Nested Sequents and Countermodels for Monotone Modal Logic

Björn Lellmann

TICAMORE workshop 2019, Vienna Nov 11-23, 2019

Modal logics: A success story

Fact

Many problems in Computer Science are modelled in Modal Logic.

Examples

- ▶ Epistemic logics: $\mathcal{K}(A)$... "the agent knows A is the case"
- ▶ Deontic logics: $\mathcal{O}(A)$... "A ought to be the case"
- **>**

In particular, modal logics often have nice reasoning systems a.k.a. calculi with strong connections to

- Syntax: useful for proving theorems
- Semantics: useful for finding countermodels.

Modal logics: A success story (normally?)

...But not all applications might satisfy normality:

Epistemic logics: K(A) ... "the agent knows that A is the case"

 \blacktriangleright $\mathcal{K}(\top)$... "the agent knows all tautologies"

Deontic logics: $\mathcal{O}(A)$... "A ought to be the case"

▶ $\mathcal{O}(go) \land \mathcal{O}(\neg go) \rightarrow \mathcal{O}(go \land \neg go)$... "in presence of conflicting obligations, \bot ought to be the case"

So. . .

Can we find good calculi for non-normal modal logics?

Monotone modal logic

The formulae of monotone modal logic M are given by

$$p \in \mathsf{Var} \mid \bot \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \to \varphi \mid \langle \,]\varphi$$

A neighbourhood frame $\mathcal{F} = (W, \mathcal{N})$ has a neighbourhood function satisfying $\mathcal{N}(w) \subseteq \mathcal{P}(W)$ for every $w \in W$. Valuations $[\![.\,]\!]$ satisfy:

- ▶ local clauses for $\land, \lor, \rightarrow, \bot$.
- ▶ \mathcal{F} , $[\![.\,]\!]$, $w \Vdash \langle]A$ iff $\exists \alpha \in \mathcal{N}(w) \ \forall v \in \alpha. \ \mathcal{F}$, $[\![.\,]\!]$, $v \Vdash A$

The axiomatisation of M is given by propositional logic and the rule

$$\frac{\vdash A \to B}{\vdash \langle]A \to \langle]B}$$

Reasoning in monotone modal logic

There are some calculi for M:

Syntactical calculi:

- ► Sequent calculi [Lavendhomme, Lucas:2000, Indrzejczak:2005]
- ▶ (Labelled Tableaux [Indrzejczak:2007])

Pro: Good for reasoning, Con: Bad for countermodels formula interpretation

Semantical calculi:

► Labelled sequent calculi [Negri:2017, Dalmonte et al:2018]

Pro: Good for countermodels

Con: Bad for reasoning,
no formula interpretation

Can we get the best of both worlds?

Nested sequents to the rescue!

Nested sequents are trees of (multi-set based) sequents:

interpreted in normal modal logics as

$$\wedge \Gamma \rightarrow \vee \Delta \vee \Box (\wedge \Sigma_1 \rightarrow \vee \Pi_1^*) \vee \cdots \vee \Box (\wedge \Sigma_n \rightarrow \vee \Pi_n^*).$$

A bit of history:

- Precursors: [Bull:'92], [Kashima:'94], [Masini:'92]
- ► Current form in modal logics: [Brünnler:'09], [Poggiolesi:'09]
- ► For intuitionistic modal logics: [Straßburger et al:'12 now]
- Adapted to intuitionistic logic in [Fitting:'14]

Nested sequents to the rescue!

Nested sequents are trees of (multi-set based) sequents:

interpreted in normal modal logics as

$$\wedge \Gamma \rightarrow \vee \Delta \vee \Box (\wedge \Sigma_1 \rightarrow \vee \Pi_1^*) \vee \cdots \vee \Box (\wedge \Sigma_n \rightarrow \vee \Pi_n^*).$$

Nested sequents give rise to models for normal modal logic.

Nested sequents to the rescue!

Nested sequents are trees of (multi-set based) sequents:

interpreted in normal modal logics as

$$\wedge \Gamma \rightarrow \vee \Delta \vee \Box (\wedge \Sigma_1 \rightarrow \vee \Pi_1^*) \vee \cdots \vee \Box (\wedge \Sigma_n \rightarrow \vee \Pi_n^*).$$

Nested sequents give rise to models for normal modal logic.

But:

- ▶ How to construct countermodels for non-normal logics?
- "Deep applicability" of the rules means we cannot have a formula interpretation in the non-normal language.

What's the problem with the formula interpretation?

Interpreting the nesting of nested sequents with τ and using Ackermann's Lemma we have the following equivalences:

$$\frac{\Gamma \Rightarrow \Delta, [\Rightarrow A] \quad \Gamma \Rightarrow \Delta, [\Rightarrow B]}{\Gamma \Rightarrow \Delta, [\Rightarrow A \land B]} \quad \iff \quad \frac{\tau(A) \land \tau(B) \Rightarrow \tau(A \land B)}{\overline{\tau(A)} \land \tau(B) \Rightarrow \tau(A \land B)}$$

$$\frac{\Gamma \Rightarrow \Delta, [\Rightarrow A \land B]}{\overline{\Rightarrow [p \Rightarrow p]}} \quad \iff \quad \frac{\overline{\Rightarrow \tau(p \rightarrow p)}}{\overline{\Rightarrow \tau(A)} \Rightarrow \tau(A \lor B)}$$

$$\frac{\Gamma \Rightarrow \Delta, [\Rightarrow A]}{\overline{\Rightarrow A} \Rightarrow \overline{\Rightarrow \tau(A)} \Rightarrow \tau(A \lor B)}$$

Note that these are (equivalent to) the axioms of K. Hence:

"Deep applicability" of the propositional rules implies normality of the interpretation of the nesting operator!

monotone modal logic

The formulae of monotone modal logic are given by

$$p \in \mathsf{Var} \mid \bot \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \rightarrow \varphi \mid \langle]\varphi$$

A neighbourhood frame $\mathcal{F} = (W, \mathcal{N})$ has a neighbourhood function satisfying $\mathcal{N}(w) \subseteq \mathcal{P}(W)$ for every $w \in W$. Valuations $\llbracket . \rrbracket$ satisfy:

- ▶ local clauses for $\land, \lor, \rightarrow, \bot$.
- ▶ \mathcal{F} , \llbracket . \rrbracket , $w \Vdash \langle]A$ iff $\exists \alpha \in \mathcal{N}(w) \ \forall v \in \alpha$. \mathcal{F} , \llbracket . \rrbracket , $v \Vdash A$

Bimodal monotone modal logic

The formulae of bimodal monotone modal logic aka. Brown's Ability Logic are given by

$$p \in \mathsf{Var} \mid \bot \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \to \varphi \mid \langle \,]\varphi \mid [\,]\varphi$$

A neighbourhood frame $\mathcal{F}=(W,\mathcal{N})$ has a neighbourhood function satisfying $\mathcal{N}(w)\subseteq\mathcal{P}(W)$ for every $w\in W$. Valuations $\llbracket.\rrbracket$ satisfy:

- ▶ local clauses for $\land, \lor, \rightarrow, \bot$.
- ▶ \mathcal{F} , \llbracket . \rrbracket , $w \Vdash \langle]A$ iff $\exists \alpha \in \mathcal{N}(w) \ \forall v \in \alpha$. \mathcal{F} , \llbracket . \rrbracket , $v \Vdash A$
- ▶ \mathcal{F} , \llbracket . \rrbracket , $w \Vdash \llbracket$]A iff $\forall \alpha \in \mathcal{N}(w) \forall v \in \alpha$. \mathcal{F} , \llbracket . \rrbracket , $v \Vdash A$

Brown's ability interpretation [Brown:'88]:

 $\langle 1A$: "The agent can reliably bring about A"

[]A: "The agent will bring about A"

Bimodal nested sequents

A bimodal nested sequent is a structure

$$\Gamma \Rightarrow \Delta, [S_1], \dots, [S_n], \langle \Sigma_1 \Rightarrow \Pi_1 \rangle, \dots, \langle \Sigma_m \Rightarrow \Pi_m \rangle$$

with $n, m \ge 0$ where the S_i are bimodal nested sequents. As a tree:

Its formula interpretation ι is

$$\land \Gamma \to \bigvee \Delta \ \lor \ \bigvee_{i=1}^{n} [\exists \iota(S_i) \ \lor \ \bigvee_{j=1}^{m} \langle \exists (\land \Sigma_j \to \bigvee \Pi_j)$$

The calculus for bimodal M

The calculus contains the (classical) propositional rules plus:

$$\frac{\Gamma \Rightarrow \Delta, [\Rightarrow A]}{\Gamma \Rightarrow \Delta, [1A]} [1]_{R} \qquad \frac{\Gamma \Rightarrow \Delta, [\Sigma, A \Rightarrow \Pi]}{\Gamma, [1A \Rightarrow \Delta, [\Sigma \Rightarrow \Pi]} [1]_{L}$$

$$\frac{\Gamma \Rightarrow \Delta, \langle \Rightarrow A \rangle}{\Gamma \Rightarrow \Delta, \langle 1A \rangle} \langle 1_{R} \qquad \frac{\Gamma \Rightarrow \Delta, [\Sigma, A \Rightarrow \Pi]}{\Gamma, \langle 1A \Rightarrow \Delta, \langle \Sigma \Rightarrow \Pi \rangle} \langle 1_{L}$$

$$\frac{\Gamma \Rightarrow \Delta, [\Sigma \Rightarrow \Pi]}{\Gamma \Rightarrow \Delta, [1A, \langle \Sigma \Rightarrow \Pi \rangle]} [1]_{L}$$

Rules are applied anywhere except inside (.).

Theorem

The rules are sound wrt. the formula interpretation and (a variant of) the calculus has cut elimination.

The calculus for bimodal M

The calculus contains the (classical) propositional rules plus:

$$\frac{\Gamma \Rightarrow \Delta, [\Rightarrow A]}{\Gamma \Rightarrow \Delta, [1A]} [1]_{R} \qquad \frac{\Gamma \Rightarrow \Delta, [\Sigma, A \Rightarrow \Pi]}{\Gamma, [1A \Rightarrow \Delta, [\Sigma \Rightarrow \Pi]} [1]_{L}$$

$$\frac{\Gamma \Rightarrow \Delta, \langle \Rightarrow A \rangle}{\Gamma \Rightarrow \Delta, \langle 1A \rangle} \langle 1]_{R} \qquad \frac{\Gamma \Rightarrow \Delta, [\Sigma, A \Rightarrow \Pi]}{\Gamma, \langle 1A \Rightarrow \Delta, \langle \Sigma \Rightarrow \Pi \rangle} \langle 1]_{L}$$

$$\frac{\Gamma \Rightarrow \Delta, [\Sigma \Rightarrow \Pi]}{\Gamma \Rightarrow \Delta, [1A, \langle \Sigma \Rightarrow \Pi \rangle]} [1]_{L}$$

Rules are applied anywhere except inside $\langle . \rangle$.

Bonus: Restricting the language specifies the calculus to the standard (linear) nested sequent calculus for modal logic K

The calculus for bimodal M

The calculus contains the (classical) propositional rules plus:

$$\frac{\Gamma \Rightarrow \Delta, [\Rightarrow A]}{\Gamma \Rightarrow \Delta, [1]A} [1]_{R} \qquad \frac{\Gamma \Rightarrow \Delta, [\Sigma, A \Rightarrow \Pi]}{\Gamma, [1]A \Rightarrow \Delta, [\Sigma \Rightarrow \Pi]} [1]_{L}$$

$$\frac{\Gamma \Rightarrow \Delta, \langle \Rightarrow A \rangle}{\Gamma \Rightarrow \Delta, \langle 1]A} \langle 1_{R} \qquad \frac{\Gamma \Rightarrow \Delta, [\Sigma, A \Rightarrow \Pi]}{\Gamma, \langle 1]A \Rightarrow \Delta, \langle \Sigma \Rightarrow \Pi \rangle} \langle 1_{L}$$

$$\frac{\Gamma \Rightarrow \Delta, [\Sigma \Rightarrow \Pi]}{\Gamma \Rightarrow \Delta, [1]A, \langle \Sigma \Rightarrow \Pi \rangle} |$$

Rules are applied anywhere except inside $\langle . \rangle$.

Bonus: Restricting the language specifies the calculus to the standard (linear) nested sequent calculus for modal logic K or the (linear) nested sequent calculus for monomodal M

Deontic extensions

Adding further rules gives calculi for extensions of the logic. Some (vaguely) deontic ones:

	axiom	frame property	$P_{\langle 1}$	$N_{\langle 1}$	$D_{[]}$
$n_{\langle 1}$	¬⟨]⊥	$\emptyset \notin \mathcal{N}(w)$	√		
d ₍₁	$\neg (\langle A \wedge [A \wedge A \cap A) \rangle$	$\emptyset \notin \mathcal{N}(w)$	✓		
d_{L}	$[]A \rightarrow \langle]A$	$\mathcal{N}(w) eq \emptyset$		\checkmark	
d[]	$\neg([]A \wedge [] \neg A)$	$\exists \alpha \in \mathcal{N}(w). \alpha \neq \emptyset$		\checkmark	\checkmark

With the additional rules:

$$\frac{\Gamma\Rightarrow\Delta,\langle\Rightarrow\rangle}{\Gamma\Rightarrow\Delta}\ P_{\langle]} \qquad \frac{\Gamma\Rightarrow\Delta,[\Sigma\Rightarrow\Pi]}{\Gamma\Rightarrow\Delta,\langle\Sigma\Rightarrow\Pi\rangle}\ N_{\langle]} \qquad \frac{\Gamma\Rightarrow\Delta,[\Rightarrow]}{\Gamma\Rightarrow\Delta}\ D_{[]}$$

Bonus: Restricting the language specifies the calculus to those for MP (via $n_{\langle 1 \rangle}$) and for KD (via $d_{[1]}$).

What about countermodels?

Using an annotated version of the calculus, underivable sequents give rise to countermodels: E.g.

$$\langle \exists \neg \langle \exists \bot, \langle \exists p \Rightarrow \langle \exists (\neg \langle \exists \bot \land \langle \exists p), [\langle \exists \bot, p \Rightarrow], [\Rightarrow \langle \exists \bot, p]]$$

yields

Theorem

The calculus for bimodal M is cut-free complete and failed proof search yields a countermodel.

What about countermodels?

Using an annotated version of the calculus, underivable sequents give rise to countermodels: E.g.

$$\langle \exists \neg \langle \exists \bot, \langle \exists p \Rightarrow \langle \exists (\neg \langle \exists \bot \land \langle \exists p), [\langle \exists \bot, p \Rightarrow], [\Rightarrow \langle \exists \bot, p]]$$

yields

Corollary (Bonus)

The calculi for K and monomodal M are cut-free complete and failed proof search yields a countermodel.

What do derivations look like?

```
...Let the implementation work that out!
( http://subsell.logic.at/bprover/nnProver/ )
```

Suming up

Bimodal nested sequents for monotone modal logic yield:

- an internal calculus;
- syntactic cut elimination;
- support for countermodel construction;
- the basis for a general treatment of non-normal modal logics;
- ▶ an implementation including countermodel generation

Thank You!