Syntactic Cut-Elimination and Backward Proof-Search for Tense Logic via Linear Nested Sequents

Rajeev Goré and Björn Lellmann

TABLEAUX 2019, London, UK Sep 4, 2019

Motivation 1: Expressivity of linear nested sequents

Recent development: general methods for constructing analytic calculi for non-classical logics in various frameworks. E.g.:

using

- ► Modal logics
- Substructural logics
- ► Intermediate logics
- **.**..

- Sequents
- Nested sequents
- Labelled sequents
- Display calculi

By now these frameworks are (reasonably) well understood . . .

Motivation 1: Expressivity of linear nested sequents

Recent development: general methods for constructing analytic calculi for non-classical logics in various frameworks. E.g.:

using

- ► Modal logics
- Substructural logics
- ► Intermediate logics

- Sequents
- Nested sequents
- Labelled sequents
- Display calculi

By now these frameworks are (reasonably) well understood ...

```
\begin{array}{c} \textit{low} \; \longleftarrow \; \text{expressivity} \; \longrightarrow \textit{high} \\ \text{Sequents} \leq ? \; \leq \text{Nested sequents} \; \leq \; \left\{ \begin{array}{c} \text{Labelled sequents} \\ \text{Display calculi} \\ \textit{low} \; \longleftarrow \; \text{complexity} \; \longrightarrow \; \textit{high} \end{array} \right.
```

... But what about the stuff in between?

Motivation 1: Expressivity of Linear nested sequents

Restricting nested sequents to a single branch yields linear nested sequents (LNS):

$$\Gamma_1 \Rightarrow \Delta_1 \nearrow \dots \nearrow \Gamma_n \Rightarrow \Delta_n$$

(don't confuse with hypersequents!)

Linear nested sequents capture a number of logics, e.g.:

- ▶ normal modal logics K + {D, T, 4} [Masini: '92, L.: '15]
- non-normal modal logics [L., Pimentel:'19]
- ▶ linear temporal logics [Indrzejczak:'16; Baelde et al:'18]
- ▶ intuitionistic logic [L.:'15]
- ► Gödel-Dummett logic [Kuznets, L.:'18]

Motivation 1: Expressivity of Linear nested sequents

Restricting nested sequents to a single branch yields linear nested sequents (LNS):

$$\Gamma_1 \Rightarrow \Delta_1 \nearrow \dots \nearrow \Gamma_n \Rightarrow \Delta_n$$

(don't confuse with hypersequents!)

Linear nested sequents capture a number of logics, e.g.:

- ▶ normal modal logics K + {D, T, 4} [Masini:'92, L.:'15]
- ▶ non-normal modal logics [L., Pimentel:'19]
- ▶ linear temporal logics [Indrzejczak:'16; Baelde et al:'18]
- ▶ intuitionistic logic [L.:'15]
- ► Gödel-Dummett logic [Kuznets, L.:'18]

But these logics either have a cut-free sequent system or have a "linear" semantics.

Motivation 1: Expressivity of Linear nested sequents

Question 1:

Are there "structurally interesting" examples of logics handled by linear nested sequents?

Motivation 2: A minimal system for converse/symmetry

Modal tense logic Kt adds the converse modality ■ and its dual

♦ to normal modal logic K.

Symmetric modal logic KB collapses the modalities of Kt.

Modal tense logic and symmetric modal logic are captured (cut-free) in a number of frameworks, e.g.:

- ▶ nested sequents [Kashima:'94; Goré et al:'11; Brünnler:'09]
- display calculi [Wansing:'94]
- ▶ labelled sequents [Bonnette, Goré:'98]

Motivation 2: A minimal system for converse/symmetry

Modal tense logic Kt adds the converse modality ■ and its dual • to normal modal logic K.

Symmetric modal logic KB collapses the modalities of Kt.

Modal tense logic and symmetric modal logic are captured (cut-free) in a number of frameworks, e.g.:

- nested sequents [Kashima:'94; Goré et al:'11; Brünnler:'09]
- display calculi [Wansing:'94]
- ▶ labelled sequents [Bonnette, Goré:'98]

But these frameworks use rather heavy machinery in the form of very expressive formalisms

Motivation 2: A minimal system for converse/symmetry

Question 2:

What is the minimal structural extension of standard sequents suitable for handling converse/symmetry?

Putting it together...

Putting it together...

Disclaimer: Here we mainly look at KB.

Reminder: Modal logic KB

The formulae of modal logic are given by

$$\varphi ::= \mathsf{Var} \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \to \varphi \mid \Box \varphi$$

The Hilbert-style presentation of normal modal logic KB is given by the axioms and rules for classical propositional logic and

(k)
$$\Box(A \to B) \land \Box A \to \Box B$$
 (b) $A \to \Box \neg \Box \neg A$ $\frac{\vdash A}{\vdash \Box A}$ nec

Semantically, KB is given by the formulae valid in Kripke frames $\langle W, R, V \rangle$ with symmetric accessibility relation R.

Validity is defined via the standard clauses for truth at a world:

- $\blacktriangleright \langle W, R, V \rangle, w \Vdash \Box A \text{ iff } \forall v \in W \text{ } (wRv \Rightarrow \langle W, R, V \rangle, v \Vdash A).$
- local clauses for the propositional connectives

Linear Nested Sequents for KB

A linear nested sequent (LNS) is a finite list of sequents, written

$$\Gamma_1 \Rightarrow \Delta_1 \nearrow \ldots \nearrow \Gamma_n \Rightarrow \Delta_n$$

and interpreted as $\wedge \Gamma_1 \to \vee \Delta_1 \vee \square (\dots \square (\wedge \Gamma_n \to \vee \Delta_n) \dots)$.

The system LNS*_{KB} is given by

$$\frac{\mathcal{G} \nearrow \Gamma, p \Rightarrow p, \Delta}{\mathcal{G} \nearrow \Gamma, A \Rightarrow \Delta, A \to B, B} \xrightarrow{Q} \xrightarrow{\Gamma} R$$

$$\frac{\mathcal{G} \nearrow \Gamma, A \Rightarrow \Delta, A \to B, B}{\mathcal{G} \nearrow \Gamma, A \to B} \xrightarrow{Q} \xrightarrow{R}$$

$$\frac{\mathcal{G} \nearrow \Gamma, A \to B, B \Rightarrow \Delta}{\mathcal{G} \nearrow \Gamma, A \to B \Rightarrow \Delta, A} \xrightarrow{Q} \xrightarrow{\Gamma}$$

$$\frac{\mathcal{G} \nearrow \Gamma \Rightarrow \Delta, \Box A \nearrow \epsilon \Rightarrow A}{\mathcal{G} \nearrow \Gamma, A \to B} \xrightarrow{Q} \xrightarrow{\Gamma}$$

$$\frac{\mathcal{G} \nearrow \Gamma \Rightarrow \Delta, \Box A}{\mathcal{G} \nearrow \Gamma \Rightarrow \Delta, \Box A} \xrightarrow{\Box}$$

$$\frac{\mathcal{G} \nearrow \Gamma, A \Rightarrow \Delta}{\mathcal{G} \nearrow \Gamma, A \Rightarrow \Delta} \xrightarrow{\Gamma}$$

$$\frac{\mathcal{G} \nearrow \Gamma, A \Rightarrow \Delta}{\mathcal{G} \nearrow \Gamma, A \Rightarrow \Delta} \xrightarrow{\Gamma}$$

$$\frac{\mathcal{G} \nearrow \Gamma, A \Rightarrow \Delta}{\mathcal{G} \nearrow \Gamma, A \Rightarrow \Delta} \xrightarrow{\Gamma}$$

$$\frac{\mathcal{G} \nearrow \Gamma, A \Rightarrow \Delta}{\mathcal{G} \nearrow \Gamma, A \Rightarrow \Delta} \xrightarrow{\Gamma}$$

$$\frac{\mathcal{G} \nearrow \Gamma, A \Rightarrow \Delta}{\mathcal{G} \nearrow \Gamma, A \Rightarrow \Delta} \xrightarrow{\Gamma}$$

Cut elimination: the trick

We want completeness via syntactic cut elimination ... but we cannot reduce the following cut:

$$\frac{\Gamma \Rightarrow \Delta \nearrow \Xi \Rightarrow \Upsilon \nearrow \epsilon \Rightarrow A}{\Gamma \Rightarrow \Delta \nearrow \Xi \Rightarrow \Upsilon, \square A} \square_{R} \frac{\Sigma, A \Rightarrow \Theta}{\Sigma \Rightarrow \Pi \nearrow \Omega, \square A \Rightarrow \Theta} \square_{L}^{2}$$

$$\Gamma, \Sigma \Rightarrow \Delta, \Pi \nearrow \Xi, \Omega \Rightarrow \Upsilon, \Theta$$
 cut

Solution: Add a "superfluous premiss" to the □ right rule!

$$\mathcal{G} \nearrow \Gamma \Rightarrow \Delta \nearrow \Sigma \Rightarrow \Pi, \Box A \nearrow \epsilon \Rightarrow A$$

$$\frac{\mathcal{G} \nearrow \Gamma \Rightarrow \Delta, A \nearrow \Sigma \Rightarrow \Pi, \Box A}{\mathcal{G} \nearrow \Gamma \Rightarrow \Delta \nearrow \Sigma \Rightarrow \Pi, \Box A} \Box_{R}^{1}$$

$$\frac{\Gamma \Rightarrow \Delta, \Box A \nearrow \epsilon \Rightarrow A}{\Gamma \Rightarrow \Delta, \Box A} \Box_{R}^{2}$$

Now cut elimination is "easy" and converting derivations to the original system is trivial.

The (not so small) hiccup: Admissibility of Necessitation

Necessitation should be easy: If $\vdash \epsilon \Rightarrow A$, then $\vdash \epsilon \Rightarrow \epsilon \nearrow \epsilon \Rightarrow A$, right?

The (not so small) hiccup: Admissibility of Necessitation

Necessitation should be easy: If $\vdash \epsilon \Rightarrow A$, then $\vdash \epsilon \Rightarrow \epsilon \nearrow \epsilon \Rightarrow A$, right? Unfortunately not. . .

$$\frac{\overline{p \Rightarrow p} (id)}{\overbrace{\epsilon \Rightarrow p \nearrow \Box p \Rightarrow \epsilon}} \Box_{L}^{2}$$

$$\frac{\epsilon \Rightarrow p \nearrow \epsilon \Rightarrow \neg \Box p}{\epsilon \Rightarrow p, \Box \neg \Box p} \Box_{R}^{2}$$

The (not so small) hiccup: Admissibility of Necessitation

Necessitation should be easy: If $\vdash \epsilon \Rightarrow A$, then $\vdash \epsilon \Rightarrow \epsilon \nearrow \epsilon \Rightarrow A$, right?

Unfortunately not, but at least:

If
$$\vdash \epsilon \Rightarrow A$$
, then $\vdash \epsilon \Rightarrow \Box A \nearrow \epsilon \Rightarrow A!$

$$\frac{\overline{p \Rightarrow p} (id)}{\overbrace{\epsilon \Rightarrow p \nearrow \Box p \Rightarrow \epsilon}} \Box_{L}^{2}$$

$$\frac{\epsilon \Rightarrow p \nearrow \epsilon \Rightarrow \neg \Box p}{\epsilon \Rightarrow p, \Box \neg \Box p} \Box_{R}^{2}$$

$$\frac{\overline{\epsilon} \Rightarrow \Box(p \vee \Box \neg \Box p) \nearrow p \Rightarrow p, \Box \neg \Box p}{\Box p \Rightarrow \Box(p \vee \Box \neg \Box p) \nearrow \epsilon \Rightarrow p, \Box \neg \Box p} \Box_{L}^{1}$$

$$\frac{\Box p \Rightarrow \Box(p \vee \Box \neg \Box p)}{\overline{\epsilon} \Rightarrow \Box(p \vee \Box \neg \Box p), \neg \Box p} \neg_{R}$$

$$\frac{\overline{\epsilon} \Rightarrow \Box(p \vee \Box \neg \Box p), \neg \Box p} \Box_{R}^{1}$$

$$\frac{\overline{\epsilon} \Rightarrow \Box(p \vee \Box \neg \Box p), \neg \Box p} \Box_{R}^{1}$$

Main idea: "Reconstruct the old root of the LNS when needed" (Warning: Proving termination is non-trivial.)

An alternative: Completeness via countermodels

Consider root-first proof search, applying the rules in the order

- ▶ Termination rules: (id) and \bot_L
- ▶ Propositional rules: (\rightarrow_R) and (\rightarrow_L) (with local loop check)
- ▶ Propagation rule: \Box_L^1 (with local loop check)
- ▶ Restart rule: \Box_I^2 (with local loop check)
- ▶ Box rules: \Box_R^1 and \Box_R^2 (backtrack over all the choices).

Note: This terminates.

Due to the restart rule, this revisits components multiple times.

Hence to construct a model from failed proof search we need to prune the search space. . .

Pruning the search space

Main idea: Start with root-first proof search ...

$$\frac{p,q\Rightarrow \Box\neg\Box p,\Box\neg\Box q\nearrow\Box q\Rightarrow\neg\Box q}{p,q\Rightarrow\Box\neg\Box p,\Box\neg\Box q\nearrow\epsilon\Rightarrow\neg\Box q}\neg_R$$

$$\frac{p,q\Rightarrow\Box\neg\Box p,\Box\neg\Box q\nearrow\Box p\Rightarrow\neg\Box p}{p,q\Rightarrow\Box\neg\Box p,\Box\neg\Box q\nearrow\epsilon\Rightarrow\neg\Box p}\neg_R$$

$$p\Rightarrow\ldots\nearrow\epsilon\Rightarrow\neg\Box p$$

$$\frac{p,q\Rightarrow\Box\neg\Box p,\Box\neg\Box q}{p,q\Rightarrow\Box\neg\Box p,\Box\neg\Box q}\Box_L^2,\neg_R$$

$$\frac{p\Rightarrow\Box\neg\Box p,\Box\neg\Box q}{\epsilon\Rightarrow\Box\neg\Box p,\Box\neg\Box q\nearrow\epsilon\Rightarrow\neg\Box p}\Box_L^2,\neg_R$$

$$\epsilon\Rightarrow\Box\neg\Box p,\Box\neg\Box q$$

$$\epsilon\Rightarrow\Box\neg\Box p,\Box\neg\Box q$$

Pruning the search space

Main idea: Start with root-first proof search . . .

Delete components introduced by the restart rule $\square_L^2 \ldots$

Pruning the search space

Main idea: Start with root-first proof search . . .

Delete components introduced by the restart rule \Box_L^2 ... Read off the model from topmost saturated components.

 $\frac{p, q \Rightarrow \Box \neg \Box p, \Box \neg \Box q \nearrow \Box q \Rightarrow \neg \Box q}{p, q \Rightarrow \Box \neg \Box p, \Box \neg \Box q \nearrow \epsilon \Rightarrow \neg \Box q} \neg_R$ $\frac{p,q\Rightarrow\Box\neg\Box p,\Box\neg\Box q\nearrow\Box p\Rightarrow\neg\Box p}{p,q\Rightarrow\Box\neg\Box p,\Box\neg\Box q\nearrow\epsilon\Rightarrow\Box p}\neg_R$ $p \Rightarrow \dots \nearrow \epsilon \Rightarrow \neg \Box p \qquad \frac{p, q \Rightarrow \Box \neg \Box p, \Box \neg \Box q}{p \Rightarrow \Box \neg \Box p, \Box \neg \Box q \nearrow \epsilon \Rightarrow \neg \Box q} \ \Box^2_L, \neg_R$ $\epsilon \Rightarrow \dots \nearrow \epsilon \Rightarrow \neg \Box a$ $\epsilon \Rightarrow \Box \neg \Box p, \Box \neg \Box q$

Summary

We obtained

- Linear nested sequent calculi for Kt and KB
- syntactic cut elimination by modifying the box right rules
- countermodel construction from failed proof search
- ▶ a good starting point for extensions with further axioms.

Summary

We obtained

- Linear nested sequent calculi for Kt and KB
- syntactic cut elimination by modifying the box right rules
- countermodel construction from failed proof search
- ▶ a good starting point for extensions with further axioms.

Question 1: Are there "structurally interesting" examples of logics handled by linear nested sequents?

Answer 1: Yes! Modal tense logic Kt and modal logic KB.

Question 2: What is the minimal structural extension of standard sequents suitable for handling converse/symmetry?

Answer 2: Not more than linear nested sequents!

Summary

We obtained

- Linear nested sequent calculi for Kt and KB
- syntactic cut elimination by modifying the box right rules
- countermodel construction from failed proof search
- ▶ a good starting point for extensions with further axioms.

Question 1: Are there "structurally interesting" examples of logics handled by linear nested sequents?

Answer 1: Yes! Modal tense logic Kt and modal logic KB.

Question 2: What is the minimal structural extension of standard sequents suitable for handling converse/symmetry?

Answer 2: Not more than linear nested sequents!

Question 3: Ask away!

Modal tense logic

Linear nested sequents for Kt also use the structural connective \checkmark for the converse modality \blacksquare .

The formula interpretation ι is given by:

$$\iota(\Gamma \Rightarrow \Delta) := \land \Gamma \to \lor \Delta
\iota(\Gamma \Rightarrow \Delta \nearrow \mathcal{G}) := \land \Gamma \to \lor \Delta \lor \square \iota(\mathcal{G})
\iota(\Gamma \Rightarrow \Delta \swarrow \mathcal{G}) := \land \Gamma \to \lor \Delta \lor \blacksquare \iota(\mathcal{G})$$

Modal tense logic

The system LNS_{Kt} contains the following modal rules:

$$\frac{\mathcal{G} \updownarrow \Gamma \Rightarrow \Delta, A \swarrow \Sigma \Rightarrow \Pi, \Box A \quad \mathcal{G} \updownarrow \Gamma \Rightarrow \Delta \swarrow \Sigma \Rightarrow \Pi, \Box A \nearrow \epsilon \Rightarrow A}{\mathcal{G} \updownarrow \Gamma \Rightarrow \Delta \swarrow \Sigma \Rightarrow \Pi, \Box A} \quad \Box_{R}^{1}$$

$$\frac{\mathcal{G} \updownarrow \Gamma \Rightarrow \Delta, A \nearrow \Sigma \Rightarrow \Pi, \blacksquare A \quad \mathcal{G} \updownarrow \Gamma \Rightarrow \Delta \nearrow \Sigma \Rightarrow \Pi, \blacksquare A \checkmark \epsilon \Rightarrow A}{\mathcal{G} \updownarrow \Gamma \Rightarrow \Delta \nearrow \Sigma \Rightarrow \Pi, \blacksquare A \checkmark \epsilon \Rightarrow A} \quad \blacksquare_{R}^{1}$$

$$\frac{\mathcal{G} \nearrow \Gamma \Rightarrow \Delta, \Box A \nearrow \epsilon \Rightarrow A}{\mathcal{G} \nearrow \Gamma \Rightarrow \Delta, \Box A} \quad \Box_{R}^{2}$$

$$\frac{\mathcal{G} \nearrow \Gamma \Rightarrow \Delta, \Box A \nearrow \epsilon \Rightarrow A}{\mathcal{G} \nearrow \Gamma \Rightarrow \Delta, \Box A} \quad \Box_{R}^{2}$$

$$\frac{\mathcal{G} \nearrow \Gamma \Rightarrow \Delta, \Box A \Rightarrow \Delta \nearrow \Sigma, A \Rightarrow \Pi}{\mathcal{G} \updownarrow \Gamma, \Box A \Rightarrow \Delta \nearrow \Sigma, A \Rightarrow \Pi} \quad \blacksquare_{L}^{1}$$

$$\frac{\mathcal{G} \updownarrow \Gamma, \Box A \Rightarrow \Delta \nearrow \Sigma, \Box A \Rightarrow \Pi}{\mathcal{G} \updownarrow \Gamma \Rightarrow \Delta, \Delta \nearrow \Sigma, \Box A \Rightarrow \Pi} \quad \blacksquare_{L}^{2}$$