case class ETMerge(child1: ExpansionTree, child2: ExpansionTree) extends BinaryExpansionTree with Product with Serializable
A node signifying that two trees need to be merged.
The two trees must have the same shallow formula.
- child1
The left subtree.
- child2
The right subtree.
- Source
- expansionTrees.scala
- Alphabetic
- By Inheritance
- ETMerge
- Serializable
- Serializable
- BinaryExpansionTree
- ExpansionTree
- DagProof
- Product
- Equals
- AnyRef
- Any
- by any2stringadd
- by StringFormat
- by Ensuring
- by ArrowAssoc
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
ETMerge(child1: ExpansionTree, child2: ExpansionTree)
- child1
The left subtree.
- child2
The right subtree.
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
- def +(other: String): String
- def ->[B](y: B): (ETMerge, B)
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
apply(pos: HOLPosition): Set[ExpansionTree]
- Definition Classes
- ExpansionTree
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
val
child1: ExpansionTree
- Definition Classes
- ETMerge → BinaryExpansionTree
-
val
child2: ExpansionTree
- Definition Classes
- ETMerge → BinaryExpansionTree
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate() @throws( ... )
-
def
dagLike: DagLikeOps[ExpansionTree]
Operations that view the sub-proofs as a DAG, which ignore duplicate sub-proofs, see DagProof.DagLikeOps for a list.
Operations that view the sub-proofs as a DAG, which ignore duplicate sub-proofs, see DagProof.DagLikeOps for a list.
- Definition Classes
- DagProof
-
def
deep: Formula
The formula represented by this tree, fully instantiated.
The formula represented by this tree, fully instantiated.
- Definition Classes
- ETMerge → ExpansionTree
-
def
depth: Int
Depth of the proof, which is the maximum length of a path you can take via immediateSubProofs.
Depth of the proof, which is the maximum length of a path you can take via immediateSubProofs.
- Definition Classes
- DagProof
- def ensuring(cond: (ETMerge) ⇒ Boolean, msg: ⇒ Any): ETMerge
- def ensuring(cond: (ETMerge) ⇒ Boolean): ETMerge
- def ensuring(cond: Boolean, msg: ⇒ Any): ETMerge
- def ensuring(cond: Boolean): ETMerge
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(that: Any): Boolean
- Definition Classes
- DagProof → Equals → AnyRef → Any
- def formatted(fmtstr: String): String
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
val
hashCode: Int
- Definition Classes
- DagProof
-
def
immediateSubProofs: Seq[ExpansionTree]
The immediate subproofs of this rule.
The immediate subproofs of this rule.
- Definition Classes
- BinaryExpansionTree → DagProof
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
longName: String
The name of this rule (in words).
The name of this rule (in words).
- Definition Classes
- DagProof
-
def
name: String
The name of this rule (in symbols).
The name of this rule (in symbols).
- Definition Classes
- DagProof
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
val
polarity: Polarity
- Definition Classes
- ETMerge → ExpansionTree
-
val
shallow: Formula
The formula represented by this tree.
The formula represented by this tree.
- Definition Classes
- ETMerge → ExpansionTree
-
def
stepString(subProofLabels: Map[Any, String]): String
- Attributes
- protected
- Definition Classes
- DagProof
-
def
subProofAt(pos: List[Int]): ExpansionTree
Returns the subproof at the given position: p.subProofAt(Nil) is p itself; p.subProofAt(i :: is) is the ith subproof of p.subProofAt(is).
Returns the subproof at the given position: p.subProofAt(Nil) is p itself; p.subProofAt(i :: is) is the ith subproof of p.subProofAt(is).
- Definition Classes
- DagProof
-
def
subProofs: Set[ExpansionTree]
Set of all (transitive) sub-proofs including this.
Set of all (transitive) sub-proofs including this.
- Definition Classes
- DagProof
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toSigRelativeString(implicit sig: BabelSignature): String
- Definition Classes
- ExpansionTree
-
def
toString(): String
- Definition Classes
- ExpansionTree → DagProof → AnyRef → Any
-
def
treeLike: TreeLikeOps[ExpansionTree]
Operations that view the sub-proofs as a tree, see DagProof.TreeLikeOps for a list.
Operations that view the sub-proofs as a tree, see DagProof.TreeLikeOps for a list.
- Definition Classes
- DagProof
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
- def →[B](y: B): (ETMerge, B)
This is the API documentation for GAPT.
The main package is gapt.