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General methods in proof theory

Recent development: general methods for constructing analytic
calculi for non-classical logics in various frameworks. E.g.:

» Modal logics » Sequents

» Substructural logics using » Hypersequents

> Intermediate logics » Labelled sequents
> ... » Display calculi

By now these frameworks are (reasonably) well understood ...

low <— expressivity — high

Labelled sequents
Display calculi
low <— complexity — high

Sequents < Hypersequents < {
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General methods in proof theory

Recent development: general methods for constructing analytic
calculi for non-classical logics in various frameworks. E.g.:

» Modal logics » Sequents

» Substructural logics using » Hypersequents

> Intermediate logics » Labelled sequents
> ... » Display calculi

By now these frameworks are (reasonably) well understood ...

low <— expressivity — high

Labelled sequents
Display calculi
low <— complexity — high

Sequents < Hypersequents < 7 < {

... But what about the stuff in between?

N
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Nested sequents

Nested sequents are trees of (multi-set based) sequents:

ARRY/

21:>|_|1 Z,,il‘ln

~N 7

M= A

interpreted as A\I' — VAV (AX; — V7)) V-V (AL, — VIT})
or A\I = VAVIO(AL — V) V.- vOAL, — V).
A bit of history:
» Precursors: [Bull:'92], [Kashima:'94], [Masini:'92]
» Current form in modal logics: [Briinnler:'09], [Poggiolesi:'09]
» For intuitionistic modal logics: [StraBburger et al:'12 - now]

» Adapted to intuitionistic logic in [Fitting:'14]
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Nested sequents

Nested sequents are trees of (multi-set based) sequents:

N7 N

21:>|_|1 2,=11, Wzl_”

~N 7

r= A r-HholF A

interpreted as A\I' — VAV (AX; — V7)) V-V (AL, — VIT})
or A\ - VAVIO(AX] — V) V- vOAL, — VIT}).

Nested sequents give rise to models for intuitionistic and modal logic.

But what about intermediate and non-normal modal logics?
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Part 1: Intermediate Logics
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Reminder: Intermediate logics

The formulae of intermediate logics are given by

peVar| L|pAp|pVe|lp =

A frame F = (W, X) has a reflexive transitive x C W x W.
Valuations o satisfy

» monotonicity: F,o,xIF pand x <y then F,o,ylFp
» local clauses for A,V, L

» F.o,xlFA— Biff
Vy(x<y= (F,o,y I Aor F,o,y I B))

Intermediate logics are obtained by restricting the class of frames.

> Bdy: depth at most k (Xo ... XX, = \/le,-,l = X,')
» GD: linear frames (x Xy Vy < x)
» Jan: confluent frames (3z(x X z Ay < 2))

> ..
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Nested sequents for intuitionistic logic
Fitting's rules (applied anywhere inside the nested sequent):

A= B
~
M=A
—R
< NI
/
= AA—B r= A
N7 N7 :
NB=A F:>A,A s =
/
<\7 NNMA=A

A= B=A

Together with local rules for A,V, L, init, and contraction.

Problem: Rule — g loses control over the structure of the models.
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Our approach: Be more explicit

To regain control over the structure of the models we incorporate
all different possibilities in the implication right rule

Y =1
|
2 =1 >=MNA—-B A= B Y= A=B
X/ XK/ X1/ X/
A= AB r=A r=A r=A
Y =T
X1/
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Our approach: Be more explicit

To regain control over the structure of the models we incorporate
all different possibilities in the implication right rule

and restrict according to the class of frames!
Only there if in frame class

pl

Zé
2 =1 >=MNA—-B AéB Z:xl'l A= B
X/ XK/ 1/ /)
A= AB r=A r=A r=A
Y =T
X1/
r=AA—B



Injective nested sequents: Formally
A nested sequent is a finite directed labelled tree (T,v), written
M= A, [S],...,[54]
with n > 0 and S; nested sequents.
Its underlying tree is the reflexive transitive closure T* of T.

An interpretation | of a nested sequent in a tree-like model is a
tree-embedding of its underlying tree into the model:

N1

21:>|_|1 Z2¢ﬂ2

NS

M= A
/

In particular, an intepretation is injective!
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The general rule scheme

The restriction of a set S of nested sequents to a frame-class F is
Sle={(T,v) eS| T e€F}
For a suitable class F of frames, the —F, rule is given by:

VA= B,A— B AL =M, .. [Th= ]} )
VIF= A= B A [T = A B, [Sa= M}
V{l=A=B A A= B[ = M],.... [0 = M}

V{IIT=A—=BA[X1=M]...,[X, = A—= B, 1]}
V{l=A—=B A X =0]...,[A= B, [ = I1]]}
| V{IT=A—=B,A A= Bl [X1=M],...,[Z,= M}

V{Il=A—=BA X =TM,....[X, = T]}




Example: Bounded depth Bd,
Reminder: Bd, frames have depth at most 2.

Thus the rules work only on nested sequents of depth < 2.
The rule with principal formula in the root:

Y =Tl >Y=IMMA—B >Y=1I11 A= B
DA NV X1/
NA=AB r=A r= A e
—
Y= .
X1/
r=AA—B
And the rule with principal Y A=T,B
formula in a leaf: ]
M= A
%,gcb
Y= A= B
/

Mr=A
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Example: Godel-Dummett logic GD

Reminder: GD frames are linear: every node has < 1 successor.

Y=

YN A=BX=IMNA->B A= B
| | |
NMA=AB T=A r= A MNMA=AB T=A
: : : _,GD : : _,GD
: 8 = AA B :
2 =11 :
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Example: Godel-Dummett logic GD

Reminder: GD frames are linear: every node has < 1 successor.

Y=

A=B E=MA—=B

r=aA T =A
:. : ~>ng
T =l
|

Fr=AA-B

A=B
M= A
: ﬁgD/

Fr=AAB

Side note: In this case we can even omit more premisses.

Theorem (Kuznets-L.:AiML'18)

This linear nested sequent calculus for GD has syntactic cut

elimination.
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Completeness and countermodels

For a frame class F the calculus Gg has the rule —F, Fitting's
propositional and lift rules, and

[ = B,A*, [ = B, LAA=BA—-BA
r=A[E=6"m1] " "TA=A=BA R

Theorem (Kuznets-L.)

Let F consist of tree-like frames which are linear or of depth at
most 2. Then Gg is sound and complete for F, and failed
proof-search yields a countermodel.

Corollary

» Proof search for GD,Sm, BD», GSc, CL is complexity-optimal.
» GD has the linear model property.
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Non-trivial application: Interpolation

A logic L has Craig interpolation if whenever
L+ A(p,q) — B(q,r), then there is an interpolant /() in the
common language of A and B with

LEAPp,q)—1(q) and  LFEI(g) = B(q,7)
It has Lyndon interpolation if the polarities of the ¢ are the same
in A, B, .

Theorem (Maksimova:1977, nonconstructively)

There are exactly 7 intermediate logics with Craig interpolation.

Theorem (Kuznets-L.)

For GD, GSc,Sm, BD, the injective nested sequent calculi yield
constructive proofs of Craig interpolation. For GD we also obtain
Lyndon interpolation.
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What do derivations look like?

... Let the implementation work that out!
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Part 2: Non-normal modal logics
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Monotone modal logic

The formulae of monotone modal logic M are given by

peVar| LlpoAp|loVe|lp—el|lp

A neighbourhood frame F = (W, N) has a neighbourhood
function satisfying N'(w) C P(W) for every w € W.
Valuations o satisfy:

> local clauses for A,V,—, L.
» FooowlEUA iff S3aeN(w)Vvea FoviEA

The axiomatisation of M is given by the rule

FA—B
F{A—= (B

There is a linear nested sequent system for M [L-P'15]. ..
but it lacks a formula interpretation and countermodel generation
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What's the problem with the formula interpretation?

Interpreting the nesting of nested sequents with 7 and using
Ackermann’s Lemma we have the following equivalences:

N=A[=A T=A/[= B]
= A,[= AAB]

e 1(A)AT(B)=1(AANB)

=[p=p = =71(p—p)
Fr=A[=A
= A[=AVB]|

7(A) = 7(AV B)

Note that these are (equivalent to) the axioms of K. Hence:

“"Deep” admissibility of the propositional rules implies normality of
the interpretation of the nesting operator!
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monotone modal logic

The formulae of monotone modal logic
are given by

peVar| LloAp|oVe|p—el|lp

A neighbourhood frame F = (W, N') has a neighbourhood
function satisfying N'(w) C P(W) for every w € W.
Valuations o satisfy:

> local clauses for A,V, —, L.

» FooowlE(UA iff S3ae N(w)Vvea FovIiEA
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Bimodal monotone modal logic

The formulae of bimodal monotone modal logic aka. Brown's
Ability Logic are given by

peVar| LloAp|oVe|p—=o|lp|le

A neighbourhood frame F = (W, ') has a neighbourhood
function satisfying N'(w) C P(W) for every w € W.
Valuations o satisfy:

> local clauses for A,V, —, L.
» FooowlEUA iff S3ae N(w)Vvea. FoviEA
» FoowlFlA iff Yae N(w)Vvea. F,o,vIiFA

Brown's ability interpretation [Brown:'88]:

(JA: “The agent can reliably bring about A"
[JA: “The agent will bring about A”
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Bimodal nested sequents

A bimodal nested sequent is a structure
M= A [S],...,[Sa], (Z1=T),.... (Em= M)

with n, m > 0 where the S; are bimodal nested sequents.
Its formula interpretation ¢ is

AT = VA Vv VL (S) v VI (A — V)
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The calculus for bimodal M

The calculus contains the (classical) propositional rules plus:

M= A, [= A ] F=A[X,A=0] .

r=A0A R TlA=A[Z=n *

Fr=A (= A) (0 Fr= A, [X,A=1] <

r=A0A R T[IA=A(Z=m) *
M= A, [X=1]

M= AIA (X =1)

Rules are applied anywhere except inside (.).

Theorem
The rules are sound wrt. the formula interpretation.
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The calculus for bimodal M

The calculus contains the (classical) propositional rules plus:

M= A, [= A ] F=A[X,A=0] .
r=A0A R TlA=A[Z=n *
F=A(=A) F=A [X,A=1]
— i ARV

r=A 04 ' TUOA=A(Z=N)
= A, [X=1]
M= A/IA(X=1)

Rules are applied anywhere except inside (.).

Bonus: Restricting the language specifies the calculus to
the standard (linear) nested sequent calculus for modal logic K
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The calculus for bimodal M

The calculus contains the (classical) propositional rules plus:

M= A, [= A F=A[X,A=1] 0
r=A0A f TUA=Az=n0 "
Fr=A (= A) (0 Fr= A, [X,A=1] <
r=A0A R T[IA=A(Z=m) *
= A, [X=1]

M= A/IA(X=1)
Rules are applied anywhere except inside (.).
Bonus: Restricting the language specifies the calculus to

the standard (linear) nested sequent calculus for modal logic K
or the (linear) nested sequent calculus for monomodal M
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What about countermodels?

Using an annotated version of the calculus, underivable sequents
give rise to countermodels: E.g.

(I=(1L, (Ip = (=L A Up), [OL,p=1, [= (L, p]

yields
N {0y N ¢
(L, pHl (L, p
({1, (Op AN (=1L A p)
{{e,0}, {0}, {0}}
Theorem

The calculus for bimodal M is cut-free complete and
failed proof search yields a countermodel.
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What about countermodels?

Using an annotated version of the calculus, underivable sequents
give rise to countermodels: E.g.

(I=(1L, (Ip = (=L A Up), [OL,p=1, [= (L, p]

yields

{{e.0}, {0}, {0}}

Corollary (Bonus)

The calculi for K and monomodal M are cut-free complete and
failed proof search yields a countermodel.
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What do derivations look like?

... Let the implementation work that out!
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Suming up

Injective nested sequents for intermediate logics yield:
» uniform calculi for a number of logics based on semantics;
» optimal decision procedures with countermodel construction;

> constructive interpolation proofs.

Bimodal nested sequents for monotone modal logic yield:
» an internal calculus;
» support for countermodel construction;

> the basis for a general treatment of non-normal modal logics

Thank You!
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