Hypersequent Calculi for Lewis' Conditional Logics with Uniformity and Reflexivity

Marianna Girlando, **Björn Lellmann**, Nicola Olivetti, Gian Luca Pozzato

Aix-Marseille Université, Technische Universität Wien, Università di Torino, École Spéciale Militaire de Saint-Cyr

TABLEAUX 2017

26th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods

25 - 28 September 2017, Brasília, Brasil

Motivation

Since we're at TABLEAUX: ... Let's talk about sequent-style systems!

- Avron's H^A_{S5} is a hypersequent calculus, as is Restall's H^R_{S5}.
- Brünnler's N^B_{S5} is a nested sequent calculus
- Takano's S_{S5}^T is neither a hypersequent nor a nested sequent calculus

Motivation

Since we're at TABLEAUX: ... Let's talk about sequent-style systems!

- Avron's H^A_{S5} is a hypersequent calculus, as is Restall's H^R_{S5}.
 H^A_{S5} ∨ H^R_{S5} → hypersequent
- Brünnler's N_{S5}^B is a nested sequent calculus $N_{S5}^B \rightarrow nested$
- Takano's S_{S5}^T is neither a hypersequent nor a nested sequent calculus
 S_{S5}^T → ¬(hypersequent ∨ nested)

Motivation: Comparing sequent-style systems

However, it's a bit boring if we can't compare them – so let's add similarity into the mix, modelled by a system of nested spheres: (Things in smaller spheres are more similar than things in larger spheres)

- \bullet S_{S5}^{T} is more similar to H_{S5}^{A} than to H_{S5}^{R}
- S_{S5}^T is as similar to H_{S5}^R as to N_{S5}^B
- S_{S5}^T is more similar to hypersequent calculi than to nested sequent calculi

Motivation: Comparing sequent-style systems

However, it's a bit boring if we can't compare them – so let's add similarity into the mix, modelled by a system of nested spheres: (Things in smaller spheres are more similar than things in larger spheres)

- S_{S5}^T is more similar to H_{S5}^A than to H_{S5}^R $S_{S5}^T o (H_{S5}^A < H_{S5}^R)$
- S_{S5}^T is as similar to H_{S5}^R as to N_{S5}^B $S_{S5}^T \rightarrow (H_{S5}^R \leqslant N_{S5}^B)$
- S_{S5}^T is more similar to hypersequent calculi than to nested sequent calculi

$$S_{SS}^{T} \rightarrow (hypersequent < nested)$$

The language

The Formulae of conditional logic are given by:

$$A, B ::= p \mid \bot \mid A \rightarrow B \mid A \leq B$$

A comparative plausibility formula $A \leq B$ can be read, e.g., as:

- "A is at least as plausible as B"
- "A is at least as preferable as B"
- "the current state is at least as similar to As as to Bs"

We define $A \prec B$ as $\neg (B \leq A)$, read as "A is more plausible/similar/preferable than B"

The logic of universal sphere models VTU

A universal sphere model consists of:

- a non-empty universe W
- A valuation $[\![.\,]\!]$: Var $\to \mathcal{P}(W)$
- a system of spheres SP : $W \to \mathcal{PP}(W)$

with for all $w, v \in W$:

- $\forall \alpha \in SP(w) . \alpha \neq \emptyset$
- $\forall \alpha, \beta \in \mathsf{SP}(w) . \alpha \subseteq \beta \lor \beta \subseteq \alpha$
- $w \in \bigcup SP(w)$ (reflexivity)
- $\bigcup SP(w) = \bigcup SP(v)$ (uniformity)

The valuation is extended to comparative plausibility formulae by:

$$\llbracket A \leqslant B \rrbracket$$
 := { $w \in W : \forall \alpha \in \mathsf{SP}(w) . \llbracket B \rrbracket \cap \alpha \neq \emptyset \Rightarrow \llbracket A \rrbracket \cap \alpha \neq \emptyset$ }

Lewis' conditional logic VTU is the logic of all universal sphere models.

Hypersequents for VTU

The proximity to modal logic S5 suggests we use an extension of sequents:

A hypersequent is a non-empty multiset of (multiset-based) sequents

$$\Gamma_1 \Rightarrow \Delta_1 \mid \ldots \mid \Gamma_n \Rightarrow \Delta_n$$

The conditional formula interpretation of a hypersequent is

$$\Box(\land \Gamma_1 \to \bigvee \Delta_1) \lor \ldots \lor \Box(\land \Gamma_n \to \bigvee \Delta_n)$$

where \square is the outer modality defined by $\square A \equiv (\bot \leqslant \neg A)$.

Hypersequents for VTU

The hypersequent calculus H_{VTU} contains the propositional rules, internal contraction, and:

$$\begin{cases}
\mathcal{G} \mid \Sigma \Rightarrow \Pi \mid C_{k} \Rightarrow D_{1}, \dots, D_{k-1}, A_{1}, \dots, A_{n} : k \leq m \\
\cup \quad \{\mathcal{G} \mid \Sigma \Rightarrow \Pi \mid B_{k} \Rightarrow D_{1}, \dots, D_{m}, A_{1}, \dots, A_{n} : k \leq n \} \\
\overline{\mathcal{G} \mid \Sigma, C_{1} \leqslant D_{1}, \dots, C_{m} \leqslant D_{m} \Rightarrow A_{1} \leqslant B_{1}, \dots, A_{n} \leqslant B_{n}, \Pi}
\end{cases} R_{m,n}$$

$$\begin{cases}
\mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_{k} \Rightarrow D_{1}, \dots, D_{k-1} : k \leq m \} \\
\cup \quad \{\mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_{1}, \dots, D_{m}, \Theta \} \\
\overline{\mathcal{G} \mid \Sigma, C_{1} \leqslant D_{1}, \dots, C_{m} \leqslant D_{m} \Rightarrow \Pi \mid \Omega \Rightarrow \Theta}
\end{cases} \text{ trf}_{m}$$

$$\begin{cases}
\mathcal{G} \mid \Sigma \Rightarrow \Pi \mid C_{k} \Rightarrow D_{1}, \dots, D_{k-1} : k \leq m \} \\
\cup \quad \{\mathcal{G} \mid \Sigma \Rightarrow D_{1}, \dots, D_{m}, \Pi \} \\
\overline{\mathcal{G} \mid \Sigma, C_{1} \leqslant D_{1}, \dots, C_{m} \leqslant D_{m} \Rightarrow \Pi}
\end{cases} T_{m}$$

Theorem

The calculus $H_{\mathbb{VTU}}$ is sound for \mathbb{VTU} .

Idea of Proof: From a model falsifying the conclusion construct one falsifying a premiss. E.g., for the transfer rule:

$$\frac{\{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_k \Rightarrow D_1, \dots, D_{k-1} : k \leq m \}}{\cup \{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_1, \dots, D_m, \Theta \}} \text{ trf}_m$$

Theorem

The calculus HvTI is sound for VTU.

Idea of Proof: From a model falsifying the conclusion construct one falsifying a premiss. E.g., for the transfer rule:

$$\begin{cases}
\{\mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_k \Rightarrow D_1, \dots, D_{k-1} : k \leq m \} \\
\cup \{\mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_1, \dots, D_m, \Theta \} \\
\hline
\mathcal{G} \mid \Sigma, C_1 \leqslant D_1, \dots, C_m \leqslant D_m \Rightarrow \Pi \mid \Omega \Rightarrow \Theta
\end{cases} \text{ trf}_m$$

$$\begin{cases} \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_1 \Rightarrow \} \\ \{\Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_2 \Rightarrow D_1\} \\ \cup \{\Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_1, D_2, \Theta\} \\ \hline \Sigma, C_1 \leqslant D_1, C_2 \leqslant D_2 \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \end{cases} \mathsf{trf}_2$$

Theorem

The calculus $H_{\mathbb{VTU}}$ is sound for \mathbb{VTU} .

Idea of Proof: From a model falsifying the conclusion construct one falsifying a premiss. E.g., for the transfer rule:

$$\begin{cases}
\{\mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_k \Rightarrow D_1, \dots, D_{k-1} : k \leq m \} \\
\cup \{\mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_1, \dots, D_m, \Theta \} \\
\hline
\mathcal{G} \mid \Sigma, C_1 \leqslant D_1, \dots, C_m \leqslant D_m \Rightarrow \Pi \mid \Omega \Rightarrow \Theta
\end{cases} \text{ trf}_m$$

$$\left\{ \begin{array}{l} \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_{1} \Rightarrow \right\} \\ \left\{ \begin{array}{l} \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_{2} \Rightarrow D_{1} \right\} \\ \cup \quad \left\{ \begin{array}{l} \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_{1}, D_{2}, \Theta \end{array} \right\} \\ \overline{\Sigma, C_{1} \leqslant D_{1}, C_{2} \leqslant D_{2} \Rightarrow \Pi \mid \Omega \Rightarrow \Theta} \end{array} \text{trf}_{2}$$

Theorem

The calculus $H_{\mathbb{VTU}}$ is sound for \mathbb{VTU} .

Idea of Proof: From a model falsifying the conclusion construct one falsifying a premiss. E.g., for the transfer rule:

$$\frac{\{\mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_k \Rightarrow D_1, \dots, D_{k-1} : k \leq m\}}{\cup \{\mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_1, \dots, D_m, \Theta\}} \text{ trf}_m$$

$$\{ \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_1 \Rightarrow \}$$

$$\{ \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_2 \Rightarrow D_1 \}$$

$$\cup \{ \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_1, D_2, \Theta \}$$

$$\Sigma \cdot C_1 \leq D_1, C_2 \leq D_2 \Rightarrow \Pi \mid \Omega \Rightarrow \Theta$$

$$\text{trf}_2$$

Theorem

The calculus HvTI is sound for VTU.

Idea of Proof: From a model falsifying the conclusion construct one falsifying a premiss. E.g., for the transfer rule:

$$\frac{\{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_k \Rightarrow D_1, \dots, D_{k-1} : k \leq m \}}{\cup \{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_1, \dots, D_m, \Theta \}} \text{ trf}_m$$

$$\begin{cases} \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_1 \Rightarrow \} \\ \{\Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_2 \Rightarrow D_1\} \\ \cup \{\Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_1, D_2, \Theta\} \\ \hline \Sigma, C_1 \leqslant D_1, C_2 \leqslant D_2 \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \end{cases} \mathsf{trf}_2$$

Theorem

The calculus HvTI is sound for VTU.

Idea of Proof: From a model falsifying the conclusion construct one falsifying a premiss. E.g., for the transfer rule:

$$\begin{cases}
\left\{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_{k} \Rightarrow D_{1}, \dots, D_{k-1} : k \leq m \right\} \\
\cup \left\{ \left\{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_{1}, \dots, D_{m}, \Theta \right\} \right\} \\
\hline
\left\{ \mathcal{G} \mid \Sigma, C_{1} \leqslant D_{1}, \dots, C_{m} \leqslant D_{m} \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \right\}
\end{cases} \text{ trf}_{m}$$

Theorem

The calculus HvTI is sound for VTU.

Idea of Proof: From a model falsifying the conclusion construct one falsifying a premiss. E.g., for the transfer rule:

$$\frac{\{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_k \Rightarrow D_1, \dots, D_{k-1} : k \leq m \}}{\cup \{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_1, \dots, D_m, \Theta \}} \text{ trf}_m$$

$$\begin{cases} \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_1 \Rightarrow \} \\ \{\Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_2 \Rightarrow D_1 \} \\ \cup \quad \{\Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_1, D_2, \Theta \} \\ \hline \Sigma, C_1 \leqslant D_1, C_2 \leqslant D_2 \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \end{cases} \mathsf{trf}_2$$

Theorem

The calculus HvTI is sound for VTU.

Idea of Proof: From a model falsifying the conclusion construct one falsifying a premiss. E.g., for the transfer rule:

$$\frac{\{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_k \Rightarrow D_1, \dots, D_{k-1} : k \leq m \}}{\cup \{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_1, \dots, D_m, \Theta \}} \text{ trf}_m$$

$$\begin{cases}
\Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_1 \Rightarrow \} \\
\{\Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_2 \Rightarrow D_1\} \\
\cup \{\Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_1, D_2, \Theta\} \\
\hline{\Sigma, C_1 \leq D_1, C_2 \leq D_2 \Rightarrow \Pi \mid \Omega \Rightarrow \Theta}
\end{cases} trf_2$$

Theorem

The calculus $H_{\mathbb{VTU}}$ is sound for \mathbb{VTU} .

Theorem

The calculus $H_{\mathbb{VTU}}$ has cut elimination and is cut-free complete for \mathbb{VTU} .

Proof: Non-trivial and technical (...as usual).

Theorem

The calculus $H_{\mathbb{VTU}}$ is sound for \mathbb{VTU} .

Theorem

The calculus $H_{\mathbb{VTU}}$ has cut elimination and is cut-free complete for \mathbb{VTU} .

Proof: Non-trivial and technical (...as usual).

Unfortunately, our calculi are non-standard in the sense that

- they include an infinite number of rules
- the rules introduce more than one principal formula at a time.

So ...

How could we massage our calculi to become standard?

Main idea:

Decompose the rules so they are simulated one formula at a time!

E.g., for the transfer rule:

$$\frac{\{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_{1} \Rightarrow \} \cup \{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_{2} \Rightarrow D_{1} \}}{\cup \{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_{1}, D_{2}, \Theta \}} \times \mathcal{G} \times$$

- initialising
- storing
- transferring and closing

$$\Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_1, D_2, \bot, \Theta$$

$$\overline{\Sigma} \Rightarrow \Pi \mid D_1, D_2, \bot, \bot \Omega \Rightarrow \overline{\Omega}$$

$$\frac{\Sigma, C_1 \leqslant D_1, C_2 \leqslant D_2 \Rightarrow \Pi, \langle \bot \rangle \mid \Omega \Rightarrow \Theta}{\Sigma, C_1 \leqslant D_1, C_2 \leqslant D_2 \Rightarrow \Pi \mid \Omega \Rightarrow \Theta}$$

Main idea:

Decompose the rules so they are simulated one formula at a time!

E.g., for the transfer rule:

$$\frac{\{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_{1} \Rightarrow \} \cup \{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_{2} \Rightarrow D_{1} \}}{\cup \{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_{1}, D_{2}, \Theta \}} \text{trf}_{2}$$

- initialising
- storing
- transferring and closing

$$\Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_1, D_2, \bot, \Theta$$

$$\dots \mid C_1 \Rightarrow \bot \xrightarrow{\dots \mid C_2 \Rightarrow D_1, \bot} \overline{\Sigma \Rightarrow \Pi, \langle D_1, D_2, \bot \rangle \mid \Omega \Rightarrow \Theta}$$

$$\dots \mid C_1 \Rightarrow \bot \xrightarrow{\Sigma, C_2 \leqslant D_2 \Rightarrow \Pi, \langle D_1, \bot \rangle \mid \Omega \Rightarrow \Theta}$$

$$\frac{\Sigma, C_1 \leqslant D_1, C_2 \leqslant D_2 \Rightarrow \Pi, \langle \bot \rangle \mid \Omega \Rightarrow \Theta}{\Sigma, C_1 \leqslant D_1, C_2 \leqslant D_2 \Rightarrow \Pi \mid \Omega \Rightarrow \Theta}$$

Main idea:

Decompose the rules so they are simulated one formula at a time!

E.g., for the transfer rule:

$$\frac{\{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_{1} \Rightarrow \} \cup \{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_{2} \Rightarrow D_{1} \}}{\cup \{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_{1}, D_{2}, \Theta \}} \times \mathcal{G} \times$$

- initialising
- storing
- transferring and closing

$$\frac{ \dots \mid C_2 \Rightarrow D_1, \perp \quad \overline{\Sigma} \Rightarrow \Pi, \langle D_1, D_2, \perp \rangle \mid \Omega \Rightarrow \Theta}{ \Sigma, C_1 \leqslant D_1, C_2 \leqslant D_2 \Rightarrow \Pi, \langle L_1 \rangle \mid \Omega \Rightarrow \Theta}$$

$$\frac{ \Sigma, C_1 \leqslant D_1, C_2 \leqslant D_2 \Rightarrow \Pi, \langle L_2 \rangle \mid \Omega \Rightarrow \Theta}{ \Sigma, C_1 \leqslant D_1, C_2 \leqslant D_2 \Rightarrow \Pi, \langle L_2 \rangle \mid \Omega \Rightarrow \Theta}$$

Main idea:

Decompose the rules so they are simulated one formula at a time!

E.g., for the transfer rule:

$$\frac{\{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_{1} \Rightarrow \} \cup \{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_{2} \Rightarrow D_{1} \}}{\cup \{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_{1}, D_{2}, \Theta \}} \times \mathcal{G} \times$$

We need to transfer the whole block D_1, D_2 to another component, so introduce a block for temporary storage, written $\langle . \rangle$.

Then simulate the rule by:

$$\Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_1, D_2, \bot, \Theta$$

$$\Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_1, D_2, \bot, \Theta$$

$$\Sigma \Rightarrow \Pi \mid D_1, D_2, \bot, \Box \Rightarrow \Theta$$

$$\dots \mid C_1 \Rightarrow \bot \xrightarrow{\dots \mid C_2 \Rightarrow D_1, \bot} \overline{\Sigma \Rightarrow \Pi, \langle D_1, D_2, \bot \rangle \mid \Omega \Rightarrow \Theta}$$

$$\dots \mid C_1 \Rightarrow \bot \xrightarrow{\Sigma, C_2 \leqslant D_2 \Rightarrow \Pi, \langle D_1, \bot \rangle \mid \Omega \Rightarrow \Theta}$$

$$\frac{\Sigma, C_1 \leqslant D_1, C_2 \leqslant D_2 \Rightarrow \Pi, \langle \bot \rangle \mid \Omega \Rightarrow \Theta}{\Sigma, C_1 \leqslant D_1, C_2 \leqslant D_2 \Rightarrow \Pi \mid \Omega \Rightarrow \Theta}$$

Main idea:

Decompose the rules so they are simulated one formula at a time!

E.g., for the transfer rule:

$$\frac{\{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_{1} \Rightarrow \} \cup \{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow \Theta \mid C_{2} \Rightarrow D_{1} \}}{\cup \{ \mathcal{G} \mid \Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_{1}, D_{2}, \Theta \}} \text{trf}_{2}$$

- initialising
- storing
- transferring and closing

$$\Sigma \Rightarrow \Pi \mid \Omega \Rightarrow D_1, D_2, \bot, \Theta$$

$$\Sigma \Rightarrow \Pi \mid D_1, D_2, \bot, \Box D_1 \Rightarrow \Theta$$

$$\frac{\Sigma, C_1 \leqslant D_1, C_2 \leqslant D_2 \Rightarrow \Pi, \langle \bot \rangle \mid \Omega \Rightarrow \Theta}{\Sigma, C_1 \leqslant D_1, C_2 \leqslant D_2 \Rightarrow \Pi \mid \Omega \Rightarrow \Theta}$$

An extended sequent is a sequent whose right hand side also contains conditional blocks and transfer blocks.

$$\Gamma \Rightarrow \Delta, [\Sigma_1 \triangleleft C_1], \ldots, [\Sigma_n \triangleleft C_n], \langle \Theta_1 \rangle, \ldots, \langle \Theta_m \rangle$$

An extended hypersequent is a hypersequent of extended sequents.

$$\Gamma_1 \Rightarrow \Delta_1 \mid \ldots \mid \Gamma_n \Rightarrow \Delta_n$$

An extended sequent is a sequent whose right hand side also contains conditional blocks and transfer blocks.

Its formula interpretation is given by:

$$\iota_{e}(\Gamma \Rightarrow \Delta, [\Sigma_{1} \triangleleft C_{1}], \dots, [\Sigma_{n} \triangleleft C_{n}], \langle \Theta_{1} \rangle, \dots, \langle \Theta_{m} \rangle)
:= \bigwedge \Gamma \rightarrow \bigvee \Delta \vee \bigvee_{i=1}^{n} \bigvee_{B \in \Sigma_{i}} (B \triangleleft C_{i}) \vee \bigvee_{j=1}^{m} \Diamond (\bigvee \Theta_{j})$$

An extended hypersequent is a hypersequent of extended sequents. Its formula interpretation is given by:

$$\iota_{e}(\Gamma_{1} \Rightarrow \Delta_{1} \mid \dots \mid \Gamma_{n} \Rightarrow \Delta_{n})$$

$$:= \quad \Box \iota_{e}(\Gamma_{1} \Rightarrow \Delta_{1}) \vee \dots \vee \Box \iota_{e}(\Gamma_{n} \Rightarrow \Delta_{n})$$

The calculus SH_{VTU} contains propositional rules, contraction, and:

$$\frac{\mathcal{G} \mid \Gamma \Rightarrow \Delta, [A \triangleleft B]}{\mathcal{G} \mid \Gamma \Rightarrow \Delta, A \triangleleft B} \leq_{R} \frac{\mathcal{G} \mid \Gamma \Rightarrow \Delta, [\Sigma_{1}, \Sigma_{2} \triangleleft A] \quad \mathcal{G} \mid \Gamma \Rightarrow \Delta, [\Sigma_{1}, \Sigma_{2} \triangleleft B]}{\mathcal{G} \mid \Gamma \Rightarrow \Delta, [\Sigma_{1} \triangleleft A], [\Sigma_{2} \triangleleft B]} \text{ com}$$

$$\frac{\mathcal{G} \mid \Gamma \Rightarrow \Delta, [\underline{B}, \Sigma \lhd C] \quad \mathcal{G} \mid \Gamma \Rightarrow \Delta, [\Sigma \lhd A]}{\mathcal{G} \mid \Gamma, A \leqslant \underline{B} \Rightarrow \Delta, [\Sigma \lhd C]} \leqslant_{L} \qquad \frac{\mathcal{G} \mid \Gamma \Rightarrow \Delta \mid A \Rightarrow \Sigma}{\mathcal{G} \mid \Gamma \Rightarrow \Delta, [\Sigma \lhd A]} \text{ jump}$$

$$\begin{split} &\frac{\mathcal{G} \mid \Gamma \Rightarrow \Delta, \langle \bot \rangle}{\mathcal{G} \mid \Gamma \Rightarrow \Delta} \text{ in}_{\text{trf}} & \frac{\mathcal{G} \mid \Gamma \Rightarrow \Delta \mid A \Rightarrow \Theta \quad \mathcal{G} \mid \Gamma \Rightarrow \Delta, \langle \Theta, B \rangle}{\mathcal{G} \mid \Gamma, A \leqslant B \Rightarrow \Delta, \langle \Theta \rangle} \text{ T} \\ &\frac{\mathcal{G} \mid \Gamma \Rightarrow \Delta \mid \Sigma \Rightarrow \Theta, \Pi}{\mathcal{G} \mid \Gamma \Rightarrow \Delta, \langle \Theta \rangle \mid \Sigma \Rightarrow \Pi} \text{ jump}_{U} & \frac{\mathcal{G} \mid \Gamma \Rightarrow \Delta, \Theta}{\mathcal{G} \mid \Gamma \Rightarrow \Delta, \langle \Theta \rangle} \text{ jump}_{T} \end{split}$$

$$\frac{\mathcal{G} \mid \Gamma \Rightarrow \Delta, [\Sigma \triangleleft A], [\Sigma \triangleleft A]}{\mathcal{G} \mid \Gamma \Rightarrow \Delta, [\Sigma \triangleleft A]} \text{ Con}_{S} \qquad \frac{\mathcal{G} \mid \Gamma \Rightarrow \Delta, [\Sigma, A, A \triangleleft B]}{\mathcal{G} \mid \Gamma \Rightarrow \Delta, [\Sigma, A \triangleleft B]} \text{ Con}_{B}$$

Theorem

The calculus $SH_{\mathbb{VTU}}$ is sound for \mathbb{VTU} .

Proof:

By showing that all the rules preserve validity (as usual).

Theorem

The calculus $SH_{\mathbb{VTU}}$ is cut-free complete for \mathbb{VTU} .

Proof:

By simulating derivations in the hypersequent system.

Alternative Proof:

By constructing a countermodel from failed proof search (non-trivial...).

Wrapping up

So what have we achieved?

- Hypersequent calculi for Lewis' conditional logics
 VTU, VWU, VCU, VTA, VWA, VCA.
- Syntactic cut elimination for these calculi
- Applications of the calculi in proving connections to modal logic
- Standard calculi for all the logics
- Completeness proofs via simulation
- For VTU, VWU, VCU: An alternative completeness proof via countermodel construction.

Wrapping up

So what have we achieved?

- Hypersequent calculi for Lewis' conditional logics
 VTU, VWU, VCU, VTA, VWA, VCA.
- Syntactic cut elimination for these calculi
- Applications of the calculi in proving connections to modal logic
- Standard calculi for all the logics
- Completeness proofs via simulation
- For VTU, VWU, VCU: An alternative completeness proof via countermodel construction.

 $(questions \land happy) < (\neg questions \land happy)$