Report on Classical Logic

M. Ultseq

July 2, 2024

The logic contains the connectives

$$
\wedge, \leftrightarrow, \rightarrow, \rightarrow, \text { ite } \mid, \neg, \downarrow, \vee, \oplus
$$

and truth values

$$
\mathrm{f}, \mathrm{t} .
$$

The truth value \mathbf{t} is designated.
We verify that all classical logic satisfies some well-known properties (involving only $\wedge, \vee, \rightarrow, \neg$, and \leftrightarrow). We output proofs in "multidimensional" format, which for classical logic means just two sides to a sequent, as usual.

1 Bernays's axioms for classical logic

Proposition 1 The formula $(A \rightarrow(B \rightarrow A))$ is a tautology.
The problem is equivalent to proving the following sequent:

$$
[\emptyset \mid(A \rightarrow(B \rightarrow A))]
$$

Derivation of $[\emptyset \mid(A \rightarrow(B \rightarrow A))]$:

$$
\begin{aligned}
& \frac{\frac{[A, B \mid A]}{\text { axiom for } A}}{[A \mid(B \rightarrow A)]} \\
& {[\emptyset \mid(A \rightarrow(B \rightarrow A))]}
\end{aligned} \rightarrow_{\mathbf{t}}
$$

Proposition 2 The formula $((A \rightarrow(A \rightarrow B)) \rightarrow(A \rightarrow B))$ is a tautology.
The problem is equivalent to proving the following sequent:

$$
[\emptyset \mid((A \rightarrow(A \rightarrow B)) \rightarrow(A \rightarrow B))]
$$

Derivation of $[\emptyset \mid((A \rightarrow(A \rightarrow B)) \rightarrow(A \rightarrow B))]$:

$$
\begin{aligned}
& \frac{\begin{array}{l}
\text { axiom for } B \quad \begin{array}{c}
\text { axiom for } A \\
{[A, B \mid B]} \\
{[A \mid A, B]}
\end{array} \\
\frac{[A,(A \rightarrow B) \mid B]}{[A, B)} \quad \begin{array}{c}
\text { axiom for } A \\
{[A \mid A, B]}
\end{array} \\
\frac{[A,(A \rightarrow(A \rightarrow B)) \mid B]}{[(A \rightarrow(A \rightarrow B)) \mid(A \rightarrow B)]} \rightarrow_{\mathbf{t}}
\end{array} \rightarrow_{\mathbf{f}}}{[\emptyset \mid((A \rightarrow(A \rightarrow B)) \rightarrow(A \rightarrow B))]} \rightarrow_{\mathbf{t}}
\end{aligned}
$$

Proposition 3 The formula $((A \rightarrow(B \rightarrow C)) \rightarrow(B \rightarrow(A \rightarrow C)))$ is a tautology.

The problem is equivalent to proving the following sequent:

$$
[\emptyset \mid((A \rightarrow(B \rightarrow C)) \rightarrow(B \rightarrow(A \rightarrow C)))]
$$

Derivation of $[\emptyset \mid((A \rightarrow(B \rightarrow C)) \rightarrow(B \rightarrow(A \rightarrow C)))]$:

Proposition 4 The formula $((B \rightarrow C) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C)))$ is a tautology.
The problem is equivalent to proving the following sequent:

$$
[\emptyset \mid((B \rightarrow C) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C)))]
$$

Derivation of $[\emptyset \mid((B \rightarrow C) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C)))]$:

Proposition 5 The formula $((A \wedge B) \rightarrow A)$ is a tautology.
The problem is equivalent to proving the following sequent:

$$
[\emptyset \mid((A \wedge B) \rightarrow A)]
$$

Derivation of $[\emptyset \mid((A \wedge B) \rightarrow A)]$:

$$
\frac{\frac{[A, B \mid A]}{\text { axiom for } A}}{[(A \wedge B) \mid A]} \wedge_{\mathbf{f}} \rightarrow_{\mathbf{t}}
$$

Proposition 6 The formula $((A \wedge B) \rightarrow B)$ is a tautology.
The problem is equivalent to proving the following sequent:

$$
[\emptyset \mid((A \wedge B) \rightarrow B)]
$$

Derivation of $[\emptyset \mid((A \wedge B) \rightarrow B)]$:

$$
\frac{\frac{[A, B \mid B]}{\text { axiom for } B}}{[(A \wedge B) \mid B]} \wedge_{\mathbf{f}} \rightarrow_{\mathbf{t}}
$$

Proposition 7 The formula $((A \rightarrow B) \rightarrow((A \rightarrow C) \rightarrow(A \rightarrow(B \wedge C))))$ is a tautology.

The problem is equivalent to proving the following sequent:

$$
[\emptyset \mid((A \rightarrow B) \rightarrow((A \rightarrow C) \rightarrow(A \rightarrow(B \wedge C))))]
$$

Derivation of $[\emptyset \mid((A \rightarrow B) \rightarrow((A \rightarrow C) \rightarrow(A \rightarrow(B \wedge C))))]$:

$$
\begin{aligned}
& \text { axiom for } C \text { axiom for } B
\end{aligned}
$$

Proposition 8 The formula $(A \rightarrow(A \vee B))$ is a tautology.
The problem is equivalent to proving the following sequent:

$$
[\emptyset \mid(A \rightarrow(A \vee B))]
$$

Derivation of $[\emptyset \mid(A \rightarrow(A \vee B))]$:

$$
\frac{\frac{[A \mid A, B]}{[A \mid(A \vee B)]} \vee_{\mathbf{t}}}{[\emptyset \mid(A \rightarrow(A \vee B))]} \rightarrow_{\mathbf{t}}
$$

Proposition 9 The formula $(B \rightarrow(A \vee B))$ is a tautology.
The problem is equivalent to proving the following sequent:

$$
[\emptyset \mid(B \rightarrow(A \vee B))]
$$

Derivation of $[\emptyset \mid(B \rightarrow(A \vee B))]$:

$$
\frac{\frac{[B \mid A, B]}{[B \mid(A \vee B)]} \vee_{\mathbf{t}}}{[\emptyset \mid(B \rightarrow(A \vee B))]} \rightarrow_{\mathbf{t}}
$$

Proposition 10 The formula $((B \rightarrow A) \rightarrow((C \rightarrow A) \rightarrow((B \vee C) \rightarrow A)))$ is a tautology.
The problem is equivalent to proving the following sequent:

$$
[\emptyset \mid((B \rightarrow A) \rightarrow((C \rightarrow A) \rightarrow((B \vee C) \rightarrow A)))]
$$

Derivation of $[\emptyset \mid((B \rightarrow A) \rightarrow((C \rightarrow A) \rightarrow((B \vee C) \rightarrow A)))]$:

$$
\begin{aligned}
& \begin{array}{cc}
\begin{array}{c}
\text { axiom for } A \\
{[A,(B \vee C) \mid A]} \\
[A \mid(B \vee C) \rightarrow A)]
\end{array} \rightarrow_{\mathbf{t}} & \begin{array}{c}
\text { axiom for } A \\
{[A,(C \rightarrow A)|(B \vee C)| A, C]}
\end{array}
\end{array} \rightarrow_{\mathbf{t}} \begin{array}{c}
\text { axiom for } A \\
\frac{[(B \vee C) \rightarrow A)]}{[A \mid B,((B \vee C) \mid A, B]}
\end{array} \rightarrow_{\mathbf{f}} \begin{array}{c}
\frac{[C \mid A, B, C][B \mid A, B, C]}{[(B \vee C) \mid A, B, C]} \vee_{\mathbf{f}} \\
\frac{[(C) \rightarrow A)]}{[(B \mid B, C,((B \vee C) \rightarrow A)]} \rightarrow_{\mathbf{t}} \\
\hline \mathbf{f}
\end{array} \\
& \frac{\frac{[A,(C \rightarrow A) \mid((B \vee C) \rightarrow A)]}{[A \mid((C \rightarrow A) \rightarrow((B \vee C) \rightarrow A))]} \rightarrow_{\mathbf{t}}}{\frac{[(B \rightarrow A) \mid((C \rightarrow A) \rightarrow((B \vee C) \rightarrow A))]}{[\emptyset \mid((B \rightarrow A) \rightarrow((C \rightarrow A) \rightarrow((B \vee C) \rightarrow A)))]} \rightarrow_{\mathbf{t}}}
\end{aligned}
$$

Proposition 11 The formula $((A \leftrightarrow B) \rightarrow(A \rightarrow B))$ is a tautology.
The problem is equivalent to proving the following sequent:

$$
[\emptyset \mid((A \leftrightarrow B) \rightarrow(A \rightarrow B))]
$$

Derivation of $[\emptyset \mid((A \leftrightarrow B) \rightarrow(A \rightarrow B))]$:

$$
\frac{\begin{array}{c}
\begin{array}{c}
\text { axiom for } B \\
{[A, B \mid B]}
\end{array} \\
\frac{[A, B \mid(A \rightarrow B)]}{\text { axiom for } A} \\
\frac{[A \mid A, B]}{} \\
\frac{[(A \leftrightarrow B) \mid(A \rightarrow B)]}{[\emptyset \mid((A \leftrightarrow B) \rightarrow(A \rightarrow B))]} \rightarrow_{\mathbf{t}}
\end{array} \rightarrow_{\mathbf{t}}}{\leftrightarrow_{\mathbf{f}}}
$$

Proposition 12 The formula $((A \leftrightarrow B) \rightarrow(B \rightarrow A))$ is a tautology.
The problem is equivalent to proving the following sequent:

$$
[\emptyset \mid((A \leftrightarrow B) \rightarrow(B \rightarrow A))]
$$

Derivation of $[\emptyset \mid((A \leftrightarrow B) \rightarrow(B \rightarrow A))]$:

$$
\frac{\begin{array}{c}
\begin{array}{c}
\text { axiom for } A \\
{[A, B \mid A]}
\end{array} \\
{[A, B \mid(B \rightarrow A)]}
\end{array} \rightarrow_{\mathbf{t}} \quad \frac{[B \mid A, B]}{[\emptyset \mid A, B,(B \rightarrow A)]}}{\frac{[(A \leftrightarrow B) \mid(B \rightarrow A)]}{[\emptyset \mid((A \leftrightarrow B) \rightarrow(B \rightarrow A))]} \rightarrow_{\mathbf{t}}} \rightarrow_{\mathbf{t}}
$$

Proposition 13 The formula $((A \rightarrow B) \rightarrow((B \rightarrow A) \rightarrow(A \leftrightarrow B))$) is a tautology.
The problem is equivalent to proving the following sequent:

$$
[\emptyset \mid((A \rightarrow B) \rightarrow((B \rightarrow A) \rightarrow(A \leftrightarrow B)))]
$$

Derivation of $[\emptyset \mid((A \rightarrow B) \rightarrow((B \rightarrow A) \rightarrow(A \leftrightarrow B)))]$:

$$
\begin{aligned}
& \frac{[(A \rightarrow B) \mid((B \rightarrow A) \rightarrow(A \leftrightarrow B))]}{[\emptyset \mid((A \rightarrow B) \rightarrow((B \rightarrow A) \rightarrow(A \leftrightarrow B)))]} \rightarrow \mathbf{t}
\end{aligned}
$$

Proposition 14 The formula $((A \rightarrow B) \rightarrow(\neg B \rightarrow \neg A))$ is a tautology.
The problem is equivalent to proving the following sequent:

$$
[\emptyset \mid((A \rightarrow B) \rightarrow(\neg B \rightarrow \neg A))]
$$

Derivation of $[\emptyset \mid((A \rightarrow B) \rightarrow(\neg B \rightarrow \neg A))]$:

$$
\begin{array}{cc}
\begin{array}{l}
\text { axiom for } B \\
\frac{[A, B \mid B]}{[A, B, \neg B \mid \emptyset]} \neg_{\mathbf{f}} \\
\frac{\left[\begin{array}{l}
\text { axiom for } A \\
{[B, \neg B \mid \neg A]} \\
\mathbf{L B | (\neg B \rightarrow \neg A)]}
\end{array}\right.}{\frac{[A, \neg B \mid A]}{\mathbf{t}} \quad \frac{[\neg B \mid A, \neg A]}{[\emptyset \mid A,(\neg B \rightarrow \neg A)]}} \neg_{\mathbf{t}} \\
\frac{[(A \rightarrow B) \mid(\neg B \rightarrow \neg A)]}{[\emptyset \mid((A \rightarrow B) \rightarrow(\neg B \rightarrow \neg A))]} \rightarrow_{\mathbf{t}}
\end{array} \rightarrow_{\mathbf{t}}
\end{array}
$$

Proposition 15 The formula $((A \rightarrow \neg A) \rightarrow \neg A)$ is a tautology.
The problem is equivalent to proving the following sequent:

$$
[\emptyset \mid((A \rightarrow \neg A) \rightarrow \neg A)]
$$

Derivation of $[\emptyset \mid((A \rightarrow \neg A) \rightarrow \neg A)]$:

$$
\begin{aligned}
& \text { axiom for } A \\
& \frac{\begin{array}{c}
{[A \mid A]} \\
{[A, \neg A \mid \emptyset]} \\
\hline
\end{array} \quad \begin{array}{l}
\text { axiom for } \\
{[A \mid A]}
\end{array}}{\frac{[A,(A \rightarrow \neg A) \mid \emptyset]}{[(A \rightarrow \neg A) \mid \neg A]} \neg_{\mathbf{t}}} \rightarrow_{\mathbf{f}} \\
& {[\emptyset \mid((A \rightarrow \neg A) \rightarrow \neg A)]}
\end{aligned} \mathbf{t}
$$

Proposition 16 The formula $(A \rightarrow \neg \neg A)$ is a tautology.
The problem is equivalent to proving the following sequent:

$$
[\emptyset \mid(A \rightarrow \neg \neg A)]
$$

Derivation of $[\emptyset \mid(A \rightarrow \neg \neg A)]$:

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { axiom for } A \\
\frac{[A \mid A]}{[A, \neg A \mid \emptyset]} \\
\hline
\end{array} \\
& \frac{\frac{[A \mid \neg \neg A]}{[\emptyset \mid(A \rightarrow \neg \neg A)]}}{\mathbf{~}} \rightarrow_{\mathbf{t}}
\end{aligned}
$$

Proposition 17 The formula $(\neg \neg A \rightarrow A)$ is a tautology.
The problem is equivalent to proving the following sequent:

$$
[\emptyset \mid(\neg \neg A \rightarrow A)]
$$

Derivation of $[\emptyset \mid(\neg \neg A \rightarrow A)]$:

$$
\begin{aligned}
& \begin{array}{l}
\text { axiom for } A \\
\frac{[A \mid A]}{[\emptyset \mid A, \neg A]} \neg_{\mathbf{t}} \\
\frac{[\neg \neg A \mid A]}{[\emptyset \mathbf{f}}
\end{array} \rightarrow_{\mathbf{t}}
\end{aligned}
$$

2 Classical tautologies not intuitionistically valid

Proposition 18 The formula $(A \vee \neg A)$ is a tautology.
The problem is equivalent to proving the following sequent:

$$
[\emptyset \mid(A \vee \neg A)]
$$

Derivation of $[\emptyset \mid(A \vee \neg A)]$:

$$
\begin{aligned}
& \frac{\text { axiom for } A}{} \begin{array}{l}
\frac{[A \mid A]}{[\emptyset \mid A, \neg A]} \\
{[\emptyset \mid(A \vee \neg A)]} \\
\mathbf{t}
\end{array} \vee_{\mathbf{t}}
\end{aligned}
$$

Proposition 19 The formula $(\neg A \vee \neg \neg A)$ is a tautology.
The problem is equivalent to proving the following sequent:

$$
[\emptyset \mid(\neg A \vee \neg \neg A)]
$$

Derivation of $[\emptyset \mid(\neg A \vee \neg \neg A)]$:

$$
\begin{gathered}
\begin{array}{l}
\text { axiom for } A \\
\frac{[A \mid A]}{[A, \neg A \mid \emptyset]} \\
\mathbf{f}
\end{array} \\
\frac{\frac{[A \mid \neg \neg A]}{[\emptyset \mid \neg A, \neg \neg A]}}{[\emptyset \mathbf{t}} \\
{[\emptyset \mid(\neg A \vee \neg \neg A)]} \\
\mathbf{t}
\end{gathered}
$$

Proposition 20 The formula $((A \rightarrow B) \vee(B \rightarrow A))$ is a tautology.
The problem is equivalent to proving the following sequent:

$$
[\emptyset \mid((A \rightarrow B) \vee(B \rightarrow A))]
$$

Derivation of $[\emptyset \mid((A \rightarrow B) \vee(B \rightarrow A))]$:

$$
\begin{gathered}
\frac{\begin{array}{l}
\text { axiom for } A \\
{[A, B \mid A, B]}
\end{array}}{\frac{[A \mid B,(B \rightarrow A)]}{[\emptyset \mid(A \rightarrow B),(B \rightarrow A)]}} \rightarrow_{\mathbf{t}} \\
{[\emptyset \mid((A \rightarrow B) \vee(B \rightarrow A))]}
\end{gathered} \vee_{\mathbf{t}}
$$

Proposition 21 The formula $(((A \rightarrow B) \rightarrow A) \rightarrow A)$ is a tautology.
The problem is equivalent to proving the following sequent:

$$
[\emptyset \mid(((A \rightarrow B) \rightarrow A) \rightarrow A)]
$$

Derivation of $[\emptyset \mid(((A \rightarrow B) \rightarrow A) \rightarrow A)]$:

\[

\]

3 Some popular consequences

Proposition 22 The following consequence holds:

$$
A,(A \rightarrow B) \vdash B
$$

The problem is equivalent to proving the following sequent:

$$
[A,(A \rightarrow B) \mid B]
$$

Derivation of $[A,(A \rightarrow B) \mid B]$:

$$
\begin{aligned}
& \stackrel{[A, B \mid B]}{\text { axiom for } B} \quad \begin{array}{l}
\text { axiom for } A \\
{[A \mid A, B]} \\
{[A,(A \rightarrow B) \mid B]}
\end{array} \rightarrow_{\mathbf{f}}
\end{aligned}
$$

Proposition 23 The following consequence holds:

$$
(A \rightarrow B), \neg B \vdash \neg A
$$

The problem is equivalent to proving the following sequent:

$$
[\neg B,(A \rightarrow B) \mid \neg A]
$$

Derivation of $[\neg B,(A \rightarrow B) \mid \neg A]$:

$$
\begin{aligned}
& \begin{array}{c}
\text { axiom for } B \\
\frac{[A, B \mid B] \quad \text { axiom for } A}{[A \mid A, B]} \\
\frac{[A,(A \rightarrow B) \mid B]}{[A, \neg B,(A \rightarrow B) \mid \emptyset]}
\end{array} \neg_{\mathbf{f}} \\
& \frac{[\neg B,(A \rightarrow B) \mid \neg A]}{\mathbf{f}}
\end{aligned}
$$

Proposition 24 The following consequence holds:

$$
(A \rightarrow B),(B \rightarrow C) \vdash(A \rightarrow C)
$$

The problem is equivalent to proving the following sequent:

$$
[(A \rightarrow B),(B \rightarrow C) \mid(A \rightarrow C)]
$$

Derivation of $[(A \rightarrow B),(B \rightarrow C) \mid(A \rightarrow C)]$:

$$
\begin{aligned}
& \begin{array}{l}
\text { axiom for } C \\
\frac{[A, B, C \mid C]}{[A, B i o m} \text { for } B \\
{[A, B \mid B, C]}
\end{array} \rightarrow_{\mathbf{f}}
\end{aligned} \quad \begin{gathered}
\text { axiom for } A \\
\frac{[B, B,(B \rightarrow C) \mid C]}{[B,(B \rightarrow C) \mid(A \rightarrow C)]} \rightarrow_{\mathbf{t}}
\end{gathered} \frac{[A,(B \rightarrow C) \mid A, C]}{[(B \rightarrow C) \mid A,(A \rightarrow C)]} \rightarrow_{\mathbf{t}}
$$

Proposition 25 The following consequence holds:

$$
(A \vee B), \neg A \vdash B
$$

The problem is equivalent to proving the following sequent:

$$
[\neg A,(A \vee B) \mid B]
$$

Derivation of $[\neg A,(A \vee B) \mid B]$:

$$
\frac{\begin{array}{cc}
\text { axiom for } B & \text { axiom for } A \\
\frac{[B \mid A, B]}{[(A \vee B) \mid A, B]}[\neg A,(A \vee B) \mid B] \\
\hline f
\end{array}}{[\mathbf{f}}
$$

Proposition 26 The following consequence holds:

$$
(\neg C \vee \neg D),(A \rightarrow C),(B \rightarrow D) \vdash(\neg A \vee \neg B)
$$

The problem is equivalent to proving the following sequent:

$$
[(A \rightarrow C),(B \rightarrow D),(\neg C \vee \neg D) \mid(\neg A \vee \neg B)]
$$

Derivation of $[(A \rightarrow C),(B \rightarrow D),(\neg C \vee \neg D) \mid(\neg A \vee \neg B)]$:

$$
\begin{aligned}
& \begin{array}{cc}
\text { axiom for } D & \text { axiom for } C \\
\frac{[A, B, C, D \mid D]}{[A, B, C, D, \neg D \mid \emptyset]} & {[\mathbf{f}}
\end{array} \frac{[A, B, C, D \mid C]}{[A, B, C, D, \neg C \mid \emptyset]} \neg_{\mathbf{f}}
\end{aligned}
$$

Proposition 27 The following consequence holds:

$$
(A \vee B),(A \rightarrow C),(B \rightarrow D) \vdash(C \vee D)
$$

The problem is equivalent to proving the following sequent:

$$
[(A \rightarrow C),(B \rightarrow D),(A \vee B) \mid(C \vee D)]
$$

Derivation of $[(A \rightarrow C),(B \rightarrow D),(A \vee B) \mid(C \vee D)]$:

Proposition 28 The following consequence holds:

$$
(A \rightarrow(B \rightarrow C)) \vdash((A \wedge B) \rightarrow C)
$$

The problem is equivalent to proving the following sequent:

$$
[(A \rightarrow(B \rightarrow C)) \mid((A \wedge B) \rightarrow C)]
$$

Derivation of $[(A \rightarrow(B \rightarrow C)) \mid((A \wedge B) \rightarrow C)]$:

Proposition 29 The following consequence holds:

$$
((A \wedge B) \rightarrow C) \vdash(A \rightarrow(B \rightarrow C))
$$

The problem is equivalent to proving the following sequent:

$$
[((A \wedge B) \rightarrow C) \mid(A \rightarrow(B \rightarrow C))]
$$

Derivation of $[((A \wedge B) \rightarrow C) \mid(A \rightarrow(B \rightarrow C))]$:

$$
\frac{\text { axiom for } C^{[A, B, C \mid C]} \frac{\begin{array}{l}
\text { axiom for } B \\
{[A, B \mid B, C]}
\end{array} \quad \begin{array}{l}
\text { axiom for } A \\
{[A, B \mid A, C]}
\end{array}}{[A, B \mid C,(A \wedge B)]}}{\frac{[A, B,((A \wedge B) \rightarrow C) \mid C]}{[A,((A \wedge B) \rightarrow C) \mid(B \rightarrow C)]} \rightarrow_{\mathbf{t}}} \wedge_{\mathbf{t}}
$$

4 Some popular equivalences

Proposition 30 The formulas $((B \vee C) \wedge A)$ and $((B \wedge A) \vee(C \wedge A))$ are equivalent.
The problem is equivalent to proving the following sequents:

$$
\begin{aligned}
& {[((B \vee C) \wedge A) \mid((B \wedge A) \vee(C \wedge A))]} \\
& {[((B \wedge A) \vee(C \wedge A)) \mid((B \vee C) \wedge A)]}
\end{aligned}
$$

Derivation of $[((B \vee C) \wedge A) \mid((B \wedge A) \vee(C \wedge A))]$:
axiom for A axiom for C

$$
\frac{[A, C \mid A,(C \wedge A)]}{\begin{array}{c}
\text { axiom for } A \\
{[A, C \mid B,(C \wedge A)]} \\
{[A, C \mid(B \wedge A),(C \wedge A)]} \\
\end{array}} \wedge_{\mathbf{t}} \quad \frac{[A, B \mid A,(C \wedge A)][A, B \mid B,(C \wedge A)]}{\frac{[A, B \mid((B \wedge A) \vee(C \wedge A))]}{[A, C} \vee_{\mathbf{t}}} \wedge_{\mathbf{t}}
$$

Derivation of $[((B \wedge A) \vee(C \wedge A)) \mid((B \vee C) \wedge A)]$:

Proposition 31 The formulas $(A \wedge(B \vee C))$ and $((A \wedge B) \vee(A \wedge C))$ are equivalent.
The problem is equivalent to proving the following sequents:

$$
\begin{aligned}
& {[(A \wedge(B \vee C)) \mid((A \wedge B) \vee(A \wedge C))]} \\
& {[((A \wedge B) \vee(A \wedge C)) \mid(A \wedge(B \vee C))]}
\end{aligned}
$$

Derivation of $[(A \wedge(B \vee C)) \mid((A \wedge B) \vee(A \wedge C))]$:

$$
\begin{aligned}
& \text { axiom for } C \text { axiom for } A
\end{aligned}
$$

Derivation of $[((A \wedge B) \vee(A \wedge C)) \mid(A \wedge(B \vee C))]$:

axiom for $C \quad$ axiom for B			
$[A, C \mid B, C]$	$[A, B \mid B, C]$		
$\underline{[(A \wedge C) \mid B, C]}$	$\overline{[(A \wedge B) \mid B, C]}$	$[A, C \mid A]$	$[A, B \mid A]$
$[((A \wedge B) \vee(A \wedge C)) \mid B, C]$		[(A^C)\|A]	$\overline{[(A \wedge B) \mid A]}$
$\underline{[((A \wedge B) \vee(A \wedge C)) \mid(B \vee C)]}$		$[((A \wedge B) \vee(A \wedge C)) \mid A]$	
$[((A \wedge B) \vee(A \wedge C)) \mid(A \wedge(B \vee C))]$			

Proposition 32 The formulas $((B \wedge C) \vee A)$ and $((B \vee A) \wedge(C \vee A))$ are equivalent.
The problem is equivalent to proving the following sequents:

$$
\begin{aligned}
& {[((B \wedge C) \vee A) \mid((B \vee A) \wedge(C \vee A))]} \\
& {[((B \vee A) \wedge(C \vee A)) \mid((B \wedge C) \vee A)]}
\end{aligned}
$$

Derivation of $[((B \wedge C) \vee A) \mid((B \vee A) \wedge(C \vee A))]$:

$$
\begin{gathered}
\begin{array}{c}
\text { axiom for } C \\
\text { axiom for } A \\
{[B, C \mid A, C]}
\end{array} \\
\frac{[A \mid A, C]}{[(B \wedge C) \mid A, C]} \wedge_{\mathbf{f}}
\end{gathered} \begin{gathered}
\text { axiom for for } A \\
{[((B \wedge C) \vee A) \mid A, C]} \\
{[((B \wedge C) \vee A) \mid(C \vee A)]} \\
{[(B \mid A, B]}
\end{gathered} \vee_{\mathbf{f}} \quad \frac{\begin{array}{c}
\text { axiom } \mid A, B] \\
{[(B \wedge C) \mid A, B]}
\end{array}}{[((B \wedge C) \vee A) \mid A, B]} \wedge_{\mathbf{f}}
$$

Derivation of $[((B \vee A) \wedge(C \vee A)) \mid((B \wedge C) \vee A)]$:

Proposition 33 The formulas $(A \vee(B \wedge C))$ and $((A \vee B) \wedge(A \vee C))$ are equivalent.
The problem is equivalent to proving the following sequents:

$$
\begin{aligned}
& {[(A \vee(B \wedge C)) \mid((A \vee B) \wedge(A \vee C))]} \\
& {[((A \vee B) \wedge(A \vee C)) \mid(A \vee(B \wedge C))]}
\end{aligned}
$$

Derivation of $[(A \vee(B \wedge C)) \mid((A \vee B) \wedge(A \vee C))]$:

$$
\frac{\begin{array}{c}
\text { axiom for } C \\
{[B, C \mid A, C]}
\end{array} \wedge_{\mathbf{f}} \quad \begin{array}{c}
\text { axiom for } A \\
{[(B \wedge C) \mid A, C]}
\end{array} \quad \begin{array}{c}
\text { axiom for } B \\
{[(B, C \mid A, B]}
\end{array} \wedge_{\mathbf{f}}}{\frac{[(A \vee(B \wedge C)) \mid A, C]}{[(A \vee(B \wedge C)) \mid(A \vee C)]} \vee_{\mathbf{t}}} \vee_{\mathbf{f}} \frac{\frac{[(B \wedge C) \mid A, B]}{[(A \mid A, B]}}{[(A \vee(B \wedge C)) \mid((A \vee B) \wedge(A \vee C))]} \vee_{\mathbf{f}} \frac{[(A \vee(B \wedge C)) \mid A, B]}{[(A \vee(B \wedge C)) \mid(A \vee B)]} \vee_{\mathbf{t}} \wedge_{\mathbf{t}}
$$

Derivation of $[((A \vee B) \wedge(A \vee C)) \mid(A \vee(B \wedge C))]$:
axiom for C axiom for B

5 Interdefinability of connectives

Proposition 34 The equality $(A \rightarrow B)=(\neg A \vee B)$ holds.
The problem is equivalent to proving the following sequents:

$$
\begin{aligned}
& {[(A \rightarrow B) \mid(\neg A \vee B)]} \\
& {[(\neg A \vee B) \mid(A \rightarrow B)]}
\end{aligned}
$$

Derivation of $[(A \rightarrow B) \mid(\neg A \vee B)]$:

$$
\frac{\begin{array}{c}
\text { axiom for } B \\
{[B \mid B, \neg A]}
\end{array}}{\frac{[B \mid(\neg A \vee B)]}{t} \vee_{\mathbf{t}} \frac{\frac{[A \mid A, B]}{[\emptyset \mid A, B, \neg A]}}{[\emptyset \mid A,(\neg A \vee B)]}} \neg_{\mathbf{t}} \vee_{\mathbf{t}}
$$

Derivation of $[(\neg A \vee B) \mid(A \rightarrow B)]$:

$$
\begin{array}{cl}
& \begin{array}{l}
\text { axiom for } A \\
\text { axiom for } B
\end{array} \\
\frac{[A, B \mid B]}{[A, B]} \\
\frac{[A, \neg A \mid B]}{[(\neg A \vee B) \mid(A \rightarrow B)]} \neg_{\mathbf{f}} \\
\vee_{\mathbf{f}}
\end{array}
$$

Proposition 35 The equality $(A \rightarrow B)=\neg(A \wedge \neg B)$ holds.
The problem is equivalent to proving the following sequents:

$$
\begin{aligned}
& {[(A \rightarrow B) \mid \neg(A \wedge \neg B)]} \\
& {[\neg(A \wedge \neg B) \mid(A \rightarrow B)]}
\end{aligned}
$$

Derivation of $[(A \rightarrow B) \mid \neg(A \wedge \neg B)]$:

$$
\begin{aligned}
& \begin{array}{c}
\text { axiom for } B \\
\frac{[A, B \mid B]}{\text { axiom for } A}[A \mid A, B] \\
\frac{[A,(A \rightarrow B) \mid B]}{[A, \neg B,(A \rightarrow B) \mid \emptyset]}
\end{array} \neg_{\mathbf{f}} \\
& \frac{\frac{[(A \wedge \neg B),(A \rightarrow B) \mid \emptyset]}{[(A \rightarrow B) \mid \neg(A \wedge \neg B)]}}{[(A)}
\end{aligned} \neg_{\mathbf{f}}
$$

Derivation of $[\neg(A \wedge \neg B) \mid(A \rightarrow B)]$:

$$
\frac{\begin{array}{c}
\frac{[A, B \mid B]}{[B \mid(A \rightarrow B)]} \\
\frac{\text { axiom for } B}{[\emptyset \mid \neg B,(A \rightarrow B)]} \\
\neg_{\mathbf{t}} \quad \frac{[A \mid A, B]}{[\emptyset \mid A,(A \rightarrow B)]} \\
\frac{[\emptyset \mid(A \wedge \neg B),(A \rightarrow B)]}{[\neg(A \wedge \neg B) \mid(A \rightarrow B)]} \neg_{\mathbf{f}}
\end{array} \neg_{\mathbf{t}}}{}
$$

Proposition 36 The equality $(A \vee B)=((A \rightarrow B) \rightarrow B)$ holds.
The problem is equivalent to proving the following sequents:

$$
\begin{aligned}
& {[(A \vee B) \mid((A \rightarrow B) \rightarrow B)]} \\
& {[((A \rightarrow B) \rightarrow B) \mid(A \vee B)]}
\end{aligned}
$$

Derivation of $[(A \vee B) \mid((A \rightarrow B) \rightarrow B)]$:

$$
\frac{\underset{[B,(A \vee B) \mid B]}{\text { axiom for } B} \quad \frac{[B \mid A, B]}{[(A \vee B) \mid A, B]} \rightarrow_{\mathbf{f}}}{\frac{[(A \rightarrow B),(A \vee B) \mid B]}{[(A \vee B) \mid((A \rightarrow B) \rightarrow B)]} \rightarrow_{\mathbf{t}}}
$$

Derivation of $[((A \rightarrow B) \rightarrow B) \mid(A \vee B)]$:

$$
\begin{array}{cc}
\begin{array}{c}
\text { axiom for } B \\
{[B \mid A, B]}
\end{array} & \frac{[A \mid A, B]}{[A \mid B,(A \vee B)]} \vee_{\mathbf{t}} \\
{[B \mid(A \vee B)]}
\end{array} \rightarrow_{\mathbf{t}} \frac{{ }_{\mathbf{t}}}{[\emptyset \mid(A \rightarrow B),(A \vee B)]} \rightarrow_{\mathbf{f}}
$$

Proposition 37 The equality $(A \vee B)=\neg(\neg A \wedge \neg B)$ holds.
The problem is equivalent to proving the following sequents:

$$
\begin{aligned}
& {[(A \vee B) \mid \neg(\neg A \wedge \neg B)]} \\
& {[\neg(\neg A \wedge \neg B) \mid(A \vee B)]}
\end{aligned}
$$

Derivation of $[(A \vee B) \mid \neg(\neg A \wedge \neg B)]$:
axiom for B axiom for A
$\frac{\frac{[B \mid A, B] \quad[A \mid A, B]}{[(A \vee B) \mid A, B]} \neg_{\mathbf{f}}}{\frac{[\neg B,(A \vee B) \mid A]}{f}} \vee_{\mathbf{f}}$

Derivation of $[\neg(\neg A \wedge \neg B) \mid(A \vee B)]$:

Proposition 38 The equality $(A \wedge B)=\neg(A \rightarrow \neg B)$ holds.
The problem is equivalent to proving the following sequents:

$$
\begin{aligned}
& {[(A \wedge B) \mid \neg(A \rightarrow \neg B)]} \\
& {[\neg(A \rightarrow \neg B) \mid(A \wedge B)]}
\end{aligned}
$$

Derivation of $[(A \wedge B) \mid \neg(A \rightarrow \neg B)]$:

$$
\begin{aligned}
& \begin{array}{l}
\text { axiom for } B \\
\frac{[A, B \mid B]}{[A, B, \neg B \mid \emptyset]} \neg_{\mathbf{f}} \quad \begin{array}{c}
\text { axiom for } A \\
{[A, B \mid A]}
\end{array} \\
\frac{[A, B,(A \rightarrow \neg B) \mid \emptyset]}{[(A \wedge B),(A \rightarrow \neg B) \mid \emptyset]} \wedge_{\mathbf{f}}
\end{array} \neg_{\mathbf{f}} \\
& \frac{[(A \wedge B) \mid \neg(A \rightarrow \neg B)]}{\mathbf{t}}
\end{aligned}
$$

Derivation of $[\neg(A \rightarrow \neg B) \mid(A \wedge B)]$:

$$
\begin{aligned}
& \begin{array}{l}
\text { axiom for } B \\
\frac{[A, B \mid B]}{[A \mid B, \neg B]} \neg_{\mathbf{t}} \\
\frac{[\emptyset \mid B,(A \rightarrow \neg B)]}{[\emptyset x i o m ~ f o r ~} A \\
\mathbf{t} \quad \frac{[A \mid A, \neg B]}{[\emptyset \mid A,(A \rightarrow \neg B)]} \\
\frac{[\emptyset \mid(A \wedge B),(A \rightarrow \neg B)]}{[\neg(A \rightarrow \neg B) \mid(A \wedge B)]} \neg_{\mathbf{f}}
\end{array} \wedge_{\mathbf{t}}
\end{aligned}
$$

Proposition 39 The equality $(A \vee B)=\neg(\neg A \wedge \neg B)$ holds.
The problem is equivalent to proving the following sequents:

$$
\begin{aligned}
& {[(A \vee B) \mid \neg(\neg A \wedge \neg B)]} \\
& {[\neg(\neg A \wedge \neg B) \mid(A \vee B)]}
\end{aligned}
$$

Derivation of $[(A \vee B) \mid \neg(\neg A \wedge \neg B)]$:

$$
\begin{aligned}
& \text { axiom for } B \quad \begin{array}{l}
\text { axiom for } A \\
{[B \mid A, B]} \\
\frac{[(A \vee A, B]}{[(A \vee B) \mid A, B]} \\
\frac{[\neg B,(A \vee B) \mid A]}{\mathbf{f}} \\
\vee_{\mathbf{f}} \\
\frac{[\neg A, \neg B,(A \vee B) \mid \emptyset]}{[(\neg A \wedge \neg B),(A \vee B) \mid \emptyset]} \\
{[(A \vee B) \mid \neg(\neg A \wedge \neg B)]} \\
\mathbf{f}
\end{array} \\
& { }_{\mathbf{f}}
\end{aligned}
$$

Derivation of $[\neg(\neg A \wedge \neg B) \mid(A \vee B)]$:

$$
\frac{\begin{array}{c}
\begin{array}{c}
\text { axiom for } B \\
{[B \mid A, B]}
\end{array} \\
\frac{[B \mid(A \vee B)]}{[\emptyset \mid \neg B,(A \vee B)]} \neg_{\mathbf{t}}
\end{array} \quad \begin{array}{l}
\text { axiom for } A \\
{[A \mid A, B]}
\end{array}}{\frac{[\emptyset \mid(\neg A \wedge \neg B),(A \vee B)]}{[\neg(\neg A \wedge \neg B) \mid(A \vee B)]} \neg_{\mathbf{f}}} \vee_{\mathbf{t}}
$$

6 Metaconsequences

Proposition 40 The following meta-consequence holds:

$$
P, Q \vdash R \quad / \quad P \vdash(Q \rightarrow R)
$$

The problem is equivalent to proving the following sequents:

$$
\begin{aligned}
& {[P \mid Q,(Q \rightarrow R)]} \\
& {[P, R \mid(Q \rightarrow R)]}
\end{aligned}
$$

Derivation of $[P \mid Q,(Q \rightarrow R)]$:

$$
\begin{aligned}
& \begin{array}{l}
\text { axiom for } Q \\
\frac{[P, Q \mid Q, R]}{[P \mid Q,(Q \rightarrow R)]}
\end{array} \rightarrow_{\mathbf{t}}
\end{aligned}
$$

Derivation of $[P, R \mid(Q \rightarrow R)]$:

$$
\begin{gathered}
\begin{array}{c}
\text { axiom for } R \\
{[P, Q, R \mid R]}
\end{array} \\
{[P, R \mid(Q \rightarrow R)]}
\end{gathered} \mathbf{t}_{\mathbf{t}}
$$

Proposition 41 The following meta-consequence holds:

$$
(P \wedge Q) \vdash R \quad / \quad P \vdash(Q \rightarrow R)
$$

The problem is equivalent to proving the following sequents:

$$
\begin{aligned}
& {[P, R \mid(Q \rightarrow R)]} \\
& {[P \mid(P \wedge Q),(Q \rightarrow R)]}
\end{aligned}
$$

Derivation of $[P, R \mid(Q \rightarrow R)]$:

$$
\frac{\stackrel{[P, Q, R \mid R]}{\text { axiom for } R}}{[P, R \mid(Q \rightarrow R)]} \rightarrow_{\mathbf{t}}
$$

Derivation of $[P \mid(P \wedge Q),(Q \rightarrow R)]$:

$$
\begin{aligned}
& \begin{array}{l}
\text { axiom for } Q \\
\frac{[P, Q \mid Q, R]}{} \\
\frac{[P \mid Q,(Q \rightarrow R)]}{} \rightarrow_{\mathbf{t}} \quad \begin{array}{c}
\text { axiom for } P \\
{[P \mid P,(Q \rightarrow R)]}
\end{array} \\
{[P \mid(P \wedge Q),(Q \rightarrow R)]}
\end{array} \wedge_{\mathbf{t}}
\end{aligned}
$$

7 Program listing: ex_classical.pl

```
% Test file to check things in classical logic
% make sure MUltseq is loaded
:- ensure_loaded('../multseq/multseq').
% load sample properties
:- [properties].
% load the rules
:- load_logic('classical.msq').
% define standard Omap
:- setOmap([(neg)/(-),imp/(>), and/(/\),or/(\/), equiv/(=)]).
```

```
% check all properties and write report to out.tex
:- set_option(tex_output(verbose)).
:- set_option(tex_sequents(multidimensional)).
:- set_option(tex_rulenames(on)).
:- start_logging(ex_classical ,'.tex')
:- print_tex(tex_title("Report\sqcupon\sqcupClassical\sqcupLogic")).
:- print_tex(tex_logic).
:- print_tex(tex_paragraph(["We\sqcupverifyчthat\sqcupall\sqcupclassicalulogicusatisfies
பபபபபபSome\sqcupwell-known}\sqcup\mathrm{ properties隹(involving
பபபபபப$\\to$, ப$\\neg$, பandப$\\leftrightarrow$).
பபபபபப' 'multidimensional', fformat, ५which
```



```
பபபபபபasபusual."])).
:- print_tex(tex_section(["Bernays's
:- (member(X,[bernays 1,bernays 2,bernays 3,bernays4,bernays 5,bernays6,bernays7,bernays 8,
    bernays9,bernays10,bernays11,bernays12,bernays13,bernays14,bernays15,bernays16,bernays 17
    ]), chkProp(X), fail; true).
:- print_tex(tex_section(["Classical\sqcuptautologiesunot\sqcupintuitionistically\sqcupvalid"])).
:- (member(X,[lem,weaklem,prelinearity,peirce]), chkProp(X), fail; true).
:- print_tex(tex_section(["Some_popular_consequences"])).
:- (member(X,[modusponens,modustollens,hyposyllogism,disjsyllogism,destrdilemma,
    constrdilemma,importation, exportation]), chkProp(X), fail; true).
:- print_tex(tex_section(["Some
- (member(X,[ldistrright,ldistrleft]), chkProp(X), fail; true).
% Here we switch and and or
:- (member(X,[ldistrright,ldistrleft]), chkProp([or/(/\), and/(\/)],X), fail; true).
:- print_tex(tex_section(["Interdefinability 
:- (member(X,[defimpor, defimpand,deforimp,deforand,defandimp,deforand]), chkProp(X), fail;
    true).
:- print_tex(tex_section(["Metaconsequences"])).
:- (member(X,[deductionthm,residuation]), chkProp(X), fail; true)
:- print_tex(tex_listing("ex_classical.pl")).
:- stop_logging.
```

