Interpolation for Intermediate Logics via Hyper- and Linear Nested Sequents

Roman Kuznets and Björn Lellmann

TU Wien

AiML 2018, Bern August 28, 2018

Interpolation for Intermediate Logics via Hyper- and Linear Nested Sequents

AiML 2018, Bern August 28, 2018

Intuitionistic

Classical

Interpolation for Intermediate Logics via Hyper- and Linear Nested Sequents

Reminder: Interpolation for Intermediate Logics

Definition: A logic \mathcal{L} has Craig interpolation if whenever $\mathcal{L} \vdash A(\vec{p}, \vec{q}) \rightarrow B(\vec{q}, \vec{r})$, then there is an interpolant $I(\vec{q})$ in the common language of A and B with

$$\mathcal{L} \vdash A(\vec{p}, \vec{q}) \rightarrow I(\vec{q})$$
 and $\mathcal{L} \vdash I(\vec{q}) \rightarrow B(\vec{q}, \vec{r})$

Theorem (Maksimova:1977)

There are exactly 7 intermediate logics with Craig interpolation.

But: Maksimova's proof is non-constructive.

Question: Can we extend proof-theoretic methods for constructing interpolants to these logics, in particular Gödel Logic G?

Reminder: Interpolation for Intermediate Logics

Definition: A logic \mathcal{L} has Lyndon interpolation if whenever $\mathcal{L} \vdash A(\vec{p}, \vec{q}) \rightarrow B(\vec{q}, \vec{r})$, then there is an interpolant $I(\vec{q})$ in the common language of A and B with

$$\mathcal{L} \vdash A(\vec{p}, \vec{q}) \rightarrow I(\vec{q})$$
 and $\mathcal{L} \vdash I(\vec{q}) \rightarrow B(\vec{q}, \vec{r})$

such that the polarities of the \vec{q} are the same in A, B, I.

Theorem (Maksimova:2014)

The logics Int, KC, LP₂, LS, CI have Lyndon-interpolation.

Question: What about the other two, in particular Gödel logic G?

Gödel logic

The formulae of intermediate logics are given by

$$\Phi ::= \mathsf{Var} \mid \bot \mid \top \mid \Phi \lor \Phi \mid \Phi \land \Phi \mid \Phi \to \Phi$$

Negation is defined as $\neg A \equiv A \rightarrow \bot$.

Frames are tuples (W, \leq) where $\leq \subseteq W \times W$ is reflexive, transitive and antisymmetric. A model \mathcal{M} extends a frame by a valuation $V: W \to 2^{\mathsf{Var}}$ with $w \leq v \Rightarrow V(w) \subseteq V(v)$.

Truth of a formula is written $\mathcal{M}, w \Vdash A$ and defined by

$$\mathcal{M}, w \Vdash A \rightarrow B$$
 iff $\forall v \geq w \ (\mathcal{M}, v \not\Vdash A \text{ or } \mathcal{M}, v \Vdash B)$

Gödel logic G is the set of formulae valid in all linear frames, i.e., frames with: $\forall v, w (v \leq w \text{ or } w \leq v)$

A hypersequent is a finite multiset $\Gamma_1 \Rightarrow \Delta_1 \mid \ldots \mid \Gamma_n \Rightarrow \Delta_n$ of sequents with formula interpretation

$$(\bigwedge \Gamma_1 \to \bigvee \Delta_1) \vee \ldots \vee (\bigwedge \Gamma_n \to \bigvee \Delta_n) \;.$$

The hypersequent calculus for G has the communication rule:

$$\frac{\mathcal{G} \mid \Gamma_{1}, \Gamma_{2} \Rightarrow \Delta}{\mathcal{G} \mid \Gamma_{1}, \Sigma_{1} \Rightarrow \Delta \mid \Gamma_{2}, \Sigma_{2} \Rightarrow \Pi} \text{ com}$$

A hypersequent is a finite multiset $\Gamma_1 \Rightarrow \Delta_1 \mid \ldots \mid \Gamma_n \Rightarrow \Delta_n$ of sequents with formula interpretation

$$(\bigwedge \Gamma_1 \to \bigvee \Delta_1) \vee \ldots \vee (\bigwedge \Gamma_n \to \bigvee \Delta_n) \; .$$

The hypersequent calculus for G has the communication rule:

$$\frac{\mathcal{G} \mid \Gamma_1, \Gamma_2 \Rightarrow \Delta}{\textbf{\textit{C}} := \mathcal{G} \mid \Gamma_1, \Sigma_1 \Rightarrow \Delta \mid \Gamma_2, \Sigma_2 \Rightarrow \Pi} \text{ com}$$

A hypersequent is a finite multiset $\Gamma_1 \Rightarrow \Delta_1 \mid \ldots \mid \Gamma_n \Rightarrow \Delta_n$ of sequents with formula interpretation

$$(\bigwedge \Gamma_1 \to \bigvee \Delta_1) \vee \ldots \vee (\bigwedge \Gamma_n \to \bigvee \Delta_n) \; .$$

The hypersequent calculus for G has the communication rule:

$$\frac{\mathcal{G} \mid \Gamma_1, \Gamma_2 \Rightarrow \Delta}{C := \mathcal{G} \mid \Gamma_1, \Sigma_1 \Rightarrow \Delta \mid \Gamma_2, \Sigma_2 \Rightarrow \Pi} \text{ com }$$

A hypersequent is a finite multiset $\Gamma_1 \Rightarrow \Delta_1 \mid \ldots \mid \Gamma_n \Rightarrow \Delta_n$ of sequents with formula interpretation

$$(\bigwedge \Gamma_1 \to \bigvee \Delta_1) \lor \ldots \lor (\bigwedge \Gamma_n \to \bigvee \Delta_n)$$
.

The hypersequent calculus for G has the communication rule:

$$\frac{\mathcal{G} \mid \Gamma_1, \Gamma_2 \Rightarrow \Delta}{C := \mathcal{G} \mid \Gamma_1, \Sigma_1 \Rightarrow \Delta \mid \Gamma_2, \Sigma_2 \Rightarrow \Pi} \text{ com }$$

A hypersequent is a finite multiset $\Gamma_1 \Rightarrow \Delta_1 \mid \ldots \mid \Gamma_n \Rightarrow \Delta_n$ of sequents with formula interpretation

$$(\bigwedge \Gamma_1 \to \bigvee \Delta_1) \vee \ldots \vee (\bigwedge \Gamma_n \to \bigvee \Delta_n) \; .$$

The hypersequent calculus for G has the communication rule:

$$\frac{\mathcal{G} \mid \Gamma_1, \Gamma_2 \Rightarrow \Delta}{C := \mathcal{G} \mid \Gamma_1, \Sigma_1 \Rightarrow \Delta \mid \Gamma_2, \Sigma_2 \Rightarrow \Pi} \text{ com}$$

A hypersequent is a finite multiset $\Gamma_1 \Rightarrow \Delta_1 \mid \ldots \mid \Gamma_n \Rightarrow \Delta_n$ of sequents with formula interpretation

$$(\bigwedge \Gamma_1 \to \bigvee \Delta_1) \vee \ldots \vee (\bigwedge \Gamma_n \to \bigvee \Delta_n) \; .$$

The hypersequent calculus for G has the communication rule:

$$\frac{\mathcal{G} \mid \Gamma_1, \Gamma_2 \Rightarrow \Delta}{C := \mathcal{G} \mid \Gamma_1, \Sigma_1 \Rightarrow \Delta \mid \Gamma_2, \Sigma_2 \Rightarrow \Pi} \text{ com}$$

Intuition: "Pick the larger world" (bottom-up)

Problem for interpolation: this forgets the structure of the worlds

Can we keep the structure of linear models?

A Linear nested sequent is a finite list of sequents $\Gamma_1 \Rightarrow \Delta_1 /\!\!/ \Gamma_2 \Rightarrow \Delta_2 /\!\!/ \dots /\!\!/ \Gamma_n \Rightarrow \Delta_n$ with formula interpretation

$$\bigwedge \Gamma_1 \to \bigvee \Delta_1 \vee (\bigwedge \Gamma_2 \to \bigvee \Delta_2 \vee (\dots (\bigwedge \Gamma_n \to \bigvee \Delta_n) \dots))$$

The calculus LNS_G contains the implication-right rule

$$\frac{\mathcal{G}/\!\!/\Gamma\Rightarrow\Delta/\!\!/A\Rightarrow B/\!\!/\Sigma\Rightarrow\Pi/\!\!/\mathcal{H}}{\mathcal{G}/\!\!/\Gamma\Rightarrow\Delta,A\to B/\!\!/\Sigma\Rightarrow\Pi/\!\!/\mathcal{H}}\to_R^2$$

A Linear nested sequent is a finite list of sequents $\Gamma_1 \Rightarrow \Delta_1 /\!\!/ \Gamma_2 \Rightarrow \Delta_2 /\!\!/ \dots /\!\!/ \Gamma_n \Rightarrow \Delta_n$ with formula interpretation

$$\bigwedge \Gamma_1 \to \bigvee \Delta_1 \vee (\bigwedge \Gamma_2 \to \bigvee \Delta_2 \vee (\dots (\bigwedge \Gamma_n \to \bigvee \Delta_n) \dots))$$

The calculus LNS_G contains the implication-right rule

$$\frac{\mathcal{G}/\!\!/\Gamma\Rightarrow\Delta/\!\!/A\Rightarrow B/\!\!/\Sigma\Rightarrow\Pi/\!\!/\mathcal{H}}{\mathcal{G}/\!\!/\Gamma\Rightarrow\Delta,A\to B/\!\!/\Sigma\Rightarrow\Pi/\!\!/\mathcal{H}}\to_R^2$$

A Linear nested sequent is a finite list of sequents $\Gamma_1 \Rightarrow \Delta_1 /\!\!/ \Gamma_2 \Rightarrow \Delta_2 /\!\!/ \dots /\!\!/ \Gamma_n \Rightarrow \Delta_n$ with formula interpretation

$$\bigwedge \Gamma_1 \to \bigvee \Delta_1 \vee (\bigwedge \Gamma_2 \to \bigvee \Delta_2 \vee (\dots (\bigwedge \Gamma_n \to \bigvee \Delta_n) \dots))$$

The calculus LNS_G contains the implication-right rule

$$\frac{\mathcal{G}/\!\!/\Gamma\Rightarrow\Delta/\!\!/A\Rightarrow B/\!\!/\Sigma\Rightarrow\Pi/\!\!/\mathcal{H}\quad \mathcal{G}/\!\!/\Gamma\Rightarrow\Delta/\!\!/\Sigma\Rightarrow\Pi,A\to B/\!\!/\mathcal{H}}{\mathcal{G}/\!\!/\Gamma\Rightarrow\Delta,A\to B/\!\!/\Sigma\Rightarrow\Pi/\!\!/\mathcal{H}}\to_R^2$$

A Linear nested sequent is a finite list of sequents $\Gamma_1 \Rightarrow \Delta_1 /\!\!/ \Gamma_2 \Rightarrow \Delta_2 /\!\!/ \dots /\!\!/ \Gamma_n \Rightarrow \Delta_n$ with formula interpretation

$$\bigwedge \Gamma_1 \to \bigvee \Delta_1 \vee (\bigwedge \Gamma_2 \to \bigvee \Delta_2 \vee (\dots (\bigwedge \Gamma_n \to \bigvee \Delta_n) \dots))$$

The calculus LNS_G contains the implication-right rule

$$\frac{\mathcal{G}/\!\!/\Gamma \Rightarrow \Delta/\!\!/A \Rightarrow B/\!\!/\Sigma \Rightarrow \Pi/\!\!/\mathcal{H} \quad \mathcal{G}/\!\!/\Gamma \Rightarrow \Delta/\!\!/\Sigma \Rightarrow \Pi, A \to B/\!\!/\mathcal{H}}{\mathcal{G}/\!\!/\Gamma \Rightarrow \Delta, A \to B/\!\!/\Sigma \Rightarrow \Pi/\!\!/\mathcal{H}} \to_R^2$$

A Linear nested sequent is a finite list of sequents $\Gamma_1 \Rightarrow \Delta_1 /\!\!/ \Gamma_2 \Rightarrow \Delta_2 /\!\!/ \dots /\!\!/ \Gamma_n \Rightarrow \Delta_n$ with formula interpretation

$$\bigwedge \Gamma_1 \to \bigvee \Delta_1 \vee (\bigwedge \Gamma_2 \to \bigvee \Delta_2 \vee (\dots (\bigwedge \Gamma_n \to \bigvee \Delta_n) \dots))$$

The calculus LNS_G contains the implication-right rule

$$\frac{\mathcal{G}/\!\!/\Gamma\Rightarrow\Delta/\!\!/A\Rightarrow B/\!\!/\Sigma\Rightarrow\Pi/\!\!/\mathcal{H}}{\mathcal{G}/\!\!/\Gamma\Rightarrow\Delta,A\to B/\!\!/\Sigma\Rightarrow\Pi/\!\!/\mathcal{H}}\to_R^2$$

A Linear nested sequent is a finite list of sequents $\Gamma_1 \Rightarrow \Delta_1 /\!\!/ \Gamma_2 \Rightarrow \Delta_2 /\!\!/ \dots /\!\!/ \Gamma_n \Rightarrow \Delta_n$ with formula interpretation

$$\bigwedge \Gamma_1 \to \bigvee \Delta_1 \vee (\bigwedge \Gamma_2 \to \bigvee \Delta_2 \vee (\dots (\bigwedge \Gamma_n \to \bigvee \Delta_n) \dots))$$

The calculus LNS_G contains the implication-right rule

$$\frac{\mathcal{G}/\!\!/\Gamma\Rightarrow\Delta/\!\!/A\Rightarrow B/\!\!/\Sigma\Rightarrow\Pi/\!\!/\mathcal{H}}{\mathcal{G}/\!\!/\Gamma\Rightarrow\Delta,A\to B/\!\!/\Sigma\Rightarrow\Pi,A\to B/\!\!/\mathcal{H}}\to_R^2$$

A Linear nested sequent is a finite list of sequents $\Gamma_1 \Rightarrow \Delta_1 /\!\!/ \Gamma_2 \Rightarrow \Delta_2 /\!\!/ \dots /\!\!/ \Gamma_n \Rightarrow \Delta_n$ with formula interpretation

$$\bigwedge \Gamma_1 \to \bigvee \Delta_1 \vee (\bigwedge \Gamma_2 \to \bigvee \Delta_2 \vee (\dots (\bigwedge \Gamma_n \to \bigvee \Delta_n) \dots))$$

The calculus LNS_G contains the implication-right rule

$$\frac{\mathcal{G}/\!\!/\Gamma\Rightarrow\Delta/\!\!/A\Rightarrow B/\!\!/\Sigma\Rightarrow\Pi/\!\!/\mathcal{H}\quad \mathcal{G}/\!\!/\Gamma\Rightarrow\Delta/\!\!/\Sigma\Rightarrow\Pi,A\to B/\!\!/\mathcal{H}}{\mathcal{G}/\!\!/\Gamma\Rightarrow\Delta,A\to B/\!\!/\Sigma\Rightarrow\Pi/\!\!/\mathcal{H}}\to_R^2$$

A Linear nested sequent is a finite list of sequents $\Gamma_1 \Rightarrow \Delta_1 /\!\!/ \Gamma_2 \Rightarrow \Delta_2 /\!\!/ \dots /\!\!/ \Gamma_n \Rightarrow \Delta_n$ with formula interpretation

$$\bigwedge \Gamma_1 \to \bigvee \Delta_1 \vee (\bigwedge \Gamma_2 \to \bigvee \Delta_2 \vee (\dots (\bigwedge \Gamma_n \to \bigvee \Delta_n) \dots))$$

The calculus LNS_G contains the implication-right rule

$$\frac{\mathcal{G}/\!\!/\Gamma\Rightarrow\Delta/\!\!/A\Rightarrow B/\!\!/\Sigma\Rightarrow\Pi/\!\!/\mathcal{H}\quad \mathcal{G}/\!\!/\Gamma\Rightarrow\Delta/\!\!/\Sigma\Rightarrow\Pi,A\to B/\!\!/\mathcal{H}}{\mathcal{G}/\!\!/\Gamma\Rightarrow\Delta,A\to B/\!\!/\Sigma\Rightarrow\Pi/\!\!/\mathcal{H}}\to_R^2$$

Intuition: "Insert falsifying worlds where needed" (bottom-up)

... hence the structure of the interpolants can be preserved!

Soundness and cut-free completeness

Theorem (KL:2018)

LNS_G is sound and complete for G.

Proof idea: Soundness as usual.

Completeness via a series of admissibility and invertibility lemmas followed by cut elimination:

But what about interpolation?

Sequent case

► Find interpolants for each derivation top-to-bottom

sequent in a sequent

- ► Interpolants are formulas
- ▶ Interpolation statement can be represented as two sequents

Sequent case

- ► Find interpolants for each split of a sequent in a sequent derivation top-to-bottom
- ► Interpolants are formulas
- Interpolation statement can be represented as two sequents

Sequent case

- ► Find interpolants for each split of a sequent in a sequent derivation top-to-bottom
- ► Interpolants are formulas
- Interpolation statement can be represented as two sequents

Generalized sequents,

e.g., linear nested sequents, hypersequents, etc.

► Find interpolants for each split of a generalized sequent in a sequent derivation top-to-bottom

Sequent case

- ► Find interpolants for each split of a sequent in a sequent derivation top-to-bottom
- ► Interpolants are formulas
- Interpolation statement can be represented as two sequents

Generalized sequents,

e.g., linear nested sequents, hypersequents, etc.

- ► Find interpolants for each split of a generalized sequent in a sequent derivation top-to-bottom
- ► To match the structure of generalized sequents, interpolants need to be more complex than formulas

Sequent case

- ► Find interpolants for each split of a sequent in a sequent derivation top-to-bottom
- ► Interpolants are formulas
- Interpolation statement can be represented as two sequents

Generalized sequents,

e.g., linear nested sequents, hypersequents, etc.

- ► Find interpolants for each split of a generalized sequent in a sequent derivation top-to-bottom
- ► To match the structure of generalized sequents, interpolants need to be more complex than formulas
- Interpolation statement has to be more complex than generalized sequents

Semantics respecting linear nested structure

$$\mathcal{M}, w_1, \ldots, w_n \vDash \Gamma_1 \Rightarrow \Delta_1 /\!\!/ \ldots /\!\!/ \Gamma_n \Rightarrow \Delta_n$$
 \iff
 $(\exists A_i \in \Gamma_i) \quad w_i \nVdash A_i \quad \text{or} \quad (\exists B_i \in \Delta_i) \quad w_i \Vdash B_i$
 $\text{where } w_1 \leq \cdots \leq w_n \text{ are worlds from linear } \mathcal{M}$

Semantics respecting linear nested structure

$$\mathcal{M}, w_1, \ldots, w_n \models \Gamma_1 \Rightarrow \Delta_1 /\!\!/ \ldots /\!\!/ \Gamma_n \Rightarrow \Delta_n$$
 \iff

$$(\exists A_i \in \Gamma_i) \quad w_i \not\Vdash A_i \qquad \text{or} \qquad (\exists B_i \in \Delta_i) \quad w_i \Vdash B_i$$

$$\text{where } w_1 \leq \cdots \leq w_n \text{ are worlds from linear } \mathcal{M}$$

$$\text{Theorem (Completeness, KL:2018)}$$

$$\text{LNS}_G \vdash \Gamma_1 \Rightarrow \Delta_1 /\!\!/ \ldots /\!\!/ \Gamma_n \Rightarrow \Delta_n$$

$$\textit{iff}$$

$$(\forall \textit{linear } \mathcal{M})(\forall w_1 \leq \cdots \leq w_n \in \mathcal{M})$$

$$\mathcal{M}, w_1, \ldots, w_n \models \Gamma_1 \Rightarrow \Delta_1 /\!\!/ \ldots /\!\!/ \Gamma_n \Rightarrow \Delta_n$$

Interpolants of formulas evaluated at different worlds

Already used for classical hypersequents, nested sequents, etc.

For $w_1 \leq \cdots \leq w_n \in \mathcal{M}$ for a linear model \mathcal{M}

$$w_1,\ldots,w_n \vDash A^{(i)}$$
 iff $w_i \Vdash A$

$$w_1, \ldots, w_n \models \mho_1 \oslash \mho_2$$
 iff $w_1, \ldots, w_n \models \mho_1$ and $w_1, \ldots, w_n \models \mho_2$

$$w_1, \ldots, w_n \vDash \mho_1 \oslash \mho_2$$
 iff $w_1, \ldots, w_n \vDash \mho_1$ or $w_1, \ldots, w_n \vDash \mho_2$

Interpolants of formulas evaluated at different worlds

Already used for classical hypersequents, nested sequents, etc. For $w_1 < \cdots < w_n \in \mathcal{M}$ for a linear model \mathcal{M} $w_1, \ldots, w_n \models A^{(i)}$ iff $w_i \Vdash A$ $w_1, \ldots, w_n \models \nabla_1 \otimes \nabla_2$ iff $w_1, \ldots, w_n \models \nabla_1$ and $w_1, \ldots, w_n \models \nabla_2$ $w_1, \ldots, w_n \models \nabla_1 \otimes \nabla_2$ iff $w_1, \ldots, w_n \models \nabla_1$ or $w_1, \ldots, w_n \models \nabla_2$ New for intuitionistic case $w_1, \ldots, w_n \models \overline{A}^{(i)}$ iff $w_i \not\vdash A$ (Classically, $\overline{A}^{(i)}$ is expressible as $(\neg A)^{(i)}$.)

Componentwise interpolation statement

Definition

A multiformula \mho componentwise interpolates (CW-interpolates) a split linear nested sequent

$$\Gamma_1$$
; $\Gamma_1 \Rightarrow \Delta_1$; $\Sigma_1 / / \dots / / \Gamma_n$; $\Gamma_n \Rightarrow \Delta_n$; Σ_n

iff

- ▶ $\overline{0}$ only uses $A^{(k)}$ and $\overline{A}^{(k)}$ with $k \leq n$;
- Only uses positive (negative) propositional atoms that occur positively (negatively) in both

$$\Gamma_1 \Rightarrow \Delta_1 /\!\!/ \dots /\!\!/ \Gamma_n \Rightarrow \Delta_n$$
 and $\Gamma_1 \Rightarrow \Sigma_1 /\!\!/ \dots /\!\!/ \Gamma_n \Rightarrow \Sigma_n$;

▶ for any $w_1 \leq \cdots \leq w_n$ in a linear frame $w_1, \ldots, w_n \nvDash \mho \implies w_1, \ldots, w_n \vDash \Gamma_1 \Rightarrow \Delta_1 /\!\!/ \ldots /\!\!/ \Gamma_n \Rightarrow \Delta_n;$ $w_1, \ldots, w_n \vDash \mho \implies w_1, \ldots, w_n \vDash \Pi_1 \Rightarrow \Sigma_1 /\!\!/ \ldots /\!\!/ \Pi_n \Rightarrow \Sigma_n.$

Componentwise interpolation example

$$p; \Rightarrow \# \Rightarrow; p \#; q \Rightarrow; q \leftarrow p^{(1)}$$

$$p; \Rightarrow \# \Rightarrow; p \#; q \Rightarrow; q \leftarrow p^{(2)}$$

$$p; \Rightarrow \# \Rightarrow; p \#; q \Rightarrow; q \leftarrow p^{(3)}$$

$$p; \Rightarrow \# \Rightarrow; p \#; q \Rightarrow; q \leftarrow q^{(3)}$$

Express your interpolant

Question

Isn't this more expressive than propositional language?

Express your interpolant

Question

Isn't this more expressive than propositional language?

Honest answer

Yes, most componentwise interpolation statements cannot be expressed in the object language.

Express your interpolant

Question

Isn't this more expressive than propositional language?

Honest answer

Yes, most componentwise interpolation statements cannot be expressed in the object language.

But...

Useful answer

implies

$$\bigwedge_{i=1}^{m} (C_i \to D_i) \text{ is a Lyndon interpolant of } A \to B.$$

To linear nested sequents

Gödel logic (of linear frames) has Lyndon interpolation. (KL:2018)

```
To linear nested sequents

Gödel logic (of linear frames) has Lyndon interpolation. (KL:2018)

Bonus: To hyperesequents (with appropriate modifications)

Jankov logic (of weak excluded middle) has Lyndon interpolation.

(Maksimova:2014; constructively: KL:2018)
```

```
To linear nested sequents

Gödel logic (of linear frames) has Lyndon interpolation. (KL:2018)

Bonus: To hyperesequents (with appropriate modifications)

Jankov logic (of weak excluded middle) has Lyndon interpolation.

(Maksimova:2014; constructively: KL:2018)
```

Future Bonus: To other cool formalisms

Tune in for further announcements

To linear nested sequents

Gödel logic (of linear frames) has Lyndon interpolation. (KL:2018)

Bonus: To hyperesequents (with appropriate modifications)

Jankov logic (of weak excluded middle) has Lyndon interpolation. (Maksimova:2014; constructively: KL:2018)

Future Bonus: To other cool formalisms

Tune in for further announcements

Interesting fact

Applying the method to well-known hypersequents for Gödel logic

does not succeed:

$$\frac{p; \Rightarrow p; \qquad ; q \Rightarrow ; q}{; q \Rightarrow p; \mid p; \Rightarrow ; q}$$

To linear nested sequents

Gödel logic (of linear frames) has Lyndon interpolation. (KL:2018)

Bonus: To hyperesequents (with appropriate modifications)

Jankov logic (of weak excluded middle) has Lyndon interpolation.
(Maksimova:2014; constructively: KL:2018)

Future Bonus: To other cool formalisms

Tune in for further announcements

Interesting fact

Applying the method to well-known hypersequents for Gödel logic does not succeed:

 $\frac{p; \Rightarrow p; \qquad ; q \Rightarrow ; q}{; q \Rightarrow p; \mid p; \Rightarrow ; q}$

Thus, CW interpolation is strictly stronger than Lyndon one.

Thank you

{roman,lellmann}@logic.at

Simple interpolation transformation

$$\frac{\widetilde{\mathcal{G}}/\!\!/\widetilde{\Gamma} \Rightarrow \Delta; \Pi/\!\!/; A \Rightarrow ; B \leftarrow \bigotimes_{j=1}^{m} \left(\overline{C_{j}}^{(n)} \otimes D_{j}^{(n)} \otimes \bigotimes_{l=1}^{n-1} (\overline{E_{jl}}^{(l)} \otimes F_{jl}^{(l)}) \right)}{\widetilde{\mathcal{G}}/\!\!/\widetilde{\Gamma} \Rightarrow \Delta; \Pi, A \to B \leftarrow \bigotimes_{j=1}^{m} \left((C_{j} \to D_{j})^{(n-1)} \otimes \bigotimes_{l=1}^{n-1} (\overline{E_{jl}}^{(l)} \otimes F_{jl}^{(l)}) \right)}$$

Complex interpolation transformation

$$\begin{split} \widetilde{\mathcal{G}} /\!\!/ \widetilde{\Gamma} &\Rightarrow \Delta; \Theta /\!\!/ \widetilde{\Sigma} \Rightarrow \Pi; \Lambda, A \to B /\!\!/ \widetilde{\mathcal{H}} \leftarrow \mho \\ \widetilde{\mathcal{G}} /\!\!/ \widetilde{\Gamma} &\Rightarrow \Delta; \Theta /\!\!/ ; A \Rightarrow; B /\!\!/ \widetilde{\Sigma} \Rightarrow \Pi; \Lambda /\!\!/ \widetilde{\mathcal{H}} \leftarrow \bigoplus_{j=1}^m \left(\overline{C_j}^{(n)} \otimes D_j^{(n)} \otimes \bigoplus_{l \neq n} (\overline{E_{jl}}^{(l)} \otimes F_{jl}^{(l)}) \right) \\ \leftarrow & U \otimes \bigoplus_{j=1}^m \left(\bigcap_{l=1}^{n-1} (\overline{E_{jl}}^{(l)} \otimes F_{jl}^{(l)}) \otimes (C_j \to D_j)^{(n-1)} \otimes \overline{C_j}^{(n)} \otimes \bigoplus_{l=n}^{n+k} (\overline{E_{j,l+1}}^{(l)} \otimes F_{j,l+1}^{(l)}) \right) \\ \widetilde{\mathcal{G}} /\!\!/ \widetilde{\Gamma} \Rightarrow \Delta; \Theta, A \to B /\!\!/ \widetilde{\Sigma} \Rightarrow \Pi; \Lambda /\!\!/ \widetilde{\mathcal{H}} & \longleftarrow \end{split}$$

The LNS system

The system LNS_G is based on [Fitting:2014, Indrzejczak:2016]. Some further rules:

$$\frac{\mathcal{G}/\!\!/\Gamma\Rightarrow\Delta/\!\!/A\Rightarrow B}{\mathcal{G}/\!\!/\Gamma\Rightarrow\Delta,A\to B}\to_R^1$$

$$\frac{\mathcal{G}/\!\!/\Gamma\Rightarrow\Delta/\!\!/A\Rightarrow B/\!\!/\Sigma\Rightarrow\Pi/\!\!/\mathcal{H}}{\mathcal{G}/\!\!/\Gamma\Rightarrow\Delta/\!\!/\Delta\Rightarrow B/\!\!/\Sigma\Rightarrow\Pi/\!\!/\mathcal{H}}\to_R^2$$

$$\frac{\mathcal{G}/\!\!/\Gamma\Rightarrow\Delta/\!\!/A\Rightarrow B/\!\!/\Sigma\Rightarrow\Pi/\!\!/\mathcal{H}}{\mathcal{G}/\!\!/\Gamma\Rightarrow\Delta,A\to B/\!\!/\Sigma\Rightarrow\Pi/\!\!/\mathcal{H}}\to_R^2$$

$$\frac{\mathcal{G}/\!\!/\Gamma,B\Rightarrow\Delta/\!\!/\mathcal{H}}{\mathcal{G}/\!\!/\Gamma,A\to B\Rightarrow\Delta/\!\!/\mathcal{H}}\to_L$$

$$\frac{\mathcal{G}/\!\!/\Gamma,A\Rightarrow\Delta/\!\!/\Sigma\Rightarrow\Pi/\!\!/\mathcal{H}}{\mathcal{G}/\!\!/\Gamma,A\Rightarrow\Delta/\!\!/\Sigma\Rightarrow\Pi/\!\!/\mathcal{H}} \text{ Lift}$$

All other rules are local.