Why study Computational Logic in Vienna?

Gernot Salzer

Technische Universität Wien Faculty of Informatics Theory and Logic Group

November 2015

	F49	Ernstbrunn			Zistersdorf		Závod	Sec.
Langenlois	Kirchberg	Göllersdorf	Kreuzs	tetten Bad Piraw	arth	Gajary	é Leváre Jalacky	Rohoži
rems an er Donau	am Wagram	Stockerau	Wol	kersdorf	Ange der N	rn an Iarch		Kuchyř
bling	Zwentendorf	Tulln Kor Kloste	neuburg erneuburg	E461	Gänserndorf	Výsoká pr Morave	i E65	
Pottenbrunn	Siegharts	skirchen ۲۰۰۰	-Floridsdor	f <mark>/</mark> Le	opoldsdorf	2	Stupava	
Sankt Pölten	Pr	Purkersdorf essbaum Breitenfurtz	Vienna Favoriten	Lobau	Marchielde		ubravka	Raca
helmsburg	A21	bei Wien 👻 🕅	sendorf	Fischam	rend		Petr	žalka
Lilienfeld Hainfeld		Guntra Baden bei Wien	amsdorf		Bruck a der Leith		rchen 2 E58	
Hohenberg		Berndorf	Ebreichsdor	f	· ر am	usiedl 1 See	He	
t Google	Pernitz	Sollena Egg		nepstadto:	Neusiedler S 2014 Google In	Mönchi Mönchi		Aetrics

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

Established 1815

400 professors 2 900 scientific staff 29 000 students (7 000 CS students)

Vienna once was a center of logic

1920's: Wiener Kreis (Vienna Circle)

M. Schlick, H. Hahn, H. Menger, O. Neurath, R. Carnap, ...

First Incompleteness Theorem (Gödel, 1931)

Every formalization of mathematics is either inconsistent or incomplete.

"This statement is not provable in your proof system."

Kurt Gödel

Vienna is again a center of logic

You find logic at:

- Institute of Science and Technology Austria (ISTA)
- University of Vienna
- Vienna University of Technology (TU Wien)

Computational Logic @ TU Wien

- 17 professors
- One of two priority topics of the Faculty of Informatics

Institute of Discrete Mathematics and Geometry

Research unit "Computational Logic"

Matthias Baaz

- Proof theory
- Many-valued logics
- Temporal logics
- Mathematical logic

Research unit "Algebra"

- Mathematical logic
- Universal algebra
- Set theory

Martin Goldstern

Compilers and Languages Group

- Program analysis and optimization
- Abstract interpretation and model-checking

Jens Knoop

Laura Kovacs (Chalmers)

- Computational proof theory
- Resolution- and tableaux-based theorem proving
- Non-classical and many-valued logics
- Complexity of Constraint satisfaction problems

Alex Leitsch

Gernot Salzer

Agata Ciabattoni

Chris Fermüller

Decision Support System for Dermatology

Data problem: Where to get reliable disease data from? 50 000 values!

Diagnostic problem: How to compute the correct diagnosis?

DERMTRAINER Time BASIC INFO Onset acute male child III-IV multiple O subacute ARRANGEMENT ○ slow onfluent O I don't know BODY PARTS unexposed areas head and neck face Duration O transient MORPHOLOGY O limited levations nodule / swelling / tumor prolonged COLOR red / purple ○ chronic O I don't know TIME acute prolonged recurrent Course ○ stable SIGNS AND SYMPTOMS recurrent O self-limited O progressive I don't know New patient

Properties of Coding Systems

Error correction: Given a message, find the nearest code word.

Nearest neighbour: Given a code word, find the next one.

Code distance: Minimal distance of any two code words?

Non Classical Proofs: Theory, Applications and Tools

Agata Ciabattoni

Vienna University of Technology Faculty of Informatics

Logic: Toolkit for Formal Reasoning

Non-classical logics: Landscape

Non-classical logics: Differences

Classical Logic

Fundamental Questions

How to construct proofs?

Sequent calculi, hypersequent calculi, ...

Computer assisted proofs?

Decidability, complexity, Herbrand Theorems, ...

Structural properties?

Algebraic completions, non-deterministic matrices, ...

Fundamental Questions

Algebraic completions, non-deterministic matrices, ...

Project Aims

Applications

General and Systematic answers

Good calculi (sequent, hypersequent, ...)

Decidability, complexity, Herbrand Theorems,...

Completions, non-deterministic matrices, ...

The Mīmāmsā Project

Definition and use of formal tools to analyse the work of Mīmāmsā school of Indian philosophy

Mīmāmsā (last centuries BCE - beginning of 20^{th} c.)

Indian school of philosophy focused on the **interpretation of the Vedas** (sacred texts, II - I millennium BCE)

> न्राजा। रहा वसति॥ आग्निनार्थिं। अन्मवत् भीषें एवः) दिवे अस्रासं। वीरवेत् वमंग अग्नैयं) युद्धं अज्यरं विश्वतः परिः भुः आत्री। सः) रत्। देवेष्ठं ग छति। आग्निः होती। कुविः केतुः। ससः। चित्रक्रवः रत्मः ॥देवः रदेवे आग्म भिः। स्र १ अयत्र अगा राष्ट्रपे सं, अग्नि भूदं ग्राप्ति गत्वे रत्र त्वा स्रारं अगि

Studying the Vedic prescriptions the school developed an analysis of the relations between deontic concepts

Inferential reasoning

was **employed** and **discussed** by Mīmāmsā authors

A central concern of Mīmāmsā authors: the **absence of contradictions in the Vedas**

For example, in the Vedas it is prescribed:

- 1 "If one wants to harm his enemy, one must perform the Śyena sacrifice"
- 2 "One must not perform violence on any living being"

1 and 2 **cannot be contradictory**, because the Vedas are not (by assumption)

To capture Mīmāmsā reasoning we defined

Basic Mīmāmsā Deontic Logic (bMDL)

that formalises the **deontic system employed** by the $M\bar{n}m\bar{a}ms\bar{a}$ school

We extracted a new logic from the principles of the school $(ny\bar{a}yas)$

The Calculus & the Semantics

Use of the logic for reasoning tasks

We defined an **analytic calculus** using **general proof-theoretical methods** and we proved consistency, decidability, and complexity results

To provide **insights and explanations** about **Indological issues** we defined a **semantics for the logic**

Using calculus and semantics we analysed controversies discussed by the Mīmāṃsā school (as the mentioned consistency problem)

dbai Databases and Artificial Intelligence Group

- Foundations of databases
- Semistructured data
- Advanced database systems
- Computational logic and complexity
- Knowledge Representation and Reasoning (e.g. logic-based argumentation systems)

Reinhard Pichler

Stefan Woltran

Georg Gottlob (Oxford)

Big Data Techniques in Reasoning

- Some lessons learned from Big Data research:
 - MapReduce: new algorithmic paradigm for massive parallelization
 - Data replication because of *distributed* storage and computation
- Application to Reasoning:
 - Support reasoning (such as ASP, DLs) on top of big data
 - Apply successful big data techniques (such as parallel processing via MapReduce) to hard reasoning problems
- Complexity and performance analysis of new algorithms
 - Different performance metrics compared with "classical" algorithms (such as data replication rate, maximum server load, etc.)

Exploring the Foundations of SPARQL

- Increasing amount of data requires efficient yet powerful Query Languages
- Deep understanding of a query language is thus key for effective optimization and efficient use of a query language

SPARQL – A Query Language for RDF Data

- RDF and SPARQL: core technologies for the Semantic Web
- Distinguishing features of SPARQL to deal with the pecularities of Web Data are not well-explored

Goal:

- Understand fundamental properties of SPARQL
- Transfer decades of Database Research to Semantic Web technologies
- Use these insights for Query Optimization

Results achieved so far

Studied computational complexity of query answering

- Problems like evaluation, enumeration, and counting
- Identification of fragments with lower complexity
- Usage of these fragments for approximation of answers
- Studied typical static query analysis tasks (core problems for query optimization)
 - Problems like Containment and Equivalence
- Identified rewrite rules for simplifications of queries
- Investigated the expressive power of the new SPARQL 1.1
- Proposed alternative semantics for query answering under Ontologies
 - Based on the "certain answer" semantics

for(syte, Formal Methods in Systems Engineering

- Formal Methods for Embedded Systems
- Model Checking and Constraint Solving
- Automata, Logic, and Complexity

Helmut Veith

Georg Weissenbacher

kbs Knowledge Based Systems Group

Thomas Eiter

Stefan Szeider

- Knowledge representation and reasoning
- Computational logic and complexity
- Declarative problem solving
- Discrete Reasoning Methods
- Intelligent agents
- Mobile robots
- Knowledge-based systems in engineering

Hans Tompits

Uwe Egly

Recent thesis topics

Andreas Fellner: "Space & Congruence Compression of Proofs" Advisors: A. Leitsch, B. Woltzenlogel Paleo

Adrian Haret: "Merging in the Horn Fragment" Advisors: S. Woltran, S. Rümmele

Ilina Stoilkovska: "XML Data Integration" Advisors: R. Pichler, V. Savenkov

Vienna is an attractive place for living

- 2 million inhabitants, capital of Austria
- highly international: UN headquarters, international companies, students, tourists, immigrants
- cultural center: operas, museums, concert halls, events, parties
- close to the Alps: biking, hiking, skiing
- moderate living costs
- around the corner: Bratislava, Budapest, Praha, Salzburg

Rankings:

1st according to Mercer's 2012 Quality of Living Survey 2nd according to The Economist's World's Most Livable Cities 2012 5th according to Monocle's Most Liveable Cities Index 2012 5th in QS Best Student Cities in the World 2012

Welcome to Vienna!