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General methods in proof theory

Recent development: general methods for constructing analytic
calculi for non-classical logics in various frameworks. E.g.:

» Modal logics » Sequents

» Substructural logics using » Hypersequents

> Intermediate logics > Labelled sequents
> ... » Display calculi

By now these frameworks are (reasonably) well understood . ..

low <— expressivity — high

Labelled sequents
Display calculi
low <— complexity — high

Sequents < Hypersequents < {
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» Modal logics » Sequents
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By now these frameworks are (reasonably) well understood . ..

low <— expressivity — high

Labelled sequents
Display calculi
low <— complexity — high

Sequents < Hypersequents < ? < {

... But is there anything in between?
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Reminder: Intermediate logics

The formulae of intermediate logics are given by

peVar|LlpAploVelp—p

A frame F = (W, <) has a reflexive transitive < C W x W.
Valuations o satisfy:

» monotonicity: F,o,xIF pand x <y then F,o,y Ik p
> F,o,xIFA— Biff
Vy(xgy= (F,o,ylf Aor F,o,y IF B))

> local clauses for A, V, L

Intermediate logics are obtained by restricting the class of frames:

» Bdy: depth at most k (xo < ... <X xx = \/lei—l = X;)
» GD: linear frames (x <y Vy < x)
» Jan: confluent frames (Iz(x X z Ay < 2))

> ..
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Reminder: Intermediate logics

The formulae of intermediate logics are given by

peVar| LionpleVele—e
A frame F = (W, <) has a reflexive transitive < C W x W.
Valuations o satisfy:

» monotonicity: F,o,xIF pand x <y then F,o,y Ik p

> F,o,xIFA— Biff
Vy(xgy= (F,o,ylf Aor F,o,y IF B))

> local clauses for A, V, L

Intermediate logics are obtained by restricting the class of frames.

Or alternatively as axiomatic extensions of intuitionistic logic:
> Bdi: Int ® pr V (pk = pe—1 V(- = (p1 V (p1 — 1))))
» GD: Int®(p—q)V(g—p)
> Jan: Int&@ —-pV ——p
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Proof theory for intermediate logics: A benchmark

A very powerful tool is provided by algebraic proof theory, e.g.:

A formula is a P3-axiom if it is of the form
(Ai(AB, = VG) = VA) V-V (A(AB, = Vg) = VF)

Theorem (Ciabattoni, Galatos, Terui:'08)

An intermediate logic admits a structural hypersequent calculus iff
it is axiomatised by P3 axioms.

Corollary. GD and Jan admit a structural hypersequent calculus.

But some interesting logics are not axiomatised in Ps.
In particular:

> Bdi: Int@peV(pk = pk—1V (= (p1V(p1— 1))))

16



Example: Limitative result for Bd,

Theorem. Bdy is not axiomatised by P3 axioms for k > 2.

Idea: The frames below validate the same P3 formulae. One is a
Bdk1 frame, the other one is not.

2 3 1 2 3
Sk Sk S Sie1 Skt1 Sk

W Y
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Theorem. Bdy is not axiomatised by P3 axioms for k > 2.

Idea: The frames below validate the same P3 formulae. One is a
Bdk1 frame, the other one is not. E.g, if T falsifies
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Example: Limitative result for Bd,
Theorem. Bdy is not axiomatised by P3 axioms for k > 2.
Idea: The frames below validate the same P3 formulae. One is a

Bdk1 frame, the other one is not. E.g, if T falsifies
A=V (N(Ap— V§G)— VF): Copy the valuation along --.
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Example: Limitative result for Bd,
Theorem. Bdy is not axiomatised by P3 axioms for k > 2.
Idea: The frames below validate the same P3 formulae. One is a
Bdk1 frame, the other one is not. E.g, if T falsifies
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Example: Limitative result for Bd,

Theorem. Bdy is not axiomatised by P3 axioms for k > 2.

Idea: The frames below validate the same P3 formulae. One is a
Bdk1 frame, the other one is not. E.g, if T falsifies

A=V (N(Ap— V§G)— VF): Copy the valuation along --.
--ooooes S% ly /\ﬁ or ”_ \/C_]

st ”/512 W Aporl- Vg :
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Example: Limitative result for Bd,

Theorem. Bdy is not axiomatised by P3 axioms for k > 2.

...or talk to Nick and Frederik for a more algebraic proof!
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How to capture logics like Bd,?

Move to a more expressive framework!

(... but not too expressive)
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Nested Sequents

Nested sequents are trees of (multi-set based) sequents:

N7 N

21:>|_|1 Zn:>|_|,,

~N 7

M= A

interpreted as Al — VAV (AX; — V7)) V-V (AZ, — VIT}).

A bit of history:
» Precursors: [Bull:'92], [Kashima:'94], [Masini:'92]
» Current form in modal logics: [Briinnler:'09], [Poggiolesi:'09]
» For intuitionistic modal logics: [StraBburger et al:'12 - now]

» Adapted to intuitionistic logic in [Fitting:'14]

8/16



Nested Sequents

Nested sequents are trees of (multi-set based) sequents:

N7 N

Yi=Mp o Y=, ) Tl

~N 7

r=A Mot A

interpreted as Al — VAV (AX; — V7)) V-V (AZ, — VIT}).

Nested sequents give rise to models for intuitionistic logic.
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Nested sequents: The standard rules
Fitting's rules (applied anywhere inside the nested sequent):

A= B
~
M=A
—R
< NI
/
= AA—B r= A
N7 N7 :
NB=A F:>A,A s =
/
<\7 NNMA=A

A= B=A

Together with local rules for A,V, L, init, and contraction.

Problem: Rule — g loses control over the structure of the models.
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Suggestion here: be more explicit

To regain control over the structure of the models we incorporate
all different possibilities in the implication right rule
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Suggestion here: be more explicit

To regain control over the structure of the models we incorporate
all different possibilities in the implication right rule
and restrict according to the class of frames!

W Only there if in frame class
Y= / \
| \ 7 \/

Y =T A= B Y=IMNA—-B >Y=10MN A=1B
X/ S/ XK/ X1/
Y =T
/

rN=AA—B
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Example: Bounded depth Bd,
Reminder: Bd, frames have depth at most 2.

Thus the rules work only on nested sequents of depth < 2.
The rule with principal formula in the root:

Y =Tl >Y=IMMA—B >Y=1I11 A= B
DA NV X1/
NA=AB r=A r= A e
—
Y= .
X1/
r=AA—B
And the rule with principal Y A=T,B
formula in a leaf: ]
M= A
%,gcb
Y= A= B
/

Mr=A
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Example: Godel-Dummett logic GD

Reminder: GD frames are linear: every node has < 1 successor.

Y=

YN A=BYX=0MNA->B A= B
| | | |
NA=AB = A r= A MA=AB = A
. :. . %gD : .

: Fr=AA B
X =T :

GD
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Example: Godel-Dummett logic GD

Reminder: GD frames are linear: every node has < 1 successor.

Y=

| :
A=B Xr=I,A—=B A= B
| | |
F:;A F;>A F:?A
: : _,GD' : _,GD’
: : r=AA B .
X =T :
|

In this case we can even omit more premisses.

Theorem. This calculus for GD has (syntactic) cut elimination.
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What do derivations look like?

... Let the implementation work that out!
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Logic: Bd>
Input sequent: = (pV (p — (¢ V (g — 1))))
Derivation found!

=plap=Lag] ™
=p,p=q,(qg— 1)]
p=(qV(qg—1)),p, =p,lp=(qV(q—1)),]
= p,(p—(qV(g— 1)),
= (pVp—(aV(ig— 1))

init

—R

VR
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Logic: Bd»
Input sequent: = ((a — b) V (b — a))
Countermodel found!

"/
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Suming up

The main idea:
» A semantic view of nested sequents for intermediate logics.

» Control the structure of the frames via the premisses of —g.

> Restrict the general rule scheme according to the frame class.

Questions:
> Is this known already?
» Could there be connections to algebraic semantics?

> |s this cheating?

Thank You!

16
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Logic: Bds
Input sequent: = (pV (p— (¢V (g — (rV (r—1))))))
Derivation found!

init
—R
lift

=plp=qlrpqg=1r]
=plp=aqlp.g=r.(r—1).]]
=plp=qlg=r(r—1)]] Ve
=plap=(rv(ir—=1)).q] =plp=alg=(rvic= )N
=plp=q (g (rv(r—1))]
p=(qV(g—= (rVv(r—1))),p. =plp=(qv(g—(rv(r—1))).]
=p.(p—=(qV(g— (rV(r— 1)),
= (pV(p—(qV(g—(rv(r— 1))

init

init R

—R

VR
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Logic: Bds
Input sequent: = (pV (p — (¢ V (g — 1))))
Countermodel found!

p,q

A
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Logic: Sm
Input sequent: = (((¢ = L) = p) = (((p = q) = p) = p))
Derivation found!
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