
GAPT

General Architecture for Proof Theory

λ
∀ T

User manual

Version 2.19.0-SNAPSHOT

March 6, 2025

GAPT – User Manual

2

Contents

1 Introduction 5

2 Download and execution 7

2.1 Required and optional software . 8

3 Data structures 9

3.1 Expressions and formulas . 9

3.2 Sequents . 12

3.3 Proofs . 13

3.4 Contexts . 16

3.5 The tactics language gaptic . 17

4 Computational proof theory 23

4.1 Reductive cut-elimination . 23

4.2 Induction-elimination . 24

4.3 Skolemization . 25

4.4 Deskolemization . 26

4.5 Interpolation . 27

4.6 LK to ND translation . 27

4.7 Expansion proofs . 28

4.8 Modified realizability . 30

5 Input and output 33

5.1 JSON . 33

5.2 TPTP . 34

6 Interfaces to external theorem provers and solvers 37

3

GAPT – User Manual

6.1 First-order theorem provers . 37

6.2 SMT solvers . 40

6.3 SAT solvers . 41

6.4 MaxSAT solvers . 44

7 Built-in theorem provers 45

7.1 The superposition prover escargot . 45

7.2 The inductive theorem prover viper . 46

7.3 Built-in tableaux prover . 47

7.4 Intuitionistic theorem prover Slakje . 48

8 Advanced topics 49

8.1 Cut-elimination by resolution (CERES) . 49

8.2 Cut-introduction . 50

8.3 Tree grammars . 52

8.4 Witnessed Second-Order Quantifier Elimination and Formula Equations 53

A Lambda calculus 57

B Proof systems 59

B.1 The sequent calculus LK . 59

B.2 Natural Deduction ND . 61

B.3 Resolution . 64

B.4 Expansion trees . 66

4

Chapter 1

Introduction

GAPT is a general architecture for proof theory implemented in Scala. The focus of GAPT are proof
transformations (in contrast to proof assistants, whose focus is proof formalization, and automated
deduction systems, whose focus is proof search). GAPT can be used from an interactive shell that
provides access to the functionality in the system in a way that is inspired by computer algebra
systems: the basic objects are formulas and (different kinds of) proofs which can be modified by
calling GAPT commands from the command line. In addition, there is a graphical user interface that
allows the user to view (and to a certain extent modify) proofs in a flexible and visually appealing
way.

The current functionality of GAPT includes data structures for formulas, sequents, resolution proofs,
sequent calculus proofs, expansion tree proofs and algorithms for e.g. unification, proof Skolemiza-
tion, cut-elimination, cut elimination by resolution [4], cut-introduction [12], etc. It contains a
built-in superposition prover, an inductive theorem prover, as well as interfaces to numerous exter-
nal theorem provers and solvers.

This user manual is an introduction to the usage of GAPT, mostly based on examples. We recom-
mend that you try out these examples in your installation of GAPT while reading this manual.

5

GAPT – User Manual

6

Chapter 2

Download and execution

There are three ways you can obtain GAPT:

1. The recommended way: You can download a package of the current version of GAPT
at https://logic.at/gapt/. After extracting the tar.gz-file, you will find a shell script
gapt.sh.

Running this script will start the command line interface of GAPT:

./gapt.sh

2. If you are adventurous, you can also download the current development version from github:

git clone https://github.com/gapt/gapt
cd gapt
sbt console

3. If you like GAPT and want to use it as a library in your Scala project, it is available as a Maven
artifact on Maven Central. All you need to do is add the following line to your build.sbt:

libraryDependencies += "at.logic.gapt" %% "gapt" % "2.19.0-SNAPSHOT"

The command line interface of GAPT is an interactive Scala shell. This means that all functionality
of Scala is available to you. In particular it is easy to write Scala scripts that use the functionality
of GAPT.

You don’t need to know anything about Scala to try out the examples in this manual, but if you
do want to learn more about Scala we recommend the book “Programming in Scala” [16].

Interactions with the Scala shell are typeset in the following way:

gapt> println("Hello, world!")
Hello, world!

Here, println("Hello, world!") is the user input, and Hello, world! is the output from the
Scala shell.

If you want to consult the in-depth API documentation of a function, you can use the help command:

7

https://logic.at/gapt/

GAPT – User Manual

gapt> help(containsQuantifierOnLogicalLevel)

2.1 Required and optional software

To run GAPT you need to have Java 8 (or higher) installed.

GAPT contains interfaces to the following automated reasoning systems. Installing them is optional.
If GAPT does not find the executables in the path, the functionality of these systems will not be
available.

• Prover9 (http://www.cs.unm.edu/∼mccune/mace4/download/) - make sure the commands
prover9 and prooftrans are available.

• E theorem prover (http://eprover.org/)

• Vampire 4.0 (https://vprover.github.io/)

• SPASS (http://www.spass-prover.org/)

• LeanCoP (http://leancop.de/)

• Metis (http://www.gilith.com/software/metis/)

• iProver (http://www.cs.man.ac.uk/∼korovink/iprover/, requires a development version
as of September 11, 2017)

• VeriT (http://www.verit-solver.org/)

• Z3 (https://github.com/Z3Prover/z3)

• SMTInterpol (https://ultimate.informatik.uni-freiburg.de/smtinterpol/)

• MiniSAT (http://minisat.se/)

• Glucose (http://www.labri.fr/perso/lsimon/glucose/)

• PicoSAT (http://fmv.jku.at/picosat/)

• Sat4J (http://sat4j.org/)

• OpenWBO (http://sat.inesc-id.pt/open-wbo/)

• CVC4 (https://cvc4.github.io/)

• TIP tools (https://github.com/tip-org/tools)

8

http://www.cs.unm.edu/~mccune/mace4/download/
http://eprover.org/
https://vprover.github.io/
http://www.spass-prover.org/
http://leancop.de/
http://www.gilith.com/software/metis/
http://www.cs.man.ac.uk/~korovink/iprover/
http://www.verit-solver.org/
https://github.com/Z3Prover/z3
https://ultimate.informatik.uni-freiburg.de/smtinterpol/
http://minisat.se/
http://www.labri.fr/perso/lsimon/glucose/
http://fmv.jku.at/picosat/
http://sat4j.org/
http://sat.inesc-id.pt/open-wbo/
https://cvc4.github.io/
https://github.com/tip-org/tools

Chapter 3

Data structures

3.1 Expressions and formulas

Formulas, terms, and all other expressions are represented as terms in a polymorphic simply-typed
lambda calculus. GAPT’s lambda calculus also supports multiple base sorts and inductive types,
see Appendix A for a complete definition. For example, the formula ∀x P (x, y) is encoded as the
term ’∀’ (λx (P x) y). This term has the type o, which is the type of Boolean values. The
variable x in this term has the type i, which is the default type for first-order variables.

There are two ways of entering expressions: you can parse them or construct them manually.

3.1.1 Formula parsing

Here is an example of parsing a first-order formula:

gapt> val F = fof"!x (P(x,f(x)) -> ?y P(x,y))"
val F: gapt.expr.formula.fol.FOLFormula = ∀x (P(x, f(x)) → ∃y P(x, y))

Every kind of expression that GAPT supports can be parsed by writing <prefix>"<string>". The
prefix indicates the Scala type of the expression. The following prefixes are available:

ty type
le lambda expression
hof higher-order formula
hoa higher-order atom
hov higher-order variable
hoc higher-order constant
foe first-order expression
fof first-order formula
fot first-order term
foa first-order atom
fov first-order variable
foc first-order constant

9

GAPT – User Manual

This parser supports Scala string interpolation. For example, you can do:

gapt> val t = fot"f(f(x))"
val t: gapt.expr.formula.fol.FOLTerm = f(f(x))

gapt> val G = fof"!x (P(x,$t) -> ?y P(x,y))"
val G: gapt.expr.formula.fol.FOLFormula = ∀x (P(x, f(f(x))) → ∃y P(x, y))

Note that Scala string interpolation is different from (capture-avoiding) substitution.

The input language has full type inference, and the formula prefixes make sure that the expression
is of type o (Boolean). If no particular type is required, we default to ι:

gapt> hof"!x?y!z x(z) = y(y(z))"
val res0: gapt.expr.formula.Formula = ∀x ∃y ∀z (x(z): i) = y(y(z): i)

So far we have only used the ASCII-safe part of the syntax, however Unicode input is of course
supported as well—you can paste any of the output right back in:

gapt> hof"∀x ∃y ∀z x(z) = y(y(z))"
val res1: gapt.expr.formula.Formula = ∀x ∃y ∀z (x(z): i) = y(y(z): i)

Here is a summary of the available syntax (there are usually multiple variants of each construct,
these are separated by commas here):

x1, uvw variables (need to start with u-z or U-Z, or be bound)
c, theorem constants

f(x,c), f(x)(c), f x c function application
λx f(x), ˆx f(x) lambda abstraction

!x p(x), !(x:i) p(x), ∀x p(x) universal quantification
?x p(x), ?(x:i) p(x), ∃x p(x) existential quantification

-p, ¬ p negation
p & q, p ∧ q conjunction
p | q, p ∨ q disjunction

p -> q, p → q implication
p <-> q equivalence (this is the same as p → q ∧ q → p)

p = q, p = q = r equality
p != q disequality

p < q <= r > s >= t various infix relations
a*b/c + d - e infix operators

f: i>i>o type annotation

3.1.2 Constructing formulas manually

Every kind of expression that exists in GAPT can be constructed manually. For instance, you can
define variables and constants like this:

gapt> val x = FOLVar("x")
val x: gapt.expr.formula.fol.FOLVar = x

10

GAPT – User Manual

gapt> val P = Const("P", Ti ->: To)
val P: gapt.expr.Const = P:i>o

Var and Const require you to supply types, whereas FOLVar and FOLConst automatically have type
ι. Terms and atomic formulas are constructed similarly:

gapt> val x = FOLVar("x")
val x: gapt.expr.formula.fol.FOLVar = x

gapt> val fx = FOLFunction("f",x)
val fx: gapt.expr.formula.fol.FOLTerm = f(x)

gapt> val Pfx = FOLAtom("P", fx)
val Pfx: gapt.expr.formula.fol.FOLAtom = P(f(x)): o

On the formulas themselves, there are operators for the various Boolean connectives:

-A ¬A
A & B A ∧B
A | B A ∨B

A --> B A→ B
A <-> B A↔ B

gapt> val A = FOLAtom("A")
val A: gapt.expr.formula.fol.FOLAtom = A:o

gapt> val B = FOLAtom("B")
val B: gapt.expr.formula.fol.FOLAtom = B:o

gapt> val C = FOLAtom("C")
val C: gapt.expr.formula.fol.FOLAtom = C:o

gapt> (A & B) --> C
val res2: gapt.expr.formula.fol.FOLFormula = A ∧ B → C

3.1.3 Predefined formulas

A collection of formula sequences can be found in the file examples/FormulaSequences.scala.
You can generate instances of these formula sequences by entering for example:

gapt> val f = BussTautology(5)
val f: gapt.proofs.HOLSequent = ((c_1 ∨ d_1) ∧ (c_2 ∨ d_2) ∧ (c_3 ∨ d_3) ∧ (c_4 ∨ d_4)

→ c_5) ∨
((c_1 ∨ d_1) ∧ (c_2 ∨ d_2) ∧ (c_3 ∨ d_3) ∧ (c_4 ∨ d_4) → d_5),

((c_1 ∨ d_1) ∧ (c_2 ∨ d_2) ∧ (c_3 ∨ d_3) → c_4) ∨
((c_1 ∨ d_1) ∧ (c_2 ∨ d_2) ∧ (c_3 ∨ d_3) → d_4),

((c_1 ∨ d_1) ∧ (c_2 ∨ d_2) → c_3) ∨ ((c_1 ∨ d_1) ∧ (c_2 ∨ d_2) → d_3),
(c_1 ∨ d_1 → c_2) ∨ (c_1 ∨ d_1 → d_2),
c_1 ∨ d_1

11

GAPT – User Manual

⊢
c_5,
d_5

3.2 Sequents

Sequents are an important data structure in GAPT. A sequent is a pair of lists:

A1, ..., Am ⊢ B1, ..., Bn

The list to the left of the sequent symbol ⊢ is called the antecedent, the one on the right the
succedent. Usually, but not always, the elements of the sequences are going to be formulas.

In GAPT, you can create sequents by supplying an antecedent and a succedent:

gapt> val S1 = Sequent()
val S1: gapt.proofs.Sequent[Nothing] = ⊢

gapt> val S2 = Sequent(List(1,2), List(3,4))
val S2: gapt.proofs.Sequent[Int] = 1, 2 :- 3, 4

gapt> val S3 = Sequent(List(foa"A", foa"B"), List(foa"C", foa"D"))
val S3: gapt.proofs.Sequent[gapt.expr.formula.fol.FOLAtom] = A, B ⊢ C, D

Sequents of formulas can also be parsed:

gapt> hos"P a, a = b :- P b"
val res0: gapt.proofs.HOLSequent = P(a), a = b ⊢ P(b)

The following prefixes are available (a clause is a sequent of atoms):

hos higher-order (formula) sequent
hcl higher-order clause
fos first-order (formula) sequent
fcl first-order clause

Sequents have append operations for both the antecedent and the succedent. In the antecedent,
elements are appended to the left, in the succedent, to the right:

gapt> val S1 = fcl"B :- C"
val S1: gapt.proofs.FOLClause = B ⊢ C

gapt> val S2 = foa"A" +: S1
val S2: gapt.proofs.Sequent[gapt.expr.formula.fol.FOLAtom] = A, B ⊢ C

gapt> val S3 = S2 :+ foa"D"
val S3: gapt.proofs.Sequent[gapt.expr.formula.fol.FOLAtom] = A, B ⊢ C, D

gapt> foa"A" +: foa"B" +: Sequent() :+ foa"C" :+ foa"D"
val res1: gapt.proofs.Sequent[gapt.expr.formula.fol.FOLAtom] = A, B ⊢ C, D

12

GAPT – User Manual

You can retrieve elements from a sequent either by accessing the antecedent or succedent directly
...

gapt> val S = fcl"A, B :- C, D"
val S: gapt.proofs.FOLClause = A, B ⊢ C, D

gapt> val b = S.antecedent(1)
val b: gapt.expr.formula.fol.FOLAtom = B:o

gapt> val c = S.succedent(0)
val c: gapt.expr.formula.fol.FOLAtom = C:o

... or by using the SequentIndex class:

gapt> val i = Ant(0)
val i: gapt.proofs.Ant = Ant(0)

gapt> val j = Suc(1)
val j: gapt.proofs.Suc = Suc(1)

gapt> val a = S(i)
val a: gapt.expr.formula.fol.FOLAtom = A:o

gapt> val d = S(j)
val d: gapt.expr.formula.fol.FOLAtom = D:o

3.3 Proofs

3.3.1 The sequent calculus LK

GAPT contains an implementation of Gentzen’s sequent calculus LK. The inference rules are defined
in Appendix B.1.

There are various possibilities for entering proofs into the system. The most basic one is a direct
top-down proof-construction using the constructors of the inference rules. We discuss this possibility
in this section. For entering bigger proofs, it is more convenient to use the “gaptic” tactics language
which is discussed in Section 3.5.

Note: Many correctness properties of LK proofs are purely syntactic and are checked at construction
time. For instance, it is not possible to construct a proof that violates the eigenvariable condition
of strong quantifier rules. However, some rules require additional assumptions to be correct. For
example, the induction rule is only correct under the assumption that the cases used in the rule
correspond precisely to the inductive type’s constructors. Assumptions of this kind are collected in a
Context, see Section 3.4. Since top-down proof construction does not take contexts into account, it
can result in proofs violating these assumptions. You can ensure that a proof you have constructed
conforms to a context ctx by using the check method on ctx.

We start with the axioms:

13

GAPT – User Manual

gapt> val p1 = LogicalAxiom(fof"A")
val p1: gapt.proofs.lk.rules.LogicalAxiom = [p1] A ⊢ A (LogicalAxiom(A:o))

gapt> val p2 = LogicalAxiom(fof"B")
val p2: gapt.proofs.lk.rules.LogicalAxiom = [p1] B ⊢ B (LogicalAxiom(B:o))

These are joined by an (∧:r)-inference.

gapt> val p3 = AndRightRule(p1, fof"A", p2, fof"B")
val p3: gapt.proofs.lk.rules.AndRightRule = [p3] A, B ⊢ A ∧ B (AndRightRule(p1, Suc(0),

p2, Suc(0)))
[p2] B ⊢ B (LogicalAxiom(B:o))
[p1] A ⊢ A (LogicalAxiom(A:o))

To finish the proof it remains to apply two (→ :r)-inferences:

gapt> val p4 = ImpRightRule(p3, fof"B", fof"A & B")
val p4: gapt.proofs.lk.rules.ImpRightRule = [p4] A ⊢ B → A ∧ B (ImpRightRule(p3, Ant(1),

Suc(0)))
[p3] A, B ⊢ A ∧ B (AndRightRule(p1, Suc(0), p2, Suc(0)))
[p2] B ⊢ B (LogicalAxiom(B:o))
[p1] A ⊢ A (LogicalAxiom(A:o))

gapt> val p5 = ImpRightRule(p4, fof"A", fof"B -> A&B")
val p5: gapt.proofs.lk.rules.ImpRightRule = [p5] ⊢ A → B → A ∧ B (ImpRightRule(p4, Ant

(0), Suc(0)))
[p4] A ⊢ B → A ∧ B (ImpRightRule(p3, Ant(1), Suc(0)))
[p3] A, B ⊢ A ∧ B (AndRightRule(p1, Suc(0), p2, Suc(0)))
[p2] B ⊢ B (LogicalAxiom(B:o))
[p1] A ⊢ A (LogicalAxiom(A:o))

You can now view this proof by typing:

gapt> prooftool(p5)

There are also several macro rules that make proof construction more convenient. For instance:

gapt> val p1 = LogicalAxiom(fof"A")
val p1: gapt.proofs.lk.rules.LogicalAxiom = [p1] A ⊢ A (LogicalAxiom(A:o))

gapt> val p2 = AndLeftMacroRule(p1, fof"A", fof"B")
val p2: gapt.proofs.lk.rules.AndLeftRule = [p3] A ∧ B ⊢ A (AndLeftRule(p2, Ant(1), Ant(0)

))
[p2] B, A ⊢ A (WeakeningLeftRule(p1, B:o))
[p1] A ⊢ A (LogicalAxiom(A:o))

Here, the ∧:l macro rule automatically adds B by weakening before performing the ∧:l inference.
The system comes with a collection of example proof sequences in the file examples/ProofSequences.scala
which are generated in the above style. Have a look at this code for more complicated proof con-
structions. You can generate instances of these proof sequences by entering, e.g.,

14

GAPT – User Manual

gapt> val p = SumExampleProof(5)
val p: gapt.proofs.lk.LKProof = [p25] ∀x ∀y (P(s(x), y) → P(x, s(y))), P(s(s(s(s(s(0))))

), 0) ⊢ P(0, s(s(s(s(s(0)))))) (ContractionLeftRule(p24, Ant(0), Ant(1)))
[p24] ∀x ∀y (P(s(x), y) → P(x, s(y))),
∀x ∀y (P(s(x), y) → P(x, s(y))),
P(s(s(s(s(s(0))))), 0)
⊢
P(0, s(s(s(s(s(0)))))) (ForallLeftRule(p23, Ant(0), ∀y (P(s(x), y) → P(x, s(y))), 0, x))
[p23] ∀y (P(s(0), y) → P(0, s(y))),
∀x ∀y (P(s(x), y) → P(x, s(y))),
P(s(s(s(s(s(0))))), 0)
⊢
P(0, s(s(s(s(s(0)))))) (ForallLeftRule(p22, Ant(0), P(s(0), y) → P(0, s(y)), s(s(s(s(0))

)), y))
[p22] P(s(0), s(s(s(s(0))))) → P(0, s(s(s(s(s(0)))))),
∀x ∀y (P(s(x), y) → P(x, s(y))),
P(s(s(s(s(s(0))))), 0)
⊢
P(0, s(s(s(s(s(0)))))) (ImpLeftRule(p20, Suc(0), p21, Ant(0)))
[p21] P(0, s(s(s(s(s(0)))))) ⊢ P(0, s(s(s(s(s(0)))))) (LogicalAxiom(... large output

truncated, print value to show all

3.3.2 Natural Deduction ND

GAPT contains an implementation of Gentzen’s natural deduction calculus ND. The ND-calculus
works on sequents which contain exactly one formula in the succedent. The formulas in the an-
tecedent are the currently open assumptions. This is captured in the NDSequent class. The inference
rules are defined in Appendix B.2. To use the natural deduction inference rules you need to qualify
the rule names with “nd.”.

We show that from P ∧Q→ R and P follows Q→ R. We start with the axioms:

gapt> val p1 = nd.LogicalAxiom(fof"P")
val p1: gapt.proofs.nd.LogicalAxiom = [p1] P ⊢ P (LogicalAxiom(P:o))

gapt> val p2 = nd.LogicalAxiom(fof"Q")
val p2: gapt.proofs.nd.LogicalAxiom = [p1] Q ⊢ Q (LogicalAxiom(Q:o))

gapt> val p3 = nd.LogicalAxiom(fof"P & Q -> R")
val p3: gapt.proofs.nd.LogicalAxiom = [p1] P ∧ Q → R ⊢ P ∧ Q → R (LogicalAxiom(P ∧ Q

→ R))

P and Q are joined by an ∧-introduction inference.

gapt> val p4 = nd.AndIntroRule(p1, p2)
val p4: gapt.proofs.nd.AndIntroRule = [p3] P, Q ⊢ P ∧ Q (AndIntroRule(p1, p2))
[p2] Q ⊢ Q (LogicalAxiom(Q:o))
[p1] P ⊢ P (LogicalAxiom(P:o))

Next, we apply an →-elimination inference on P ∧Q→ R and P ∧Q to arrive at R.

15

GAPT – User Manual

gapt> val p5 = nd.ImpElimRule(p3, p4)
val p5: gapt.proofs.nd.ImpElimRule = [p5] P ∧ Q → R, P, Q ⊢ R (ImpElimRule(p1, p4))
[p4] P, Q ⊢ P ∧ Q (AndIntroRule(p2, p3))
[p3] Q ⊢ Q (LogicalAxiom(Q:o))
[p2] P ⊢ P (LogicalAxiom(P:o))
[p1] P ∧ Q → R ⊢ P ∧ Q → R (LogicalAxiom(P ∧ Q → R))

Finally, by using an →-introduction inference on Q, we arrive at the desired sequent.

gapt> val p6 = nd.ImpIntroRule(p5, Ant(2))
val p6: gapt.proofs.nd.ImpIntroRule = [p6] P ∧ Q → R, P ⊢ Q → R (ImpIntroRule(p5, Ant

(2)))
[p5] P ∧ Q → R, P, Q ⊢ R (ImpElimRule(p1, p4))
[p4] P, Q ⊢ P ∧ Q (AndIntroRule(p2, p3))
[p3] Q ⊢ Q (LogicalAxiom(Q:o))
[p2] P ⊢ P (LogicalAxiom(P:o))
[p1] P ∧ Q → R ⊢ P ∧ Q → R (LogicalAxiom(P ∧ Q → R))

You can now view this proof by typing:

gapt> prooftool(p6)

Also for ND there are several convenience constructors which simplify proof construction, which
can be found in the API documentation.

3.4 Contexts

The Context class captures the notion of a logical signature and background theory.

A context may contain declarations of:

• sorts and inductive types

• constants with previously declared types

• definitions

• Skolem functions

• Proof links

Various data structures and algorithms in GAPT require the presence of an implicit value of type
Context in order to work. For example, the expression parser uses type and constant declarations to
decide how to parse identifiers. Another example is the eliminateDefinitions proof transforma-
tion: you may manually pass it a list of definitions to eliminate from a proof, or have it automatically
eliminate all definitions in the current context. Some gaptic tactics (see Section 3.5) also require a
context.

The typical way to declare a context is by starting with a default value and adding elements to it.
The Context.default object contains only the sort o (truth values) and the fundamental logical
symbols. An example for a context is:

16

GAPT – User Manual

object ContextExample {
implicit val ctx: MutableContext = MutableContext.default()
ctx += InductiveType("Nat", hoc" 0: Nat", hoc" s: Nat > Nat") //Adding a type

declaration
ctx += hoc" '+' : Nat>Nat>Nat" //Adding a constant declaration
ctx += "plus_zero" -> hos" :- ∀n (n + 0 = n)" //Adding a theory axiom
ctx += "1" -> le" s 0" //Adding a definition
ctx += hof" leq x y = (∃z x + z = y)" //Adding a definition as an equation

}

It is important that you declare the context as implicit, so that it can be found automatically by
the functions requiring it.

Once you have constructed a context, you can check whether an expression, formula, sequent, or
proof conforms to it by using its check method.

3.5 The tactics language gaptic

GAPT contains a simple tactics language called gaptic for the construction of LK proofs. In contrast
to the top-down construction presented in Section 3.3, gaptic allows a comfortable bottom-up
development of proofs, similar to popular proof assistants such as Coq, Isabelle, etc.

3.5.1 Overview

Gaptic can not be (easily) used in the interactive Scala shell, as it requires multi-line input. Gaptic
scripts are usually developed as external files:

import gapt.expr._
import gapt.proofs.context.update.Sort
import gapt.proofs.Sequent
import gapt.proofs.gaptic._

object example extends TacticsProof {
ctx += Sort("i")
ctx += hoc"P: i>o"
ctx += hoc"Q: i>o"

val lemma = Lemma(
("a" -> fof"P a") +:
("b" -> fof"∀x (P x → Q x)") +:
Sequent()
:+ ("c" -> fof"Q a")

) {
chain("b")
chain("a")

}
}

17

GAPT – User Manual

Gaptic proofs start with a context declaration. For more information on contexts, see Section 3.4.

Note: Unlike top-down proof construction, proofs constructed with Gaptic are automatically correct
with respect to the current context.

Each proof is then assigned to a Scala variable. The function Lemma(labelledSequent) { tactics... }
constructs a proof using the gaptic language. The first argument of Lemma is the labelled end se-
quent, i.e. the sequent you want to prove in which each formula has a string label. The second
argument consists of a list of statements, called tactics, separated by line breaks.

At the moment, there are two ways to execute gaptic scripts:

1. From the Scala shell, using the :load command. This command evaluates the Scala file,
but not the code inside the object declaration. So we have to explicitly evaluate the proof
ourselves.

gapt> :load example.scala
gapt> example.lemma

2. As a separate SBT project, see https://github.com/gapt/gaptic-example for a template
project. This approach has the advantage that SBT can automatically run your script when-
ever you save it:

> ˜runMain example
[info] Running example
[success] Total time: 1 s, completed Apr 5, 2016 11:16:32 AM
1. Waiting for source changes... (press enter to interrupt)

Let us use gaptic to input a very simple proof. Our first try might be the following (we now omit
the boilerplate for brevity):

val lemmaEx =
Lemma(Sequent(

Seq("a" -> fof"P a", "b" -> fof"!x (P x -> Q x)"),
Seq("c" -> fof"Q a"))) {

allL(fot"a")
}

gapt.proofs.gaptic.QedFailureException: Proof not completed. There are still 1 open sub
goals:

b_0: P(a) → Q(a)
a: P(a)
b: ∀x (P(x) → Q(x))
:-
c: Q(a)

at gapt.proofs.gaptic.Lemma$.finish(language.scala:37)
at gapt.proofs.gaptic.Lemma$.finish(language.scala:42)
at gapt.proofs.gaptic.Lemma$Helper.handleTacticBlock(language.scala:54)
... elided

18

https://github.com/gapt/gaptic-example

GAPT – User Manual

As seen above, the currently open goals are shown when the proof is not yet completed. Upon
completion of the proof, the value of lemmaEx is the resulting proof:

val lemmaEx =
Lemma(Sequent(

Seq("a" -> fof"P a", "b" -> fof"!x (P x -> Q x)"),
Seq("c" -> fof"Q a"))) {

allL(fot"a")
impL
trivial
trivial

}

Most tactics can be called with or without a label argument. If a tactic is called with a label, it will
be applied to that specific formula, if possible. Otherwise, the system will attempt to determine a
target formula on its own. If there is either no applicable formula or more than one, the tactic will
fail.

3.5.2 Basic tactics

We now give a description of a few basic tactics, you can find the full list in the API documentation:

gapt> help(gapt.proofs.gaptic.TacticCommands)

The forget tactic corresponds to weakening rules in LK. It accepts a list of labels and removes the
formulas with those labels from the current subgoal:

val lemmaEx =
Lemma(Sequent(

Seq("a" -> fof"P a", "b" -> fof"!x (P x -> Q x)"),
Seq("c" -> fof"Q a"))) {

forget("b")
}

gapt.proofs.gaptic.QedFailureException: Proof not completed. There are still 1 open sub
goals:

a: P(a)
:-
c: Q(a)

at gapt.proofs.gaptic.Lemma$.finish(language.scala:37)
at gapt.proofs.gaptic.Lemma$.finish(language.scala:42)
at gapt.proofs.gaptic.Lemma$Helper.handleTacticBlock(language.scala:54)
... elided

The tactics axiomLog, axiomRefl, axiomBot and axiomTop cover the logical, reflexivity, bottom
and top axioms, respectively. The trivial tactic automatically selects the applicable axiom. Also,
any weakening rules required to reach an actual axiom sequent are automatically applied.

The following example shows the use of the trivial tactic to end the proof by a logical axiom:

19

GAPT – User Manual

val axiomEx =
Lemma(Sequent(Nil,

Seq("D" -> fof"?x (P x -> !y P y)"))) {
exR(fov"c")
impR
allR
exR(fov"y")
impR
allR
trivial

}

The tactic eql covers the left and right equality rules. Its first argument is the label of an equality in
the antecedent. The second argument is the label of the formula to apply the rule to. Furthermore,
you may specify whether to apply the equation from left to right or vice versa. Also, a target
formula can be specified, if not all occurrences need to be replaced (in either direction). If neither
direction nor a target formula is specified, the tactic will only work if the direction is unambiguous.

val eqEx = Lemma(Sequent(
Seq("c" -> fof"P(y) & Q(y)",

"eq1" -> fof"u = (v:i)",
"eq2" -> fof"y = (x:i)",
"a" -> fof"P(u) -> Q(u)"),

Seq("b" -> fof"P(x) & Q(x)"))) {
eql("eq1", "a").yielding(fof"P(v) -> Q(v)")
eql("eq1", "a").yielding(fof"P(v) -> Q(u)")
eql("eq2", "b").fromRightToLeft
trivial

}

The tactics for the weak quantifiers are allL and exR. They are called with the list of terms
to instantiate the quantified formula with. One call of allL or exR can instantiate any number of
quantifiers in a formula. The tactics for the strong quantifiers are allR and exL. They are optionally
called with the variable that should be used as an eigenvariable. If no eigenvariable is provided, a
fresh variable will automatically be generated. The weak quantifier formulas are kept in the sequent
after instantiations while the strong quantifier formulas are automatically removed.

val quantEx = Lemma(Sequent(
Seq("D" -> fof"(!x (P(x) & (?y -P(y))))"),
Nil)) {

allL(fot"c:i")
andL
exL(fov"y_0")
negL
allL(fov"y_0")
andL
exL(fov"y_1")
negL

20

GAPT – User Manual

axiomLog
}

The implication, negation, disjunction and conjunction rules are covered by the tactics impL, impR,
negL, negR, disL, disR, conL and conR, respectively. They are similar in the sense that they take
no arguments apart from an optional label to apply the tactic to.

val propEx = Lemma(Sequent(
Seq("initAnt" -> fof"A -> B"),
Seq("initSuc" -> fof"(A & B) | -A"))) {

orR("initSuc")
negR("initSuc_1")
andR("initSuc_0")
trivial
impL
trivial
trivial

}

The cut tactic is used to introduce a cut rule. The first argument is the (unique new) label for the
cut formula, the second argument is the cut formula itself. Both arguments are mandatory. In the
case where a non-unique label is provided the tactic simply fails.

val cutEx = Lemma(Sequent(
Seq("A" -> fof"A"),
Seq("C" -> fof"?x?y (-x=y & f(x)=f(y))"))) {

cut("I1", fof"I(1)")
cut("I0", fof"I(0)")

}

gapt.proofs.gaptic.QedFailureException: Proof not completed. There are still 3 open sub
goals:

A: A
:-
C: ∃x ∃y (x != y ∧ f(x) = f(y))
I1: I(1)
I0: I(0)

I0: I(0)
A: A
:-
C: ∃x ∃y (x != y ∧ f(x) = f(y))
I1: I(1)

I1: I(1)
A: A
:-
C: ∃x ∃y (x != y ∧ f(x) = f(y))

21

GAPT – User Manual

at gapt.proofs.gaptic.Lemma$.finish(language.scala:37)
at gapt.proofs.gaptic.Lemma$.finish(language.scala:42)
at gapt.proofs.gaptic.Lemma$Helper.handleTacticBlock(language.scala:54)
... elided

Using gaptic, we can also create proofs with induction. For example, let us prove that concatenation
of lists is associative:

ctx += Sort("i")

// Define the type of lists.
ctx += InductiveType("list",
hoc"nil: list",
hoc"cons: i>list>list")

// Declare a constant denoting concatenation.
// We will axiomatize its definition in the end-sequent.
ctx += hoc"'+': list>list>list"
ctx += Notation.Infix("+", Precedence.plusMinus)

val catassoc =
Lemma(

("conscat" -> hof"∀x ∀y ∀z cons(x,y)+z = cons(x,y+z)") +:
("nilcat" -> hof"∀x nil+x = x") +:
Sequent()
:+ ("goal" -> hof"∀x ∀y ∀z x+(y+z) = (x+y)+z")

) {
decompose; induction(hov"x: list")
rewrite.many ltr "nilcat"; refl
rewrite.many ltr ("conscat", "IHx_0"); refl

}

22

Chapter 4

Computational proof theory

4.1 Reductive cut-elimination

The GAPT-system contains an implementation of Gentzen-style reductive cut-elimination. It can
be used as follows: first we load a proof p with cuts:

gapt> val p = examples.fol1.proof
val p: gapt.proofs.lk.LKProof = [p25] ∀x ∀y (P(x, y) → Q(x, y)) ⊢ ∃x ∃y (¬ Q(x, y) →

¬ P(x, y)) (CutRule(p9, Suc(0), p24, Ant(0)))
[p24] ∀x ∃y (¬ P(x, y) ∨ Q(x, y)) ⊢ ∃x ∃y (¬ Q(x, y) → ¬ P(x, y)) (ForallLeftRule(p23,

Ant(0), ∃y (¬ P(x, y) ∨ Q(x, y)), b, x))
[p23] ∃y (¬ P(b, y) ∨ Q(b, y)) ⊢ ∃x ∃y (¬ Q(x, y) → ¬ P(x, y)) (ExistsLeftRule(p22, Ant

(0), y, y))
[p22] ¬ P(b, y) ∨ Q(b, y) ⊢ ∃x ∃y (¬ Q(x, y) → ¬ P(x, y)) (ExistsRightRule(p21, Suc(0),

∃y (¬ Q(x, y) → ¬ P(x, y)), b, x))
[p21] ¬ P(b, y) ∨ Q(b, y) ⊢ ∃y (¬ Q(b, y) → ¬ P(b, y)) (ExistsRightRule(p20, Suc(0),

¬ Q(b, y) → ¬ P(b, y), y, y))
[p20] ¬ P(b, y) ∨ Q(b, y) ⊢ ¬ Q(b, y) → ¬ P(b, y) (ContractionRightRule(p19, Suc(1),

Suc(0)))
[p19] ¬ P(b, y) ∨ Q(b, y) ⊢ ¬ Q(b, y) → ¬ P(b, y), ¬ Q(b, y) → ¬ P(b, y) (OrLeftRule(

p14, Ant(0), p18, Ant(0)))
[... large output truncated, print value to show all

and then call the cut-elimination procedure:

gapt> val q = cutNormal(p)
val q: gapt.proofs.lk.LKProof = [p14] ∀x ∀y (P(x, y) → Q(x, y)) ⊢ ∃x ∃y (¬ Q(x, y) →

¬ P(x, y)) (ForallLeftRule(p13, Ant(0), ∀y (P(x, y) → Q(x, y)), b, x))
[p13] ∀y (P(b, y) → Q(b, y)) ⊢ ∃x ∃y (¬ Q(x, y) → ¬ P(x, y)) (ForallLeftRule(p12, Ant

(0), P(b, y) → Q(b, y), a, y))
[p12] P(b, a) → Q(b, a) ⊢ ∃x ∃y (¬ Q(x, y) → ¬ P(x, y)) (ExistsRightRule(p11, Suc(0),

∃y (¬ Q(x, y) → ¬ P(x, y)), b, x))
[p11] P(b, a) → Q(b, a) ⊢ ∃y (¬ Q(b, y) → ¬ P(b, y)) (ExistsRightRule(p10, Suc(0), ¬ Q

(b, y) → ¬ P(b, y), a, y))
[p10] P(b, a) → Q(b, a) ⊢ ¬ Q(b, a) → ¬ P(b, a) (ContractionRightRule(p9, Suc(1), Suc

23

GAPT – User Manual

(0)))
[p9] P(b, a) → Q(b, a) ⊢ ¬ Q(b, a) → ¬ P(b, a), ¬ Q(b, a) → ¬ P(b, a) (ImpRightRule(

p8, Ant(0), Suc(1)))
[p8] ¬ Q(b, a), P(b, a) → Q(b, a) ⊢ ¬ Q(b, a) → ¬ P(b, a), ¬ P(b, a) (

WeakeningLeftRule(p7, ¬ Q(b ... large output truncated, print value to show all

4.2 Induction-elimination

Along the lines of Gentzen’s proof of the consistency of Peano arithmetic, GAPT can also eliminate
induction inferences in a restricted class of proofs with quantifier-free conclusions.

gapt> val p = instanceProof(examples.theories.nat.addcomm.combined(),
Seq(le"s (s 0 : nat)", le"0 : nat"))

val p: gapt.proofs.lk.LKProof = [p118] ∀x ((x:nat) + (0:nat): nat) = x,
∀x ∀y x + s(y:nat) = s(x + y)
⊢
s(s(0)) + 0 = 0 + s(s(0)) (CutRule(p114, Suc(0), p117, Ant(0)))
[p117] ∀x ∀y ((x:nat) + (y:nat): nat) = y + x ⊢ s(s(0:nat): nat) + 0 = 0 + s(s(0)) (

ForallLeftRule(p116, Ant(0), ∀y ((x:nat) + (y:nat): nat) = y + x, s(s(0:nat): nat), x
:nat))

[p116] ∀y (s(s(0:nat): nat) + (y:nat): nat) = y + s(s(0)) ⊢ s(s(0)) + 0 = 0 + s(s(0)) (
ForallLeftRule(p115, Ant(0), (s(s(0:nat): nat) + (y:nat): nat) = y + s(s(0)), 0:nat, y
:nat))

[p115] (s(s(0:nat): nat) + 0: nat) = 0 + s(s(0)) ⊢ s(s(0)) + 0 = 0 + s(s(0)) (
LogicalAxiom((s(s(0:nat): nat) + 0: nat) = 0 + s(s(0))))

[p114] ∀x ((x:nat) + (0:nat): nat) = x,
∀x ∀y x + s(y:nat) = s(x + y)
⊢
∀x ∀y x + y = y + x (CutRule(p3, Suc(0), p113, Ant(... large output truncated, print

value to show all

gapt> val q = inductionNormalForm(p)(examples.theories.
nat.ctx)

val q: gapt.proofs.lk.LKProof = [p16] ∀x_1 ((x_1:nat) + (0:nat): nat) = x_1,
∀x_1 ∀y x_1 + s(y:nat) = s(x_1 + y)
⊢
s(s(0)) + 0 = 0 + s(s(0)) (ContractionLeftRule(p15, Ant(0), Ant(2)))
[p15] ∀x_1 ((x_1:nat) + (0:nat): nat) = x_1,
∀x_1 ∀y x_1 + s(y:nat) = s(x_1 + y),
∀x_0 x_0 + 0 = x_0
⊢
s(s(0)) + 0 = 0 + s(s(0)) (ForallLeftRule(p14, Ant(2), ((x_1:nat) + (0:nat): nat) = x_1,

0:nat, x_1:nat))
[p14] ∀x_1 ∀y ((x_1:nat) + (s(y:nat): nat): nat) = s(x_1 + y),
∀x_0 x_0 + 0 = x_0,
0 + 0 = 0
⊢

24

GAPT – User Manual

s(s(0)) + 0 = 0 + s(s(0)) (ForallLeftRule(p13, Ant(1), ∀y ((x_1:nat) + (s(y:nat): nat):
nat) = s(x_1 + y), 0:nat, x_1:nat))

[p13] ∀x_0 ((x_0:nat) + (0:nat): nat) = x_0,
∀y 0 + s(y:nat) = s(0 + y),
0 + 0 = 0
⊢
s(s(0)) + 0 = 0 + s(s(0)) (ForallLeftRule(p12, Ant(2), ((x_0:nat) + (0:nat): nat) = x_0,

... large output truncated, print value to show all

The resulting proof q contains only atomic cuts, and we can view its Herbrand sequent by converting
to an expansion proof:

gapt> LKToExpansionProof(q)
val res0: gapt.proofs.expansion.ExpansionProof = ∀x_1 ((x_1:nat) + (0:nat): nat) = x_1
+ˆ{0} (0 + 0 = 0)-
+ˆ{s(s(0): nat)} (s(s(0)) + 0 = s(s(0)))-,
∀x_1 ∀y ((x_1:nat) + (s(y:nat): nat): nat) = s(x_1 + y)
+ˆ{0, 0} (0 + s(0) = s(0 + 0))-
+ˆ{0, s(0)} (0 + s(s(0)) = s(0 + s(0)))-

:-
((s(s(0:nat): nat) + 0: nat) = 0 + s(s(0)))+

4.3 Skolemization

Skolemization is the process of introducing Skolem functions for strong quantifiers, and is usu-
ally performed during clausification of formulas into CNF (clause/conjunctive normal form). The
structuralCNF function takes a sequent and returns the CNF of its negation—thus producing a
resolution refutation of this CNF is equivalent to proving the original sequent. We actually get a
set of resolution proofs witnessing that the clauses follow from the negation of the sequent:

gapt> val proofs = structuralCNF(hos":- ?z ?x (drinksat z x -> !y drinksat z y)")
val proofs: Set[gapt.proofs.resolution.ResolutionProof] = Set([p4] ⊢ drinksat(z, x) (

ImpL1(p3, Ant(0)))
[p3] drinksat(z, x) → ∀y drinksat(z, y) ⊢ (ExL(p2, Ant(0), x))
[p2] ∃x (drinksat(z, x) → ∀y drinksat(z, y)) ⊢ (ExL(p1, Ant(0), z))
[p1] ∃z ∃x (drinksat(z, x) → ∀y drinksat(z, y)) ⊢ (Input(∃z ∃x (drinksat(z, x) → ∀y

drinksat(z, y)) ⊢))
, [p5] drinksat(z, s_0(z)) ⊢ (AllL(p4, Ant(0), s_0(z)))
[p4] ∀y drinksat(z, y) ⊢ (ImpL2(p3, Ant(0)))
[p3] drinksat(z, x) → ∀y drinksat(z, y) ⊢ (ExL(p2, Ant(0), x))
[p2] ∃x (drinksat(z, x) → ∀y drinksat(z, y)) ⊢ (ExL(p1, Ant(0), z))
[p1] ∃z ∃x (drinksat(z, x) → ∀y drinksat(z, y)) ⊢ (Input(∃z ∃x (drinksat(z, x) → ∀y

drinksat(z, y)) ⊢))
)

gapt> for (p <- proofs) println(p.conclusion)
⊢ drinksat(z, x)
drinksat(z, s_0(z)) ⊢

25

GAPT – User Manual

Let us explain the terminology used in GAPT: in this example, we introduced the Skolem term
s0(z) for the universal quantifier ∀y. This Skolem term has the Skolem constant s0 and the Skolem
definition λz∀y drinksat(z, y). The mapping from Skolem constants to Skolem definitions is stored
in the Context, and is required to be acyclic. These definitions ensure that Skolemization is used
in a sound way.

We represent Skolemization in proofs using Skolem inferences. For example in LK the ∀sk:r rule
handles universal quantifiers. The corresponding rules also exist in resolution and expansion proofs.

Γ ⊢ ∆, φ(s(t))
∀sk:r where s has the Skolem definition λy D(y), and D(t) = (∀x φ(x))

Γ ⊢ ∆, ∀x φ(x)

Given a proof that uses eigenvariables for strong quantifiers, we can replace the eigenvariable
inferences by Skolem inference using skolemizeLK—this is called proof Skolemization:

gapt> val p = ForallRightRule(ReflexivityAxiom(le"x"), hof"!x x=x")
val p: gapt.proofs.lk.rules.ForallRightRule = [p2] ⊢ ∀x x = x (ForallRightRule(p1, Suc(0)

, x, x))
[p1] ⊢ x = x (ReflexivityAxiom(x))

gapt> skolemizeLK(p)
val res0: gapt.proofs.lk.LKProof = [p2] ⊢ ∀x x = x (ForallSkRightRule(p1, Suc(0), ∀x x =

x, s_0))
[p1] ⊢ s_0 = s_0 (ReflexivityAxiom(s_0))

By default, skolemizeLK will keep eigenvariable inferences above cuts. The function skolemize
performs Skolemization on formulas. In the first-order case it is also possible to Skolemize proofs
without introducing Skolem inferences, by modifying the end-sequent instead. This functionality is
provided by the folSkolemize function.

4.4 Deskolemization

All automated provers integrated in GAPT introduce Skolem functions for strong quantifiers and
return proofs with Skolem inferences as described in Section 4.3. The function deskolemizeET
implements a variant of the expansion proof-based method for proof deskolemization described
in [3] with an extension to support all forms of Skolemization allowed by Skolem definitions.

gapt> val Some(p) = Escargot.getExpansionProof(hof"?x (drinks x -> !y drinks y)"):
@unchecked

val p: gapt.proofs.expansion.ExpansionProof =
:-
∃x (drinks(x) → ∀y drinks(y))
+ˆ{s_0} (drinks(s_0)- → wk+{∀y drinks(y)})
+ˆ{x} (wk-{drinks(x)} → ∀y drinks(y) +skˆ{s_0} drinks(s_0)+)

gapt> deskolemizeET(p)
val res0: gapt.proofs.expansion.ExpansionProof =

26

GAPT – User Manual

:-
∃x (drinks(x) → ∀y drinks(y))
+ˆ{v} (drinks(v)- → wk+{∀y drinks(y)})
+ˆ{x} (wk-{drinks(x)} → ∀y drinks(y) +evˆ{v} drinks(v)+)

In the worst case, deskolemization results in non-elementarily larger proofs [1].

4.5 Interpolation

The command ExtractInterpolant extracts an interpolant from an LK proof, based on Lemma
6.5 of [17]. The method expects a proof π and an arbitrary partition of the end-sequent Γ ⊢ ∆ of
π into a “negative part” Γ1 ⊢ ∆1 and a “positive part” Γ2 ⊢ ∆2. It returns a formula I such that
Γ1 ⊢ ∆1, I and I,Γ2 ⊢ ∆2 are provable and I contains only such predicate symbols that appear in
both partitions.

gapt> val Right(p) = solvePropositional(hos"a -> b, b -> c :- a & d -> c"): @unchecked
val p: gapt.proofs.lk.LKProof = [p8] a → b, b → c ⊢ a ∧ d → c (ImpRightRule(p7, Ant(0)

, Suc(0)))
[p7] a ∧ d, a → b, b → c ⊢ c (AndLeftRule(p6, Ant(2), Ant(0)))
[p6] d, a → b, a, b → c ⊢ c (WeakeningLeftRule(p5, d:o))
[p5] a → b, a, b → c ⊢ c (ImpLeftRule(p1, Suc(0), p4, Ant(1)))
[p4] b → c, b ⊢ c (ImpLeftRule(p2, Suc(0), p3, Ant(0)))
[p3] c ⊢ c (LogicalAxiom(c:o))
[p2] b ⊢ b (LogicalAxiom(b:o))
[p1] a ⊢ a (LogicalAxiom(a:o))

gapt> ExtractInterpolant(p, Seq(Suc(0)))
val res0: gapt.expr.formula.Formula = ¬ a ∨ (⊥ ∨ c)

Here Seq(Suc(0)) is the list of indices of the formulas that are in the positive partition. You can
also get proofs of Γ1 ⊢ ∆1, I and I,Γ2 ⊢ ∆2 by using the Interpolate function.

4.6 LK to ND translation

GAPT supports translation of sequent calculus (Appendix B.1) proofs without Skolem inferences
to natural deduction proofs (Appendix B.2). Consider the following example:

gapt> examples.gapticExamples.lemma
val res0: gapt.proofs.lk.LKProof = [p7] A → B ⊢ A ∧ B ∨ ¬ A (OrRightRule(p6, Suc(0),

Suc(1)))
[p6] A → B ⊢ A ∧ B, ¬ A (NegRightRule(p5, Ant(0)))
[p5] A, A → B ⊢ A ∧ B (ContractionLeftRule(p4, Ant(2), Ant(0)))
[p4] A, A → B, A ⊢ A ∧ B (AndRightRule(p1, Suc(0), p3, Suc(0)))
[p3] A → B, A ⊢ B (ImpLeftRule(p1, Suc(0), p2, Ant(0)))
[p2] B ⊢ B (LogicalAxiom(B:o))
[p1] A ⊢ A (LogicalAxiom(A:o))

27

GAPT – User Manual

gapt> LKToND(examples.gapticExamples.lemma, Some(Suc(0)))
val res1: gapt.proofs.nd.NDProof = [p15] A → B ⊢ A ∧ B ∨ ¬ A (ExcludedMiddleRule(p2,

Ant(0), p14, Ant(0)))
[p14] ¬ (A ∧ B), A → B ⊢ A ∧ B ∨ ¬ A (OrIntro2Rule(p13, A ∧ B))
[p13] ¬ (A ∧ B), A → B ⊢ ¬ A (NegIntroRule(p12, Ant(1)))
[p12] ¬ (A ∧ B), A, A → B ⊢ ⊥ (NegElimRule(p3, p11))
[p11] A, A → B ⊢ A ∧ B (ContractionRule(p10, Ant(0), Ant(2)))
[p10] A, A → B, A ⊢ A ∧ B (AndIntroRule(p4, p9))
[p9] A → B, A ⊢ B (ImpElimRule(p6, p8))
[p8] A → B, A ⊢ B (ImpElimRule(p7, p4))
[p7] A → B ⊢ A → B (LogicalAxiom(A → B))
[p6] ⊢ B → B (ImpIntroRule(p5, Ant(0)))
[p5] B ⊢ B (LogicalAxiom(B:o))
[p4] A ⊢ A (LogicalAxiom(A:o))
[p3] ¬ (A ∧ B) ⊢ ¬ (A ∧ B) (LogicalAxiom(¬ (A ∧ B)))
[p2] A ∧ B ⊢ A ∧ B ∨ ¬ A (OrIntro1Rule(p1, ¬ A))
[p1] A ∧ B ⊢ A ∧ B (LogicalAxiom(A ∧ B))

The LKToND function takes an LKProof, and optionally an Option[SequentIndex], as parameters.
Because ND proofs can only contain a single formula in the succedent, the translation must focus
on one of the formulas in the succedent of the LK proof that is to be proved in the ND proof.
Thus, sometimes formulas need to be exchanged between the antecedents and succedents in the
ND proof. This exchange is inherently classical and introduces the excluded middle rule into the
proof.

4.7 Expansion proofs

Expansion proofs are a compact representation of the quantifier inferences in a proof. They have
originally been introduced in [15]. GAPT contains an implementation of expansion proofs with cut
for higher-order logic, including functions to extract expansion trees from proofs, to merge expansion
trees, to prune and transform them in various ways, to eliminate first-order cuts, and to display
them in the graphical user interface.

An expansion tree contains the instances of the quantifiers for a formula. In order to represent
a proof of a sequent we use sequents of expansion trees. An expansion proof consists of such a
sequent of expansion trees where the strong quantifiers do not form cycles. For example we can
obtain an expansion proof by:

gapt> val expansion = LKToExpansionProof(examples.fol1.proof)
val expansion: gapt.proofs.expansion.ExpansionProof = ∀X (X → X)
+ˆ{∀x ∃y (¬ P(x, y) ∨ Q(x, y))}
(∀x ∃y (¬ P(x, y) ∨ Q(x, y)) +evˆ{x}
∃y (¬ P(x, y) ∨ Q(x, y))
+ˆ{a} (¬ P(x, a)- ∨ Q(x, a)+) →
∀x ∃y (¬ P(x, y) ∨ Q(x, y))
+ˆ{b} ∃y (¬ P(b, y) ∨ Q(b, y)) +evˆ{y} (¬ P(b, y)+ ∨ Q(b, y)-)),

∀x ∀y (P(x, y) → Q(x, y)) +ˆ{x, a} (P(x, a)+ → Q(x, a)-)

28

GAPT – User Manual

:-
∃x ∃y (¬ Q(x, y) → ¬ P(x, y)) +ˆ{b, y} (¬ Q(b, y)+ → ¬ P(b, y)-)

The expansion proof returned by LKToExpansionProof contains the quantifier inferences of the
proof in LK and the quantified cuts. Quantifier-free cuts are not included, as they can never be
involved in quantifier inferences.

Expansion proofs have shallow and deep sequents. The shallow sequent corresponds to the end-
sequent of the proof in LK, and is the sequent that is proven. The deep sequent consists of instances
of the shallow sequent: the (quasi-)tautology of the deep sequent implies the validity of the shallow
sequent.

gapt> expansion.shallow
val res0: gapt.proofs.HOLSequent = ∀X (X → X), ∀x ∀y (P(x, y) → Q(x, y)) ⊢ ∃x ∃y (¬ Q(

x, y) → ¬ P(x, y))

gapt> expansion.deep
val res1: gapt.proofs.HOLSequent = ¬ P(x, a) ∨ Q(x, a) → ¬ P(b, y) ∨ Q(b, y), P(x, a)

→ Q(x, a) ⊢ ¬ Q(b, y) → ¬ P(b, y)

gapt> Sat4j isValid expansion.deep
val res2: Boolean = true

This expansion proof contains a cut. Cuts are stored as expansions of the second-order formula
∀X(X → X) in the antecedent. GAPT contains a procedure to eliminate such cuts in expansion
proofs as described in [14]:

gapt> eliminateCutsET(expansion)
val res3: gapt.proofs.expansion.ExpansionProof = ∀x ∀y (P(x, y) → Q(x, y)) +ˆ{b, a} (P(b

, a)+ → Q(b, a)-)
:-
∃x ∃y (¬ Q(x, y) → ¬ P(x, y)) +ˆ{b, a} (¬ Q(b, a)+ → ¬ P(b, a)-)

We can also convert expansion proofs to LK; this works even in the presence of cuts, and also if
the proof requires equational reasoning:

gapt> ExpansionProofToLK(expansion).get
val res4: gapt.proofs.lk.LKProof = [p21] ∀x ∀y (P(x, y) → Q(x, y)) ⊢ ∃x ∃y (¬ Q(x, y)

→ ¬ P(x, y)) (ExistsRightRule(p20, Suc(0), ∃y (¬ Q(x, y) → ¬ P(x, y)), b, x))
[p20] ∀x ∀y (P(x, y) → Q(x, y)) ⊢ ∃y (¬ Q(b, y) → ¬ P(b, y)) (CutRule(p9, Suc(0), p19,

Ant(0)))
[p19] ∀x ∃y (¬ P(x, y) ∨ Q(x, y)) ⊢ ∃y (¬ Q(b, y) → ¬ P(b, y)) (ForallLeftRule(p18, Ant

(0), ∃y (¬ P(x, y) ∨ Q(x, y)), b, x))
[p18] ∃y (¬ P(b, y) ∨ Q(b, y)) ⊢ ∃y (¬ Q(b, y) → ¬ P(b, y)) (ExistsLeftRule(p17, Ant(0)

, y, y))
[p17] ¬ P(b, y) ∨ Q(b, y) ⊢ ∃y (¬ Q(b, y) → ¬ P(b, y)) (ExistsRightRule(p16, Suc(0),

¬ Q(b, y) → ¬ P(b, y), y, y))
[p16] ¬ P(b, y) ∨ Q(b, y) ⊢ ¬ Q(b, y) → ¬ P(b, y) (ImpRightRule(p15, Ant(0), Suc(0)))
[p15] ¬ Q(b, y), ¬ P(b, y) ∨ Q(b, y) ⊢ ¬ P(b, y) (NegRightRule(p14, Ant(2)))
[p14] ¬ Q(b, y), ¬ P(b, y) ∨ Q(b, y), P(b, y) ... large output truncated, print value to

show all

29

GAPT – User Manual

You can also view this expansion proof in the graphical user interface in a convenient and flexible
way by calling:

gapt> prooftool(expansion)

A window then opens that displays the shallow sequent of expansion. You can selectively expand
quantifiers by clicking on them, see [13] for a detailed description.

4.8 Modified realizability

The GAPT-system contains an implementation of modified realizability for first-order logic. This is
a variant of realizability where the realizers are terms of system T: an extension of the simply typed
lambda calculus with inductive types and recursors that allow for recursive computation over terms
of those types.

The implementation extracts realizers for theorems from their proofs in the natural deduction calcu-
lus (Appendix B.2). If the conclusion of the proof depends on a number of hypothesis, i.e. there are
formulas A1, . . . , An in the antecedent of the final sequent, the algorithm returns a term M with
free variables x1, . . . , xn such that M [M1/x1] . . . [Mn/xn] is a realizer for the succedent, where Mi

realizes Ai. The formulas in the conclusion are also allowed to have free variables. In this case, the
substitution of free variables in both the formulas and its realizer by the same closed terms, gives
a realizer for the resulting sentence.

The natural deduction calculus contains two rules that are problematic for the extraction of realizers,
namely the theory axiom, which can be instantiated by any formula, and a rule for the lemma of
the excluded middle. When these are used, a realizer can not be computed — it might not even
exists. In the case of the theory axiom, we would need a realizer for the theorem that is introduced
by the axiom, and for the excluded middle rule, we would need a realizer for A ∨ ¬A to compute
the realizer for the conclusion of the rule. When A is the formula for which a realizer is needed,
these rules therefore introduce a free variable (named mrealizer(A)) in the resulting realizer, that
serves as a placeholders for a realizer for A.

Any other free variable occurring in an extracted realizer, that is not the result of any of the above
situations, must be understood to mean that it may be replaced by any term of the type of the
variable.

Consider the following proof:

gapt> val p = examples.successor.proof
val p: gapt.proofs.nd.ForallIntroRule = [p4] ⊢ ∀x ∃y (y:nat) = ((s(0:nat): nat) + (x:nat)

: nat) (ForallIntroRule(p3, x:nat, x:nat))
[p3] ⊢ ∃y (y:nat) = ((s(0:nat): nat) + (x:nat): nat) (ExistsIntroRule(p2, (y:nat) = ((s

(0:nat): nat) + (x:nat): nat), s(x:nat): nat, y:nat))
[p2] ⊢ (s(x:nat): nat) = (s(0) + x: nat) (DefinitionRule(p1, (s(x:nat): nat) = (s(0) + x:

nat)))
[p1] ⊢ (s(x:nat): nat) = s(x) (EqualityIntroRule(s(x:nat): nat))

The implementation can then be used to extract a realizer in the following way:

30

GAPT – User Manual

gapt> val mr = nd.MRealizability.mrealize(p)(examples.successor.ctx)
val mr: (Map[gapt.proofs.SequentIndex, gapt.expr.Var], gapt.expr.Expr) = (Map(),λx s(x:

nat): nat)

Examples of proofs from which more interesting realizers are extracted by the algorithm can be
found in the file examples/m-realizabilityExamples.scala.

31

GAPT – User Manual

32

Chapter 5

Input and output

GAPT can read from and write to several existing formats, including JSON and TPTP.

5.1 JSON

GAPT currently supports JSON import and export of LK proofs and expansion proofs, as well as all
of their components such as formulas, sequents, indices, etc. For instance, this is how you export
a sequent to JSON:

gapt> val s = JsonExporter(hos"A, B :- P(x)").render(80)
val s: String = {"antecedent" : ["A:o", "B:o"], "succedent" : ["P(x): o"]}

To read the JSON string back into a sequent:

gapt> val sequent = JsonImporter.load[HOLSequent](InputFile.fromString(s))
val sequent: gapt.proofs.HOLSequent = A, B ⊢ P(x)

Serializing an LK proof to JSON works a little differently than you might expect. Instead of naively
serializing the proof as an object, its distinct subproofs are collected in a map.

gapt> val ax1 = LogicalAxiom(hof"A")
val ax1: gapt.proofs.lk.rules.LogicalAxiom = [p1] A ⊢ A (LogicalAxiom(A:o))

gapt> val ax2 = LogicalAxiom(hof"B")
val ax2: gapt.proofs.lk.rules.LogicalAxiom = [p1] B ⊢ B (LogicalAxiom(B:o))

gapt> val p1 = AndRightRule(ax1, hof"A", ax2, hof"B")
val p1: gapt.proofs.lk.rules.AndRightRule = [p3] A, B ⊢ A ∧ B (AndRightRule(p1, Suc(0),

p2, Suc(0)))
[p2] B ⊢ B (LogicalAxiom(B:o))
[p1] A ⊢ A (LogicalAxiom(A:o))

gapt> val p2 = AndRightRule(p1, hof"A∧ B", ax1, hof"A")
val p2: gapt.proofs.lk.rules.AndRightRule = [p4] A, B, A ⊢ A ∧ B ∧ A (AndRightRule(p3,

Suc(0), p1, Suc(0)))

33

GAPT – User Manual

[p3] A, B ⊢ A ∧ B (AndRightRule(p1, Suc(0), p2, Suc(0)))
[p2] B ⊢ B (LogicalAxiom(B:o))
[p1] A ⊢ A (LogicalAxiom(A:o))

gapt> val p3: LKProof = AndRightRule(p2, hof"A∧ B∧ A", ax2, hof"B")
val p3: gapt.proofs.lk.LKProof = [p5] A, B, A, B ⊢ A ∧ B ∧ A ∧ B (AndRightRule(p4, Suc

(0), p2, Suc(0)))
[p4] A, B, A ⊢ A ∧ B ∧ A (AndRightRule(p3, Suc(0), p1, Suc(0)))
[p3] A, B ⊢ A ∧ B (AndRightRule(p1, Suc(0), p2, Suc(0)))
[p2] B ⊢ B (LogicalAxiom(B:o))
[p1] A ⊢ A (LogicalAxiom(A:o))

gapt> val s = JsonExporter(p3).render(80)
val s: String = {
"0" : {"name" : "LogicalAxiom", "A" : "A:o"},
"1" : {"name" : "LogicalAxiom", "A" : "B:o"},
"2" : {
"name" : "AndRightRule",
"leftSubProof" : 0,
"aux1" : 0,
"rightSubProof" : 1,
"aux2" : 0

},
"3" : {
"name" : "AndRightRule",
"leftSubProof" : 2,
"aux1" : 0,
"rightSubProof" : 0,
"aux2" : 0

},
"4" : {
"name" : "AndRightRule",
"leftSubProof" : 3,
"aux1" : 0,
"rightSubProof" : 1,
"aux2" : 0

}
}

As you can see, each of the logical axioms is only serialized once, despite being used multiple times
in the proof.

5.2 TPTP

You can export sequents as TPTP problems:

gapt> val sequent = hos"p(0), !x (p(x) -> p(s(x))) :- p(s(s(0)))"
val sequent: gapt.proofs.HOLSequent = p(0), ∀x (p(x) → p(s(x))) ⊢ p(s(s(0)))

34

GAPT – User Manual

gapt> TptpFOLExporter(sequent)
val res0: gapt.formats.tptp.TptpFile = fof(ant_0, axiom, p('0')).
fof(ant_1, axiom, ![X]: (p(X) => p(s(X)))).
fof(suc_0, conjecture, p(s(s('0')))).

You can also parse TPTP problems:

gapt> val tptp = TptpImporter.loadWithIncludes("examples/import/irrationals.p")
val tptp: gapt.formats.tptp.TptpFile = fof(a, axiom, i(sr2)).
fof(b, axiom, ˜ i(two)).
fof(c, axiom, times(sr2, sr2) = two).
fof(d, axiom, ![X,Y,Z]: exp(exp(X, Y), Z) = exp(X, times(Y, Z))).
fof(e, axiom, ![X]: exp(X, two) = times(X, X)).
fof(f, conjecture, ?[X,Y]: (˜ i(exp(X, Y)) & i(X) & i(Y))).

gapt> tptp.toSequent
val res1: gapt.proofs.HOLSequent = i(sr2),
¬ i(two),
times(sr2, sr2) = two,
∀X ∀Y ∀Z exp(exp(X, Y), Z) = exp(X, times(Y, Z)),
∀X exp(X, two) = times(X, X)
⊢
∃X ∃Y (¬ i(exp(X, Y)) ∧ i(X) ∧ i(Y))

35

GAPT – User Manual

36

Chapter 6

Interfaces to external theorem provers
and solvers

6.1 First-order theorem provers

GAPT includes interfaces to several first-order theorem provers, such as Prover9, E prover, and
LeanCoP. For Vampire, SPASS, E, Prover9, and Metis we can read back resolution proofs, and
construct LK and expansion proofs from them. The LeanCoP interface reads back expansion proofs
(and converts them to LK if desired).

Here is how you can get all of these kinds of proofs using Prover9:

gapt> val sequent = hos"p(0), !x (p(x) -> p(s(x))) :- p(s(s(0)))"
val sequent: gapt.proofs.HOLSequent = p(0), ∀x (p(x) → p(s(x))) ⊢ p(s(s(0)))

gapt> Prover9 isValid sequent
val res0: Boolean = true

gapt> Prover9 getResolutionProof sequent
val res1: Option[gapt.proofs.resolution.ResolutionProof] =
Some([p13] ⊢ (Resolution(p8, Suc(0), p12, Ant(0)))
[p12] p(s(0)) ⊢ (Resolution(p9, Suc(0), p11, Ant(0)))
[p11] p(s(s(0))) ⊢ (Subst(p10, Substitution()))
[p10] p(s(s(0))) ⊢ (Input(p(s(s(0))) ⊢))
[p9] p(s(0)) ⊢ p(s(s(0))) (Subst(p6, Substitution(v0 -> s(0))))
[p8] ⊢ p(s(0)) (Resolution(p2, Suc(0), p7, Ant(0)))
[p7] p(0) ⊢ p(s(0)) (Subst(p6, Substitution(v0 -> 0)))
[p6] p(v0) ⊢ p(s(v0)) (Subst(p5, Substitution(x -> v0)))
[p5] p(x) ⊢ p(s(x)) (ImpR(p4, Suc(0)))
[p4] ⊢ p(x) → p(s(x)) (AllR(p3, Suc(0), x))
[p3] ⊢ ∀x (p(x) → p(s(x))) (Input(⊢ ∀x (p(x) → p(s(x)))))
[p2] ⊢ p(0) (Subst(p1, Substitution()))
[p1] ⊢ p(0) (Input(⊢ p(0)))
)

37

GAPT – User Manual

gapt> Prover9 getLKProof sequent
val res2: Option[gapt.proofs.lk.LKProof] =
Some([p11] ∀x (p(x) → p(s(x))), p(0) ⊢ p(s(s(0))) (ContractionLeftRule(p10, Ant(2), Ant

(1)))
[p10] p(0), ∀x (p(x) → p(s(x))), ∀x (p(x) → p(s(x))) ⊢ p(s(s(0))) (CutRule(p5, Suc(0),

p9, Ant(1)))
[p9] ∀x (p(x) → p(s(x))), p(s(0)) ⊢ p(s(s(0))) (CutRule(p8, Suc(0), p6, Ant(0)))
[p8] ∀x (p(x) → p(s(x))), p(s(0)) ⊢ p(s(s(0))) (ForallLeftRule(p7, Ant(0), p(x) → p(s(x

)), s(0), x))
[p7] p(s(0)) → p(s(s(0))), p(s(0)) ⊢ p(s(s(0))) (ImpLeftRule(p2, Suc(0), p6, Ant(0)))
[p6] p(s(s(0))) ⊢ p(s(s(0))) (LogicalAxiom(p(s(s(0))): o))
[p5] p(0), ∀x (p(x) → p(s(x))) ⊢ p(s(0)) (CutRule(p1, Suc(0), p4, Ant(1)))
[p4] ∀x (p(x) → p(s(x))), p(0) ⊢ p(s(0)) (ForallLeftRule(p3, Ant(0), p(x) → p(s(x)), 0,

x))
[p3] p(0) → p(s(0)), p(0) ⊢ p(s(0)) (Imp...

gapt> Prover9 getExpansionProof sequent
val res3: Option[gapt.proofs.expansion.ExpansionProof] =
Some(∀x (p(x) → p(s(x))) +ˆ{0} (p(0)+ → p(s(0))-) +ˆ{s(0)} (p(s(0))+ → p(s(s(0)))-),
p(0)-
:-
p(s(s(0)))+)

All of the above works with the E prover (EProver), SPASS (SPASS), Vampire (Vampire), and
Metis (Metis) as well, we will just show EProver.getLKProof as an example:

gapt> EProver getLKProof sequent
val res4: Option[gapt.proofs.lk.LKProof] =
Some([p11] ∀x (p(x) → p(s(x))), p(0) ⊢ p(s(s(0))) (ContractionLeftRule(p10, Ant(2), Ant

(1)))
[p10] p(0), ∀x (p(x) → p(s(x))), ∀x (p(x) → p(s(x))) ⊢ p(s(s(0))) (CutRule(p5, Suc(0),

p9, Ant(1)))
[p9] ∀x (p(x) → p(s(x))), p(s(0)) ⊢ p(s(s(0))) (CutRule(p8, Suc(0), p6, Ant(0)))
[p8] ∀x (p(x) → p(s(x))), p(s(0)) ⊢ p(s(s(0))) (ForallLeftRule(p7, Ant(0), p(x) → p(s(x

)), s(0), x))
[p7] p(s(0)) → p(s(s(0))), p(s(0)) ⊢ p(s(s(0))) (ImpLeftRule(p2, Suc(0), p6, Ant(0)))
[p6] p(s(s(0))) ⊢ p(s(s(0))) (LogicalAxiom(p(s(s(0))): o))
[p5] p(0), ∀x (p(x) → p(s(x))) ⊢ p(s(0)) (CutRule(p1, Suc(0), p4, Ant(1)))
[p4] ∀x (p(x) → p(s(x))), p(0) ⊢ p(s(0)) (ForallLeftRule(p3, Ant(0), p(x) → p(s(x)), 0,

x))
[p3] p(0) → p(s(0)), p(0) ⊢ p(s(0)) (Imp...

Note that getLKProof only works for sequents without strong quantifiers (i.e. sequents that are
already Skolemized); however getExpansionProof will happily return expansion proofs with Skolem
quantifiers in that case:

gapt> Prover9 getExpansionProof hof"?x!y p x y -> !y?x p x y"
val res5: Option[gapt.proofs.expansion.ExpansionProof] =
Some(

38

GAPT – User Manual

:-
∃x ∀y p(x, y) +skˆ{s_0} ∀y p(s_0, y) +ˆ{s_1} p(s_0, s_1)- →
∀y ∃x p(x, y) +skˆ{s_1} ∃x p(x, s_1) +ˆ{s_0} p(s_0, s_1)+)

The LeanCoP interface supports getExpansionProof as well:

gapt> LeanCoP getExpansionProof sequent
val res6: Option[gapt.proofs.expansion.ExpansionProof] =
Some(∀x (p(x) → p(s(x))) +ˆ{0} (p(0)+ → p(s(0))-) +ˆ{s(0)} (p(s(0))+ → p(s(s(0)))-),
p(0)-
:-
p(s(s(0)))+)

For treating problems in many-sorted first-order logic with a prover that supports only standard
(one-sorted) first-order logic, GAPT provides appropriate reductions. For example, we can obtain a
many-sorted expansion proof from Prover9 (which only supports a single sort) in the following way:

gapt> val reduction = PredicateReductionET |> ErasureReductionET
val reduction:
gapt.proofs.reduction.Reduction[gapt.proofs.HOLSequent,
gapt.proofs.Sequent[gapt.expr.formula.Formula],
gapt.proofs.expansion.ExpansionProof, gapt.proofs.expansion.ExpansionProof] =

PredicateReductionET |> ErasureReductionET

gapt> val problem = hos"!(x:a)!y x=y, !x f(f(x:b))=x :- ?y c=f(y)"
val problem: gapt.proofs.HOLSequent = ∀x ∀y (x:a) = (y:a), ∀x f(f(x:b): b) = x ⊢ ∃y (c:b)

= f(y)

gapt> val (firstOrderProblem, back) = reduction forward problem
val firstOrderProblem: gapt.proofs.Sequent[gapt.expr.formula.Formula] = ∀x0 (P_is_b(x0)

→ P_is_b(f_f(x0))),
⊤ → P_is_b(f_c),
∃x P_is_b(x),
∃x P_is_a(x),
∀x (P_is_a(x) → ∀y (P_is_a(y) → x = y)),
∀x (P_is_b(x) → f_f(f_f(x)) = x)
⊢
∃y (P_is_b(y) ∧ f_c = f_f(y))
val back: gapt.proofs.expansion.ExpansionProof =>
gapt.proofs.expansion.ExpansionProof = <function>

gapt> Escargot getExpansionProof firstOrderProblem map back
val res7: Option[gapt.proofs.expansion.ExpansionProof] = Some(∀x f(f(x:b): b) = x +ˆ{c} (

f(f(c)) = c)-
:-
∃y (c:b) = (f(y:b): b) +ˆ{f(c)} (c = f(f(c)))+)

39

GAPT – User Manual

6.2 SMT solvers

The SMT solver interface in GAPT supports validity queries for QF_UF formulas. For example we
can check whether a quantifier-free formula is a quasi-tautology using veriT:

gapt> val f = hof"(a=b | a=c) & P(c) & P(b) -> P(a)"
val f: gapt.expr.formula.Formula = (a = b ∨ a = c) ∧ P(c) ∧ P(b) → P(a)

gapt> VeriT isValid f
val res0: Boolean = true

GAPT also supports Z3 and CVC4 out of the box (if they are installed):

gapt> Z3 isValid f
val res1: Boolean = true

gapt> CVC4 isValid f
val res2: Boolean = true

You can export QF_UF formulas (or sequents) as SMT-LIB benchmarks; note that we apply a drastic
renaming to the constant symbols in order to support arbitrary (even Unicode) names in GAPT:

gapt> val (benchmark, typeRenaming, constantRenaming) = SmtLibExporter(Sequent() :+ f)
val benchmark: String = "(set-logic QF_UF)
(declare-sort t_i 0)
(declare-fun f_P (t_i) Bool)
(declare-fun f_c () t_i)
(declare-fun f_a () t_i)
(declare-fun f_b () t_i)
(assert
(not
(=> (and (and (or (= f_a f_b) (= f_a f_c)) (f_P f_c)) (f_P f_b))
(f_P f_a))))

(check-sat)
"
val typeRenaming: Map[gapt.expr.ty.TBase, gapt.expr.ty.TBase] = Map(o -> Bool, i -> t_i)
val constantRenaming: Map[gapt.expr.Const, gapt.expr.Const] = Map(a -> f_a:t_i, b -> f_b:

t_i, c -> f_c:t_i, P:i>o -> f_P:t_i>Bool)

We can also extract instances for basic equality axioms (reflexivity, symmetry, and congruences)
from veriT’s proof output:

gapt> val Some(expansionProof) = VeriT getExpansionProof f
val expansionProof: gapt.proofs.expansion.ExpansionProof =
∀x ∀y (x = y → y = x)
+ˆ{a, b} ((a = b)+ → (b = a)-)
+ˆ{a, c} ((a = c)+ → (c = a)-),
∀x0 ∀y0 (x0 = y0 ∧ P(x0) → P(y0))
+ˆ{b, a} ((b = a)+ ∧ P(b)+ → P(a)-)
+ˆ{c, a} ((c = a)+ ∧ P(c)+ → P(a)-)

:-

40

GAPT – User Manual

((a = b)- ∨ (a = c)-) ∧ P(c)- ∧ P(b)- → P(a)+

gapt> extractInstances(expansionProof) foreach println
a = c → c = a
a = b → b = a
c = a ∧ P(c) → P(a)
b = a ∧ P(b) → P(a)
(a = b ∨ a = c) ∧ P(c) ∧ P(b) → P(a)

6.3 SAT solvers

The following shows an example session, using the Sat4j SAT solver to verify validity and satisfia-
bility, and query the thus obtained models. Consider the pigeon hole principle for (m,n), PHPm,n,
which states that if m pigeons are put into n holes, then there is a hole which contains two pigeons.
It is valid iff m > n. ¬PHPm,n states that when putting m pigeons into n holes, there is no hole
containing two pigeons. This is satisfiable iff m ≤ n.
gapt> Sat4j isValid PigeonHolePrinciple(3, 2)
val res0: Boolean = true

shows1 that PHP3,2 is valid, and

gapt> Sat4j isValid PigeonHolePrinciple(3, 3)
val res1: Boolean = false

shows that PHP3,3 is not valid. Furthermore,

gapt> val Some(m) = Sat4j solve -PigeonHolePrinciple(3, 3): @unchecked
val m: gapt.models.PropositionalModel = R(p_1, h_1): o -> true
R(p_1, h_2): o -> false
R(p_1, h_3): o -> false
R(p_2, h_1): o -> false
R(p_2, h_2): o -> true
R(p_2, h_3): o -> false
R(p_3, h_1): o -> false
R(p_3, h_2): o -> false
R(p_3, h_3): o -> true

yields a model of ¬PHP3,3 that can be queried:

gapt> val p1 = PigeonHolePrinciple.inHole(1, 1)
val p1: gapt.expr.formula.fol.FOLAtom = R(p_1, h_1): o

gapt> val p2 = PigeonHolePrinciple.inHole(2, 1)
val p2: gapt.expr.formula.fol.FOLAtom = R(p_2, h_1): o

gapt> m(p1) // Is pigeon 1 in hole 1?

1In Scala, Sat4j isValid formula is syntactic sugar for Sat4j.isValid(formula).

41

GAPT – User Manual

val res2: Boolean = true

gapt> m(p2) // Is pigeon 2 in hole 1?
val res3: Boolean = false

We can also interpret quantifier-free formulas:

gapt> m(And(p1, p2))
val res4: Boolean = false

We can also convert ¬PHP3,3 into DIMACS format:

gapt> val cnf = structuralCNF(Sequent() :+ PigeonHolePrinciple(3,3)).map(_.conclusion.
asInstanceOf[HOLClause])

val cnf: Set[gapt.proofs.Sequent[gapt.expr.formula.Atom]] = HashSet(⊢ R(p_3, h_3), R(p_3
, h_1), R(p_3, h_2), R(p_1, h_2), R(p_3, h_2) ⊢ , R(p_1, h_2), R(p_2, h_2) ⊢ , R(p_1,
h_3), R(p_2, h_3) ⊢ , R(p_2, h_1), R(p_3, h_1) ⊢ , ⊢ R(p_1, h_3), R(p_1, h_1), R(p_1
, h_2), R(p_1, h_1), R(p_2, h_1) ⊢ , R(p_1, h_1), R(p_3, h_1) ⊢ , ⊢ R(p_2, h_3), R(
p_2, h_1), R(p_2, h_2), R(p_1, h_3), R(p_3, h_3) ⊢ , R(p_2, h_3), R(p_3, h_3) ⊢ , R(
p_2, h_2), R(p_3, h_2) ⊢)

gapt> val encoding = new DIMACSEncoding
val encoding: gapt.formats.dimacs.DIMACSEncoding = DIMACSEncoding()

gapt> writeDIMACS(encoding encodeCNF cnf)
val res5: String = "p cnf 9 12
-9 -2 0
7 8 5 0
1 2 3 0
-8 -2 0
-9 -8 0
-4 -5 0
-5 -3 0
-6 -1 0
-6 -7 0
-4 -3 0
-7 -1 0
6 9 4 0
"

If you want to know which variable in the DIMACS output corresponds to which atom in GAPT,
you can query the DIMACSEncoding object:

gapt> encoding decodeAtom 1
val res6: gapt.expr.formula.Atom = R(p_3, h_3): o

GAPT also supports other SAT solvers such as MiniSAT or Glucose out of the box:

gapt> MiniSAT isValid PigeonHolePrinciple(3,2)
val res7: Boolean = true

42

GAPT – User Manual

gapt> Glucose isValid PigeonHolePrinciple(3,2)
val res8: Boolean = true

If you have another DIMACS-compliant solver installed or want to pass extra options to the SAT
solver, you can pass a custom command to GAPT as well:

gapt> val solver = new ExternalSATSolver("minisat", "-mem-lim=1024")
val solver: gapt.provers.sat.ExternalSATSolver = ExternalSATSolver("minisat", "-mem-lim

=1024")

gapt> solver isValid PigeonHolePrinciple(3,2)
val res9: Boolean = true

GAPT can import DRUP proofs from Sat4j, Glucose, and PicoSAT:

gapt> Sat4j getDrupProof PigeonHolePrinciple(4,3)
val res10: Option[gapt.proofs.rup.RupProof] = Some(c input 12 11 8 0
c input -1 -2 0
c input -4 -8 0
c input 7 9 1 0
c input -9 -6 0
c input -9 -3 0
c input -11 -5 0
c input -5 -2 0
c input -10 -8 0
c input -7 -8 0
c input -1 -5 0
c input -4 -10 0
c input -7 -4 0
c input -3 -12 0
c input -3 -6 0
c input 6 10 2 0
c input -9 -12 0
c input -6 -12 0
c input -11 -2 0
c input -7 -10 0
c input 3 4 5 0
c input -11 -1 0
-8 1 0
-9 8 0
-11 10 4 0
1 0
-12 0
0)

Just as in the first-order prover interface (see Section 6.1), you can call getResolutionProof and
getLKProof to get the proofs in the desired format:

gapt> Sat4j getLKProof PigeonHolePrinciple(4,3)
val res11: Option[gapt.proofs.lk.LKProof] = Some([p575]
⊢

43

GAPT – User Manual

(R(p_1, h_1) ∨ R(p_1, h_2) ∨ R(p_1, h_3)) ∧
(R(p_2, h_1) ∨ R(p_2, h_2) ∨ R(p_2, h_3)) ∧
(R(p_3, h_1) ∨ R(p_3, h_2) ∨ R(p_3, h_3)) ∧
(R(p_4, h_1) ∨ R(p_4, h_2) ∨ R(p_4, h_3)) →

R(p_1, h_1) ∧ R(p_2, h_1) ∨
R(p_1, h_1) ∧ R(p_3, h_1) ∨
R(p_1, h_1) ∧ R(p_4, h_1) ∨
R(p_2, h_1) ∧ R(p_3, h_1) ∨
R(p_2, h_1) ∧ R(p_4, h_1) ∨
R(p_3, h_1) ∧ R(p_4, h_1) ∨
R(p_1, h_2) ∧ R(p_2, h_2) ∨
R(p_1, h_2) ∧ R(p_3, h_2) ∨
R(p_1, h_2) ∧ R(p_4, h_2) ∨
R(p_2, h_2) ∧ R(p_3, h_2) ∨
R(p_2, h_2) ∧ R(p_4, h_2) ∨
R(p_3, h_2) ∧ R(p_4, h_2) ∨
R(p_1, h_3) ∧ R(p_2, h_3) ∨
R(p_1, h_3) ∧ R(p_3, h_3) ∨
R(p_1, h_3) ∧ R(p_4, h_3) ∨
R(p_2, h_3) ∧ R(p_3, h_3) ∨
R(p_2, h_3) ∧ R(p_4, h_3) ∨
R(p_3, h_3) ∧ R(... large output truncated, print value to show all

6.4 MaxSAT solvers

The MaxSAT interface supports generating optimal solutions for weighted partial MaxSAT instances:
these consist of a list of hard clauses, which must be satisfied in the solution; and a list of weighted
soft clauses, where weight of the satisfied soft clauses must be maximized. See [2] for an overview.

Let us solve a simple example using the MaxSAT solver from SAT4J:

gapt> MaxSat4j.solve(hard = hof"a|b|c", soft = Seq(hof"-a" -> 4, hof"-b" -> 3))
val res0: Option[gapt.models.PropositionalModel] = Some(a:o -> false
b:o -> false
c:o -> true)

GAPT also supports other MaxSAT solvers out of the box, just write OpenWBO or ToySolver instead
of MaxSat4j.

44

Chapter 7

Built-in theorem provers

7.1 The superposition prover escargot

GAPT contains a simple built-in superposition prover called Escargot. It is used for proof replay to
import proofs from other provers. You can use it with the same interface as Prover9 and the other
first-order provers:

gapt> val formula = fof"!x!y!z (x+y)+z=x+(y+z) & !x!y x+y=y+x -> d+a+c+b=a+b+c+d"
val formula: gapt.expr.formula.fol.FOLFormula = ∀x ∀y ∀z x + y + z = x + (y + z) ∧ ∀x ∀y

x + y = y + x →
d + a + c + b = a + b + c + d

gapt> Escargot getResolutionProof formula
val res0: Option[gapt.proofs.resolution.ResolutionProof] = Some([p44] ⊢ (Resolution(p1,

Suc(0), p43, Ant(0)))
[p43] c + (a + (b + d)) = c + (a + (b + d)) ⊢ (Paramod(p17, Suc(0), true, p42, Ant(0), λx

c + (a + (b + d)) = c + x))
[p42] c + (a + (b + d)) = c + (b + (a + d)) ⊢ (Paramod(p21, Suc(0), false, p41, Ant(0), λ

x c + (a + (b + d)) = c + x))
[p41] c + (a + (b + d)) = c + (a + (d + b)) ⊢ (Paramod(p22, Suc(0), true, p40, Ant(0), λx

c + (a + (b + d)) = c + x))
[p40] c + (a + (b + d)) = c + (d + (a + b)) ⊢ (Paramod(p23, Suc(0), true, p39, Ant(0), λx

c + (a + (b + d)) = x))
[p39] c + (a + (b + d)) = d + (c + (a + b)) ⊢ (Paramod(p17, Suc(0), true, p38, Ant(0), λx

c + x = d + (c + (a + b))))
[p38] c + (b + (a + d)) = d + (c + (a + b)) ⊢ (Paramod(p24, Suc(0), true, p37, Ant(0), λx

x = d + (c + (a ... large output truncated, print value to show all

Escargot can natively solve many-sorted problems, for example:

gapt> val formula = hof"P(cons(0:nat, cons(s(0), nil)): list)"
val formula: gapt.expr.formula.Formula = P(cons(0:nat, cons(s(0): nat, nil:list): list)):

o

gapt> val axiom = hof"P(nil) & !x!y!z (P(x) -> P(cons(y: nat, cons(z, x)): list))"

45

GAPT – User Manual

val axiom: gapt.expr.formula.Formula = P(nil:list) ∧ ∀x ∀y ∀z (P(x) → P(cons(y:nat, cons
(z:nat, x): list)))

gapt> val problem = hof"$axiom -> $formula"
val problem: gapt.expr.formula.Formula = P(nil:list) ∧ ∀x ∀y ∀z (P(x) → P(cons(y:nat,

cons(z:nat, x): list))) →
P(cons(0, cons(s(0), nil)))

gapt> Escargot.getExpansionProof(problem)
val res1: Option[gapt.proofs.expansion.ExpansionProof] = Some(
:-
P(nil:list)- ∧

(∀x ∀y ∀z (P(x) → P(cons(y:nat, cons(z:nat, x): list)))
+ˆ{nil, 0, s(0)} (P(nil)+ → P(cons(0, cons(s(0), nil)))-)) →

P(cons(0, cons(s(0), nil)))+)

Escargot can also be used from the command-line using the escargot.sh script. This script expects
a problem in TPTP format:

$./escargot.sh examples/tptp/SET001-1.p

7.2 The inductive theorem prover viper

GAPT contains a built-in inductive theorem prover: Viper (Vienna inductive theorem prover). It can
be started from the command line using the viper.sh script. It takes input in the TIP format [6].
Viper has a mode for analytic induction and a mode for the tree grammar-based method described
in [8]. As of version 2.8 of GAPT, viper is in an early stage of development. By default, the
viper.sh scripts tries several different strategies to solve the given problem, including analytic
induction and tree-grammar-based methods. The --help argument shows the available options.

$./viper.sh --treegrammar --cansolsize 2 3 --gramw scomp --qtys list \
examples/induction/prod_prop_31_monomorphic.smt2

You can also use Viper from within GAPT:

gapt> val problem = TipSmtImporter.load("examples/tip/isaplanner/prop_06.smt2")
val problem: gapt.formats.tip.TipProblem = ∀x0 'proj1-S'(S(x0)) = x0,
∀y '-2'(Z, y) = Z,
∀z '-2'(S(z), Z) = S(z),
∀z ∀x2 '-2'(S(z), S(x2)) = '-2'(z, x2),
∀y '+2'(Z, y) = y,
∀y ∀z '+2'(S(z), y) = S('+2'(z, y)),
∀y0 Z != S(y0)
⊢
∀n ∀m '-2'(n, '+2'(n, m)) = Z

gapt> val Some(proof) = Viper(problem, ViperOptions(verbosity=0)): @unchecked
val proof: gapt.proofs.lk.LKProof = [p168] ∀y0 #c(Z: Nat) != (S(y0:Nat): Nat),

46

GAPT – User Manual

∀x0 ('proj1-S'(S(x0)): Nat) = x0,
∀z ('-2'(S(z), #c(Z: Nat)): Nat) = S(z),
∀y ('+2'(#c(Z: Nat), y:Nat): Nat) = y,
∀y '-2'(#c(Z: Nat), y) = #c(Z: Nat),
∀z ∀x2 '-2'(S(z), S(x2)) = '-2'(z, x2),
∀y ∀z '+2'(S(z), y) = S('+2'(z, y))
⊢
∀n ∀m '-2'(n, '+2'(n, m)) = #c(Z: Nat) (CutRule(p21, Suc(0), p167, Ant(3)))
[p167] ∀y0 #c(Z: Nat) != (S(y0:Nat): Nat),
∀x0 ('proj1-S'(S(x0)): Nat) = x0,
∀z ('-2'(S(z), #c(Z: Nat)): Nat) = S(z),
(⊤ → ∀m '-2'(#c(Z: Nat), '+2'(#c(Z: Nat), m:Nat)) = #c(Z: Nat)) ∧
∀n_0
(∀m '-2'(n_0, '+2'(n_0, m)) = #c(Z: Nat) →
∀m '-2'(S(n_0), '+2'(S(n_0), m)) = #c(Z: Nat)) →

∀n ∀m '-2'(n, '+2'(n, m)) = #c(Z: Nat),
∀y '+2'(#c(Z: Nat), y) = y,
∀y '-2'(#c(Z: Nat), y) = #c(Z: Nat),
∀z ∀x2 '-2'(... large output truncated, print value to show all

7.3 Built-in tableaux prover

GAPT contains a built-in tableaux prover for propositional logic which can be called with the
command solvePropositional, for example as in:

gapt> solvePropositional(hof"a -> b -> a&b").get
val res0: gapt.proofs.lk.LKProof = [p5] ⊢ a → b → a ∧ b (ImpRightRule(p4, Ant(0), Suc

(0)))
[p4] a ⊢ b → a ∧ b (ImpRightRule(p3, Ant(1), Suc(0)))
[p3] a, b ⊢ a ∧ b (AndRightRule(p1, Suc(0), p2, Suc(0)))
[p2] b ⊢ b (LogicalAxiom(b:o))
[p1] a ⊢ a (LogicalAxiom(a:o))

The tableaux prover can also prove quasi-tautologies if you call it as solveQuasiPropositional:

gapt> solveQuasiPropositional(hof"a = b & f a = b -> a = f(f(b))").get
val res1: gapt.proofs.lk.LKProof = [p9] ⊢ a = b ∧ f(a) = b → a = f(f(b)) (ImpRightRule(

p8, Ant(0), Suc(0)))
[p8] a = b ∧ f(a) = b ⊢ a = f(f(b)) (AndLeftRule(p7, Ant(1), Ant(0)))
[p7] f(a) = b, a = b ⊢ a = f(f(b)) (EqualityLeftRule(p6, Ant(0), Ant(1), λx f(a) = x))
[p6] a = b, f(a) = a ⊢ a = f(f(b)) (EqualityRightRule(p5, Ant(0), Suc(0), λx a = f(f(x)))

)
[p5] a = b, f(a) = a ⊢ a = f(f(a)) (WeakeningLeftRule(p4, a = b))
[p4] f(a) = a ⊢ a = f(f(a)) (EqualityRightRule(p3, Ant(0), Suc(0), λx a = f(x)))
[p3] f(a) = a ⊢ a = f(a) (EqualityRightRule(p2, Ant(0), Suc(0), λx a = x))
[p2] f(a) = a ⊢ a = a (WeakeningLeftRule(p1, f(a) = a))
[p1] ⊢ a = a (ReflexivityAxiom(a))

47

GAPT – User Manual

7.4 Intuitionistic theorem prover Slakje

Slakje is an automated intuitionistic theorem prover based on constructivization of classical proofs
on the level of expansion trees. The function Slakje.getLKProof returns a cut-free intuitionistic
proof in the calculus LJ:

gapt> Slakje.getLKProof(hof"¬ ¬ ∀x P(x) → ∀x ¬ ¬ P(x)")
val res0: Option[gapt.proofs.lk.LKProof] = Some([p8] ⊢ ¬ ¬ ∀x P(x) → ∀x ¬ ¬ P(x) (

ImpRightRule(p7, Ant(0), Suc(0)))
[p7] ¬ ¬ ∀x P(x) ⊢ ∀x ¬ ¬ P(x) (ForallRightRule(p6, Suc(0), v, x))
[p6] ¬ ¬ ∀x P(x) ⊢ ¬ ¬ P(v) (NegRightRule(p5, Ant(1)))
[p5] ¬ ¬ ∀x P(x), ¬ P(v) ⊢ (NegLeftRule(p4, Suc(0)))
[p4] ¬ P(v) ⊢ ¬ ∀x P(x) (NegRightRule(p3, Ant(1)))
[p3] ¬ P(v), ∀x P(x) ⊢ (NegLeftRule(p2, Suc(0)))
[p2] ∀x P(x) ⊢ P(v) (ForallLeftRule(p1, Ant(0), P(x): o, v, x))
[p1] P(v) ⊢ P(v) (LogicalAxiom(P(v): o))
)

Slakje can also be used from the command-line using the slakje.sh script. This script expects a
problem in TPTP format:

$./slakje.sh examples/tptp/LCL684+1.001.p

48

Chapter 8

Advanced topics

8.1 Cut-elimination by resolution (CERES)

Cut-elimination by resolution (CERES) is a method which transforms a proof with arbitrary cut-
formulas into one with only atomic cuts [4, 5]. Since expansion proofs can be extracted directly
from a proof with quantifier-free cut-formulas, we can skip the elimination of atomic cuts.

For instance, the example proof Pi2Pigeonhole formalizes the fact that given an aviary with two
holes and an infinite number of pigeons, one hole has to house at least two pigeons. The pigeons
and the holes are represented by numerals in unary notation with zero 0 and successor s. The
function symbol f maps pigeons to holes, which allows us to state the mapping of pigeons to holes as
∀x(f(x) = 0∨f(x) = s(0)). The actual statement to prove is then ∃x∃y(s(x) ≤ y∧f(x) = f(y)).
In order to prove it we also need to axiomatize ≤ with ∀x∀y(s(x) ≤ y → x ≤ y) and a maximum
function M with ∀x∀y(x ≤M(x, y) ∧ y ≤M(x, y)).

We can extract the cut formulas using the cutFormulas command and find two cuts on quantified
formulas: ∀x∃y(x ≤ y ∧ f(y) = 0) and ∀x∃y(x ≤ y ∧ f(y) = s(0)). This corresponds to a case
distinction for each of the two holes which may contain the collision. The actual simplification is
performed using the CERES command. Please note that the input proof must be regular and have
a Skolemized end-sequent. The commands regularize and skolemize provide this functionality,
if necessary.

gapt> prooftool(Pi2Pigeonhole.proof)

gapt> cutFormulas(Pi2Pigeonhole.proof) filter {containsQuantifier(_)} foreach println
∀x ∃y (x <= y ∧ f(y) = s(0))
∀x ∃y (x <= y ∧ f(y) = 0)

gapt> val acnf = CERES(Pi2Pigeonhole.proof)
val acnf: gapt.proofs.lk.LKProof =
[p366] ∀x ∀y (x <= M(x, y) ∧ y <= M(x, y)),
∀x (f(x) = 0 ∨ f(x) = s(0))
⊢
∃x ∃y_0 (s(x) <= y_0 ∧ f(x) = f(y_0)) (ContractionRightRule(p365, Suc(1), Suc(0)))

49

GAPT – User Manual

[p365] ∀x ∀y (x <= M(x, y) ∧ y <= M(x, y)),
∀x (f(x) = 0 ∨ f(x) = s(0))
⊢
∃x ∃y_0 (s(x) <= y_0 ∧ f(x) = f(y_0)),
∃x ∃y_0 (s(x) <= y_0 ∧ f(x) = f(y_0)) (ContractionLeftRule(p364, Ant(2), Ant(1)))
[p364] ∀x (f(x) = 0 ∨ f(x) = s(0)),
∀x ∀y (x <= M(x, y) ∧ y <= M(x, y)),
∀x ∀y (x <= M(x, y) ∧ y <= M(x, y))
⊢
∃x ∃y_0 (s(x) <= y_0 ∧ f(x) = f(y_0)),
∃x ∃y_0 (s(x) <= y_0 ∧ f(x) = f(y_0)) (ContractionLeftRule(p363, Ant(3), Ant(0)))
[p363] ∀x (f(x) = 0 ∨ f(x) = s(0)),
∀x ∀y (x <= M(x, y) ∧ y <= M(x, y)),
∀x ∀y (x <= M(x, y) ∧ y <= M(x, y)),
∀x (f(x) = 0 ∨ f(x) = s(0))
⊢
∃x ∃y_0 (s(x) <= y_0 ∧ f(x) =...

gapt> prooftool(acnf)

gapt> val et = LKToExpansionProof(acnf)
val et: gapt.proofs.expansion.ExpansionProof =
∀x ∀y (x <= M(x, y) ∧ y <= M(x, y))
+ˆ{s(M(s(M(v, v_0)), v_0)), s(M(s(M(s(M(v, v_0)), v_0)), v_0))}
(s(M(s(M(v, v_0)), v_0)) <=

M(s(M(s(M(v, v_0)), v_0)), s(M(s(M(s(M(v, v_0)), v_0)), v_0))))- ∧
(s(M(s(M(s(M(v, v_0)), v_0)), v_0)) <=

M(s(M(s(M(v, v_0)), v_0)), s(M(s(M(s(M(v, v_0)), v_0)), v_0))))-
+ˆ{s(M(s(M(v, v_0)), v_0)), s(M(s(M(v, v_0)), v_0))}
(s(M(s(M(v, v_0)), v_0)) <=

M(s(M(s(M(v, v_0)), v_0)), s(M(s(M(v, v_0)), v_0))))- ∧
(s(M(s(M(v, v_0)), v_0)) <=

M(s(M(s(M(v, v_0)), v_0)), s(M(s(M(v, v_0)), v_0))))-
+ˆ{s(M(s(M(v, v_0)), v_0)), v_0}
(s(M(s(M(v, v_0)), v_0)) <= M(s(M(s(M(v, v_0)), v_0)), v_0))- ∧
wk-{v_0 <= M(s(M(s(M(v, v_0)), v_0)), v_0)}

+ˆ{s(M(v, v_0)), s(M(s(M(v,...

gapt> prooftool(et)

8.2 Cut-introduction

The cut-introduction algorithm as described in [12, 11, 10] is implemented in GAPT for introducing
Π1-cuts into a sequent calculus proof. Take a cut-free example proof:

gapt> val p = LinearExampleProof(9)
val p: gapt.proofs.lk.LKProof = [p36] ∀x (P(x) → P(s(x))), P(0) ⊢ P(s(s(s(s(s(s(s(s(s(0)

))))))))) (ContractionLeftRule(p35, Ant(0), Ant(1)))

50

GAPT – User Manual

[p35] ∀x (P(x) → P(s(x))), ∀x (P(x) → P(s(x))), P(0) ⊢ P(s(s(s(s(s(s(s(s(s(0))))))))))
(ForallLeftRule(p34, Ant(0), P(x) → P(s(x)), s(s(s(s(s(s(s(s(0)))))))), x))

[p34] P(s(s(s(s(s(s(s(s(0))))))))) → P(s(s(s(s(s(s(s(s(s(0)))))))))),
∀x (P(x) → P(s(x))),
P(0)
⊢
P(s(s(s(s(s(s(s(s(s(0)))))))))) (ImpLeftRule(p32, Suc(0), p33, Ant(0)))
[p33] P(s(s(s(s(s(s(s(s(s(0)))))))))) ⊢ P(s(s(s(s(s(s(s(s(s(0)))))))))) (LogicalAxiom(P(s

(s(s(s(s(s(s(s(s(0)))))))))): o))
[p32] ∀x (P(x) → P(s(x))), P(0) ⊢ P(s(s(s(s(s(s(s(s(0))))))))) (ContractionLeftRule(p31,

Ant(0), Ant(1)))
[p31] ∀x (P(x) → P(s(x))), ∀x (P(x) → P(s(x))), P(0) ⊢ P(s(s(s(s(s(s(s(s(0))))) ...

large output truncated, print value to show all

Then compute a proof with a single cut that contains a single quantifier by:

gapt> val q = CutIntroduction(p, method=DeltaTableMethod())
val q: Option[gapt.proofs.lk.LKProof] = Some([p27] ∀x (P(x) → P(s(x))), P(0) ⊢ P(s(s(s(s

(s(s(s(s(s(0)))))))))) (CutRule(p14, Suc(0), p26, Ant(0)))
[p26] ∀x1 (P(x1) → P(s(s(s(x1))))), P(0) ⊢ P(s(s(s(s(s(s(s(s(s(0)))))))))) (

ContractionLeftRule(p25, Ant(1), Ant(0)))
[p25] ∀x1 (P(x1) → P(s(s(s(x1))))),
∀x1 (P(x1) → P(s(s(s(x1))))),
P(0)
⊢
P(s(s(s(s(s(s(s(s(s(0)))))))))) (ForallLeftRule(p24, Ant(1), P(x1) → P(s(s(s(x1)))), s(s

(s(0))), x1))
[p24] ∀x1 (P(x1) → P(s(s(s(x1))))),
P(s(s(s(0)))) → P(s(s(s(s(s(s(0))))))),
P(0)
⊢
P(s(s(s(s(s(s(s(s(s(0)))))))))) (ContractionLeftRule(p23, Ant(1), Ant(0)))
[p23] ∀x1 (P(x1) → P(s(s(s(x1))))),
∀x1 (P(x1) → P(s(s(s(x1))))),
P(s(s(s(0)))) → P(s(s(s(s(s(s(0))))))),
P(0)
⊢
P(s(s(s(s(s(s(s(s(s(0)))))))))) (ForallLeftRule(p22, Ant(2), P(x1) → P(s(s(s(x1 ...

large output truncated, print value to show all

You can also try MaxSATMethod(1,2), this uses a reduction to a MaxSAT problem and an external
MaxSAT-solver to a minimal grammar corresponding to a proof with a cut with two cuts, one with
1 quantifier, one with 2 quantifiers. If you want to see more information about what is happening
during cut-introduction, you can make the output more verbose by running:

gapt> verbose { /* CutIntroduction() */ }

51

GAPT – User Manual

8.3 Tree grammars

The cut-introduction method described in Section 8.2 is based on the use of certain tree grammars
for representing Herbrand-disjunctions. These are totally rigid acyclic tree grammars (TRATGs)
and vectorial TRATGs (VTRATGs). As shown in [11], these grammars are intimately related to
the structure of proofs with cuts. GAPT contains an implementation of these tree grammars, and
given a finite tree language (i.e., a set of terms), is able to automatically find a (V)TRATG that
covers this language:

gapt> val lang = 1 to 18 map { Numeral(_) }
val lang: IndexedSeq[gapt.expr.formula.fol.FOLTerm] = Vector(s(0), s(s(0)), s(s(s(0))), s(

s(s(s(0)))), s(s(s(s(s(0))))), s(s(s(s(s(s(0)))))), s(s(s(s(s(s(s(0))))))), s(s(s(s(s(
s(s(s(0)))))))), s(s(s(s(s(s(s(s(s(0))))))))), s(s(s(s(s(s(s(s(s(s(0)))))))))), s(s(s(
s(s(s(s(s(s(s(s(0))))))))))), s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))), s(s(s(s(s(s(s(s(s
(s(s(s(s(0))))))))))))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))), s(s(s(s(s(s(s(s(
s(s(s(s(s(s(s(0))))))))))))))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))), s(s
(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))))))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s
(0)))))))))))))))))))

gapt> val grammar = findMinimalVTRATG(lang.toSet, 2)
val grammar: gapt.grammars.VTRATG =
Non-terminal vectors: (x_0), (x_1), (x_2)
Terminals: 0, s

x_0 → s(s(s(x_1)))

x_0 → s(s(x_1))

x_0 → s(x_1)

x_1 → s(s(s(s(s(s(x_2))))))

x_1 → s(s(s(x_2)))

x_1 → x_2

x_2 → 0

x_2 → s(s(s(s(s(s(s(s(s(0)))))))))

gapt> lang.toSet subsetOf grammar.language
val res0: Boolean = true

You can also find minimal sub-grammars that still generate certain terms:

gapt> minimizeVTRATG(grammar, (1 to 5).map(Numeral(_)).toSet)
val res1: gapt.grammars.VTRATG =
Non-terminal vectors: (x_0), (x_1), (x_2)
Terminals: 0, s

52

GAPT – User Manual

x_0 → s(s(s(x_1)))

x_0 → s(s(x_1))

x_0 → s(x_1)

x_1 → s(s(s(x_2)))

x_1 → x_2

x_2 → 0

8.4 Witnessed Second-Order Quantifier Elimination and Formula
Equations

Let φ be a first-order formula and X a tuple of second-order variables. Then Witnessed Second-
Order Quantifier Elimination (WSOQE) is the problem of finding a tuple of first-order predicates α
such that the WSOQE condition holds:

|= (∃Xφ)↔ φ[X/α]. (8.1)

A related problem is (existential) Second-Order Quantifier Elimination (SOQE), i.e. finding a first-
order formula ψ such that

|= (∃Xφ)↔ ψ.

Any solution to WSOQE induces a solution to SOQE, since φ[X/α] is a first-order formula.

Another related problem is Formula Equations (FEQ), i.e. finding a tuple of first-order predicates
α such that

|= φ[X/α].

Note that FEQ can be solved by solving WSOQE and appending a first-order validity check to
φ[X/α].

All three problems share the same input structure: a first-order formula together with a set of
second-order variables, usually existentially quantified. We call this structure a Predicate Elimination
Problem (PEP) and provide some methods for working with it.

GAPT provides two methods for solving WSOQE that are based on established methods for solving
SOQE: WSCAN, based on the SCAN algorithm [9] and WDLS, based on the DLS algorithm [7].

8.4.1 WSCAN

We start with an input PEP which we can parse from a first-order formula with a second-order
existential prefix. clspep checks whether the input formula is in PEP form and returns its clause
set form, if it can do so without requiring Skolemization:

53

GAPT – User Manual

gapt> val inputPep = clspep"?X (X(a) & X(b) & -X(c))"
val inputPep: gapt.logic.hol.ClauseSetPredicateEliminationProblem =

ClauseSetPredicateEliminationProblem(List(X:i>o),Set(⊢ X(b), X(c) ⊢ , ⊢ X(a)))

To compute a WSOQE witness one can use

gapt> val wit = wscan(inputPep).get
val wit: gapt.expr.subst.Substitution = Substitution(X:i>o -> λu_0 c != u_0 ∨ b = u_0)

Further examples can be found in examples/PredicateEliminationProblems.scala.

If Skolemization of the input is desired, one can perform it explicitly by using

gapt> val clauseSetPep = pep"?X ?u?v?w (X(u) & X(v) & -X(w))".toClauseSet
val clauseSetPep: gapt.logic.hol.ClauseSetPredicateEliminationProblem =

ClauseSetPredicateEliminationProblem(List(X:i>o),Set(⊢ X(s_2), X(s_4) ⊢ , ⊢ X(s_0)))

Note that this transformation might not be equivalence-preserving as it can introduce new Skolem
terms.

We now show how WSCAN works on a more detailed level. First, it runs SCAN on the input clause
set to get a derivation

gapt> val derivation = scan(clauseSetPep, derivationLimit=Some(10), attemptLimit=Some(10),
oneSidedOnly=true).get

val derivation: gapt.logic.hol.scan.Derivation = Derivation(
ClauseSetPredicateEliminationProblem(List(X:i>o),Set(⊢ X(s_2), X(s_4) ⊢ , ⊢ X(s_0)))
,List(ConstraintResolution(PointedClause(⊢ X(s_2),Suc(0)),PointedClause(X(s_4) ⊢ ,
Ant(0))), PurifiedClauseDeletion(PointedClause(⊢ X(s_2),Suc(0))),
ConstraintResolution(PointedClause(X(s_4) ⊢ ,Ant(0)),PointedClause(⊢ X(s_0),Suc(0)))
, PurifiedClauseDeletion(PointedClause(X(s_4) ⊢ ,Ant(0))), ExtendendPurityDeletion(X:
i>o,Positive)))

The derivationLimit parameter controls the number of derivation steps that are to be performed
by SCAN. If SCAN does not eliminate the given predicates within this limit, the method tries again
with another set of inferences until the number of attempts given by attemptLimit is reached.
One can set either or both of derivationLimit and attempLimit to None to run SCAN without
the respective limit. The option oneSidedOnly=true makes sure only derivations of a certain kind
are constructed for which we can guarantee to compute a first-order witness. However, this might
affect whether a derivation can be found at all.

The returned derivation stores the input PEP and all performed inference steps during the run of
SCAN. Furthermore we can reconstruct the final clause set, which does not contain any of the
second-order variables of the input PEP:

gapt> derivation.conclusion
val res0: Set[gapt.proofs.HOLClause] = Set(s_2 = s_4 ⊢ , s_4 = s_0 ⊢)

From the derivation we can also construct the witness substitution for the input PEP.

gapt> val wit = wscan.witness(derivation, witnessLimit=Some(10)).get
val wit: gapt.expr.subst.Substitution = Substitution(X:i>o -> λu_0 s_4 != u_0 ∨ s_2 = u_0

)

54

GAPT – User Manual

During the witness construction some SCAN-like saturation processes are performed. The parameter
witnessLimit controls how many inference steps during every one of these saturation processes we
allow. The construction fails if any of these processes does not terminate within the given number
of inference steps.

By the correctness of SCAN we know that the input formula is equivalent to the conclusion of
the SCAN derivation which is a first-order clause set. We can thus check if the conclusion is
logically equivalent to substituting the computed witness for X in the input formula. We do that
by constructing the first-order WSOQE-condition and verifying that it is valid using a first-order
theorem prover like Escargot:

gapt> Escargot.isValid(Iff(derivation.conclusion.toFormula, BetaReduction.betaNormalize(
wit(clauseSetPep.firstOrderClauses.toFormula))))

val res1: Boolean = true

All the options illustrated can be used on wscan itself too:

gapt> val derivation = wscan(clauseSetPep, oneSidedOnly=true, derivationLimit=Some(10),
attemptLimit=Some(10), witnessLimit=Some(10)).get

val derivation: gapt.expr.subst.Substitution = Substitution(X:i>o -> λu_0 s_4 != u_0 ∨
s_2 = u_0)

To find multiple witnesses one can use the following:

gapt> val witnesses = wscan.witnesses(clauseSetPep, attemptLimit = Some(10)).toSeq
val witnesses: Seq[gapt.expr.subst.Substitution] = List(Substitution(X:i>o -> λu_0 s_4 !=

u_0 ∨ s_2 = u_0), Substitution(X:i>o -> λu_0 (WX(u_0) ∨ s_0 = u_0) ∧ s_4 != u_0 ∨
s_2 = u_0), Substitution(X:i>o -> λu_0 s_0 = u_0 ∨ s_2 = u_0), Substitution(X:i>o ->
λu_0 WX(u_0) ∧ s_4 != u_0 ∨ s_0 = u_0 ∨ s_2 = u_0), Substitution(X:i>o -> λu_0 s_4
!= u_0), Substitution(X:i>o -> λu_0 s_4 != u_0), Substitution(X:i>o -> λu_0 (WX(u_0)
∨ s_0 = u_0 ∨ s_2 = u_0) ∧ s_4 != u_0), Substitution(X:i>o -> λu_0 s_4 != u_0),
Substitution(X:i>o -> λu_0 (WX(u_0) ∨ s_2 = u_0 ∨ s_0 = u_0) ∧ s_4 != u_0),
Substitution(X:i>o -> λu_0 s_2 = u_0 ∨ s_0 = u_0))

Note that the attemptLimit parameter controls how many witnesses are found at most. If one is
only interested in mutually non-equivalent witnesses one can use

gapt> val nonEquivalent = wscan.mutuallyNonEquivalent(witnesses).toSeq
val nonEquivalent: Seq[gapt.expr.subst.Substitution] = List(Substitution(X:i>o -> λu_0

s_4 != u_0 ∨ s_2 = u_0), Substitution(X:i>o -> λu_0 (WX(u_0) ∨ s_0 = u_0) ∧ s_4 !=
u_0 ∨ s_2 = u_0), Substitution(X:i>o -> λu_0 s_0 = u_0 ∨ s_2 = u_0), Substitution(X:i
>o -> λu_0 WX(u_0) ∧ s_4 != u_0 ∨ s_0 = u_0 ∨ s_2 = u_0), Substitution(X:i>o -> λu_0
s_4 != u_0), Substitution(X:i>o -> λu_0 (WX(u_0) ∨ s_0 = u_0 ∨ s_2 = u_0) ∧ s_4 !=
u_0))

which uses Escargot under the hood to check for equivalence between the given witnesses.

8.4.2 WDLS

The DLS algorithm [7] can eliminate second-order quantifiers for certain formulas by computing
equivalent first-order formulas. GAPT contains an implementation of a variant of the DLS algorithm

55

GAPT – User Manual

that computes actual witnesses for second-order quantifiers. For example consider the following PEP

gapt> val H = pep"?X ?Y(X(a) ∧ ¬ Y(a))"
val H: gapt.logic.hol.PredicateEliminationProblem = PredicateEliminationProblem(List(X:i>o

, Y:i>o),X(a) ∧ ¬ Y(a))

We can eliminate the second-order quantifiers and obtain witnesses by

gapt> val scala.util.Success(solution) = wdls(H): @unchecked
val solution: gapt.expr.subst.Substitution = Substitution(X:i>o -> λx_0 a = x_0, Y:i>o ->

λy_0 ⊥)

The returned value is a substitution such that applying it to the first-order part of the input fulfils
(8.1). Since the input formula is valid this equivalent to the resulting formula being valid

gapt> Escargot.isValid(BetaReduction.betaNormalize(solution(H.firstOrderPart)))
val res2: Boolean = true

Failure of the method, i.e. return of a Failure, does not mean that there is no witness such that
the equivalence holds, but merely that our algorithm could not find a witness. A more detailed
description of the formulas that can be solved by our implementation of the DLS algorithm can be
found in the documentation of dls.

8.4.3 Solving formula equations

GAPT supports solving certain classes of formula equations. For example let

gapt> val F = pep"?X(X(a) ∧ X(b))"
val F: gapt.logic.hol.PredicateEliminationProblem = PredicateEliminationProblem(List(X:i>o

),X(a) ∧ X(b))

We can solve the formula equation above by

gapt> val scala.util.Success(s) = solveFormulaEquation(F): @unchecked
val s: gapt.expr.subst.Substitution = Substitution(X:i>o -> λx_0 a = x_0 ∨ b = x_0)

On success a substitution is returned, which when applied to the input formula yields a valid formula.

gapt> Escargot.isValid(BetaReduction.betaNormalize(s(F.firstOrderPart)))
val res3: Boolean = true

If solveFormulaEquation fails to find a solution, this does not mean that the formula equation is
not solvable, but only that the algorithm we use could not find it.

The function solveFormulaEquation proceeds by solving WSOQE using WDLS and checking
whether the resulting formula is valid using Escargot.isValid.

56

Appendix A

Lambda calculus

GAPT uses a polymorphic simply-typed lambda calculus to represent formulas and terms. The
syntax of types and terms is as follows. A type is either a type function, an arrow (function) type
or a type variable.

Type ::= f(Type, . . . ,Type) | Type→ Type | ?α

There are 4 kinds of expressions: constants, variables, applications, and abstractions:

Expr ::= v : Type | cType...Type : Type | Expr Expr | λ(v : Type) Expr

This lambda calculus is simply typed in the sense that we do not have quantification over types.
Instead, we allow inductive data types and definitions to be polymorphic. That is, data types and
the types of definitions can have type variables. Constants have a list of type parameters; the name
of a constant together with its parameters should uniquely determine the type. In this manner, we
can define a function concat{?a} of type list ?a > list ?a > list ?a. With this definition
we can use all instances, where we substitute ?a for any other type. For example when we use this
function for lists of numbers, we would use the instance concat{nat}: list nat > list nat >
list nat.

57

GAPT – User Manual

58

Appendix B

Proof systems

B.1 The sequent calculus LK

In GAPT, a sequent is a pair of lists, more precisely of Scala Vectors. The rules of LK are listed
below. Proof trees are constructed top-down, starting with axioms and with each rule introducing
new inferences. With the exception of the conversion rules, Skolem rules, proof links, and induction
rules, the constructors of the rules only allow inferences that are actually valid. Note that the rules
are presented here as if they always act on the outermost formulas in the upper sequent, but this
is only for convenience of presentation. The rules may operate on any formula in the sequent. The
basic constructors actually require the user to specify on which concrete formulas the inference
should be performed.

Apart from those basic constructors, there is also a multitude of convenience constructors that
facilitate easier proof construction. Moreover, there are so-called macro rules that reduce several
inferences to a single command (e.g. introducing quantifier blocks). See the API documentation
of the individual rules for details.

Axioms

(Logical axiom)
A ⊢ A

⊤ axiom⊢ ⊤

(Reflexivity axiom)⊢ t = t

⊥ axiom⊥ ⊢

(t)
Proof link

Γ ⊢ ∆

Cut

Γ ⊢ ∆, A A,Σ ⊢ Π
(cut)

Γ,Σ ⊢ ∆,Π

59

GAPT – User Manual

Structural rules

Left rules

Γ ⊢ ∆ (w:l)
A,Γ ⊢ ∆

A,A,Γ ⊢ ∆
(c:l)

A,Γ ⊢ ∆

Right rules

Γ ⊢ ∆ (w:r)
Γ ⊢ ∆, A

Γ ⊢ ∆, A,A
(c:r)

Γ ⊢ ∆, A

Propositional rules

Left rules

A,B,Γ ⊢ ∆
(∧:l)

A ∧B,Γ ⊢ ∆

A,Γ ⊢ ∆ B,Σ ⊢ Π
(∨:l)

A ∨B,Γ,Σ ⊢ ∆,Π

Γ ⊢ ∆, A
(¬:l)¬A,Γ ⊢ ∆

Γ ⊢ ∆, A B,Σ ⊢ Π
(→ :l)

A→ B,Γ,Σ ⊢ ∆,Π

Right rules

Γ ⊢ ∆, A Σ ⊢ Π, B
(∧:r)

Γ,Σ ⊢ ∆,Π, A ∧B

Γ ⊢ ∆, A,B
(∨:r)

Γ ⊢ ∆, A ∨B

A,Γ ⊢ ∆
(¬:r)

Γ ⊢ ∆,¬A

A,Γ ⊢ ∆, B
(→ :r)

Γ ⊢ ∆, A→ B

Quantifier rules

Left rules

A[x\t],Γ ⊢ ∆
(∀:l)∀xA,Γ ⊢ ∆

A[x\y],Γ ⊢ ∆
(∃:l)∃xA,Γ ⊢ ∆

A[x\s],Γ ⊢ ∆
(∃sk:l)∃xA,Γ ⊢ ∆

Right rules

Γ ⊢ ∆, A[x\t]
(∃:r)

Γ ⊢ ∆,∃xA

Γ ⊢ ∆, A[x\y]
(∀:r)

Γ ⊢ ∆,∀xA

Γ ⊢ ∆, A[x\s]
(∀sk:r)

Γ ⊢ ∆,∀xA

The variable y must not occur free in Γ, ∆ or A.

Equality rules

60

GAPT – User Manual

Left rules

s = t, A[x\s],Σ ⊢ Π
(=:l)

s = t, A[x\t],Σ ⊢ Π

s = t, A[x\t],Σ ⊢ Π
(=:l)

s = t, A[x\s],Σ ⊢ Π

Right rules

s = t,Σ ⊢ Π, A[x\s]
(=:r)

s = t,Σ ⊢ Π, A[x\t]

s = t,Σ ⊢ Π, A[x\t]
(=:r)

s = t,Σ ⊢ Π, A[x\s]

Conversion rules

A,Γ ⊢ ∆
(conv:l)

B,Γ ⊢ ∆

Γ ⊢ ∆, A
(conv:r)

Γ ⊢ ∆, B

These conversion rules are extremely liberal, as they allow the replacement of any formula by any
other formula. When checking these rule against a context, we verify that both A and B normalize
to the same normal form.

Induction

The induction rule applies to arbitrary algebraic data types. Let c1, . . . , cn be the constructors of a
type and let ki be the arity of ci. Let F [x] be a formula with x a free variable. Then we call the
sequent Si := F [x1], . . . , F [xki],Γi ⊢ ∆i, F [ci(x1, . . . , xki)] the i-th induction step. The induction
rule then has the form

(π1)

S1
(π2)

S2 . . .

(πn)

Sn (ind)
Γ ⊢ ∆, F [t]

In the case of the natural numbers, there are two constructors: 0 of arity 0 and s of arity 1.
Consequently, the induction rule reduces to

(π1)

Γ1 ⊢ ∆1, F [0]

(π2)

F [x],Γ2 ⊢ ∆2, F [sx]
(ind)

Γ1,Γ2 ⊢ ∆1,∆2, F [t]

B.2 Natural Deduction ND

The rules of ND are listed below. Classical logic is supported by providing the excluded middle rule.
We use ND rules in sequent form. An NDSequent has exactly one formula on the right.

As in LK, proof trees are constructed top-down, starting with axioms and with each rule introducing
new inferences. With exception of the proof links and the induction rules, the constructors of the
rules only allow inferences that are actually valid. Note that the rules are presented here as if they

61

GAPT – User Manual

always act upon the outermost formulas in the upper sequent, but this is only for convenience of
presentation. The basic constructors actually require the user to specify on which concrete formulas
the inference should be performed.

Apart from those basic constructors, there is also a multitude of convenience constructors that
facilitate easier proof construction. See the API documentation of the individual rules for details.

Axioms

(Logical axiom)
A ⊢ A (Theory axiom)⊢ A

Structural rules

Γ ⊢ B (w)
A,Γ ⊢ B

A,A,Γ ⊢ B
(c)

A,Γ ⊢ B

Propositional rules

Elimination rules

Γ ⊢ A ∧B (∧:e1)
Γ ⊢ A

Γ ⊢ A ∧B (∧:e2)
Γ ⊢ B

Γ ⊢ A ∨B Π, A ⊢ C ∆, B ⊢ C
(∨:e)

Γ,Π,∆ ⊢ C

Γ ⊢ ¬A Π ⊢ A (¬:e)
Γ,Π ⊢ ⊥

Γ ⊢ A→ B Π ⊢ A (→ :e)
Γ,Π ⊢ B

Γ ⊢ ⊥ (⊥:e)
Γ ⊢ A

Introduction rules

Γ ⊢ A Π ⊢ B (∧:i)
Γ,Π ⊢ A ∧B

Γ ⊢ A (∨:i1)
Γ ⊢ A ∨B

Γ ⊢ A (∨:i2)
Γ ⊢ B ∨A

A,Γ ⊢ ⊥
(¬:i)

Γ ⊢ ¬A

A,Γ ⊢ B
(→ :i)

Γ ⊢ A→ B

(⊤:i)⊢ ⊤

Quantifier rules

Elimination rules

Γ ⊢ ∀xA (∀:e)
Γ ⊢ A[x\t]

Γ ⊢ ∃xA Π, A[x\y] ⊢ B
(∃:e)

Γ,Π ⊢ B

62

GAPT – User Manual

Introduction rules

Γ ⊢ A[x\y]
(∀:i)

Γ ⊢ ∀xA

Γ ⊢ A[x\t]
(∃:i)

Γ ⊢ ∃xA

The variable y must not occur free in Γ, A in case of ∀ introduction, and must not occur free in
Π, A,B in case of ∃ elimination.

Equality rules

Elimination rules

Γ ⊢ s = t Π ⊢ A[s/x]
(=:e)

Γ,Π ⊢ A[t/x]

Introduction rules

(=:i)⊢ t = t

Definition rule

Γ ⊢ A (def)
Γ ⊢ B

The definition rule is extremely liberal, as it allows the replacement of any formula by any other
formula. When checking this rule against a context, we verify that both A and B normalize to the
same normal form.

Induction

The induction rule applies to arbitrary algebraic data types. Let c1, . . . , cn be the constructors of a
type and let ki be the arity of ci. Let F [x] be a formula with x a free variable of the appropriate
type. Then we call the sequent Si := F [x1], . . . , F [xki],Γi ⊢ F [ci(x1, . . . , xki)] the i-th induction
step. The induction rule then has the form

(π1)

S1
(π2)

S2 . . .

(πn)

Sn (ind)
Γ ⊢ F [t]

In the case of the natural numbers, there are two constructors: 0 of arity 0 and s of arity 1.
Consequently, the induction rule reduces to

(π1)

Γ1 ⊢ F [0]
(π2)

F [x],Γ2 ⊢ F [sx]
(ind)

Γ1,Γ2 ⊢ F [t]

Excluded Middle

Γ, A ⊢ B Π,¬A ⊢ B
(em)

Γ,Π ⊢ B

63

GAPT – User Manual

B.3 Resolution

Our resolution calculus integrates higher-order reasoning, structural clausification, and Avatar-style
splitting as in [18]. The judgments of this calculus are A-sequents. An A-sequent S ← A is a pair
of a sequent S of HOL formulas, and a conjunction A of propositional literals:

Γ ⊢ ∆← A

Internally, we represent the (negation of the) assertion as a clause. The judgment Γ ⊢ ∆ ← A is
interpreted as the following formula, where x are the free variables of the sequent:

A→ ∀x
(∧

Γ→
∨

∆
)

Inferences such as resolution or paramodulation do not operate on the assertions. Unless specified
otherwise, assertions are inherited by default, combined with a conjunction:

Γ ⊢ ∆, a← A a,Π ⊢ Λ← B
Resolution

Γ,Π ⊢ ∆,Λ← A ∧B

There is no factoring on assertions, duplicate assertions are automatically removed. Substitutions
are not absorbed into resolution, factoring, and paramodulation; they are explicitly represented using
the Subst inference.

Initial sequents

Input
S

Refl⊢ t = t

Taut
a ⊢ a

Defn⊢ ∀x (D(x) ≡ φ[x])

Structural rules

a, a,Γ ⊢ ∆
Factor

a,Γ ⊢ ∆

Γ ⊢ ∆, a, a
Factor

Γ ⊢ ∆, a

S
Subst

Sσ

64

GAPT – User Manual

Logical rules

Γ ⊢ ∆, a a,Π ⊢ Λ
Resolution

Γ,Π ⊢ ∆,Λ

Γ ⊢ ∆, t = s Π ⊢ Λ, a[t]
Paramod

Γ,Π ⊢ ∆,Λ, a[s]

(We also allow rewriting in the antecedent, and rewriting from right to left.)

Γ ⊢ ∆, t = s
Flip

Γ ⊢ ∆, s = t

t = s,Γ ⊢ ∆
Flip

s = t,Γ ⊢ ∆

Propositional rules

⊤,Γ ⊢ ∆
TopL

Γ ⊢ ∆

Γ ⊢ ∆,⊥
BottomR

Γ ⊢ ∆

¬a,Γ ⊢ ∆
NegL

Γ ⊢ ∆, a

Γ ⊢ ∆,¬a
NegR

a,Γ ⊢ ∆

a ∧ b,Γ ⊢ ∆
AndL

a, b,Γ ⊢ ∆

Γ ⊢ ∆, a ∧ b
AndR1

Γ ⊢ ∆, a

Γ ⊢ ∆, a ∧ b
AndR2

Γ ⊢ ∆, b

a ∨ b,Γ ⊢ ∆
OrL1

a,Γ ⊢ ∆

a ∨ b,Γ ⊢ ∆
OrL2

b,Γ ⊢ ∆

Γ ⊢ ∆, a ∨ b
OrR

Γ ⊢ ∆, a, b

a→ b,Γ ⊢ ∆
ImpL1

Γ ⊢ ∆, a

a→ b,Γ ⊢ ∆
ImpL2

b,Γ ⊢ ∆

Γ ⊢ ∆, a→ b
ImpR

a,Γ ⊢ ∆, b

∀xφx,Γ ⊢ ∆
AllL

φ(s(...)),Γ ⊢ ∆

Γ ⊢ ∆, ∀xφx
AllR

Γ ⊢ ∆, φx

∃xφx,Γ ⊢ ∆
ExL

φx,Γ ⊢ ∆

Γ ⊢ ∆,∃xφx
ExR

Γ ⊢ ∆, φ(s(...))

φ(x),Γ ⊢ ∆
DefIntro

D(x),Γ ⊢ ∆

Γ ⊢ ∆, φ(x)
DefIntro

Γ ⊢ ∆, D(x)

Avatar rules

By [C] we denote the propositional atom representing the clause component C.

C, S ← A
AvatarSplit

S ← A ∧ ¬[C]

(For simplicity, the AvatarSplit rule only splits away a single clause component at a time.)

AvatarComponent
C ← [C]

Γ ⊢ ∆ ← a1 ∧ a2 ∧ · · · ∧ ¬b1 ∧ ¬b2 ∧ · · ·
AvatarContradiction

a1, a2, . . . ,Γ ⊢ ∆, b1, b2, . . . ← ⊤

65

GAPT – User Manual

B.4 Expansion trees

Expansion trees are a compact representation of quantifier inferences in proofs with cuts. They
have originally been introduced in [15]. GAPT contains an extension by Skolem nodes, weakening
nodes, definitions, merges, and cuts [14].

ETAtom A (where A is a HOL atom)
ETWeakening wk(φ) (where φ is a formula)

ETMerge E1 ⊔ E2

ETDefinition D +def E (where D is definitionally equal to the shallow formula of E)
ETTop ⊤

ETBottom ⊥
ETNeg ¬E
ETAnd E1 ∧ E2

ETOr E1 ∨ E2

ETImp E1 → E2

ETWeakQuantifier Qxφ+t1 φ[x\t1] · · ·+tn φ[x\tn] (where Q is a quantifier and ti terms)
ETStrongQuantifier Qxφ+α

ev φ[x\α] (where Q is a quantifier and α an eigenvariable)
ETSkolemQuantifier Qxφ+s

sk φ[x\s] (where Q is a quantifier and s a Skolem term)

Cuts are represented as expansions of the cut axiom ∀X (X → X) in the antecedent.

66

Bibliography

[1] Juan P Aguilera and Matthias Baaz. Unsound inferences make proofs shorter. 2016. preprint
available at https://arxiv.org/abs/1608.07703.

[2] Josep Argelich, Chu Min Li, Felip Manya, and Jordi Planes. The first and second max-SAT
evaluations. Journal on Satisfiability, Boolean Modeling and Computation, 4(2-4):251–278,
2008.

[3] Matthias Baaz, Stefan Hetzl, and Daniel Weller. On the complexity of proof deskolemization.
The Journal of Symbolic Logic, 77(2):669–686, 2012.

[4] Matthias Baaz and Alexander Leitsch. Cut-elimination and Redundancy-elimination by Reso-
lution. Journal of Symbolic Computation, 29(2):149–176, 2000.

[5] Matthias Baaz and Alexander Leitsch. Methods of Cut-Elimination, volume 34 of Trends in
Logic. Springer, 2011.

[6] Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. TIP: tons of inductive
problems. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker
Sorge, editors, International Conference on Intelligent Computer Mathematics (CICM) 2015,
volume 9150 of Lecture Notes in Computer Science, pages 333–337. Springer, 2015.

[7] Patrick Doherty, Witold Lukaszewicz, and Andrzej Szalas. Computing circumscription revisited:
A reduction algorithm. Journal of Automated Reasoning, 18:297–336, 01 1997.

[8] Sebastian Eberhard and Stefan Hetzl. Inductive theorem proving based on tree grammars.
Annals of Pure and Applied Logic, 166(6):665–700, 2015.

[9] Dov Gabbay and Hans Jürgen Ohlbach. Quantifier elimination in second order predicate logic.
South African Computer Journal, 7:35–43, 1992.

[10] Stefan Hetzl, Alexander Leitsch, Giselle Reis, Janos Tapolczai, and Daniel Weller. Introducing
Quantified Cuts in Logic with Equality. In Stéphane Demri, Deepak Kapur, and Christoph Wei-
denbach, editors, Automated Reasoning - 7th International Joint Conference, IJCAR, volume
8562 of Lecture Notes in Computer Science, pages 240–254. Springer, 2014.

[11] Stefan Hetzl, Alexander Leitsch, Giselle Reis, and Daniel Weller. Algorithmic introduction of
quantified cuts. Theoretical Computer Science, 549:1–16, 2014.

67

https://arxiv.org/abs/1608.07703

GAPT – User Manual

[12] Stefan Hetzl, Alexander Leitsch, and Daniel Weller. Towards algorithmic cut-introduction. In
Proceedings of the 18th international conference on Logic for Programming, Artificial Intelli-
gence, and Reasoning, LPAR’12, pages 228–242, Berlin, Heidelberg, 2012. Springer-Verlag.

[13] Stefan Hetzl, Tomer Libal, Martin Riener, and Mikheil Rukhaia. Understanding Resolution
Proofs through Herbrand’s Theorem. In Didier Galmiche and Dominique Larchey-Wendling, ed-
itors, Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX) 2013,
Proceedings, volume 8123 of Lecture Notes in Computer Science, pages 157–171. Springer,
2013.

[14] Stefan Hetzl and Daniel Weller. Expansion trees with cut. preprint, available at http://
arxiv.org/abs/1308.0428, 2013.

[15] Dale Miller. A Compact Representation of Proofs. Studia Logica, 46(4):347–370, 1987.

[16] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Artima Inc, 3rd edition,
2016.

[17] Gaisi Takeuti. Proof Theory. North-Holland, Amsterdam, 2nd edition, March 1987.

[18] Andrei Voronkov. AVATAR: the architecture for first-order theorem provers. In Armin Biere and
Roderick Bloem, editors, Computer Aided Verification - 26th International Conference, CAV
2014, volume 8559 of Lecture Notes in Computer Science, pages 696–710. Springer, 2014.

68

http://arxiv.org/abs/1308.0428
http://arxiv.org/abs/1308.0428

	Introduction
	Download and execution
	Required and optional software

	Data structures
	Expressions and formulas
	Sequents
	Proofs
	Contexts
	The tactics language gaptic

	Computational proof theory
	Reductive cut-elimination
	Induction-elimination
	Skolemization
	Deskolemization
	Interpolation
	LK to ND translation
	Expansion proofs
	Modified realizability

	Input and output
	JSON
	TPTP

	Interfaces to external theorem provers and solvers
	First-order theorem provers
	SMT solvers
	SAT solvers
	MaxSAT solvers

	Built-in theorem provers
	The superposition prover escargot
	The inductive theorem prover viper
	Built-in tableaux prover
	Intuitionistic theorem prover Slakje

	Advanced topics
	Cut-elimination by resolution (CERES)
	Cut-introduction
	Tree grammars
	Witnessed Second-Order Quantifier Elimination and Formula Equations

	Lambda calculus
	Proof systems
	The sequent calculus LK
	Natural Deduction ND
	Resolution
	Expansion trees

