 𝑖 â 𝛼 I, 𝑖 ⊧ 𝛼
𝑝 𝑝 ∈ 𝐻𝑖 ∼𝑝 ∈ 𝐻𝑖

○𝛼 𝑖 + 1 < 𝜆I and I, 𝑖 + 1 ⊧ 𝛼 𝑖 + 1 = 𝜆I or I, 𝑖 + 1 â 𝛼

𝛼 U𝜓
there is some 𝑗 ∈ (︀𝑖, 𝜆I) s.t.
I, 𝑗 ⊧𝜓 and for all 𝑘 ∈ (︀𝑖, 𝑗), I, 𝑘 ⊧ 𝛼

for all 𝑗 ∈ (︀𝑖, 𝜆I) either I, 𝑗 â𝜓 or

there is some 𝑘 ∈ (︀𝑖, 𝑗), I, 𝑘 â 𝛼

𝛼 W𝜓
for all 𝑗 ∈ (︀𝑖, 𝜆I) and for I′ ∈ {I, I𝑡}
either I′, 𝑗 ⊧ 𝛼 or there is 𝑘 ∈ (︀𝑖, 𝑗) s.t. I′, 𝑘 ⇑⊧𝜓

for some 𝑗 ∈ (︀𝑖, 𝜆I) we have both
I, 𝑗 â 𝛼 and I𝑡 , 𝑘 ⊧𝜓 for all 𝑘 ∈ (︀𝑖, 𝑗)

Figure 1: Semantics of THT (with explicit negation). We use the trace I = ∐︀H,T̃︀, where 𝜆I is length of the trace.

model of Γ and there is no other model ∐︀H,T̃︀ of Γ with H ≠ T.
When this happens, we call T a temporal answer set of Γ.

An equilibrium model is a total model ∐︀T,T̃︀ where all literals
are certain, but there is no “weaker” model of the form ∐︀H,T̃︀ with
some state ∐︀𝐻𝑖 ,𝑇𝑖̃︀ having a strictly smaller set of certain literals

𝐻𝑖 ⊂ 𝑇𝑖 . Temporal Equilibrium Logic (with explicit negation) (TEL) is
the logic induced by temporal equilibrium models.

Example 2.2. Let 𝑝 be a property varying along time (e.g. the

room option we had before), and we add the inertia default rules:

◻(𝑝 ∧ ¬○ ∼𝑝 → ○𝑝) (2)

◻(∼𝑝 ∧ ¬ ○ 𝑝 → ○ ∼𝑝) (3)

(2) states that, in any situation where 𝑝 holds and there is no evi-

dence that its explicit negation must become true in the next state,

then 𝑝 remains true. Formula (3) is analogous for ∼𝑝 . A theory con-

sisting of (2), (3) and the formula ○2
𝑝∧○2◊ ∼𝑝 has temporal answer

sets following the regular expression ∅ ⋅ ∅ ⋅ {𝑝}+ ⋅ {∼𝑝} ⋅ {∼𝑝}∞
where∞ can be ∗ or𝜔 , respectively forming finite or infinite traces.

3 DEONTIC TEMPORAL HERE-AND-THERE
We introduce deontic operators into THT, defining the logic of

Deontic Temporal Here-and-There (DeoTHT). To this aim, the syntax

of temporal formulas (1) is extended with the operators O𝜑 (𝜑 is

obligatory) and F𝜑 (𝜑 is forbidden). ℒ will denote the set of deontic

temporal formulas. A deontic atom is 𝑝 , O𝑝 , or F𝑝 for any atom

𝑝 ∈ 𝒫 . A (deontic) explicit literal is now any deontic atom 𝐴 or

its explicit negation ∼𝐴. By DLit we denote the set of all deontic
explicit literals (for some signature 𝒫); note that Lit ⊆ DLit.

The expression P𝛼 ∶=∼F𝛼 represents the permission for𝛼 ; P𝛼 can

be read as explicit evidence against the prohibition of𝛼 . For instance,

Ppark means explicit permission to park; that is, stating ∼Fpark we

guarantee that there is no prohibition to park. Note the difference

with ¬Fpark, which is just the lack of evidence of a prohibition.

As before, a set 𝑇 ⊆ DLit of deontic explicit literals is consistent
if there is no deontic atom 𝐴 for which {𝐴,∼𝐴} ⊆ 𝑇 . Formulas

will be interpreted in different contexts or “worlds” depending on

their deontic meaning. A deontic world [18] 𝑤 is one of {r, o, f}
respectively standing for “real”, “obligatory” and “forbidden”. The

complementary world �̄� of a world𝑤 is: ō = f , ¯f = o and r̄ = r.
DeoTHT-traces will be THT-traces where states become consis-

tent sets of deontic literals, i.e., we additionally allow literals of the

form O𝑝, F𝑝,∼O𝑝 and ∼F𝑝 . However, we also impose the condition

below, which affects the T component in the ∐︀H,T̃︀ trace.
Definition 3.1 (Deontic Temporal interpretation). A deontic tempo-

ral interpretation T of length 𝜆 is a sequence (𝑇𝑖)𝜆𝑖=0
of consistent

sets of deontic literals that, for all 𝑝 ∈ 𝒫 and 𝑖 ∈ (︀0, 𝜆), satisfies:
{O𝑝, F𝑝} ⊆ 𝑇𝑖 implies {𝑝,∼𝑝} ∩𝑇𝑖 ≠ ∅ (4)

Condition (4) is a key feature of the deontic extension of Equilib-

rium Logic with explicit negation in [18] and serves as a relaxation

of the standard deontic axiom (D): O𝑝 ∧ F𝑝 → � which disregards

the simultaneous obligation and prohibition of the same fact. In our

relaxation of (D), an obligation O𝑝 and a prohibition F𝑝 can coexist

together at any state 𝑇𝑖 , as long as one has been violated—either a
violated obligation (if ∼𝑝 ∈ 𝑇𝑖 ) or a violated prohibition (if 𝑝 ∈ 𝑇𝑖 ).
Yet, if neither 𝑝 nor ∼𝑝 is present, we disregard traces where O𝑝

and F𝑝 occur together at the same set 𝑇𝑖 .

We can now define deontic traces as we have done in THT, by

handling a separation of states formed by certain literals H among

those considered as true T in the deontic temporal interpretation.

Definition 3.2 (Deontic trace). A deontic trace is a triple I =
∐︀H,T,𝑤̃︀ where𝑤 ∈ {r, o, f} is a deontic world, T = (𝑇𝑖)𝑖∈(︀0,𝜆) is a
deontic temporal interpretation and H = (𝐻𝑖)𝑖∈(︀0,𝜆) is a sequence
of sets of deontic literals satisfying 𝐻𝑖 ⊆ 𝑇𝑖 ⊂ DLit for all 𝑖 ∈ (︀0, 𝜆).

A deontic trace is total when H = T. For any deontic trace I =
∐︀H,T,𝑤̃︀ we denote the associated total trace as I𝑡 = ∐︀T,T,𝑤̃︀.

Definition 3.3. Given a deontic trace I = ∐︀H,T,𝑤̃︀, Figure 2 shows
the satisfaction and falsification relations for DeoTHT.

Apart from the addition of the new operators O𝛼 and F𝛼 , the
only differences from THT (Figure 1) are in the interpretation of an



𝜑 Satisfaction: I, 𝑖 ⊧ 𝜑 when Falsification: I, 𝑖 â 𝜑 when

𝑝

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑝 ∈ 𝐻𝑖 if𝑤 = r
O𝑝 ∈ 𝐻𝑖 if𝑤 = o
∼F𝑝 ∈ 𝐻𝑖 if𝑤 = f

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

∼𝑝 ∈ 𝐻𝑖 if𝑤 = r
∼O𝑝 ∈ 𝐻𝑖 if𝑤 = o
F𝑝 ∈ 𝐻𝑖 if𝑤 = f

∼𝛼 ∐︀H,T, �̄�̃︀, 𝑖 â 𝛼 ∐︀H,T, �̄�̃︀, 𝑖 ⊧ 𝛼
�,⊺,∧,∨,→, ○,U,W as in Figure 1 as in Figure 1

O𝛼 ∐︀H,T, 𝑜̃︀, 𝑖 ⊧ 𝛼 ∐︀H,T, 𝑜̃︀, 𝑖 â 𝛼
F𝛼 ∐︀H,T, 𝑓 ̃︀, 𝑖 â 𝛼 ∐︀H,T, 𝑓 ̃︀, 𝑖 ⊧ 𝛼

Figure 2: DeoTHT semantics.

atom 𝑝 ∈ 𝒫 and of explicit negation ∼𝛼 . The interpretation of atoms

depends on the deontic world𝑤 . For instance, it is easy to see that

real-world r behaves as in THT. However, in the obligation world

o, the atom 𝑝 is satisfied at 𝑖 if we have a deontic literal O𝑝 ∈ 𝐻𝑖

and falsified if ∼O𝑝 ∈ 𝐻𝑖 . For the prohibition world f , the situation
is dual: 𝑝 is satisfied at 𝑖 when ∼F𝑝 ∈ 𝐻𝑖 and falsified if F𝑝 ∈ 𝐻𝑖

instead. Notice that the prohibition operator behaves, in this way,

as a kind of negation – in fact, we will see that F𝛼 ≡ O∼𝛼 . With the

interpretation of explicit negation, we still swap the relation ⊧ by
â and vice versa, as in THT, but we additionally change the world

𝑤 to its complementary world �̄� . Again, when𝑤 = r, the semantics

collapses to THT, as r̄ is r. For the other two deontic worlds, o
and f , explicit negation alternates from one to another, apart from

swapping satisfaction/falsification relations.O𝛼 is satisfied/falsified

by “moving” to the o world whereas, for F𝛼 we both move to the f
world and swap satisfaction with falsification (and vice versa).

A deontic trace I = ∐︀H,T,𝑤̃︀ is a model of a theory Γ, written
I ⊧ Γ, if I, 0 ⊧ 𝛾 for every 𝛾 ∈ Γ. A formula 𝜑 is a tautology ⊧ 𝜑

when any deontic trace I is a model of 𝜑 . Two formulas 𝜑 and 𝜓

are said to be equivalent, written 𝜑 ≡𝜓 , when I, 𝑖 ⊧ 𝜑⇔𝜓 for any

(finite or infinite) trace I and any point 𝑖 ∈ )︀0..𝜆I).
The following equivalences (inherited from the non-temporal

case [18]) show that the obligation operator O distributes over the

propositional connectives (except explicit negation), and that we

can define prohibition F in terms of obligation O and vice versa.

O(𝛼 ∨ 𝛽) ≡ O𝛼 ∨O𝛽 O(𝛼 ∧ 𝛽) ≡ O𝛼 ∧O𝛽

O(𝛼 → 𝛽) ≡ O𝛼 → O𝛽 O� ≡ �
O¬𝛼 ≡ ¬O𝛼 OO𝛼 ≡ O𝛼

O ∼𝛼 ≡ F𝛼 F ∼𝛼 ≡ O𝛼

Note howO differs from amodal necessity operator in thatO(𝛼∨𝛽)
can be reduced to O𝛼 ∨O𝛽 . This behavior may seem a bit strong,

but allows us to avoid problems related to entailed obligations like

Ross’ paradox [46]: if an agent is obliged to send a letter O𝑠𝑒𝑛𝑑

then since 𝑠𝑒𝑛𝑑 entails 𝑠𝑒𝑛𝑑∨𝑏𝑢𝑟𝑛, the agent is also obliged to send
or burn it O(𝑠𝑒𝑛𝑑 ∨ 𝑏𝑢𝑟𝑛). Yet, in DeoTHT the latter can be read

as O𝑠𝑒𝑛𝑑 ∨O𝑏𝑢𝑟𝑛 which makes perfect sense. O also distributes

over temporal operators, as stated by the following lemma.

Lemma 3.4 (Perfect recall). The following hold:

O ○ 𝛼 ≡ ○O𝛼 O(𝛽 U𝛼) ≡ (O𝛽)U(O𝛼)
O(𝛽 R 𝛼) ≡ (O𝛽 R O𝛼) O(𝛽 W 𝛼) ≡ (O𝛽 WO𝛼)

O ○𝛼 ≡ ○O𝛼 guarantees the perfect recall property [14], that is satis-
fied when we have both the “no-learning” property, i.e. ⊧ ◻(○O𝛼 →
O ○ 𝛼), and the “no-forgetting” property, i.e., ⊧ ◻(O ○ 𝛼 → ○O𝛼).

Remark 1. In [14] the authors dropped the no-learning property
as their orthogonal product of LTL with KD could not handle the
propagation axiom for achievement obligations. The no-forgetting
property was instead dropped in [32] to enable cancelation of temporal
obligations and their semantics were defined on top of ASP. As shown
in Sec. 4, we can model both cancellation and propagation of temporal
norms via a temporal template we call a repeater.

Apart from permission P𝛼 ∶=∼F𝛼 , we introduce the following de-
rived deontic operators (the ∗ superscript means a letter in {f, v, d},
respectively standing for “fulfilled”, “violated” and “defeasible”).

Of
𝛼 ∶= O𝛼 ∧ 𝛼 Od

𝛼 ∶= ¬P ∼𝛼 → O𝛼

Ov
𝛼 ∶= O𝛼∧ ∼𝛼 F∗𝛼 ∶= O∗ ∼𝛼

Standard Deontic Logic (SDL) [51] is a modal logic that treats the

simultaneous obligationO𝛼 and prohibition F𝛼 of the same formula

𝛼 as inconsistent, formalized by the (D) axiomwe introduced before

and that can also be stated as O𝛼 → ∼O∼𝛼 using the relation F𝛼 ≡
O ∼𝛼 . The deontic extension of equilibrium logic [18] introduced a

weaker variant of this axiom (wD) ensuring inconsistency arises

only when neither an obligation nor a prohibition is violated.

This idea is behind Condition (4) of Def. 3.1 and can be captured

by the addition of the following temporal (wD) axiom schema:

◻((O𝑝 ∧ F𝑝 ∧ ¬𝑝 ∧ ¬ ∼𝑝)→ �) (TwD)

for every (non-deontic) atom 𝑝 ∈ 𝒫 . (TwD) disallows dilemmas,
such asO𝑘 ∧F𝑘 — simultaneous obligations to kill 𝑘 and not kill ∼𝑘 ,
which remain unresolved without further information. However,

to accommodate certain CTD scenarios, (TwD) relaxes deontic
inconsistency, as shown below.

Example 3.5. Recall the Gentle Murder paradox [29], where

killing is prohibited ◻F𝑘 , but if done, must be gentle, ◻(𝑘 → O𝑔),
where ◻(O𝑔 → O𝑘). From the fact that an agent kills in, say, the

second state ○𝑘 , we have ○(O𝑘∧F𝑘), a deontic inconsistency which
is disallowed by formalisms like [32]. However, by adopting (TwD)
instead of (D), ○𝑘 causes us not to derive � (since ○F𝑘 has been

violated), accommodating the CTD scenario.



Theorem 3.6 (Conservative extension). Given a theory Γ con-
taining no temporal operators and with only O as a deontic operator,
T ⊧ Γ in DeoTHT if and only if 𝑇0 ⊧ Γ in Deontic HT (DHTX)
according to Defn. 1 in [18].

Persistence, a key property in intuitionistic logic, ensures that

accessible worlds (here, the T component) validate or refute at least

the same formulas as the current world (the H component).

Theorem 3.7. For each trace I = ∐︀H,T,𝑤̃︀, 𝑖 ∈ )︀0..𝜆I) and 𝜑 ∈ ℒ:
I, 𝑖 ⊧ 𝜑 implies I𝑡 , 𝑖 ⊧ 𝜑 and I, 𝑖 â 𝜑 implies I𝑡 , 𝑖 â 𝜑 .

Finally, we extrapolate Defn. 2.1 for the deontic extension.

Definition 3.8 (DeoTEL). A total deontic trace ∐︀T,T, 𝑟̃︀ is a deontic
temporal equilibrium model of a theory Γ if ∐︀T,T, 𝑟̃︀ is a model of Γ
and there is no other model ∐︀H,T, 𝑟̃︀ of Γ with H ≠ T. When this

happens, we call T a deontic temporal answer set of Γ. DeoTEL is

the logic induced by deontic temporal equilibrium models.

Note that the evaluation of formulas in a theory starts in the real

world r (and at state 0).

Example 3.9. Let Γ = {◻F𝑘,◻(𝑘 → O𝑔),◻(O𝑔 → O𝑘), ○𝑘} from
Ex. 3.5. A deontic temporal equilibrium model for Γ is ∐︀T,T, 𝑟̃︀
where T = {F𝑘} ⋅ {𝑘, F𝑘,O𝑘,O𝑔} ⋅ {F𝑘}∗. Note that while O𝑘, F𝑘
∈ 𝑇1, as 𝑘 ∈ 𝑇1, condition 4 of Def. 3.1 is met and it is a deontic trace.

4 TEMPORAL NORMS IN DeoTEL

We demonstrate the capabilities of our logic by addressing some key

challenges of deontic reasoning in a temporal context. We examine

various types of norms; consider the temporal adaptation below

of the Chisholm paradox [23, 24], with which we model pandemic

restrictions for a human agent:

(A) If you test positive, you ought to remain in quarantine until

you test negative.

(B) If you test positive and are in quarantine, you ought to report

your quarantine before you test negative.

(C) While you are violating an obligation to quarantine, it is

forbidden to report you are in quarantine.

This is a CTD scenario; it contains both a primary maintenance

obligation (A) and a secondary punctual obligation (C) of not re-

porting while the agent violates (A). Meanwhile, the achievement

obligation (B) potentially leads to contradictory indications (i.e. a

dilemma), if you are not in quarantine.

Formalizing punctual obligations (e.g. (C)) is straightforward,
as it collapses to the non-temporal case; if an obligation to𝑞uarantine

is violated Ov
𝑞, it is forbidden to 𝑟eport a quarantine F 𝑟 . This con-

ditional norm can be represented in the temporal context as

◻(Ov
𝑞 → F 𝑟) (𝐶)

a global implication equivalent to ◻(O𝑞∧ ∼𝑞 → O ∼𝑟).
Maintenance and achievement obligations require more atten-

tion. Recall that, once triggered,maintenance obligations persist
until the deadline arrives so they can be violated (or fulfilled) at each

point up to the deadline, suggesting that we can model them by

propagating a series of punctual obligations up to a given deadline.

Meanwhile, achievement obligations, which are only violated

when not fulfilled by the deadline and can be fulfilled only when the

obligatory condition is achieved (by the deadline), prove a greater

challenge. If we are employing punctual obligations in the modeling

of achievement obligations, the punctual obligation should only

appear once – when the obligation is fulfilled or violated.

One might consider modeling such obligations using U, R, or
W over punctual obligations. However, U and R are unsuitable to

represent temporal obligations whose deadlines may never arrive,

andW might lead to undesired behaviors.

Remark 2. Considering maintenance and achievement obligations
as obligations of temporal formulas O𝛼 (as in [32]) causes issues
regarding entailed obligations as in Ross’ paradox [46]. For instance,
suppose 𝛼 = 𝑝𝑎𝑦 R ∼ 𝑗𝑎𝑛𝑢𝑎𝑟𝑦, so O𝛼 obliges paying by January.
This entails O(𝑝𝑎𝑦R ∼𝛿) for any later deadline 𝛿 or in general, any
formula entailed by 𝛼 . In that way, if we fulfill O𝛼 we also fulfill
many other entailed obligations that were never stated explicitly (the
same applies for violations), making it impossible to, e.g., count how
many obligations have been fulfilled/violated.

With these complications in mind, we employ a technique sim-

ilar to predicate abstraction but for operators. We encode them

via atoms that work as parameterized templates governed by the

violation/fulfillment/propagation conditions of achievement and

maintenance obligations. To that end, we enrich our set of proposi-

tional variables 𝒫 with a set of designed atoms defined below:

Definition 4.1 (Repeater). Given any DeoTEL formula 𝛼 over

atoms 𝒫 and 𝑆 ⊆ Lit, we write Rep𝑆(𝛼) to stand for a new atom

(not included in 𝒫) called repeater.

When extending the signature with repeaters, we also restrict

the syntax so that repeaters do not appear within the scope of O.

Repeaters have a semantics governed by the following axioms:

◻(Rep𝑆(𝛼)→ 𝛼) (Deriv.)

◻(¬○̂ ∼Rep𝑆(𝛼) ∧ Rep𝑆(𝛼) ∧ ¬⋁𝑆 → ○̂Rep𝑆(𝛼)) (Prop.)

The (Deriv.) rule is responsible for the derivation of 𝛼 when the

repeater Rep𝑆(𝛼) is in force, while rule (Prop.) is responsible for

the propagation of the repeater until one of the stopping conditions

in 𝑆 is met, or when ∼Rep𝑆(𝛼) is derived at the next state. We

call ∼Rep𝑆(𝛼) the cancellation of Rep𝑆(𝛼). Note that the ability to

cancel a temporal obligation is another potential advantage of this

approach over defining temporal obligations via a temporal opera-

tor such as U. Using the repeaters, we propose a novel definition of

achievement and maintenance obligations. For every 𝑙, 𝛿 ∈ Lit:
A𝛿(𝑙) ∶= Rep{𝛿,𝑙}((𝛿 ∨ 𝑙)→ O𝑙) M𝛿(𝑙) ∶= Rep{𝛿}(O𝑙)

(5)

We can also define their defeasible versions (obligations that can

be overridden) Ad
𝛿(𝑙) andMd

𝛿(𝑙) by replacing O𝑙 with Od
𝑙 in the

respective definitions above.

Remark 3. Using repeaters enables propagating maintenance obli-
gations even after they are violated the first time, unlike [31].

To illustrate how we model temporal obligations with repeaters, let

us return to (A-B). (A) is a maintenance obligation, which obligates

you to, upon testing positive 𝑝 , maintain a state of quarantine 𝑞

until you test negative 𝑛. This conditional obligation is written as:

◻(𝑝 →M𝑛(𝑞)) (𝐴)



That is, whenever 𝑝 occurs, M𝑛(𝑞) is triggered, and is propagated

until 𝑛 occurs, and O𝑞 is derived every step along the way due to

(Deriv.). Meanwhile, achievement (B) can be modeled as:

◻((𝑝 ∧ 𝑞)→ A𝑛(𝑟)) (𝐵)

This means that the trigger 𝑝 ∧𝑞 prompts the propagation of A𝑛(𝑟)
until 𝑛 ∨ 𝑟 occurs — until then, we derive (𝑛 ∨ 𝑟)→ O𝑟 . Thus, if 𝑟
does not occur before 𝑛, then with 𝑛 we derive O𝑟 , and depending

on whether or not 𝑟 is true, we furthermore have Of
𝑟 or Ov

𝑟 .

With the repeater mechanism, we can also define temporal per-

missions. [35] characterizes maintenance permissions as per-
mission to remain in a certain state for a certain period. Such a

permission can be exercised any number of times before a deadline

occurs; these permissions can be modeled by propagating punctual

permissions until a deadline; in other words, Pm𝛿 (𝑙) ∶= Rep{𝛿}(P𝑙).
Achievement permissions, on the other hand, can only be exer-

cised once before a deadline. [35] exemplifies achievement permis-

sions as: the right to return a product before a deadline occurs. It is

permissible (as in, there is a punctual permission) to return the prod-

uct at each time step, up until the point of time when you return the

product, or until the deadline (if you don’t return it). Achievement

permissions can be simply modeled as Pa𝛿(𝑙) ∶= Rep{𝛿,𝑙}(P𝑙).

4.1 Selected Addressed Challenges
We discuss how DeoTEL handles established benchmarks for defea-

sible normative reasoning in time; wewill present temporal variants

of the challenges from [18] (those where adding time causes notable

changes), which were in turn based on the discussion in [16].

Temporal CTDs and Dilemmas. Consider the normative system

(A-C). The maintenance obligation (A) is triggered upon testing

positive, the achievement obligation (B) is triggered by both testing

positive and being (initially) in quarantine, and (C) is a CTD obliga-

tion w.r.t. (A). The addition of (C) to (A-B) introduces the potential

for a dilemma to occur; if you test positive 𝑝 at some point in the

trace and initially are in quarantine, obligations (A-B) are triggered.

(B) is an achievement obligation and can be neglected temporarily,

but when the deadline 𝑛 arrives, that is your last chance to fulfill it,

and thus you are required to report your quarantine (O𝑟 is derived
with (Deriv.)). However, if you are not actually in quarantine, obliga-
tion (C) is in force, requiring that you don’t report your quarantine
(F𝑟 ). Thus, if you put off reporting your quarantine until the dead-

line, and are not in quarantine at that point, it is both forbidden

and obligatory to report your quarantine.

To solve the deontic inconsistency that arises from this dilemma,

we need explicit information on whether or not you report your

quarantine at deadline 𝑛, ensuring that 𝑟∨ ∼𝑟 holds. Then, the

temporal weak D axiom (TwD) is not triggered, and � is not derived.

Compensatory Obligations. We can add to (A-C) another obli-

gation that has a specific role: compensating for the violation of

another obligation. In this case, we add the achievement obligation

stating that an obligation to pay a fine 𝑓 by the end of the month

𝑚 arises from violating the obligation to quarantine, or:

◻(Ov
𝑞 → A𝑚(𝑓 )) (𝐷)

Thus, if (A) is in force and then violated, since ◻(M𝑛(𝑞) → O𝑞),
the achievement obligation A𝑚(𝑓 ) is triggered as well, and will

also be violated if the fine is not paid by the end of the month.

Cancellation of Temporal Obligations. A maintenance or achieve-

ment obligation that is in force may, for various reasons, end up

voided or canceled. To demonstrate this, let us add another norm

to (A-C): if the lockdown ends 𝑙𝑒 , the obligations to remain in quar-

antine and report your quarantine are canceled. That is

◻(𝑙𝑒 →∼M𝑛(𝑞)), ◻(𝑙𝑒 →∼A𝑛(𝑟)) (𝐸)
With this cancellation norm in place, if we have a trace where 𝑝

is true at some point, triggeringM𝑛(𝑞) and A𝑛(𝑟), and 𝑙𝑒 occurs
before 𝑛, the rule (Prop.) cannot be used to propagate M𝑛(𝑞) or
A𝑛(𝑟) to the next state. Note that canceling obligations is only

possible when we use the repeater to model temporal obligations.

Defeasible Obligations. Some obligations are defeasible and act

as defaults, which may be overruled by another norm, granting an

exception. For example, let us replace (A) above with (A’): unless

you are explicitly permitted to do otherwise, upon testing positive

𝑝 you must quarantine 𝑞 until you test negative 𝑛. Then we might

have a permission that acts as an exception to this obligation: it is

permissible to leave quarantine ∼𝑞 in the case of an emergency 𝑒 ,

until the situation is solved 𝑠 (a maintenance permission); i.e.:

◻(𝑝 →Md
𝑛(𝑞)) (𝐴′) ◻(𝑒 → Pm𝑠 (∼𝑞)) (𝐹)

Thus, even when (A’) is in force, if an emergency 𝑒 occurs, Pm𝑠 (∼𝑞)
temporarily comes into force until 𝑠 , overriding (A’).

Constitutive Norms.Constitutive norms [47] of the form “X counts

as Y in context C” can be modeled in our temporal framework

straightforwardly. To put an example, the sentence “a quarantine

(𝑞) counts as a confinement (𝑐𝑛)” can be represented as:

◻(𝑞 → 𝑐𝑛), ◻(O𝑞 → O𝑐𝑛), ◻(∼𝑐𝑛 →∼𝑞), ◻(O ∼𝑐𝑛 → O ∼𝑞)
so that being forced to be in quarantine is also being forced to

confine, and similarly, having a prohibition to confine implies a

prohibition to quarantine. These constitutive norms can also be

transformed into defaults applicable only under non-violation, such

as ◻(O𝑞 ∧ ¬ ∼𝑞 → O𝑐𝑛) (see [18] for further details).

5 DEONTIC TEMPORAL LOGIC PROGRAMS
We introduce a procedure that enables us to reduce a generic

DeoTHT formula into a set of Deontic Temporal rules. A temporal
literal 𝐿 has one of the forms 𝑑, ○𝑑, ○̂𝑑 for any 𝑑 ∈ DLit.

Definition 5.1 (DeoTLP). ADeontic Temporal program comprises

● initial rules of the form (all 𝑏𝑖 , 𝑐 𝑗 are temporal literals)

𝑟 ∶ (¬)𝑏1 ∧ ⋅ ⋅ ⋅ ∧ (¬)𝑏𝑘 → (¬)𝑐1 ∨ ⋅ ⋅ ⋅ ∨ (¬)𝑐𝑙 ; (6)

● dynamic rules of the form ◻𝑟 , where 𝑟 is an initial rule;

● fulfillment rules of either the form◻(◻𝑝 → 𝑞) or◻(𝑝 → ◊𝑞),
where 𝑝,𝑞 ∈ DLit.

An initial or dynamic rule 𝑟 is a constraint if its head is �; it is a fact
if its body is empty (𝑘=0) and its head is a single positive literal.

Our normal form extends the one for TEL [17], by incorporating

explicit negation and deontic modalities according to our semantics

(Defn. 3.3). As in [17], our reduction follows two steps. First, we

make a Tseitin-like [50] transformation, 𝑑 𝑓
′(𝛾) that replaces each



subformula 𝛾 by an auxiliary atom L𝛾 . We call such an alphabet 𝒫L.
This produces a theory that is not in DeoTLP form yet, but the latter

is achieved through a second step of transformations 𝑑 𝑓
∗(𝑑 𝑓 ′(𝛾)).

The whole transformation is polynomial and the result is strongly

equivalent to the original theory (modulo auxiliary atoms).

In what follows, we assume L𝜙 ∶= 𝜙 for formulas 𝜙 ∈ DLit ∪
{⊺,�}, so we do not introduce extra atoms in those cases.

Definition 5.2 (Transformation𝑑 𝑓 (⋅)). Given a formula𝛾 ,𝑑 𝑓 (𝛾) ∶=
𝑑 𝑓
∗(𝑑 𝑓 ′(𝛾)) where 𝑑 𝑓 ′(⋅) and 𝑑 𝑓 ∗(⋅) are defined in Table 1.

The transformation 𝑑 𝑓
∗(⋅) is as in [17], except for the case that

unfolds an implication in the consequent of another implication

(leftmost, bottom in Table 1). The addition of the formula𝜓 in the

disjunction was not needed in [17] but it is, in the presence of

explicit negation, to maintain an equivalent result. We can state:

Theorem 5.3. Given a theory Γ, {I ⋃︀ I ⊧ Γ} = {I′ ∩ DLit ⋃︀ I′ ⊧ Γ′}
where Γ′ is the DeoTLP program Γ′ = {L𝛾 ⋃︀ 𝛾 ∈ Γ} ∪ {𝑑 𝑓 (𝜙) ⋃︀
𝜙 subformula of Γ}.

Proof (sketch). We (i) show the correctness of the 𝑑 𝑓
′
trans-

formation, and (ii) verify the correctness of the 𝑑 𝑓
∗
rewriting. (i)

We demonstrate that a DeoTHT model I exists for Γ iff there is a

DeoTHT model for Γ′ = 𝑑 𝑓 ′(Γ), where the extended alphabet is𝒫L.
We prove that the newly introduced atoms are true if and only if so

are the formulas they represent in a Tseitin-like manner. This can

be verified through a structural induction on the formulas. (ii) The

correctness of the 𝑑 𝑓
∗
rewriting is established using truth tables,

proving that Γ′ and 𝑑 𝑓 ∗(Γ′) have the same DeoTHT models. □

Since our target semantics is DeoTEL, we stress the following

Corollary of Theorem 5.3.

Corollary 5.4. Given a theory Γ, {T ⋃︀ T is a DeoTEL model of
Γ} = {T′ ∩ DLit ⋃︀ T′ is aDeoTELmodel of Γ′}where Γ′ is theDeoTLP
program Γ′ = {L𝛾 ⋃︀ 𝛾 ∈ Γ} ∪ {𝑑 𝑓 (𝜙) ⋃︀ 𝜙 sub-formula of Γ}.

6 COMPUTATION AND COMPLEXITY
We study the complexity and computation of DeoTEL, providing

two polynomial reductions: one reduces DeoTEL, whose satisfia-

bility problem is EXPSPACE-complete, into TEL; another targets

a practical fragment of the formalism, which can be encoded into

LTL. Furthermore, the translation into TEL reduces a theory into a

temporal logic program. This permits the use of efficient solvers,

such as telingo [22].

Proposition 6.1. Given a set of atoms 𝒫 , let 𝒫 ′ denote the ex-
tended set 𝒫 ′ ∶= 𝒫 ∪ {O𝑝 , F𝑝 ⋃︀ 𝑝 ∈ 𝒫} and let T = (𝑇𝑖)𝜆𝑖=0

conform
a THT-total trace ∐︀T,T̃︀ for signature 𝒫 ′. Then, for any temporal
theory Γ where O and F are only applied to atoms:

T ⊧ Γ in DeoTHT iff T ⊧ Γ ∪ {(TwD)} in THT.

We need an intermediate result to establish the membership of

satisfiability for a DeoTEL theory under DeoTEL semantics.

Theorem 6.2. Given a DeoTLP program 𝜋 , there is a polynomial
reduction to a theory 𝜋 ′ such that 𝜋 has a DeoTEL model if and only
if 𝜋 ′ has a TEL model.

Proof (sketch). Define 𝒫𝐷 as DLit ∖ {∼𝐿 ⋃︀ ∼𝐿 ∈ DLit}. We

transform the DeoTLP program 𝜋 in four steps. We rewrite (i) every

O(𝑝) (resp. F(𝑝)) into 𝑝o (resp. 𝑝f ), and (ii) every literal ∼𝑝 (includ-

ing the fresh ones) with a fresh atom 𝑝; we add (iii) the constraint

◻(𝑝 ∧ 𝑝 → �) for every atom 𝑝 (including the fresh ones); and

(iv) the constraint ◻((𝑝o ∧ 𝑝f ∧ ¬𝑝 ∧ ¬𝑝) → �) for each 𝑝 ∈ 𝒫𝐷 .
Step (i) reduces modalities to atoms. It is easy to show that I is a
DeoTHT model for the original program 𝜋 iff I′ where O(𝑝) are
replaced by 𝑝o is a DeoTHT model of the rewritten program after

step (i). Steps (ii) and (iii) use a standard technique that rewrites the

explicit negation of an atom ∼𝑝 into a fresh atom 𝑝 , and ensures

the preservation of the same models. Finally, thanks to Prop. 6.1

step (iv) rules out interpretations that are not temporal deontic. □

On the computational side, as a corollary of this theorem, fol-

lows a procedure to encode DeoTEL theories into TEL temporal

programs, enabling the use of existing tools for computing models.

Theorem 6.3. Satisfiability of DeoTEL is EXSPACE-complete.

Proof. Given a DeoTEL theory Γ, we reduce it into a DeoTLP
program 𝜋 as done in Th. 5.3. 𝜋 can be rewritten into 𝜋

′
as stated

in Th. 6.2. Deciding weather a theory Γ has a TEL model is in

EXSPACE [19]. The hardness for the infinite case follows by Th. 3.6

and Th. III.1 in [10], which can be adapted to prove the hardness

for the finite trace semantics, as noted in [20]. □

To tame the computational complexity of our formalism, we

identify a PSPACE-complete fragment of DeoTEL that can be poly-

nomially encoded into LTL. The fragment allows us to encode

classical planning problems. We introduce below the deontic ver-

sion of the Splittable Temporal Logic Program (SDeoTLP) fragment

of temporal programs as defined in [4]. This fragment offers com-

putational advantages by enabling the splitting of the unfolded

program into slices, which allows the DeoTEL models to be built

in a step-wise fashion by concatenating slices of local answer sets.

Definition 6.4 (Splittable DeoTLP (SDeoTLP)). SDeoTLP consists

of rules of types (𝑖0), (𝑖1), and (𝑑), defined as:

(𝑖0) (¬)𝑏1∧ . . . (¬)𝑏𝑘 → 𝑐1∨⋅ ⋅ ⋅∨𝑐𝑙 with 𝑘, 𝑙 ≥ 0 and𝑏𝑖 , 𝑐 𝑗 ∈ DLit,
(𝑖1) (¬)𝑏1 ∧ . . . (¬)𝑏𝑘 → 𝑐1 ∨ ⋅ ⋅ ⋅ ∨ 𝑐𝑙 with 𝑘, 𝑙 ≥ 0, 𝑏𝑖 ∈ DLit ∪

○DLit ∪ ○̂DLit and 𝑐𝑖 ∈ ○DLit ∪ ○̂DLit,
(𝑑) ◻(𝑟) where 𝑟 is a rule of type (𝑖1).

Rules (𝑖0) and (𝑖1), called initial rules and denoted by 𝑖𝑛𝑖(𝜋), corre-
spond to initial rules for situation 0 and to the transition to situation

1, respectively; Rules of type (𝑑), called dynamic rules and denoted

by 𝑑𝑦𝑛(𝜋), are meant to hold at every position along the trace.

We define temporal literals as {𝑝, ○ 𝑝, ○̂ 𝑝 ⋃︀ 𝑝 ∈ DLit}, where
𝐵
+(𝑟) and 𝐵

−(𝑟) denote the set of temporal literals and default

negated literals in the body of the rule 𝑟 , and 𝐻(𝑟) denotes the set
{𝑐1, . . . , 𝑐𝑙}. To prove the LTL reduction, we formalize dependencies

among literals using a dependency graph. Given a SDeoTLP program

𝜋 , its 2-unfolded version 𝜋
2
contains every initial rule in 𝑖𝑛𝑖𝑡(𝜋)

and for each dynamic rule 𝑟 ∈ 𝑑𝑦𝑛(𝜋), it contains ○𝑖(𝑟) for all

0 ≤ 𝑖 < 3. Given an unfolded rule ○𝑘(𝑟), we denote 𝑝, ○ 𝑞 ∈ 𝐵+(𝑟)∪
𝐵
−(𝑟) ∪𝐻(𝑟) as 𝑝𝑘 and 𝑞

𝑘+1
.

Definition 6.5 (Dependency Graph). The dependency graph of a

SDeoTLP program 𝜋 is the graph 𝐷𝐺𝜋 = ∐︀𝑉 , 𝐸̃︀ where𝑉 = {𝑝𝑖 ⋃︀ 𝑝 ∈



Table 1: Definition of 𝑑 𝑓
′(⋅) and 𝑑 𝑓 ∗(⋅). (︀∼⌋︀ means that the explicit negation is optional.

𝑑 𝑓
′(𝛾) = 𝑑 𝑓 ′(𝜙) if 𝛾 = ∼∼ 𝜙

𝑑 𝑓
′(𝛾) = ◻ (L𝛾 ↔ ⊕L𝜙) ∧ ◻ (∼L𝛾 ↔∼⊕L𝜙) if 𝛾 = (︀∼⌋︀⊕ 𝜙 with ⊕ ∈ {O, F}

𝑑 𝑓
′(𝛾) = ◻ (L𝛾 ↔ L𝜙 ⊕ L𝜓 ) ∧ ◻ (∼L𝛾 ↔∼L𝜙⊗ ∼L𝜓 ) if 𝛾 = (︀∼⌋︀(𝜙 ⊕𝜓) with (⊕,⊗) ∈ {(∨,∧), (∧,∨)}

𝑑 𝑓
′(𝛾) = ◻ (L𝛾 ↔ L𝜙 → L𝜓 ) ∧ ◻ (∼L𝛾 ↔ ¬¬L𝜙∧ ∼L𝜓 ) if 𝛾 = (︀∼⌋︀(𝜙 →𝜓);

𝑑 𝑓
′(𝛾) = ◻ (L𝛾 ↔ ⊕L𝜙) ∧ ◻ (∼L𝛾 ↔ ⊗ ∼L𝜙) if 𝛾 = (︀∼⌋︀(⊕𝜓) with (⊕,⊗) ∈ {(○, ○̂), (○̂, ○)}

𝑑 𝑓
′(𝛾) = ◻ (L𝛾 ↔ (L𝜙 ∧ (L𝜓 → ○̂L𝛾 )))

∧ ◻ (∼L𝛾 ↔∼L𝜙 ∨ (¬¬L𝜙 ∧ ○ ∼L𝛾 )) ∧ ◻ (∼L𝛾 → ◊ ∼L𝜙) if 𝛾 = (︀∼⌋︀(𝜙 W𝜓)
𝑑 𝑓
′(𝛾) = ◻ (L𝛾 ↔ L𝜓 ∨ (L𝜙 ∧ ○L𝛾 )) ∧ ◻ (L𝛾 → ◊ L𝜓 )

∧ ◻ (∼L𝛾 ↔∼L𝜓 ∧ (∼L𝜙 ∨ ○̂ ∼L𝛾 )) ∧ ◻ (◻ ∼L𝜓 →∼L𝛾 ) if 𝛾 = (︀∼⌋︀(𝜙 U𝜓)

𝑑 𝑓
∗((𝜙 ∨𝜓) ∧ 𝛼 → 𝛽) = (𝜙 ∧ 𝛼 → 𝛽) ∧ (𝜓 ∧ 𝛼 → 𝛽) 𝑑 𝑓

∗(𝛼 → (𝜙 ∧𝜓) ∨ 𝛽) = (𝛼 → 𝜙 ∨ 𝛽) ∧ (𝛼 →𝜓 ∨ 𝛽)
𝑑 𝑓
∗(¬¬𝜙 ∧ 𝛼 → 𝛽) = 𝛼 → ¬𝜙 ∨ 𝛽 𝑑 𝑓

∗(𝛼 → ¬¬𝜙 ∨ 𝛽) = ¬𝜙 ∧ 𝛼 → 𝛽

𝑑 𝑓
∗(𝛼 → (𝜙 →𝜓) ∨ 𝛽) =

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

(𝜙 ∧ 𝛼 →𝜓 ∨ 𝛽) ∧
(¬𝜓 ∧ 𝛼 →𝜓 ∨ ¬𝜙 ∨ 𝛽)

𝑑 𝑓
∗((𝜙 →𝜓) ∧ 𝛼 → 𝛽) =

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

(𝛼 → 𝜙 ∨ ¬𝜓 ∨ 𝛽) ∧
(¬𝜙 ∧ 𝛼 → 𝛽) ∧ (𝜓 ∧ 𝛼 → 𝛽)

∼𝑞0 O(∼𝑟)0 O(𝑞)0

𝑞
0

∼𝑞1 O(∼𝑟)1 O(𝑞)1

𝑞
1

∼𝑞2 O(∼𝑟)2 O(𝑞)2

𝑞
2

Figure 3: Temporal dependency graph of Π from Example 6.7.

DLit and 𝑖 = 0, 1, 2} and (𝑎,𝑏)+ ∈ 𝐸 (resp. (𝑎,𝑏)− ∈ 𝐸) if 𝑎 ∈ 𝐻(𝑟)
and 𝑏 ∈ 𝐵+(𝑟) (resp. 𝑏 ∈ 𝐵−(𝑟)) for some ○𝑘𝑟 in 𝜋

2
.

The 2-unfolding suffices because dependencies in the graph link

each position only to itself or the previous one, remaining un-

changed from position 2 onward. For a general DeoTLP program

this assumption does not hold as shown in the example below.

Example 6.6. [Non SDeoTLP program] Let𝜋 be {◻(𝑝 → ○𝑞),◻(𝑞 →
○𝑟),◻(𝑟 → ○𝑠),◻(○𝑠 → 𝑠),◻(○𝑝 → 𝑠)}, the edges of 𝐷𝐺

3

𝜋 are

(𝑝0
, 𝑠

1), (𝑠1
, 𝑠

2), (𝑠2
, 𝑠

3), (𝑟2
, 𝑠

3), (𝑞1
, 𝑟

2), (𝑞1
, 𝑝

0))which form loops

that the 2-unfolded dependency graph would not detect.

Example 6.7 (SDeoTLP program). Let us consider the SDeoTLP
program consisting of the (𝑑)-rule (C) from Section 4, the (𝑖0)-rule

𝑞, and the (𝑖1)-rule 𝑞 → ○O(𝑞). The initial rule (𝑖0) has an empty

body and counts as fact. Let us denote this theory as Π, with its

dependency graph 𝐷𝐺Π illustrated in Figure 3, which is cropped

to display only the relevant deontic literals. Due to the syntactic

constraints of SDeoTLP programs, all loops can be identified within

the 2-unfolded dependency graph.

The following theorem is an extension of a result in [2], whose

proof leverages the fact that the model construction can be per-

formed slice-wise via the generalized Lin–Zhao theorem [28].

Theorem 6.8. Any SDeoTLP program 𝜋 , can be encoded in LTL

in such a way that 𝜋 is LTL-satisfiable iff 𝜋 admits a DeoTEL model.

To obtain a polynomial LTL encoding we introduce another syntac-

tic constraint (still capturing all the examples in this paper). Given

a disjunction-free SDeoTLP program, and its dependency graph

𝐷𝐺𝜋 = ∐︀𝑉 , 𝐸̃︀, if there exists a total order 𝑣 ∶ 𝑉 → 𝑉 s.t. if 𝑙 < 𝑙 ′ then
there is no positive loop in 𝐷𝐺𝜋 from 𝑙 to 𝑙

′
, we say that 𝜋 is tight.

Theorem 6.9. Given a tight SDeoTLP program 𝜋 and a DeoTEL

formula 𝜙 , deciding whether 𝜋 ∧¬𝜙 is satisfiable is PSPACE-complete
and its LTL encoding is polynomial.

This result is achieved by leveraging the slice-based encoding

of splittable programs into LTL, and the fact that the tightness

of the slices guarantees a polynomial encoding via a completion

technique [27]. As an example of completion for tight DeoTLP ,
consider the program Π from Example 6.7. Π can be encoded into

LTL via completion as 𝑠0 ∧ 𝑠1 ∧ ○◻(𝑠2), where:

𝑠0 = 𝑞 ∧ ( ¯𝑟𝑞o ↔ (𝑞o ∧ 𝑞)) ∧ ¬𝑞 ∧ ¬𝑞o
𝑠1 = ¬ ○ 𝑞 ∧ (○ ¯𝑟𝑞o ↔ (○𝑞o ∧ ○𝑞)) ∧ ¬ ○ 𝑞 ∧ (○𝑞o ↔ 𝑞)
𝑠2 = ¬ ○ 𝑞 ∧ (○ ¯𝑟𝑞o ↔ (○𝑞o ∧ ○𝑞)) ∧ ¬ ○ 𝑞 ∧ ¬ ○ 𝑞o

The significance of tight logic programs is widely recognized, par-

ticularly in temporal knowledge representation tasks [7].

7 CONCLUSIONS
We introduced a temporal deontic extension of Equilibrium Logic,

characterizing achievement and maintenance obligations using re-

peaters. We illustrated how the most relevant challenges in tempo-

ral deontic reasoning can be accommodated in the new formalism.

As fulfillment and violation of norms are concepts associated with

an agent’s actions, a natural step for future work is to extend the

formalism to a multi-agent setting, for instance. We also plan to im-

plement our formalism using temporal ASP tools, such as the TEL

solver telingo [22], with potential applications including extend-

ing the monitoring framework introduced in [26, 48] to monitor

normative properties.
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