Object

at.logic.gapt.proofs.lk

proofFromInstances

Related Doc: package lk

Permalink

object proofFromInstances

Computes a proof of F from a proof of some instances of F

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. proofFromInstances
  2. AnyRef
  3. Any
  1. Hide All
  2. Show all
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def apply(s1: LKProof, met: MultiExpansionTree): LKProof

    Permalink

    s1

    An LKProof containing the instances in et in its end sequent

    met

    A MultiExpansionTree whose shallow formula is prenex and which contains no strong or Skolem quantifiers.

    returns

    A proof starting with s1 and ending with the deep formula of met.

  5. def apply(s1: LKProof, mes: MultiExpansionSequent)(implicit dummyImplicit: DummyImplicit): LKProof

    Permalink

    s1

    An LKProof containing the instances in mes in its end sequent.

    mes

    A MultiExpansionSequent in which all shallow formulas are prenex and which contains no strong or Skolem quantifiers.

    returns

    A proof starting with s1 and ending with the deep sequent of mes.

  6. def apply(s1: LKProof, et: ExpansionTree): LKProof

    Permalink

    s1

    An LKProof containing the instances in et in its end sequent

    et

    An ExpansionTree whose shallow formula is prenex and which contains no strong or Skolem quantifiers.

    returns

    A proof starting with s1 and ending with the deep formula of et.

  7. def apply(s1: LKProof, es: ExpansionSequent): LKProof

    Permalink

    s1

    An LKProof containing the instances in es in its end sequent.

    es

    An ExpansionSequent in which all shallow formulas are prenex and which contains no strong or Skolem quantifiers.

    returns

    A proof starting with s1 and ending with the deep sequent of es.

  8. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  9. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  10. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  11. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  12. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  13. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  14. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  15. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  16. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  17. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  18. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  19. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  20. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  21. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped