MUltseq v2.0-2-gf2ad99b

Contents
1 Installation & Configuration 1
2 How to use MUItseq 2
2.1 For the impatient 2
3 Interface 3
3.1 Main predicates 3
4 Logic definition files 3
5 Properties of a logic 5
6 Checking properties 6
7 Logging 7
8 LaTeX Output 7
9 Options 7
10 The prover 9
10.1 Data structures Lo 9
10.2 Predicates 9

1 Installation & Configuration

MUltseq consists of the following files:
e multseq/ Directory: The Prolog code for MUltseq

— mscalcul.pl kernel of MUItseq: proof construction and transforma-
tions

— msconf .pl OS- and Prolog-specific settings

— msconseq.pl converting consequences between formulas and sequents,
equalities, and quasi-equations to (lists of) sequents.

— mslgcin.pl routines for reading logic specification

— msoption.pl processing of options

— mstex.pl output routines (TeX)

— msutil.pl auxiliary predicates

— multseq.pl main file; loads all other parts of MUlItseq listed above

o examples/ Directory:

— Logic definition files

* classical.msq Classical logic

* fde.msq First-Order Entailment Logic (4-valued)

* goedel.msq 3-valued Godel logic

* lukasiewicz.msq 3-valued Lukasiewicz logic

* shramko-wansing.msq Shramko & Wansings SIXTEEN
(16-element bilattice logic)

— Property files (to use with chkProp)
x properties.pl List of popular properties
— Example experiment batch files

* ex_classical.pl Checks that MUltseq can prove many tautolo-
gies, consequences, equivalences, etc. that all hold in classical
logic.

x ex_lukasiewiczl.pl Checks which classical tautologies, consue-
quences, etc. hold in 3-valued Lukasiewicz logic (with weak A
and V.

* ex_lukasiewicz2.pl Checks all properties involving A and/or
V and compares the strong and weak F.ukasiewicz operators.

* ex_sixteen.pl Tests some properties in SIXTEEN, finds which
versions of =A V B (interpreted as implication) satisfy modus
ponens and deduction theorem) and compares combinations of —,
A, V in their truth- and falsity-order versions

— Auxiliary files for producing LaTeX output

* mspost.tex postamble of TeX documents created by MUltseq

* mspre.tex preamble of TeX documents created by MUltseq

* proof.sty style file for typesetting derivations (by Makoto Tat-
suta)

e doc/ Directory:
— multseq.md this file; the MUltseq manual

Check file msconf .pl and edit it to fit your operating system (DOS/Windows,
Unix, or Mac).

2 How to use MUItseq

2.1 For the impatient
Download and unzip the code or clone MUItseq using Git:

https://github.com/rzach/multseq/archive/refs/heads/main.zip
https://git-scm.com/

git

clone git@github.com:rzach/multseq.git

Put yourself in the directory containing the examples

cd multseq/examples

Load Prolog

prolog

Pick an example experiment file and run it by entering, e.g.,

[ex_lukasiewiczl].

at the ?- prompt.

This should generate a file ex_lukasiewiczl.tex which you can run through
pdflatex.

3

3.1

4

Interface

Main predicates
provable(Sequent, Proof).

Proof is a derivation of Sequent from axioms only; fails if Sequent has
no proof.

derivable(Sequent, Proof).

Same as provable/2 but generates a derivation from hypotheses if no
correct proof exists.

collect_hyps(Proof, ListOfHypotheses).
ListOfHypotheses is the minimized list of hypotheses used in Proof.
proof_skeleton(Proof, Skeleton, SequentTable).

Skeleton is the skeleton of Proof: all sequents are replaced by unique
numbers. The correspondence between numbers and sequents is given by
SequentTable which is a list of Number : Sequent pairs.

Logic definition files

Logic definition files tyically use the .msq extension. They provide the infor-
mation MUltseq needs to convert test queries to sequents (i.e., what the truth
values and designated truth values are), the sequent rules, and definition of how
to output operators and formulas using LaTeX.

MUltlog can produce .msq files from MUlItlog’s .1gc and cfg files, computing
optimized sequent rules. (Use the 1gc2msq/3 predicate in m1_msq.pl).

To load a logic definition file, say load_logic(File), e.g.,

:- load_logic('lukasiewicz.msq').

o List of truth values

truth_values (TVs) .
designated_truth_values(DTVs).

where TVs is a list of atoms, and DTVs is a sublist of TVs (the truth values
that are designated). This is used to compute sequents for consequence
relations.

e Operator declarations:

operator (Name, Arity, TeXName).

where Name is the name of the oerator, Arity is the number of arguments,
and TeXName is a string that provides the LaTeX code for printing the
operator symbol. op(Precedence, Type, Name). This is optional and
used to define the operator in Prolog: the parameters of are the same as
those of the built-in op/3 predicate. If it is ommitted, formulas have to be
written in the standard Prolog prefix notation.

e Sequent rules:

rule (Conclusion, Premises, Name).

One rule declaration is needed for each sequent rule. Conclusion is a
single signed formula (e.g., and(X,Y) "t) and Premises is a list of lists of
signed formulas assumed to be the variables occuring in Conclusion (e.g.,

[x~tl, [Y"t11).
e LaTeX formatting
tex_tv(TV, String).
The truth value TV is typeset using String (in math mode). If no such

directive exists for a truth value, TV is converted to a string using name/2.
This may lead to an error if TV is no valid argument for name/2.

tex_rn (RN, String).

The rule name RN is typeset using String (in math mode).
tex_op (Expr, List).
Expr is a term built from a connective and Prolog variables as arguments.

These variables can be reused in List to typeset a connective in prefix/in-
fix/postfix notation. To obtain a backslash, use “bslash”. Example:

https://www.logic.at/multlog/
https://www.swi-prolog.org/pldoc/doc_for?object=op/3

tex_op(and(A, B), ["(", A, "\\land", " ", B, ")"])

If there is no “tex_op” directive for a connective, the expression will be
typeset in functor notation, using a tex_op directive for the connective if
available.

5 Properties of a logic

A property of a logic is a fact of the form
property (Name, OPList, PropSpec).
where Name is an atom (a label for the property), OpList is a list of Operator/

Arity pairs, and PropSpec is a specification of the property. The OpList must
contain all operators used in PropSpec with the corresponding number of places.

PropSpec can be one of the following:
o Tautology:
tautology (Fmla)

o Consequence (implication):

consequence ([Prems] => Concl)

o Equivalence (bi-implication)

equivalence (Fmlal, Fmla2)

o Algebraic equality (identity of truth values)

equality (Fmlal, Fmla2)

o Metaconsequence

metaconseq ([Hyps], Concl)

In all but the last, Fmla, Fmlal, Fmla2, and Concl are single formulas and
Prems is a list of formulas. In metaconseq, Concl is a consequence judgement
[Prems] => Fmla and Hyps a list of such.

Examples:

property (contrapos, [(>)/2, (-)/1], tautology((a > b)
> (-b > -a))).

property (constrdilemma, [(\/)/2, (>)/2, (-)/1],
consequence ([(-a) \/ (-b), a > c, b > d]l => ((-c¢)
\/ (=d))».

property(ldistrleft, [(/\)/2,(\/)/2], equivalence(a
/N (b \/ c), (a /\ b) \/ (a /\ c)).

property (residuation, [(>)/2, (/\)/2], metaconseq([[p
/\ q]l =>r], [pl => (g >))).

It is possible to combine property specifications in a property declaration using
Prolog’s and (,), or (;), and not (\+) operators, e.g.,

property (demorgan, [(/\)/2, (\/)/2, (-)/1],
(equivalence(-(a /\ b), (-a) \/ (-b)),
equivalence(-(a \/ b), (-a) /\ (-b)))).

6 Checking properties

If you have loaded a logic and a list of properties, you can check whether the
properties hold in the logic using the predicate

chkProp (Name) .

This only works directly if the operators used to define properties are the same
as the operators in the logic definition file. However, very often you’d like to
use properties for different logics, or even for the same logic but for different
operators. E.g., a logic might have two negations, and you want to check which
(if any) satisfy De Morgan’s laws. For that reason it is possible to provide a
list Omap as a second argument to chkProp that specifies which operators of the
logic should map to which operators in the property specification. Omap is a list
of pairs OpL/0pP where OpL is an operator of the logic and OpL is an operator in
the property specification. E.g.,

:= chkProp([and/(/\) ,or/(\/)], ldistrleft).

You can define a default operator mapping using setOmap (Omap). chkProp/1
uses this; by default it is empty, i.e., no replacement of operators happens.
You can also use the property specifications above directly, e.g.,

:- tautology(a imp (a or b)).

will test if a imp (a or b) is a tautology. This assumes the logic definition

contains operators imp and or defined as infix. Functor notation must be used
if the operators are not defined as infix (using op/3), e.g.,

:- tautology(imp(a, or(a, b))).

7 Logging
The commands
start_logging.

stop_logging.

turn on logging of user input and Prolog query results. If the option tex_output
is either terse or verbose, then any LaTeX output is written to the log file as
well.

Without arguments, start_logging writes to a file session_TIMESTAMP.tex.
You can change the default extension .tex, or the filename and extension by
providing additional arguments:

start_logging (Extension) .
start_logging(Filename, Extension).
where Extension is the extension to use with period, e.g., ' .tex' or '.log'.

E.g., to write to file lukasiewicz.tex, say

start_logging (lukasiewicz,'.tex').

8 LaTeX Output

The option tex_output controls whether MUltseq queries merely run checks on
properties (and fail or succeed accordingly), or if MUltseq also provides output
suitable for printing using LaTeX. By default, tex_output is off, so no output
is generated. If it is set to terse, MUltseq will generate output that records the
queries and results in human readable format, e.g.,

Proposition. The formula A — (A V B) is a tautology.

If it is set to verbose, MUltseq will also output the sequent corresponding to the
query as well as its proof (or, if the query fails, the derivation from non-axiom
hypotheses and the corresponding list of counterexamples).

LaTeX output is written to the log file if logging is on (i.e., start_logging has
been called) and to the standard error stream if not.

9 Options

e reset_options.
Resets all options to their defaults.
e set_option(Option).

Sets option Option. See below for the list of options.

e list_options.
Lists all active as well as all available options.
Currently the following options are implemented:
e strategy(S).

Defines the strategy for selecting an applicable rule. The following strategies
S exist:

— leftright (default).

The sequent is scanned from left to right, and the first non-variable
expression found is decomposed using the first rule (searching top-
down) which is applicable to the expression.

— topdown.

The rules are scanned top-down, and the first rule applicable to any
expression in the sequent is chosen; if the rule applies to several
expressions, the first one from the left is taken.

— ordering(ListOfRuleNames).

Refinement of the strategy “topdown”. The rules are tried in the
order given by ListOfRuleNames. The same effect could be reached
(less elegantly) by reordering the rules in the input file and using
top_down. A good heuristic might be to order the rules according to
their branching degree, small branching degrees first. This will result
in narrow proof trees and less duplication. Within the same branching
degree one might prefer rules with more formulas per sequent (with
the intuition behind that this will lead faster to an axiom); or one
might prefer rules with a small number of formulas per sequent (to
avoid duplication).

— interactive

MUItseq collects all rules applicable to any part of the sequent. If
there is only one possibilty to apply a rule, it is applied. Otherwise the
rules are listed on standard output and the user is given the choice.

e tex_rulenames(0On0ff) (default: OnOff=off).

If OnOff=on then each step in a TeX-derivation is labeled by the applied
rule. Otherwise, if On0ff=o0ff, no labels are added.

o tex_sequents(Style) (default: Style=signed).

Style=signed prints sequents as signed formulas, whereas with Style
=multidimensional, sequents are represented as (n)-tuples, where the
truth value assigned to a formula is given implicit by the position of the
formula within the sequent.

e tex_proofstyle(Style) (default: Style=verbose)

Style=verbose means that axioms and hypotheses are marked by the
phrases “axiom for (A)” and “hypothesis”. Style=compact results in the
phrases “ax(A)” and hyp”. Style=bare suppresses the phrases altogether.

o tex_output(Level) (default Level=off),

If Level=o0ff, no LaTeX output is produced by load_logic or the various
property checking predicates. If Level=terse, the results of property
checks are recorded as propositions in human-readable format. If Level
=verbose, MUltseq additionally prints the evidence, i.e., which sequents
correspond to the property queries, as well as the derivations and, if
applicable, counterexamples.

o tex_success(0n0ff) (default OnOff=on)
e tex_failure(On0ff) (default OnOff=on),

If OnO£f is on, then LaTeX output is produced whenever a property check
succeeds/fails. To print only for successful checks, set tex_failure(off);
top print only failed tests, tex_success(off).

10 The prover

10.1 Data structures

e Sequent: list of signed formulas

 Signed formula: F~S where F is a many-valued formula (any term) and S
is a truth value.

e Proof tree: ra(Name, Conclusion, Proofs) ra stands for “rule applica-
tion”. Rule Name is applied to the conclusions of Proofs, giving Conclusion.
Conclusion is a sequent and Proofs a list of proof trees. prove(Sequent,
Prooftree). Constructs a for .

10.2 Predicates
select_rule(S, S1, Sr, Ps, R)
Select a formula F from sequent S and choose an applicable rule. S1 are the

signed formulas to the left of F, Sr are those to the right of F, Ps are the premises
of the chosen rule, and R is its name.

appseqs(Sl1, Sr, SO0, S)

S1 is added to the left of SO and Sr to the right, the result being S: S = [S1,
S0, Srl.

split (S, S1, F, Sr)

Selects an element F from 8, and instantiates S1 (Sr) with the elements to the
left (right) of F: 8 = [S1, [F], Sr]

contains_axiom (Sequent, A)

Checks whether Sequent contains axiom Al...|A. Depends on the fact that
truth values and sequents are kept sorted.

collect_hyps (Proof, MinHypotheses)

Gathers all hypotheses occurring in Proof and returns a minimized list of
hypotheses in MinHypotheses.

10

	Installation & Configuration
	How to use MUltseq
	For the impatient

	Interface
	Main predicates

	Logic definition files
	Properties of a logic
	Checking properties
	Logging
	LaTeX Output
	Options
	The prover
	Data structures
	Predicates

