Comparing Strong and Weak Łukasiewicz Logic Connectives

M. Ultseq

July 2, 2024

The logic contains the connectives

$$\land, \rightarrow, \neg, \lor, \otimes, \oplus$$

and truth values

0, 1/2, 1.

The truth value 1 is designated.

Proposition 1 The formula $((A \land B) \to A)$ is a tautology.

Proposition 2 The formula $((A \otimes B) \to A)$ is a tautology.

Proposition 3 The formula $((A \land B) \to B)$ is a tautology.

Proposition 4 The formula $((A \otimes B) \to B)$ is a tautology.

Proposition 5 The formula $((A \to B) \to ((A \to C) \to (A \to (B \land C))))$ is a tautology.

Proposition 6 The formula $((A \to B) \to ((A \to C) \to (A \to (B \otimes C))))$ is **not** a tautology.

Proposition 7 The formula $(A \rightarrow (A \lor B))$ is a tautology.

Proposition 8 The formula $(A \to (A \oplus B))$ is a tautology.

Proposition 9 The formula $(B \to (A \lor B))$ is a tautology.

Proposition 10 The formula $(B \to (A \oplus B))$ is a tautology.

Proposition 11 The formula $((B \to A) \to ((C \to A) \to ((B \lor C) \to A)))$ is a tautology.

Proposition 12 The formula $((B \to A) \to ((C \to A) \to ((B \oplus C) \to A)))$ is **not** a tautology.

Proposition 13 The formula $(A \vee \neg A)$ is **not** a tautology.

Proposition 14 The formula $(A \oplus \neg A)$ is a tautology.

Proposition 15 The formula $(\neg A \lor \neg \neg A)$ is **not** a tautology.

Proposition 16 The formula $(\neg A \oplus \neg \neg A)$ is a tautology.

Proposition 17 The formula $((A \to B) \lor (B \to A))$ is a tautology.

Proposition 18 The formula $((A \to B) \oplus (B \to A))$ is a tautology.

Proposition 19 The formula $((\neg A \to (B \lor C)) \to ((\neg A \to B) \lor (\neg A \to C)))$ is a tautology.

Proposition 20 The formula $((\neg A \to (B \oplus C)) \to ((\neg A \to B) \oplus (\neg A \to C)))$ is a tautology.

Proposition 21 The formula $((A \land (A \rightarrow B)) \rightarrow B)$ is **not** a tautology.

Proposition 22 The formula $((A \otimes (A \rightarrow B)) \rightarrow B)$ is a tautology.

Proposition 23 The following consequence holds:

$$(A \vee B), \neg A \vdash B$$

Proposition 24 The following consequence holds:

$$(A \oplus B), \neg A \vdash B$$

Proposition 25 The following consequence holds:

$$(\neg C \lor \neg D), (A \to C), (B \to D) \vdash (\neg A \lor \neg B)$$

Proposition 26 The following consequence holds:

$$(\neg C \oplus \neg D), (A \to C), (B \to D) \vdash (\neg A \oplus \neg B)$$

Proposition 27 The following consequence holds:

$$(A \lor B), (A \to C), (B \to D) \vdash (C \lor D)$$

Proposition 28 The following consequence holds:

$$(A \oplus B), (A \to C), (B \to D) \vdash (C \oplus D)$$

Proposition 29 The following consequence does not hold:

$$(A \to (B \to C)) \vdash ((A \land B) \to C)$$

Proposition 30 The following consequence holds:

$$(A \to (B \to C)) \vdash ((A \otimes B) \to C)$$

Proposition 31 The following consequence holds:

$$((A \land B) \to C) \vdash (A \to (B \to C))$$

Proposition 32 The following consequence holds:

$$((A \otimes B) \to C) \vdash (A \to (B \to C))$$

Proposition 33 The following consequence holds:

$$(A \rightarrow B), (A \rightarrow C) \vdash (A \rightarrow (B \land C))$$

Proposition 34 The following consequence does not hold:

$$(A \rightarrow B), (A \rightarrow C) \vdash (A \rightarrow (B \otimes C))$$

Proposition 35 The following consequence holds:

$$((A \lor B) \to C) \vdash ((A \to C) \land (B \to C))$$

Proposition 36 The following consequence holds:

$$((A \lor B) \to C) \vdash ((A \to C) \otimes (B \to C))$$

Proposition 37 The following consequence holds:

$$((A \oplus B) \to C) \vdash ((A \to C) \land (B \to C))$$

Proposition 38 The following consequence holds:

$$((A \oplus B) \to C) \vdash ((A \to C) \otimes (B \to C))$$

Proposition 39 The formulas $(A \wedge (B \vee C))$ and $((A \wedge B) \vee (A \wedge C))$ are equivalent.

Proposition 40 The formulas $(A \wedge (B \oplus C))$ and $((A \wedge B) \oplus (A \wedge C))$ are **not** equivalent.

Proposition 41 The formulas $(A \otimes (B \vee C))$ and $((A \otimes B) \vee (A \otimes C))$ are equivalent.

Proposition 42 The formulas $(A \otimes (B \oplus C))$ and $((A \otimes B) \oplus (A \otimes C))$ are **not** equivalent.

Proposition 43 The formulas $((B \lor C) \land A)$ and $((B \land A) \lor (C \land A))$ are equivalent.

Proposition 44 The formulas $((B \oplus C) \land A)$ and $((B \land A) \oplus (C \land A))$ are **not** equivalent.

Proposition 45 The formulas $((B \lor C) \otimes A)$ and $((B \otimes A) \lor (C \otimes A))$ are equivalent.

Proposition 46 The formulas $((B \oplus C) \otimes A)$ and $((B \otimes A) \oplus (C \otimes A))$ are **not** equivalent.

Proposition 47 The following consequence holds:

$$(A \wedge B) \vdash A$$

Proposition 48 The following consequence holds:

$$(A \otimes B) \vdash A$$

Proposition 49 The following consequence holds:

$$(A \wedge B) \vdash B$$

Proposition 50 The following consequence holds:

$$(A \otimes B) \vdash B$$

Proposition 51 The following consequence holds:

$$A, B \vdash (A \land B)$$

Proposition 52 The following consequence holds:

$$A, B \vdash (A \otimes B)$$

Proposition 53 The following consequence holds:

$$A \vdash (A \lor B)$$

Proposition 54 The following consequence holds:

$$A \vdash (A \oplus B)$$

Proposition 55 The following consequence holds:

$$(A \lor B) \vdash (B \lor A)$$

 ${\bf Proposition}~{\bf 56}~{\it The~following~consequence~holds:}$

$$(A \oplus B) \vdash (B \oplus A)$$

Proposition 57 The following consequence holds:

$$(A \lor A) \vdash A$$

Proposition 58 The following consequence does not hold:

$$(A \oplus A) \vdash A$$

 ${\bf Proposition} \,\, {\bf 59} \,\, \textit{ The following consequence holds:} \,\,$

$$(A \lor (B \lor C)) \vdash ((A \lor B) \lor C)$$

Proposition 60 The following consequence holds:

$$(A \oplus (B \oplus C)) \vdash ((A \oplus B) \oplus C)$$

Proposition 61 The following consequence holds:

$$(A \lor (B \land C)) \vdash ((A \lor B) \land (A \lor C))$$

Proposition 62 The following consequence holds:

$$(A \oplus (B \land C)) \vdash ((A \oplus B) \land (A \oplus C))$$

Proposition 63 The following consequence holds:

$$(A \lor (B \otimes C)) \vdash ((A \lor B) \otimes (A \lor C))$$

Proposition 64 The following consequence holds:

$$(A \oplus (B \otimes C)) \vdash ((A \oplus B) \otimes (A \oplus C))$$

Proposition 65 The following consequence holds:

$$((A \lor B) \land (A \lor C)) \vdash (A \lor (B \land C))$$

Proposition 66 The following consequence holds:

$$((A \oplus B) \land (A \oplus C)) \vdash (A \oplus (B \land C))$$

Proposition 67 The following consequence holds:

$$((A \lor B) \otimes (A \lor C)) \vdash (A \lor (B \otimes C))$$

Proposition 68 The following consequence does not hold:

$$((A \oplus B) \otimes (A \oplus C)) \vdash (A \oplus (B \otimes C))$$

Proposition 69 The following consequence holds:

$$(A \lor C) \vdash (\neg \neg A \lor C)$$

Proposition 70 The following consequence holds:

$$(A \oplus C) \vdash (\neg \neg A \oplus C)$$

Proposition 71 The following consequence holds:

$$(\neg \neg A \lor C) \vdash (A \lor C)$$

Proposition 72 The following consequence holds:

$$(\neg \neg A \oplus C) \vdash (A \oplus C)$$

Proposition 73 The following consequence holds:

$$(\neg(A \lor B) \lor C) \vdash ((\neg A \land \neg B) \lor C)$$

 ${\bf Proposition} \ {\bf 74} \ \ {\it The following consequence holds:}$

$$(\neg(A \oplus B) \oplus C) \vdash ((\neg A \land \neg B) \oplus C)$$

Proposition 75 The following consequence holds:

$$(\neg(A \lor B) \lor C) \vdash ((\neg A \otimes \neg B) \lor C)$$

Proposition 76 The following consequence holds:

$$(\neg(A \oplus B) \oplus C) \vdash ((\neg A \otimes \neg B) \oplus C)$$

Proposition 77 The following consequence holds:

$$((\neg A \land \neg B) \lor C) \vdash (\neg (A \lor B) \lor C)$$

Proposition 78 The following consequence does not hold:

$$((\neg A \land \neg B) \oplus C) \vdash (\neg (A \oplus B) \oplus C)$$

Proposition 79 The following consequence holds:

$$((\neg A \otimes \neg B) \vee C) \vdash (\neg (A \vee B) \vee C)$$

Proposition 80 The following consequence holds:

$$((\neg A \otimes \neg B) \oplus C) \vdash (\neg (A \oplus B) \oplus C)$$

Proposition 81 The following consequence holds:

$$(\neg(A \land B) \lor C) \vdash ((\neg A \lor \neg B) \lor C)$$

Proposition 82 The following consequence holds:

$$(\neg (A \land B) \oplus C) \vdash ((\neg A \oplus \neg B) \oplus C)$$

Proposition 83 The following consequence does not hold:

$$(\neg (A \otimes B) \vee C) \vdash ((\neg A \vee \neg B) \vee C)$$

Proposition 84 The following consequence holds:

$$(\neg(A \otimes B) \oplus C) \vdash ((\neg A \oplus \neg B) \oplus C)$$

Proposition 85 The following consequence holds:

$$((\neg A \lor \neg B) \lor C) \vdash (\neg (A \land B) \lor C)$$

Proposition 86 The following consequence does not hold:

$$((\neg A \oplus \neg B) \oplus C) \vdash (\neg (A \land B) \oplus C)$$

Proposition 87 The following consequence holds:

$$((\neg A \lor \neg B) \lor C) \vdash (\neg (A \otimes B) \lor C)$$

Proposition 88 The following consequence holds:

$$((\neg A \oplus \neg B) \oplus C) \vdash (\neg (A \otimes B) \oplus C)$$

Proposition 89 The equality $A = (A \wedge A)$ holds.

Proposition 90 The equality $A = (A \otimes A)$ does **not** hold.

Proposition 91 The equality $(A \wedge (B \vee C)) = ((A \wedge B) \vee (A \wedge C))$ holds.

Proposition 92 The equality $((B \vee C) \wedge A) = ((B \wedge A) \vee (C \wedge A))$ holds.

Proposition 93 The equality $(A \wedge (B \oplus C)) = ((A \wedge B) \oplus (A \wedge C))$ does **not** hold.

Proposition 94 The equality $(A \otimes (B \vee C)) = ((A \otimes B) \vee (A \otimes C))$ holds.

Proposition 95 The equality $((B \vee C) \otimes A) = ((B \otimes A) \vee (C \otimes A))$ holds.

Proposition 96 The equality $(A \otimes (B \oplus C)) = ((A \otimes B) \oplus (A \otimes C))$ does **not** hold.

Proposition 97 The equality $(A \rightarrow B) = (\neg A \lor B)$ does **not** hold.

Proposition 98 The equality $(A \to B) = (\neg A \oplus B)$ holds.

Proposition 99 The equality $(A \to B) = \neg (A \land \neg B)$ does **not** hold.

Proposition 100 The equality $(A \to B) = \neg (A \otimes \neg B)$ holds.

Proposition 101 The equality $(A \vee B) = ((A \rightarrow B) \rightarrow B)$ holds.

Proposition 102 The equality $(A \oplus B) = ((A \to B) \to B)$ does **not** hold.

Proposition 103 The equality $(A \lor B) = \neg(\neg A \land \neg B)$ holds.

Proposition 104 The equality $(A \oplus B) = \neg(\neg A \land \neg B)$ does **not** hold.

Proposition 105 The equality $(A \lor B) = \neg(\neg A \otimes \neg B)$ does **not** hold.

Proposition 106 The equality $(A \oplus B) = \neg(\neg A \otimes \neg B)$ holds.

Proposition 107 The equality $(A \wedge B) = \neg (A \rightarrow \neg B)$ does **not** hold.

Proposition 108 The equality $(A \otimes B) = \neg (A \rightarrow \neg B)$ holds.

Proposition 109 The equality $(A \wedge B) = \neg(\neg A \vee \neg B)$ holds.

Proposition 110 The equality $(A \wedge B) = \neg(\neg A \oplus \neg B)$ does **not** hold.

Proposition 111 The equality $(A \otimes B) = \neg(\neg A \vee \neg B)$ does **not** hold.

Proposition 112 The equality $(A \otimes B) = \neg(\neg A \oplus \neg B)$ holds.

Proposition 113 The equality $\neg (A \lor B) = (\neg A \land \neg B)$ holds.

Proposition 114 The equality $\neg(A \oplus B) = (\neg A \land \neg B)$ does **not** hold.

Proposition 115 The equality $\neg (A \lor B) = (\neg A \otimes \neg B)$ does **not** hold.

Proposition 116 The equality $\neg(A \oplus B) = (\neg A \otimes \neg B)$ holds.

Proposition 117 The equality $\neg(A \land B) = (\neg A \lor \neg B)$ holds.

Proposition 118 The equality $\neg(A \land B) = (\neg A \oplus \neg B)$ does **not** hold.

Proposition 119 The equality $\neg (A \otimes B) = (\neg A \vee \neg B)$ does **not** hold.

Proposition 120 The equality $\neg (A \otimes B) = (\neg A \oplus \neg B)$ holds.

Proposition 121 The following meta-consequence does not hold:

$$(P \wedge Q) \vdash R \quad / \quad P \vdash (Q \to R)$$

Proposition 122 The following meta-consequence does not hold:

$$(P \otimes Q) \vdash R \quad / \quad P \vdash (Q \to R)$$

1 Program listing: ex_lukasiewicz2.pl

```
% Test file to compare strong and weak Lukasiewicz operators
% make sure MUltseq is loaded
:- ensure_loaded('../multseq/multseq').
% load sample properties
:- [properties].
% load the rules
:- load_logic('lukasiewicz.msq').
% define standard Omap
:- setOmap([(neg)/(-),imp/(>),and/(/\),or/(\/),equiv/(=)]).
% check all properties and write report to out.tex
:- set_option(tex_output(terse)).
:- start_logging(ex_lukasiewicz2,'.tex').
:- print_tex(tex_title("Comparing_Strong_and_Weak_\\Lukasiewicz_Logic_Connectives")).
:- print_tex(tex_logic).
:- (compareProp([[and,sand]/(/\),[or,sor]/(\/)], _), fail); true.
:- print_tex(tex_listing("ex_lukasiewicz2.pl")).
:- stop_logging.
```