Proof Theoretical Reasoning – Lecture 3 Modal Logic S5 and Hypersequents

Revantha Ramanayake and Björn Lellmann

TU Wien

TRS Reasoning School 2015 Natal, Brasil

Modal Logic S5

Sequents for S5

Hypersequents for S5

Cut Elimination

Applications and Other Logics

Reminder: Modal Logics

The formulae of modal logic are given by (\mathcal{V} is a set of variables):

$$\mathcal{F} ::= \mathcal{V} \mid \mathcal{F} \land \mathcal{F} \mid \mathcal{F} \lor \mathcal{F} \mid \mathcal{F} \to \mathcal{F} \mid \neg \mathcal{F} \mid \Box \mathcal{F}$$

with $\lozenge A$ abbreviating the formula $\neg \Box \neg A$.

A Kripke frame consists of a set W of worlds and an accessibility relation $R \subseteq W \times W$.

A Kripke model is a Kripke frame with a valuation $V: \mathcal{V} \to \mathcal{P}(W)$.

Truth at a world w in a model \mathfrak{M} is defined via:

$$\mathfrak{M}, w \Vdash p \text{ iff } w \in V(p)$$

 $\mathfrak{M}, w \Vdash \Box A \text{ iff } \forall v \in W : wRv \Rightarrow \mathfrak{M}, v \Vdash A$
 $\mathfrak{M}, w \Vdash \Diamond A \text{ iff } \exists v \in W : wRv \& \mathfrak{M}, v \vdash A$

Definition

Modal logic S5 is the logic given by the class of Kripke frames with universal accessibility relation, i.e., frames (W, R) with:

$$\forall x, y \in W : xRy$$
.

Thus S5-theorems are those modal formulae which are true in every world of every Kripke model with universal accessibility relation.

Example

The formulae $p \to \Box \Diamond p$

Example

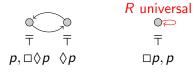
The formulae $p \to \Box \Diamond p$

Example

The formulae $p \to \Box \Diamond p$, $\Box p \to p$

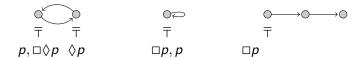
Example

The formulae $p \to \Box \Diamond p$, $\Box p \to p$



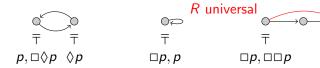
Example

The formulae $p \to \Box \Diamond p$, $\Box p \to p$, $\Box p \to \Box \Box p$ are theorems of S5:



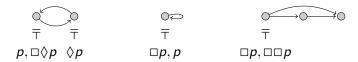
Example

The formulae $p \to \Box \Diamond p$, $\Box p \to p$, $\Box p \to \Box \Box p$ are theorems of S5:



Example

The formulae $p \to \Box \Diamond p$, $\Box p \to p$, $\Box p \to \Box \Box p$ are theorems of S5:



Hilbert-style Definition: S5 is given by closing the axioms

$$\Box (p \to q) \to (\Box p \to \Box q) \qquad p \to \Box \Diamond p \qquad \Box p \to p \qquad \Box p \to \Box \Box p$$

and propositional axioms under uniform substitution and the rules

$$\frac{A \quad A \to B}{B}$$
 modus ponens, MP $\frac{A}{\Box A}$ necessitation, nec

A Sequent Calculus for S5

Definition (Takano 1992)

The sequent calculus LS5* contains the standard propositional rules and

$$\frac{\Gamma, A \Rightarrow \Delta}{\Gamma, \Box A \Rightarrow \Delta} \ T \qquad \frac{\Box \Gamma \Rightarrow A, \Box \Delta}{\Box \Gamma \Rightarrow \Box A, \Box \Delta} \ 45$$

Theorem

LS5* is sound and complete (with cut) for S5.

Proof.

Derive axioms and rules of the Hilbert-system. E.g., for $p \to \Box \Diamond p$:

A Sequent Calculus for S5

Definition (Takano 1992)

The sequent calculus LS5* contains the standard propositional rules and

$$\frac{\Gamma, A \Rightarrow \Delta}{\Gamma, \Box A \Rightarrow \Delta} \ T \qquad \frac{\Box \Gamma \Rightarrow A, \Box \Delta}{\Box \Gamma \Rightarrow \Box A, \Box \Delta} \ 45$$

Theorem

LS5* is sound and complete (with cut) for S5.

Proof.

E.g. the modus ponens rule $\frac{A \quad A \rightarrow B}{B}$ is simulated by:

$$\Rightarrow A \rightarrow B \qquad \frac{A, B \Rightarrow B \quad A \Rightarrow A, B}{A, A \rightarrow B \Rightarrow B} \rightarrow_{L}$$

$$\Rightarrow A \qquad \Rightarrow B \qquad \text{cut}$$

What about cut-free completeness?

Our standard proof of cut elimination fails:

would need to reduce to:

But we can't apply rule 45 anymore since A is not boxed!

What about cut-free completeness?

But could there be a different derivation? No! In fact we have:

Theorem

The sequent $p \Rightarrow \Box \Diamond p$ is not cut-free derivable in LS5*.

Proof.

The only rules that can be applied in a cut-free derivation ending in $p \Rightarrow \Box \Diamond p$ are weakening and contraction. Hence, such a derivation can only contain sequents of the form

$$\overbrace{p,\ldots,p}^{\text{m-times}}\Rightarrow \overbrace{\neg\neg\neg p,\ldots,\neg\neg\neg p}^{\text{n-times}}$$

with $m, n \ge 0$. Thus it cannot contain an initial sequent.

Is there a cut-free sequent calculus for S5?

Trivial answer: Of course! Take the rules $\{ \Rightarrow_A \mid A \text{ valid in S5} \}$.

Non-trivial answer: That depends on the shape of the rules!

Strategy for showing certain rule shapes cannot capture S5 even with cut:

- translate the rules into Hilbert-axioms of specific form
- connect Hilbert-style axiomatisability with frame definability
- show that the translations of the rules cannot define S5-frames.

(The translation involves cut, so this shows a stronger statement.)

What Is a Rule?

Let us call a sequent rule modal if it has the shape:

$$\frac{\Gamma_1, \Sigma_1 \Rightarrow \Gamma_1, \Delta_1 \dots \Gamma_n, \Sigma_n \Rightarrow \Gamma_n, \Delta_n}{\Gamma, \Box \Sigma \Rightarrow \Box \Pi, \Delta}$$

where (writing Γ^{\square} for the restriction of Γ to modal formulae)

- $\Sigma_i \subseteq \Sigma, \ \Pi_i \subseteq \Pi$
- ▶ Γ_i is one of \emptyset , Γ , Γ
- Δ_i is one of $\emptyset, \Delta, \Delta^{\square}$

Example

$$\frac{\Sigma \Rightarrow A}{\Gamma, \Box \Sigma \Rightarrow \Box A, \Delta} \ \mathsf{K} \quad \frac{\Gamma, A \Rightarrow \Delta}{\Gamma, \Box A \Rightarrow \Delta} \ \mathsf{T} \quad \frac{\Gamma^{\Box}, \Sigma \Rightarrow A}{\Gamma, \Box \Sigma \Rightarrow \Box A, \Delta} \ \mathsf{4} \quad \frac{\Gamma^{\Box} \Rightarrow A, \Delta^{\Box}}{\Gamma \Rightarrow \Box A, \Delta} \ \mathsf{45}$$

are all modal rules (and equivalent to the rules considered earlier).

Applications and Other Logics

What Is a Rule?

Let us call a sequent rule modal if it has the shape:

$$\frac{\Gamma_1, \Sigma_1 \Rightarrow \Gamma_1, \Delta_1 \dots \Gamma_n, \Sigma_n \Rightarrow \Gamma_n, \Delta_n}{\Gamma, \Box \Sigma \Rightarrow \Box \Pi, \Delta}$$

where (writing Γ^{\square} for the restriction of Γ to modal formulae)

- $\Sigma_i \subseteq \Sigma$, $\Pi_i \subseteq \Pi$
- ▶ Γ_i is one of \emptyset , Γ , Γ
- Δ_i is one of $\emptyset, \Delta, \Delta^{\square}$

Example

$$\frac{\Gamma^{\square}, \Sigma, \square A \Rightarrow A}{\Gamma, \square \Sigma \Rightarrow \square A, \Delta} GLR$$

is not a modal rule (because the $\Box A$ changes sides).

Mixed-cut-closed Rule Sets

LS5* has modal rules in this sense, so we need something more.

Definition

A set of modal rules is mixed-cut-closed if principal-context cuts can be permuted up in the context.

Example

The set with modal rule $\frac{\Gamma^{\square}, \Sigma \Rightarrow A}{\Gamma \square \Sigma \Rightarrow \square A, \Delta}$ 4 is mixed-cut-closed:

E.g.:

$$\frac{\Gamma^{\square}, \Sigma \Rightarrow A}{\Gamma, \square \Sigma \Rightarrow \square A, \Delta} \quad 4 \quad \frac{\square A, \Omega^{\square}, \Theta \Rightarrow B}{\square A, \Omega, \square \Theta \Rightarrow \square B, \Xi} \quad 4$$

$$\Gamma, \square \Sigma, \Omega, \square \Theta \Rightarrow \Delta, \square B, \Xi$$

$$\Rightarrow \frac{\Gamma^{\square}, \Sigma \Rightarrow A}{\Gamma^{\square}, \square \Sigma \Rightarrow \square A, \Delta} \quad 4 \quad \square A, \Omega^{\square}, \Theta \Rightarrow B$$

$$\frac{\Gamma^{\square}, \Sigma, \Omega^{\square}, \Theta \Rightarrow B}{\Gamma, \square \Sigma, \Omega, \square \Theta \Rightarrow \Delta, \square B, \Xi} \quad 4$$

$$\frac{\Gamma^{\square}, \Sigma, \Omega, \square \Theta \Rightarrow \Delta, \square B, \Xi}{\Gamma, \square \Sigma, \Omega, \square \Theta \Rightarrow \Delta, \square B, \Xi} \quad 4$$

Mixed-cut-closed Rule Sets

LS5* has modal rules in this sense, so we need something more.

Definition

A set of modal rules is mixed-cut-closed if principal-context cuts can be permuted up in the context.

Example

The set LS5* is not mixed-cut-closed: the principal-context cut

$$\frac{\Gamma^{\square} \Rightarrow B, \Delta^{\square}, \square A}{\Gamma \Rightarrow \square B, \Delta, \square A} \ 45 \qquad \frac{\Sigma, A \Rightarrow \Pi}{\Sigma, \square A \Rightarrow \Pi} \ T$$

$$\Gamma, \Sigma \Rightarrow \square B, \Delta, \Pi$$
 cut

cannot be permuted up in the context since Σ, Π are not boxed (see above).

Mixed-cut-closed Rule Sets Are Nice.

Lemma

If \mathcal{R} is a mixed-cut-closed rule set for S5, then the contexts in all the premisses of the modal rules have one of the forms

$$\Rightarrow$$
 or $\Gamma \Rightarrow \Delta$ or $\Gamma^{\square} \Rightarrow$.

Idea of proof.

Show that every such rule set for S5 must include a rule similar to

$$\frac{\Gamma, A \Rightarrow \Delta}{\Gamma, \Box A \Rightarrow \Delta} \mathsf{T}$$

Use this rule and mixed-cut-closure to replace contexts $\Gamma^{\square} \Rightarrow \Delta^{\square}$ with $\Gamma \Rightarrow \Delta$.

Strategy for Translating Rules to Axioms

We consider all the representative instances of a modal rule

$$\frac{\Gamma_1, \Sigma_1 \Rightarrow \Gamma_1, \Delta_1 \dots \Gamma_n, \Sigma_n \Rightarrow \Gamma_n, \Delta_n}{\Gamma, \Box \Sigma \Rightarrow \Box \Pi, \Delta}$$

i.e., instances of the modal rule where

- Σ , Π consists of variables only
- ightharpoonup Γ, Δ consists of variables and boxed variables only
- every variable occurs at most once in $\Gamma, \Delta, \Sigma, \Pi$.
- Premisses and conclusion of these are turned into the formulae

$$\begin{aligned} & \mathsf{prem} = \bigwedge_{i=1}^{n} (\bigwedge \Gamma_{i} \land \bigwedge \Sigma_{i} \to \bigvee \Pi_{i} \bigvee \Delta_{i}) \\ & \mathsf{conc} = \bigwedge \Gamma \land \bigwedge \square \Sigma \to \bigvee \square \Pi \lor \bigvee \Delta \end{aligned}$$

The information of the premisses is captured in a substitution σ_{prem} and injected into the conclusion by taking conc σ_{prem}

Constructing The Substitution σ_{prem}

We assume that our rule set includes the Monotonicity Rule

$$\frac{A \Rightarrow B}{\Gamma, \Box A \Rightarrow \Box B, \Delta} \mathsf{Mon}$$

Definition (Adapted from [Ghilardi:'99])

A formula A is (S5-)projective via a substitution $\sigma: \mathcal{V} \to \mathcal{F}$ of variables by formulae if:

- 1. $\Rightarrow A \sigma$ is derivable in GcutMon
- 2. for every $B \in \mathcal{F}$ the rule $\xrightarrow{\Rightarrow A}$ is derivable in GcutMon.

Remark

For 2 it is enough to show for every $p \in V$ derivability of the rule

$$\Rightarrow A$$

 $\Rightarrow p \leftrightarrow p\sigma$.

Constructing The Substitution σ_{prem}

Lemma

The formula prem = $\bigwedge_{i=1}^{n} (\bigwedge \Gamma_i \wedge \bigwedge \Sigma_i \rightarrow \bigvee \Pi_i \vee \bigvee \Delta_i)$ is projective via

$$\sigma_{\mathsf{prem}}(p) = \begin{cases} \mathsf{prem} \land p, & p \in \Sigma \\ \mathsf{prem} \rightarrow p, & p \in \Pi \\ p, & otherwise \end{cases}$$

Proof.

▶ To see that $\vdash_{\mathsf{GcutMon}} \Rightarrow \mathsf{prem}\,\sigma_{\mathsf{prem}}$:

For every clause $(\bigwedge \Gamma_i \land \bigwedge \Sigma_i \rightarrow \bigvee \Pi_i \lor \bigvee \Delta_i)$ of prem we have:

$$(\bigwedge \Gamma_{i} \land \bigwedge \Sigma_{i} \rightarrow \bigvee \Pi_{i} \lor \bigvee \Delta_{i})\sigma_{prem}$$

$$\equiv \bigwedge \Gamma_{i} \land \bigwedge \Sigma_{i}\sigma_{prem} \rightarrow \bigvee \Pi_{i}\sigma_{prem} \lor \bigvee \Delta_{i}$$

$$\equiv \bigwedge \Gamma_{i} \land \bigwedge \Sigma_{i} \land prem \rightarrow \bigvee \Pi_{i} \lor \bigvee \Delta_{i}$$

Since $(\bigwedge \Gamma_i \land \bigwedge \Sigma_i \rightarrow \bigvee \Pi_i \lor \bigvee \Delta_i)$ is a clause in prem this is derivable.

Constructing The Substitution σ_{prem}

Lemma

The formula prem = $\bigwedge_{i=1}^{n} (\bigwedge \Gamma_i \land \bigwedge \Sigma_i \rightarrow \bigvee \Pi_i \lor \bigvee \Delta_i)$ is projective via

$$\sigma_{\mathsf{prem}}(p) = \begin{cases} \mathsf{prem} \land p, & p \in \Sigma \\ \mathsf{prem} \rightarrow p, & p \in \Pi \\ p, & otherwise \end{cases}$$

Proof.

► To see that $\xrightarrow{\Rightarrow p \text{ rem}}$ is derivable is straightforward:

E.g., for $p \in \Pi$:

$$\frac{p \Rightarrow \text{prem} \rightarrow p}{p \Rightarrow \text{prem} \rightarrow p} \text{prop} \qquad \frac{p \Rightarrow \text{prem} \rightarrow p \Rightarrow p}{p \Rightarrow p \Rightarrow p \Rightarrow p} \text{prop} \qquad \text{cut}$$

$$\Rightarrow p \sigma_{\text{prem}} \leftrightarrow p$$

Theorem

A modal rule

$$\frac{\Gamma_1, \Sigma_1 \Rightarrow \Gamma_1, \Delta_1 \quad \dots \quad \Gamma_n, \Sigma_n \Rightarrow \Gamma_n, \Delta_n}{\Gamma, \Box \Sigma \Rightarrow \Box \Gamma, \Delta} \ R$$

is interderivable over GcutMon with the axioms conc σ_{prem} obtained from its representative instances.

Proof.

Derive the rule from the axiom using:

Theorem

A modal rule

$$\frac{\Gamma_1, \Sigma_1 \Rightarrow \Pi_1, \Delta_1 \dots \Gamma_n, \Sigma_n \Rightarrow \Pi_n, \Delta_n}{\Gamma, \Box \Sigma \Rightarrow \Box \Pi, \Delta} R$$

is interderivable over GcutMon with the axioms conc σ_{prem} obtained from its representative instances.

Proof.

Derive the axiom from the rule by:

The rule $\frac{\Gamma^{\square} \Rightarrow A, \Delta^{\square}}{\Gamma \Rightarrow \square A, \Delta}$ 45 has representative instances

$$\frac{\Box p_1, \dots, \Box p_n \Rightarrow q, \Box r_1, \dots, \Box r_k}{\Box p_1, \dots, \Box p_n \Rightarrow \Box q, \Box r_1, \dots, \Box r_k}$$

The formulae and substitution are

$$\operatorname{prem} = \bigwedge_{i=1}^{n} \Box p_{i} \to q \vee \bigvee_{j=1}^{k} \Box r_{j} \qquad \operatorname{conc} = \bigwedge_{i=1}^{n} \Box p_{i} \to \Box q \vee \bigvee_{j=1}^{k} \Box r_{j}$$
$$\sigma_{\operatorname{prem}}(q) = \operatorname{prem} \to q \qquad \sigma_{\operatorname{prem}}(s) = s \text{ for } s \neq q$$

E.g., for n = 1 and k = 1 the corresponding axiom is:

$$\operatorname{conc} \sigma_{\operatorname{prem}} = \Box p_1 \to \Box ((\Box p_1 \to q \lor \Box r_1) \to q) \lor \Box r_1$$

Instantiating q with \bot we have the instance

$$\Box p_1 \to \Box (\Box p_1 \land \neg \Box r_1) \lor \Box r_1 \quad \equiv \quad (\Box p_1 \to \Box \Box p_1) \land (\Diamond \Box r_1 \to \Box r_1)$$

What Do The Axioms Look Like?

An exemplary representative instance of a modal rule from a mixed-cut-closed rule set has the form

$$\frac{\Sigma_1 \Rightarrow \Pi_1 \qquad p, \Box q, \Sigma_2 \Rightarrow \Pi_2, r \qquad \Box q, \Sigma_3 \Rightarrow \Pi_3}{p, \Box q, \Box \Sigma \Rightarrow \Box \Pi, r}$$

The formula prem is

$$(\bigwedge \Sigma_1 \to \bigvee \Pi_1) \land (p, \Box q \land \bigwedge \Sigma_2 \to \bigvee \Pi_2 \lor r) \land (\Box q \land \bigwedge \Sigma_3 \to \bigwedge \Pi_3)$$

and the axiom is

$$A_{S5} = p \land \Box q \land \bigwedge_{s \in \Sigma} \Box (\operatorname{prem} \land s) \rightarrow \bigvee_{t \in \Pi} \Box (\operatorname{prem} \rightarrow t) \lor r$$

Such axioms cannot define S5.

Lemma

If A_{S5} is satisfiable in one of the frames $\mathfrak{F} = (\mathbb{N}, \mathbb{N} \times \mathbb{N})$ and $\mathfrak{F}' = (\mathbb{N}, \leq)$, then it is also satisfiable in the other.

$$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots$$

$$0' \qquad 1' \qquad 2'$$

Proof.

$$\neg A_{S5} \equiv p \land \Box q \land \bigwedge_{s \in \Sigma} \Box (\operatorname{prem} \land s) \land \bigwedge_{t \in \Pi} \Diamond (\operatorname{prem} \land \neg t) \land \neg t$$

E.g., if $\mathfrak{F}', V', 1 \Vdash \neg A$ for a valuation V', then $\mathfrak{F}, V, 0 \Vdash \neg A$ with

$$V(n) \coloneqq V'(n+1)$$

(The only boxed formula in prem is $\Box q!$)

Such axioms cannot define S5.

Lemma

If A_{S5} is satisfiable in one of the frames $\mathfrak{F} = (\mathbb{N}, \mathbb{N} \times \mathbb{N})$ and $\mathfrak{F}' = (\mathbb{N}, \leq)$, then it is also satisfiable in the other.

Proof.

$$\neg A_{S5} \equiv p \land \Box q \land \bigwedge_{s \in \Sigma} \Box (\operatorname{prem} \land s) \land \bigwedge_{t \in \Pi} \Diamond (\operatorname{prem} \land \neg t) \land \neg t$$

E.g., if $\mathfrak{F}', V', 1 \Vdash \neg A$ for a valuation V', then $\mathfrak{F}, V, 0 \Vdash \neg A$ with

$$V(n) \coloneqq V'(n+1)$$

(The only boxed formula in prem is $\Box q!$)

Such axioms cannot define S5.

Lemma

If A_{S5} is satisfiable in one of the frames $\mathfrak{F} = (\mathbb{N}, \mathbb{N} \times \mathbb{N})$ and $\mathfrak{F}' = (\mathbb{N}, \leq)$, then it is also satisfiable in the other.

Proof.

$$\neg A_{S5} \equiv p \land \Box q \land \bigwedge_{s \in \Sigma} \Box (\operatorname{prem} \land s) \land \bigwedge_{t \in \Pi} \Diamond (\operatorname{prem} \land \neg t) \land \neg t$$

E.g., if $\mathfrak{F}', V', 1 \Vdash \neg A$ for a valuation V', then $\mathfrak{F}, V, 0 \Vdash \neg A$ with

$$V(n) \coloneqq V'(n+1)$$

(The only boxed formula in prem is $\Box q!$)

No Mixed-cut-closed Rule Sets for S5

Theorem

No sequent calculus with mixed-cut-closed propositional and modal rules is sound and complete for S5 (even with cut).

Proof.

- ► The translations of such rules would have a shape like A_{S5} above.
- ▶ By the Lemma, such axioms are valid in the S5-frame $(\mathbb{N}, \mathbb{N} \times \mathbb{N})$ iff they are valid in (\mathbb{N}, \leq)
- ▶ So all axioms (and hence: theorems) of S5 would be valid in (\mathbb{N}, \leq) but e.g. $p \to \Box \Diamond p$ is not.

Can we extend the sequent framework to obtain a cut-free sequent-style calculus for logics like \$5?

Hypersequent Calculi

Hypersequents

General idea

Consider several sequents in parallel, allowing for interaction!

Definition

A hypersequent is a multiset $\mathcal G$ of sequents, written as

$$\Gamma_1 \Rightarrow \Delta_1 \mid \ldots \mid \Gamma_n \Rightarrow \Delta_n$$
.

The sequents $\Gamma_i \Rightarrow \Delta_i$ are called the components of \mathcal{G} .

Hypersequent calculi for S5 were independently introduced in

Hypersequents were also used to provide cut-free calculi for many other logics including modal, substructural and intermediate logics.

71 1

The (S5-)interpretation of
$$\mathcal{G} = \Gamma_1 \Rightarrow \Delta_1 \mid \ldots \mid \Gamma_n \Rightarrow \Delta_n$$
 is
$$\iota(\mathcal{G}) := \Box(\bigwedge \Gamma_1 \Rightarrow \bigvee \Delta_1) \vee \cdots \vee \Box(\bigwedge \Gamma_n \Rightarrow \bigvee \Delta_n)$$

This interpretation suggests the external structural rules

$$\frac{\mathcal{G}}{\mathcal{G} \mid \Gamma \Rightarrow \Delta} \text{ EW} \qquad \frac{\mathcal{G} \mid \Gamma \Rightarrow \Delta \mid \Gamma \Rightarrow \Delta}{\mathcal{G} \mid \Gamma \Rightarrow \Delta} \text{ EC}$$

Hypersequent Rules for S5

The calculus HS5 for S5 contains the modal rules

$$\frac{\mathcal{G}\mid\Gamma\Rightarrow\Delta\mid\Rightarrow A}{\mathcal{G}\mid\Gamma\Rightarrow\Delta,\Box A}\;\Box_{R}\quad\frac{\mathcal{G}\mid\Gamma\Rightarrow\Delta\mid\Sigma,A\Rightarrow\Pi}{\mathcal{G}\mid\Gamma,\Box A\Rightarrow\Delta\mid\Sigma\Rightarrow\Pi}\;\Box_{L}\quad\frac{\mathcal{G}\mid\Gamma,A\Rightarrow\Delta}{\mathcal{G}\mid\Gamma,\Box A\Rightarrow\Delta}\;\top$$

the standard propositional rules in every component and the external structural rules [Restall:'07].

Example

The derivations of $p \Rightarrow \Box \Diamond p$ and $\Box p \Rightarrow \Box \Box p$ are as follows:

$$\frac{\overline{p \Rightarrow p \mid \Rightarrow}}{p, \neg p \Rightarrow \mid \Rightarrow} \xrightarrow{\neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow \neg L}}{p \Rightarrow \mid \Box \neg p \Rightarrow} \xrightarrow{\Box L} \qquad \qquad \frac{\overline{\Rightarrow \mid \Rightarrow \mid p \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \mid \Rightarrow p} \xrightarrow{\Box L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow \neg L}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow \neg L}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow p}}{\Box p \Rightarrow \mid \Rightarrow \neg L} \qquad \qquad \frac{\overline{p \Rightarrow p \mid \Rightarrow \neg L$$

Soundness of HS5

Theorem

The rules of HS5 preserve validity under the S5-interpretation.

Proof.

E.g., for
$$\frac{\mathcal{G} \mid \Gamma \Rightarrow \Delta \mid \Sigma, A \Rightarrow \Pi}{\mathcal{G} \mid \Gamma, \Box A \Rightarrow \Delta \mid \Sigma \Rightarrow \Pi} \Box_{L}:$$

If $\mathfrak{M}, w \Vdash \neg \iota(\mathcal{G}) \land \Diamond(\wedge \Gamma \land \Box A \land \neg \lor \Delta) \land \Diamond(\wedge \Sigma \land \neg \lor \Pi)$ we have:

$$\neg \iota(\mathcal{G}) \dashv \overset{\mathsf{w}}{\bigcirc} \overset{\mathsf{x}}{\bigcirc} \overset{\mathsf{y}}{\bigcirc} \Vdash \bigwedge \Sigma, \quad \neg \vee \Pi$$

Soundness of HS5

Theorem

The rules of HS5 preserve validity under the S5-interpretation.

Proof.

E.g., for
$$\frac{\mathcal{G} \mid \Gamma \Rightarrow \Delta \mid \Sigma, A \Rightarrow \Pi}{\mathcal{G} \mid \Gamma, \Box A \Rightarrow \Delta \mid \Sigma \Rightarrow \Pi} \Box_{L}:$$

If $\mathfrak{M}, w \Vdash \neg \iota(\mathcal{G}) \land \Diamond(\wedge \Gamma \land \Box A \land \neg \lor \Delta) \land \Diamond(\wedge \Sigma \land \neg \lor \Pi)$ we have:

$$\neg \iota(\mathcal{G}) \dashv \emptyset \xrightarrow{X} \xrightarrow{Y} \square \vdash \bigwedge \Sigma, A, \neg \vee \Pi$$

$$\overline{\neg} \qquad \qquad R \text{ universal}$$

$$\wedge \Gamma, \square A, \neg \vee \Delta$$

So
$$\mathfrak{M}$$
, $w \Vdash \neg \iota(\mathcal{G} \mid \Gamma \Rightarrow \Delta \mid \Sigma, A \Rightarrow \Pi)$.

Soundness of HS5

Theorem

The rules of HS5 preserve validity under the S5-interpretation.

Corollary

If \Rightarrow A is derivable in HS5, then A is valid in S5.

Proof.

By induction on the depth of the derivation, and using that the rule

$$\frac{\Box A}{A}$$

is admissible in S5.

Completeness of HS5

We first show completeness with the hypersequent cut rule

$$\frac{\mathcal{G} \mid \Gamma \Rightarrow \Delta, A \qquad \mathcal{H} \mid A, \Sigma \Rightarrow \Pi}{\mathcal{G} \mid \mathcal{H} \mid \Gamma, \Sigma \Rightarrow \Delta, \Pi} \text{ hcut}$$

Theorem

If A is S5-valid, then \Rightarrow A is derivable in HS5 with hcut.

Proof.

Derive the axioms of S5 and simulate the rule of modus ponens by:

$$\begin{array}{c}
\vdots \\
\Rightarrow A \to B
\end{array}
\xrightarrow{B, A \Rightarrow B} \begin{array}{c}
\text{init} \\
A \Rightarrow A, B \\
A \to B, A \Rightarrow B
\end{array}
\xrightarrow{A \to A} \begin{array}{c}
\text{init} \\
\Rightarrow L
\end{array}$$

$$\Rightarrow A \to B \\
\Rightarrow B$$
hcut

Hypersequent Cut Elimination - Complications

Cut elimination for hypersequents is complicated by the external structural rules, in particular by the rule of external contraction:

E.g. we might have the situation

$$\frac{\mathcal{G} \mid \Gamma \Rightarrow \Delta, A}{\mathcal{G} \mid \mathcal{H} \mid \Gamma, \Sigma \Rightarrow \Delta, \Pi} \frac{\mathcal{H} \mid A, \Sigma \Rightarrow \Pi \mid A, \Sigma \Rightarrow \Pi}{\mathcal{H} \mid A, \Sigma \Rightarrow \Pi} \text{ hcut} \quad \mathsf{EC}$$

Permuting the cut upwards replaces it by two cuts of the same complexity:

$$\frac{\mathcal{G} \mid \Gamma \Rightarrow \Delta, A \qquad \mathcal{H} \mid A, \Sigma \Rightarrow \Pi \mid A, \Sigma \Rightarrow \Pi}{\mathcal{G} \mid \mathcal{H} \mid A, \Sigma \Rightarrow \Delta, \Pi \mid \Gamma, \Sigma \Rightarrow \Delta, \Pi} \underset{\text{hcut}}{\text{hcut}} \frac{\mathcal{G} \mid \mathcal{G} \mid \mathcal{H} \mid \Gamma, \Sigma \Rightarrow \Delta, \Pi \mid \Gamma, \Sigma \Rightarrow \Delta, \Pi}{\mathcal{G} \mid \mathcal{H} \mid \Gamma, \Sigma \Rightarrow \Delta, \Pi} \underset{\text{EC}}{\text{EC}}$$

Cut Elimination for HS5 - Outline

Several methods of cut elimination are possible. Here we follow one which generalises rather well [Ciabattoni:'10, L.:'14].

Strategy

- pick a top-most cut of maximal complexity
- shift up to the left until the cut formula is introduced ("Shift Left Lemma")
- shift up to the right until the cut formula is introduced ("Shift Right Lemma")
- reduce the complexity of the cut

Key Ingredient

Absorb contractions by considering a more general induction hypothesis, similar to a one-sided mix rule.

Cut Elimination for HS5 - Shift Right Lemma

Definition

The cut rank of a derivation in HS5hcut is the maximal complexity |A| of a cut formula A in it.

Lemma (Shift Right Lemma)

If there are HS5hcut-derivations

$$\begin{array}{ccc} \vdots \ \mathcal{D} & & \vdots \ \mathcal{E} \\ \mathcal{G} \mid \Gamma \Rightarrow \Delta, \underline{A} & \text{and} & \mathcal{H} \mid \underline{A^{k_1}}, \Sigma_1 \Rightarrow \Pi_1 \mid \ldots \mid \underline{A^{k_n}}, \Sigma_n \Rightarrow \Pi_n \end{array}$$

of cut rank < |A| with A principal in the last rule of \mathcal{D} , then there is a derivation of cut rank < |A| of

$$\mathcal{G} \mid \mathcal{H} \mid \Gamma, \Sigma_1 \Rightarrow \Delta, \Pi_1 \mid \ldots \mid \Gamma, \Sigma_n \Rightarrow \Delta, \Pi_n$$
.

Proof (Shift Right Lemma).

By induction on the depth of the derivation \mathcal{E} , distinguishing cases according to the last rule in \mathcal{E} . Some interesting cases:

Last applied rule EC:

$$\begin{array}{c} \vdots \ \mathcal{D} \\ \mathcal{G} \mid \Gamma \Rightarrow \Delta, A \end{array} \xrightarrow{\begin{array}{c} \mathcal{H} \mid A^{k_1}, \Sigma_1 \Rightarrow \Pi_1 \mid \dots \mid A^{k_n}, \Sigma_n \Rightarrow \Pi_n \mid A^{k_n}, \Sigma_n \Rightarrow \Pi_n \\ \mathcal{H} \mid A^{k_1}, \Sigma_1 \Rightarrow \Pi_1 \mid \dots \mid A^{k_n}, \Sigma_n \Rightarrow \Pi_n \end{array} \xrightarrow{\sim} \\ \begin{array}{c} \vdots \ \mathcal{D} \\ \mathcal{G} \mid \Gamma \Rightarrow \Delta, A \xrightarrow{\begin{array}{c} \mathcal{H} \mid A^{k_1}, \Sigma_1 \Rightarrow \Pi_1 \mid \dots \mid A^{k_n}, \Sigma_n \Rightarrow \Pi_n \mid A^{k_n}, \Sigma_n \Rightarrow \Pi_n \\ \hline \mathcal{G} \mid \mathcal{H} \mid \Gamma, \Sigma_1 \Rightarrow \Delta, \Pi_1 \mid \dots \mid \Gamma, \Sigma_n \Rightarrow \Delta, \Pi_n \mid \Gamma, \Sigma_n \Rightarrow \Delta, \Pi_n \\ \hline \mathcal{G} \mid \mathcal{H} \mid \Gamma, \Sigma_1 \Rightarrow \Delta, \Pi_1 \mid \dots \mid \Gamma, \Sigma_n \Rightarrow \Delta, \Pi_n \end{array} \xrightarrow{\text{EC}} H \end{array}$$

Proof (Shift Right Lemma).

By induction on the depth of the derivation \mathcal{E} , distinguishing cases according to the last rule in \mathcal{E} . Some interesting cases:

▶ $A = \Box B$ and last applied rule \Box_L with $\Box B$ principal (omitting side hypersequents and showing only two components):

$$\begin{array}{c} \vdots \ \mathcal{D}' \\ \hline \Gamma \Rightarrow \Delta \mid \Rightarrow B \\ \hline \Gamma \Rightarrow \Delta, \Box B \end{array} \square_{R} \qquad \begin{array}{c} \vdots \ \mathcal{E}' \\ \hline \Box B^{k_{1}-1}, \Sigma_{1} \Rightarrow \Pi_{1} \mid B, \Box B^{k_{2}}, \Sigma_{2} \Rightarrow \Pi_{2} \\ \hline \Box B^{k_{1}}, \Sigma_{1} \Rightarrow \Pi_{1} \mid \Box B^{k_{2}}, \Sigma_{2} \Rightarrow \Pi_{2} \end{array} \square_{L}$$

$$\begin{array}{c} \vdots \ \mathcal{D}' \\ \vdots \ \mathcal{D}' \\ \hline \vdash \Rightarrow \Delta \mid \Rightarrow B \\ \hline \Gamma \Rightarrow \Delta \mid \Rightarrow B \\ \hline \Gamma \Rightarrow \Delta, \square B \\ \hline \hline \Gamma, \Sigma_1 \Rightarrow \Delta, \Pi_1 \mid B, \square B^{k_2}, \Sigma_2 \Rightarrow \Pi_2 \\ \hline \Gamma, \Sigma_1 \Rightarrow \Delta, \Pi_1 \mid B, \Gamma, \Sigma_2 \Rightarrow \Delta, \Pi_2 \\ \hline \Gamma, \Sigma_1 \Rightarrow \Delta, \Pi_1 \mid \Gamma, \Sigma_2 \Rightarrow \Delta, \Pi_2 \\ \hline \end{array} \quad \begin{array}{c} \vdots \ \mathcal{D}' \\ \hline \hline \Gamma, \Sigma_1 \Rightarrow \Delta, \Pi_1 \mid B, \Gamma, \Sigma_2 \Rightarrow \Delta, \Pi_2 \\ \hline \end{array} \quad \begin{array}{c} \vdots \ \mathcal{D}' \\ \hline \Gamma, \Sigma_1 \Rightarrow \Delta, \Pi_1 \mid B, \Gamma, \Sigma_2 \Rightarrow \Delta, \Pi_2 \\ \hline \end{array} \quad \begin{array}{c} \vdots \ \mathcal{D}' \\ \end{array} \quad \begin{array}{c} \vdots \$$

Cut Elimination for HS5 - Shift Left Lemma

Lemma (Shift Left Lemma)

If there are HS5hcut-derivations

$$\begin{array}{c} \vdots \ \mathcal{D} \\ \mathcal{G} \mid \Gamma_1 \Rightarrow \Delta_1, A^{k_1} \mid \dots \mid \Gamma_n \Rightarrow \Delta_n, A^{k_n} \end{array} \quad \text{and} \quad \begin{array}{c} \vdots \ \mathcal{E} \\ \mathcal{H} \mid A, \Sigma \Rightarrow \Pi \end{array}$$

of cut rank < |A|, then there is a derivation of cut rank < |A| of

$$\mathcal{G} \mid \mathcal{H} \mid \Gamma_1, \Sigma \Rightarrow \Delta_1, \Pi \mid \ldots \mid \Gamma_n, \Sigma \Rightarrow \Delta_n, \Pi$$
.

Proof (Shift Left Lemma)

By induction on the depth of the derivation \mathcal{D} , distinguishing cases according to the last rule in \mathcal{D} . An interesting case:

▶ $A = \Box B$ and last applied rule \Box_R with $\Box B$ principal (omitting side hypersequents and assuming only two components):

$$\frac{\vdots \mathcal{D}'}{\Gamma_1 \Rightarrow \Delta_1, \Box B^{k_1} \mid \Gamma_2 \Rightarrow \Delta_2, \Box B^{k_2-1} \mid \Rightarrow B}{\Gamma_1 \Rightarrow \Delta_1, \Box B^{k_1} \mid \Gamma_2 \Rightarrow \Delta_2, \Box B^{k_2}} \Box_R \qquad \vdots \mathcal{E} \\
\square B, \Sigma \Rightarrow \Gamma$$

$$\begin{array}{c} \vdots \ \mathcal{D}' \\ \hline \frac{\Gamma_{1}\Rightarrow\Delta_{1},\square B^{k_{1}}\mid \Gamma_{2}\Rightarrow\Delta_{2},\square B^{k_{2}-1}\mid \Rightarrow B \quad \square B, \overset{\cdot}{\Sigma}\Rightarrow\Pi}{\Gamma_{1},\Sigma\Rightarrow\Delta_{1},\Pi\mid \Gamma_{2},\Sigma\Rightarrow\Delta_{2},\Pi\mid \Rightarrow B} \quad \square R \\ \hline \frac{\Gamma_{1},\Sigma\Rightarrow\Delta_{1},\Pi\mid \Gamma_{2},\Sigma\Rightarrow\Delta_{2},\Pi,\square B}{\Gamma_{1},\Sigma\Rightarrow\Delta_{1},\Pi\mid \Gamma_{2},\Sigma\Rightarrow\Delta_{2},\Pi} \quad \exists \ \mathcal{E} \\ \hline \Gamma_{1},\Sigma\Rightarrow\Delta_{1},\Pi\mid \Gamma_{2},\Sigma\Rightarrow\Delta_{2},\Pi \end{array}$$

Cut Elimination for HS5 - Main Theorem

Theorem

Every derivation in HS5hcut can be converted into a derivation in HS5 with the same conclusion.

Proof.

By double induction on the cut rank r of the derivation and the number of cuts on formulae with complexity r. Topmost cuts of maximal complexity are eliminated using the Shift Left Lemma.

Corollary (Cut-free Completeness)

If A is S5-valid, then \Rightarrow A is derivable in HS5.

In order to use the calculus HS5 in a decision procedure for S5 we also need to deal with the contraction rules.

For this we consider the modified system HS5* with rules:

$$\frac{\mathcal{G} \mid \Gamma \Rightarrow \Delta, \square B \mid \Rightarrow B}{\mathcal{G} \mid \Gamma \Rightarrow \Delta, \square B} \quad \square_{R}^{*} \qquad \frac{\mathcal{G} \mid \Gamma, \square A \Rightarrow \Delta \mid \Sigma, A \Rightarrow \Pi}{\mathcal{G} \mid \Gamma, \square A \Rightarrow \Delta \mid \Sigma \Rightarrow \Pi} \quad \square_{L}^{*}$$

$$\frac{\mathcal{G} \mid \Gamma, \square A, A \Rightarrow \Delta}{\mathcal{G} \mid \Gamma, \square A \Rightarrow \Delta} \quad \mathsf{T}^{*}$$

and propositional rules with principal formulae copied to premisses.

Example

$$\frac{p, \neg p \Rightarrow p, \Box \neg \Box \neg p \mid \Box \neg p \Rightarrow \neg \Box \neg p}{p, \neg p \Rightarrow \Box \neg D \mid \Box \neg p \Rightarrow \neg \Box \neg p} \stackrel{\text{init}}{\neg L} \\ \frac{p, \neg p \Rightarrow \Box \neg \Box \neg p \mid \Box \neg p \Rightarrow \neg \Box \neg p}{p \Rightarrow \Box \neg \Box \neg p \mid \Rightarrow \neg \Box \neg p} \neg_{R} \\ \frac{p \Rightarrow \Box \neg \Box \neg p \mid \Rightarrow \neg \Box \neg p}{p \Rightarrow \Box \neg \Box \neg p} \Box_{R}$$

Soundness and Completeness of HS5*

Lemma (Equivalence)

In presence of the structural rules, a hypersequent is derivable in HS5 iff it is derivable in HS5*.

Proof.

Simulate the rules. E.g.:

$$\frac{\mathcal{G} \mid \Gamma \Rightarrow \Delta \mid \Rightarrow B}{\mathcal{G} \mid \Gamma \Rightarrow \Delta, \Box B} \Box_{R} \quad \Rightarrow \quad \frac{\frac{\mathcal{G} \mid \Gamma \Rightarrow \Delta, \Box B \mid \Rightarrow B}{\mathcal{G} \mid \Gamma \Rightarrow \Delta, \Box B \mid \Rightarrow B} \ \Box_{R}^{*}}{\mathcal{G} \mid \Gamma \Rightarrow \Delta, \Box B} \Box_{R}^{*}$$

$$\frac{\mathcal{G} \mid \Gamma \Rightarrow \Delta, \Box B \mid \Rightarrow B}{\mathcal{G} \mid \Gamma \Rightarrow \Delta, \Box B} \Box_{R}^{*} \quad \Rightarrow \quad \frac{\frac{\mathcal{G} \mid \Gamma \Rightarrow \Delta, \Box B \mid \Rightarrow B}{\mathcal{G} \mid \Gamma \Rightarrow \Delta, \Box B, \Box B} \ \Box_{R}}{\mathcal{G} \mid \Gamma \Rightarrow \Delta, \Box B} \Box_{R}$$

Admissibility of the structural rules

Lemma

The internal and external structural rules are admissible in HS5*.

Proof.

By induction on the depth of the derivation. E.g.:

$$\frac{\Gamma, \Box A, \Box A \Rightarrow \Delta \mid \Sigma, A \Rightarrow \Delta}{\Gamma, \Box A, \Box A \Rightarrow \Delta \mid \Sigma \Rightarrow \Delta} \Box_{L}^{*} \qquad \Rightarrow \qquad \frac{\Gamma, \Box A, \Box A \Rightarrow \Delta \mid \Sigma, A \Rightarrow \Pi}{\Gamma, \Box A \Rightarrow \Delta \mid \Sigma, A \Rightarrow \Pi} \coprod_{L}^{H} \Gamma, \Box A \Rightarrow \Delta \mid \Sigma \Rightarrow \Pi} \Box_{L}^{*}$$

Thus when trying to construct a derivation for a hypersequent

- we don't need to consider the structural rule, in particular the contraction rules
- we don't need to consider rules which only duplicate formulae.

To decide whether a formula is valid in S5 we do a backwards proof search in HS5*, applying rules (backwards) only if they create new formulae:

To decide whether a formula is valid in S5 we do a backwards proof search in HS5*, applying rules (backwards) only if they create new formulae:

On input G:

 apply all propositional rules, universally choose a premiss

 $\Box \Box p \Rightarrow \Box q$

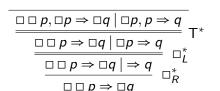
To decide whether a formula is valid in S5 we do a backwards proof search in HS5*, applying rules (backwards) only if they create new formulae:

- apply all propositional rules, universally choose a premiss
- ▶ apply \Box_R^* in all ways

$$\frac{\Box \Box p \Rightarrow \Box q \mid \Rightarrow q}{\Box \Box p \Rightarrow \Box q} \Box_R^*$$

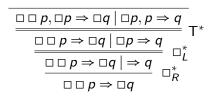
To decide whether a formula is valid in S5 we do a backwards proof search in HS5*, applying rules (backwards) only if they create new formulae:

- apply all propositional rules, universally choose a premiss
- ▶ apply \Box_R^* in all ways
- apply □_I* and T* in all ways



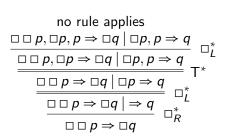
To decide whether a formula is valid in S5 we do a backwards proof search in HS5*, applying rules (backwards) only if they create new formulae:

- apply all propositional rules, universally choose a premiss
- ▶ apply \Box_R^* in all ways
- apply □_I* and T* in all ways
- reject if no rule applied
- accept if you see an initial sequent



To decide whether a formula is valid in S5 we do a backwards proof search in HS5*, applying rules (backwards) only if they create new formulae:

- apply all propositional rules, universally choose a premiss
- ▶ apply \Box_R^* in all ways
- apply □_I* and T* in all ways
- reject if no rule applied
- accept if you see an initial sequent
- repeat



To decide whether a formula is valid in S5 we do a backwards proof search in HS5*, applying rules (backwards) only if they create new formulae:

On input G:

- apply all propositional rules, universally choose a premiss
- apply □^{*}_R in all ways
- apply □_I* and T* in all ways
- reject if no rule applied
- accept if you see an initial sequent
- repeat

Complexity (input size = n):

- → ≤ n new forrmulae, universal choices
- \rightarrow $\leq n$ formulae, components
- \Rightarrow $\leq n^2$ steps
- → ≤ steps
- \rightarrow < n times

In total: p(n) steps \rightarrow coNP.

Applications and Other Logics

Hypersequents for Other Logics

Hypersequent calculi also capture other extensions of S4:

E.g., take the rules

Modal Logic S5

$$\begin{array}{c|c} \mathcal{G} \mid \Box \Gamma \Rightarrow A \\ \hline \mathcal{G} \mid \Box \Gamma \Rightarrow \Box A \end{array} \qquad \begin{array}{c} \mathcal{G} \mid \Gamma, A \Rightarrow \Delta \\ \hline \mathcal{G} \mid \Gamma, \Box A \Rightarrow \Delta \end{array}$$

and for the following logics and frame conditions extend them with:

S4.2
$$\forall x, y \exists z : xRz \& yRz$$

$$\frac{\mathcal{G} \mid \Box \Gamma, \Box \Delta \Rightarrow}{\mathcal{G} \mid \Box \Gamma \Rightarrow \mid \Box \Delta \Rightarrow}$$
S4.3 $\forall x, y : xRy \text{ or } yRx$
$$\frac{\mathcal{G} \mid \Sigma, \Box \Gamma \Rightarrow \Gamma \quad \mathcal{G} \mid \Theta, \Box \Delta \Rightarrow \Lambda}{\mathcal{G} \mid \Sigma, \Box \Delta \Rightarrow \Gamma \mid \Theta, \Box \Gamma \Rightarrow \Lambda}$$
S5 $\forall x, y : xRy$
$$\frac{\mathcal{G} \mid \Box \Gamma, \Delta \Rightarrow \Gamma}{\mathcal{G} \mid \Box \Gamma, \Delta \Rightarrow \Gamma}$$
(from [Kurokawa:'14])

Cut elimination is shown as we did for S5.

Bibliography I

A. Avron.

The method of hypersequents in the proof theory of propositional non-classical logics. In *Logic: From Foundations to Applications*. Clarendon, 1996.

A. Ciabattoni, G. Metcalfe, and F. Montagna.

Algebraic and proof-theoretic characterizations of truth stressers for MTL and its extensions. Fuzzy sets and systems, 161:369–389, 2010.

Unification in intuitionistic logic.

J. Symb. Log., 64(2):859-880, 1999.

H. Kurokawa.

S Ghilardi

Hypersequent calculi for modal logics extending S4.

In New Frontiers in Artificial Intelligence, volume 8417, pages 51-68. Springer, 2014.

B. Lellmann.

Axioms vs hypersequent rules with context restrictions: Theory and applications. In *IJCAR 2014*, pages 307–321. Springer, 2014.

G. Mints.

Sistemy lyuisa i sistema T (Supplement to the Russian translation). In R. Feys, Modal Logic, pages 422–509. Nauka, Moscow, 1974.

Uniform, cut-free formulations of T, S4 and S5 (abstract). J. Symb. Logic, 48(3):900, 1983.

Bibliography II

G. Restall.

Proofnets for S5: sequents and circuits for modal logic.

In Logic Colloquium 2005, volume 28, pages 151-172. Cambridge, 2007.