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Brief Recap: Modal Logics

We are interested in modal logics in the broad sense. Ingredients:

I Formulae, e.g.

A1, . . . ,An 3 F ::=
p | ¬A1 | A1 ∧ A2 | A1 ∨ A2 | A1 → A2

| �A1 | ♦A1 | A1 4 A2 | ♥(A1, . . . ,An) | . . .

I Semantics: e.g. Kripke or sphere or coalgebraic semantics (we
don’t care about that now)

I A sound and complete proof system to produce the theorems
of the logic (we do care about that now)

Question
Which formulae are theorems of a given modal logic?
How do we find out?



The Proof System: Sequents and Sequent Rules

We use sequents Γ ` ∆ with Γ,∆ multisets of formulae. (Read as
the formula

∧
Γ→

∨
∆.)

Our sequent systems have axioms Γ,A ` A,∆ and the rules G3cp
of classical propositional logic:

Γ,A,B ` ∆

Γ,A ∧ B ` ∆
∧L

,

Γ ` ∆,A Γ ` ∆,B

Γ ` ∆,A ∧ B
∧R

,

Γ ` ∆,A

Γ,¬A ` ∆
¬L

Γ,A ` ∆ Γ,B ` ∆

Γ,A ∨ B ` ∆
∨L

,

Γ ` ∆,A,B

Γ ` ∆,A ∨ B
∧L

,

Γ,A ` ∆

Γ ` ∆,¬A
¬R

Γ,A,A ` ∆

Γ,A ` ∆
conL

,

Γ ` ∆,A,A

Γ ` ∆,A
conR

,

Γ ` ∆,A A,Σ ` Π

Γ,Σ ` ∆,Π
cut



Shallow Rules

In addition to the rules of propositional logic our systems have
shallow rules, i.e. rules of the form

Γ, Γ1 ` ∆,∆1 . . . Γ, Γ` ` ∆,∆` Σ1 ` Π1 . . . Σk ` Πk

Γ,♥1(~p), . . . ,♥n(~p) ` ∆,♥′1(~p), . . . ,♥′m(~p)

with contextual premisses Γi ` ∆i and non-contextual premisses
Σj ` Πj consisting of variables in ~p.

Examples

p1, . . . , pn ` q

Γ,�p1, . . . ,�pn ` �q,∆
Kn ,

Γ, p ` ∆

Γ,�p ` ∆
T

Theorem
Every modal logic given by a finite set of axioms without nested
modalities in a Hilbert system has a corresponding (sound and
complete) sequent system of shallow rules.



The Cut Rule And Cut Elimination

Unfortunately, the systems rely on the cut rule for completeness:

Γ ` ∆,A A,Σ ` Π

Γ,Σ ` ∆,Π
cut

We would like to get rid of the cut rule since derivations with cuts
are not analytic and we have to “invent” the cut formula in
backwards proof search.
Standard procedure for cut elimination: permute the cuts up until
they fall off the leaves. E.g.:

A,B ` E

�A,�B ` �E
E ,C ` D

�E ,�C ` �D K2

�A,�B,�C ` �D cut
 

A,B ` E E ,C ` D

A,B,C ` D
cut

�A,�B,�C ` �D K3

But: We need enough rules to be able to do so!



Saturated Rule Sets and Generic Cut Elimination

A set R of shallow rules is

I cut closed if cuts between principal formulae of rules in R can
be replaced by cuts on their premisses and an application of a
rule in R

I contraction closed if contractions of principal formulae of rules
in R can be replaced by contractions of their premisses and
an application of a rule in R

I saturated if it is cut and contraction closed.

Theorem
If R is saturated, then we have cut elimination for GR.

Theorem
If R is saturated, then derivability in GR is decidable in polynomial
space.



Construction of Saturated Rule Sets

Problem: How to construct saturated rule sets?

Idea: Saturate the rule set under cuts between rules:

Slogan: “Cut the conclusion, cut the premisses”. E.g. for K :

A1,A2 ` B

�A1,�A2 ` �B

B,A3 ` C

�B,�A3 ` �C

(And similarly for contraction.)

Continuing like this we see the rule pattern
A1, . . . ,An ` B

�A1, . . . ,�An ` �B
.

Easy enough for K , but cutting rules and spotting patterns quickly
becomes complicated for other rules.
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Enter Doodles

Can we represent sequents and sequent rules more intuitively?

I Represent sequents by doodles: Take ` as an arrow with
multiple heads and tails:

A, B, C ` D, D

I Represent sequent rules as rule doodles: formulae in polish
notation, premisses on the right and conclusion on the left:

A ` B
Γ,�A ` �B,∆

K1

�

�

A

B

Γ,∆

Thus cut
Γ ` ∆,A A,Σ ` Π

Γ,Σ ` ∆,Π
becomes

Γ,∆

A

Σ,Π

Slogan: “Connect heads and tails and yank the wire!”
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Example: Lewis’ Conditional Logic V

Consider conditional logic V with the entrenchment connective 4
(read A 4 B as: “A is at least as possible as B”).

Translating the axioms into rules and saturating under cuts and
contractions of rules yields a saturated rule set. A typical step:

4 . .

4 . .

4 * *

4 . .

 

4 . .

4 . .

4 . .

 

4 . .

4 . .

Cut the conclu-
sions, cut the
premisses . . .

Now contract Voilà!
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Example: Lewis’ Conditional Logic V

Some doodles are still a bit
hard to read:

4 A2 B2

4 C D

4 A1 B1

So we make them 3D:
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Example: Lewis’ Conditional Logic V

Theorem.
The sequent system GRV for the
conditional logic V with Rn,m

shown on the right for n ≥
1, m ≥ 0 has cut elimination and
allows backwards proof search in
polynomial space.
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Summing Up

If you want to construct a cut-free sequent system for a
non-iterative modal logic

I translate the axioms into shallow rules

I represent the rules as rule doodles

I start doodling and spot the pattern

I and get PSPACE for free!

Thanks!


