Expressing Connectives in Eukasiewicz logic

M. Ultseq

July 2, 2024

In this example we search for formulas that define any 2-place connective. We search for defining formulas containing up to 3 connectives. Negation is not definable.

The logic contains the connectives

$$
\wedge, \rightarrow, \neg, \vee, \otimes, \oplus
$$

and truth values

$$
0,1 / 2,1 .
$$

The truth value $\mathbf{1}$ is designated.

1 Equivalents of \rightarrow

Proposition 1 The equality $(A \rightarrow B)=(B \oplus \neg A)$ holds.
Proposition 2 The equality $(A \rightarrow B)=(\neg A \oplus B)$ holds.
Proposition 3 The equality $(A \rightarrow B)=\neg(A \otimes \neg B)$ holds.
Proposition 4 The equality $(A \rightarrow B)=\neg(\neg B \otimes A)$ holds.
Proposition 5 The equality $(A \rightarrow B)=(B \oplus \neg(A \wedge A))$ holds.
Proposition 6 The equality $(A \rightarrow B)=(B \oplus \neg(A \vee A))$ holds.
Proposition 7 The equality $(A \rightarrow B)=(B \oplus \neg(A \vee B))$ holds.
Proposition 8 The equality $(A \rightarrow B)=(B \oplus \neg(B \vee A))$ holds.
Proposition 9 The equality $(A \rightarrow B)=(\neg A \oplus(A \wedge B))$ holds.
Proposition 10 The equality $(A \rightarrow B)=(\neg A \oplus(B \wedge A))$ holds.
Proposition 11 The equality $(A \rightarrow B)=(\neg A \oplus(B \wedge B))$ holds.
Proposition 12 The equality $(A \rightarrow B)=(\neg A \oplus(B \vee B))$ holds.
Proposition 13 The equality $(A \rightarrow B)=((A \wedge B) \oplus \neg A)$ holds.
Proposition 14 The equality $(A \rightarrow B)=((B \wedge A) \oplus \neg A)$ holds.
Proposition 15 The equality $(A \rightarrow B)=((B \wedge B) \oplus \neg A)$ holds.
Proposition 16 The equality $(A \rightarrow B)=((B \vee B) \oplus \neg A)$ holds.
Proposition 17 The equality $(A \rightarrow B)=(\neg(A \wedge A) \oplus B)$ holds.

Proposition 18 The equality $(A \rightarrow B)=(\neg(A \vee A) \oplus B)$ holds.
Proposition 19 The equality $(A \rightarrow B)=(\neg(A \vee B) \oplus B)$ holds.
Proposition 20 The equality $(A \rightarrow B)=(\neg(B \vee A) \oplus B)$ holds.
Proposition 21 The equality $(A \rightarrow B)=(B \vee(B \oplus \neg A))$ holds.
Proposition 22 The equality $(A \rightarrow B)=(B \vee(\neg A \oplus B))$ holds.
Proposition 23 The equality $(A \rightarrow B)=((B \oplus \neg A) \vee B)$ holds.
Proposition 24 The equality $(A \rightarrow B)=((\neg A \oplus B) \vee B)$ holds.

2 Equivalents of \otimes

Proposition 25 The equality $(A \otimes B)=\neg(A \rightarrow \neg B)$ holds.
Proposition 26 The equality $(A \otimes B)=\neg(B \rightarrow \neg A)$ holds.

3 Equivalents of \oplus

Proposition 27 The equality $(A \oplus B)=(\neg A \rightarrow B)$ holds.
Proposition 28 The equality $(A \oplus B)=(\neg B \rightarrow A)$ holds.
Proposition 29 The equality $(A \oplus B)=(\neg A \rightarrow(B \wedge B))$ holds.
Proposition 30 The equality $(A \oplus B)=(\neg A \rightarrow(B \vee B))$ holds.
Proposition 31 The equality $(A \oplus B)=(\neg B \rightarrow(A \wedge A))$ holds.
Proposition 32 The equality $(A \oplus B)=(\neg B \rightarrow(A \vee A))$ holds.
Proposition 33 The equality $(A \oplus B)=(\neg(A \wedge A) \rightarrow B)$ holds.
Proposition 34 The equality $(A \oplus B)=(\neg(B \wedge B) \rightarrow A)$ holds.
Proposition 35 The equality $(A \oplus B)=(\neg(A \vee A) \rightarrow B)$ holds.
Proposition 36 The equality $(A \oplus B)=(\neg(B \vee B) \rightarrow A)$ holds.
Proposition 37 The equality $(A \oplus B)=((A \rightarrow(A \otimes B)) \rightarrow B)$ holds.
Proposition 38 The equality $(A \oplus B)=((A \rightarrow(B \otimes A)) \rightarrow B)$ holds.
Proposition 39 The equality $(A \oplus B)=((A \rightarrow(B \otimes B)) \rightarrow B)$ holds.
Proposition 40 The equality $(A \oplus B)=((B \rightarrow(A \otimes A)) \rightarrow A)$ holds.
Proposition 41 The equality $(A \oplus B)=((B \rightarrow(A \otimes B)) \rightarrow A)$ holds.
Proposition 42 The equality $(A \oplus B)=((B \rightarrow(B \otimes A)) \rightarrow A)$ holds.
Proposition 43 The equality $(A \oplus B)=((A \vee \neg B) \rightarrow A)$ holds.

Proposition 44 The equality $(A \oplus B)=((B \vee \neg A) \rightarrow B)$ holds.
Proposition 45 The equality $(A \oplus B)=((\neg A \vee B) \rightarrow B)$ holds.
Proposition 46 The equality $(A \oplus B)=((\neg B \vee A) \rightarrow A)$ holds.
Proposition 47 The equality $(A \oplus B)=(A \vee(\neg A \rightarrow B))$ holds.
Proposition 48 The equality $(A \oplus B)=(A \vee(\neg B \rightarrow A))$ holds.
Proposition 49 The equality $(A \oplus B)=(B \vee(\neg A \rightarrow B))$ holds.
Proposition 50 The equality $(A \oplus B)=(B \vee(\neg B \rightarrow A))$ holds.
Proposition 51 The equality $(A \oplus B)=((\neg A \rightarrow B) \vee A)$ holds.
Proposition 52 The equality $(A \oplus B)=((\neg A \rightarrow B) \vee B)$ holds.
Proposition 53 The equality $(A \oplus B)=((\neg B \rightarrow A) \vee A)$ holds.
Proposition 54 The equality $(A \oplus B)=((\neg B \rightarrow A) \vee B)$ holds.

4 Equivalents of \wedge

Proposition 55 The equality $(A \wedge B)=(A \otimes(A \rightarrow B))$ holds.
Proposition 56 The equality $(A \wedge B)=(B \otimes(B \rightarrow A))$ holds.
Proposition 57 The equality $(A \wedge B)=((A \rightarrow B) \otimes A)$ holds.
Proposition 58 The equality $(A \wedge B)=((B \rightarrow A) \otimes B)$ holds.
Proposition 59 The equality $(A \wedge B)=(A \otimes(A \rightarrow(B \vee B)))$ holds.
Proposition 60 The equality $(A \wedge B)=(A \otimes((A \vee A) \rightarrow B))$ holds.
Proposition 61 The equality $(A \wedge B)=(A \otimes((A \vee B) \rightarrow B))$ holds.
Proposition 62 The equality $(A \wedge B)=(A \otimes((B \vee A) \rightarrow B))$ holds.
Proposition 63 The equality $(A \wedge B)=(A \otimes(B \oplus \neg A))$ holds.
Proposition 64 The equality $(A \wedge B)=(A \otimes(\neg A \oplus B))$ holds.
Proposition 65 The equality $(A \wedge B)=(A \otimes(B \vee(A \rightarrow B)))$ holds.
Proposition 66 The equality $(A \wedge B)=(A \otimes((A \rightarrow B) \vee B))$ holds.
Proposition 67 The equality $(A \wedge B)=(B \otimes(B \rightarrow(A \vee A)))$ holds.
Proposition 68 The equality $(A \wedge B)=(B \otimes((A \vee B) \rightarrow A))$ holds.
Proposition 69 The equality $(A \wedge B)=(B \otimes((B \vee A) \rightarrow A))$ holds.
Proposition 70 The equality $(A \wedge B)=(B \otimes((B \vee B) \rightarrow A))$ holds.
Proposition 71 The equality $(A \wedge B)=(B \otimes(A \oplus \neg B))$ holds.

Proposition 72 The equality $(A \wedge B)=(B \otimes(\neg B \oplus A))$ holds.
Proposition 73 The equality $(A \wedge B)=(B \otimes(A \vee(B \rightarrow A)))$ holds.
Proposition 74 The equality $(A \wedge B)=(B \otimes((B \rightarrow A) \vee A))$ holds.
Proposition 75 The equality $(A \wedge B)=((A \rightarrow B) \otimes(A \vee A))$ holds.
Proposition 76 The equality $(A \wedge B)=((B \rightarrow A) \otimes(B \vee B))$ holds.
Proposition 77 The equality $(A \wedge B)=((A \vee A) \otimes(A \rightarrow B))$ holds.
Proposition 78 The equality $(A \wedge B)=((B \vee B) \otimes(B \rightarrow A))$ holds.
Proposition 79 The equality $(A \wedge B)=((A \rightarrow(B \vee B)) \otimes A)$ holds.
Proposition 80 The equality $(A \wedge B)=((B \rightarrow(A \vee A)) \otimes B)$ holds.
Proposition 81 The equality $(A \wedge B)=(((A \vee A) \rightarrow B) \otimes A)$ holds.
Proposition 82 The equality $(A \wedge B)=(((A \vee B) \rightarrow A) \otimes B)$ holds.
Proposition 83 The equality $(A \wedge B)=(((A \vee B) \rightarrow B) \otimes A)$ holds.
Proposition 84 The equality $(A \wedge B)=(((B \vee A) \rightarrow A) \otimes B)$ holds.
Proposition 85 The equality $(A \wedge B)=(((B \vee A) \rightarrow B) \otimes A)$ holds.
Proposition 86 The equality $(A \wedge B)=(((B \vee B) \rightarrow A) \otimes B)$ holds.
Proposition 87 The equality $(A \wedge B)=((A \oplus \neg B) \otimes B)$ holds.
Proposition 88 The equality $(A \wedge B)=((B \oplus \neg A) \otimes A)$ holds.
Proposition 89 The equality $(A \wedge B)=((\neg A \oplus B) \otimes A)$ holds.
Proposition 90 The equality $(A \wedge B)=((\neg B \oplus A) \otimes B)$ holds.
Proposition 91 The equality $(A \wedge B)=((A \vee(B \rightarrow A)) \otimes B)$ holds.
Proposition 92 The equality $(A \wedge B)=((B \vee(A \rightarrow B)) \otimes A)$ holds.
Proposition 93 The equality $(A \wedge B)=(((A \rightarrow B) \vee B) \otimes A)$ holds.
Proposition 94 The equality $(A \wedge B)=(((B \rightarrow A) \vee A) \otimes B)$ holds.

5 Equivalents of \vee

Proposition 95 The equality $(A \vee B)=((A \rightarrow B) \rightarrow B)$ holds.
Proposition 96 The equality $(A \vee B)=((B \rightarrow A) \rightarrow A)$ holds.
Proposition 97 The equality $(A \vee B)=((A \rightarrow B) \rightarrow(B \wedge B))$ holds.
Proposition 98 The equality $(A \vee B)=((B \rightarrow A) \rightarrow(A \wedge A))$ holds.
Proposition 99 The equality $(A \vee B)=((A \rightarrow(A \wedge B)) \rightarrow B)$ holds.

Proposition 100 The equality $(A \vee B)=((A \rightarrow(B \wedge A)) \rightarrow B)$ holds.
Proposition 101 The equality $(A \vee B)=((A \rightarrow(B \wedge B)) \rightarrow B)$ holds.
Proposition 102 The equality $(A \vee B)=((B \rightarrow(A \wedge A)) \rightarrow A)$ holds.
Proposition 103 The equality $(A \vee B)=((B \rightarrow(A \wedge B)) \rightarrow A)$ holds.
Proposition 104 The equality $(A \vee B)=((B \rightarrow(B \wedge A)) \rightarrow A)$ holds.
Proposition 105 The equality $(A \vee B)=(((A \wedge A) \rightarrow B) \rightarrow B)$ holds.
Proposition 106 The equality $(A \vee B)=(((B \wedge B) \rightarrow A) \rightarrow A)$ holds.
Proposition 107 The equality $(A \vee B)=((A \oplus \neg B) \rightarrow A)$ holds.
Proposition 108 The equality $(A \vee B)=((B \oplus \neg A) \rightarrow B)$ holds.
Proposition 109 The equality $(A \vee B)=((\neg A \oplus B) \rightarrow B)$ holds.
Proposition 110 The equality $(A \vee B)=((\neg B \oplus A) \rightarrow A)$ holds.
Proposition 111 The equality $(A \vee B)=(A \oplus \neg(B \rightarrow A))$ holds.
Proposition 112 The equality $(A \vee B)=(A \oplus(B \otimes \neg A))$ holds.
Proposition 113 The equality $(A \vee B)=(A \oplus(\neg A \otimes B))$ holds.
Proposition 114 The equality $(A \vee B)=(B \oplus \neg(A \rightarrow B))$ holds.
Proposition 115 The equality $(A \vee B)=(B \oplus(A \otimes \neg B))$ holds.
Proposition 116 The equality $(A \vee B)=(B \oplus(\neg B \otimes A))$ holds.
Proposition 117 The equality $(A \vee B)=(\neg(A \rightarrow B) \oplus B)$ holds.
Proposition 118 The equality $(A \vee B)=(\neg(B \rightarrow A) \oplus A)$ holds.
Proposition 119 The equality $(A \vee B)=((A \otimes \neg B) \oplus B)$ holds.
Proposition 120 The equality $(A \vee B)=((B \otimes \neg A) \oplus A)$ holds.
Proposition 121 The equality $(A \vee B)=((\neg A \otimes B) \oplus A)$ holds.
Proposition 122 The equality $(A \vee B)=((\neg B \otimes A) \oplus B)$ holds.

6 Program listing: ex_lukasiewicz3.pl

```
% Test file to find definitions of operators operators
% make sure MUltseq is loaded
:- ensure_loaded('../multseq/multseq').
% load the rules
:- load_logic('lukasiewicz.msq').
% define standard Omap
:- setOmap([(neg)/(-),imp/(>),and/(/\),or/(\/),equiv/(=)]).
% check all properties and write report to out.tex
:- set_option(tex_output(terse)).
:- set_option(tex_failure(off)).
:- start_logging(ex_lukasiewicz3,'.tex').
:- print_tex(tex_title("Expressing}\mp@subsup{|}{\bullet}{\prime
:- print_tex(tex_paragraph(["In
```



```
        not\sqcupdefinable."])).
:- print_tex(tex_logic).
:- bagof(X, A^operator(X, A), Ops),
    ( operator(Op,2),
        print_tex(tex_section(["Equivalents_of&$", tex_conn(Op), "$"])),
        between(0, 3, N),
        subtract(Ops, [Op], ToRep),
        instantiate(+ : a+b @ formulas(2, ToRep, N), X),
        F =.. [Op, a, b],
        equality(F, X),
        fail)
    ; true.
:- print_tex(tex_listing("ex_lukasiewicz3.pl")).
:- stop_logging.
```

