Analytic calculi for intermediate logics: A nested sequent approach

Björn Lellmann

TU Wien

ALCOP VIII, Glasgow April 12, 2017

Disclaimer: Work in progress - Enter at your own risk!

General methods in proof theory

Recent development: general methods for constructing analytic calculi for non-classical logics in various frameworks. E.g.:

using

- Modal logics
- Substructural logics
- Intermediate logics
- **.** . . .

- Sequents
- Hypersequents
- Labelled sequents
- Display calculi

By now these frameworks are (reasonably) well understood . . .

```
\begin{array}{c} \textit{low} \; \longleftarrow \; \text{expressivity} \; \longrightarrow \textit{high} \\ \text{Sequents} \; \leq \; & \text{Hypersequents} \; \leq \; & \text{Labelled sequents} \\ \textit{low} \; \longleftarrow \; \text{complexity} \; \longrightarrow \; \textit{high} \\ \end{array}
```

General methods in proof theory

Recent development: general methods for constructing analytic calculi for non-classical logics in various frameworks. E.g.:

using

- Modal logics
- Substructural logics
- Intermediate logics
- **.** . . .

- Sequents
- Hypersequents
- Labelled sequents
- Display calculi

By now these frameworks are (reasonably) well understood . . .

... But is there anything in between?

Reminder: Intermediate logics

The formulae of intermediate logics are given by

$$p \in \mathsf{Var} \mid \bot \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \to \varphi$$

A frame $\mathcal{F} = (W, \preccurlyeq)$ has a reflexive transitive $\preccurlyeq \subseteq W \times W$. Valuations σ satisfy:

- ▶ monotonicity: $\mathcal{F}, \sigma, x \Vdash p$ and $x \leq y$ then $\mathcal{F}, \sigma, y \Vdash p$
- $F, \sigma, x \Vdash A \to B \text{ iff}$ $\forall y (x \leq y \Rightarrow (\mathcal{F}, \sigma, y \not\Vdash A \text{ or } \mathcal{F}, \sigma, y \Vdash B))$
- ▶ local clauses for ∧, ∨, ⊥

Intermediate logics are obtained by restricting the class of frames:

- ▶ Bd_k : depth at most k $(x_0 \leq ... \leq x_k \Rightarrow \bigvee_{i=1}^k x_{i-1} = x_i)$
- ▶ *GD*: linear frames $(x \leq y \lor y \leq x)$
- ▶ Jan: confluent frames $(\exists z (x \leq z \land y \leq z))$
- **.**..

Reminder: Intermediate logics

The formulae of intermediate logics are given by

$$p \in \mathsf{Var} \mid \bot \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \to \varphi$$

A frame $\mathcal{F} = (W, \preccurlyeq)$ has a reflexive transitive $\preccurlyeq \subseteq W \times W$. Valuations σ satisfy:

- ▶ monotonicity: $\mathcal{F}, \sigma, x \Vdash p$ and $x \leq y$ then $\mathcal{F}, \sigma, y \Vdash p$
- $F, \sigma, x \Vdash A \to B \text{ iff}$ $\forall y (x \leq y \Rightarrow (\mathcal{F}, \sigma, y \not\Vdash A \text{ or } \mathcal{F}, \sigma, y \Vdash B))$
- ▶ local clauses for ∧, ∨, ⊥

Intermediate logics are obtained by restricting the class of frames. Or alternatively as axiomatic extensions of intuitionistic logic:

- ▶ Bd_k : Int $\oplus p_k \lor (p_k \to p_{k-1} \lor (\cdots \to (p_1 \lor (p_1 \to \bot))))$
- ▶ GD: Int \oplus $(p \rightarrow q) \lor (q \rightarrow p)$
- ▶ Jan: Int $\oplus \neg p \lor \neg \neg p$

Proof theory for intermediate logics: A benchmark

A very powerful tool is provided by algebraic proof theory, e.g.:

A formula is a \mathcal{P}_{3} -axiom if it is of the form

Theorem (Ciabattoni, Galatos, Terui:'08)

An intermediate logic admits a structural hypersequent calculus iff it is axiomatised by \mathcal{P}_3 axioms.

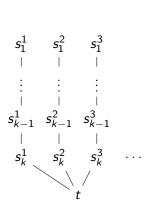
Corollary. GD and Jan admit a structural hypersequent calculus.

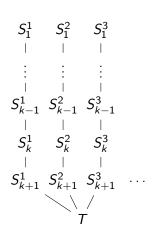
But some interesting logics are not axiomatised in \mathcal{P}_3 . In particular:

▶
$$Bd_k$$
: Int $\oplus p_k \lor (p_k \to p_{k-1} \lor (\cdots \to (p_1 \lor (p_1 \to \bot))))$

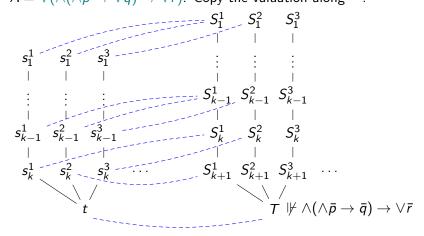
Theorem. Bd_k is not axiomatised by \mathcal{P}_3 axioms for $k \geq 2$.

Idea: The frames below validate the same \mathcal{P}_3 formulae. One is a Bd_{k+1} frame, the other one is not.

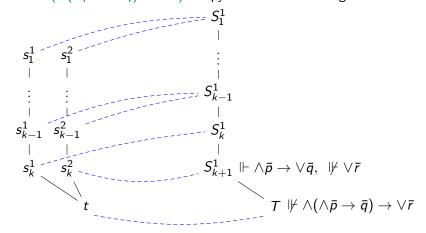




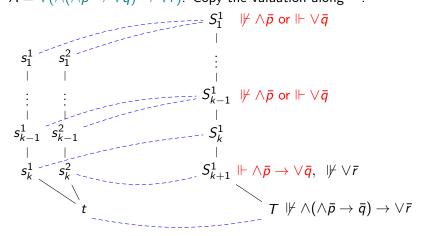
Theorem. Bd_k is not axiomatised by \mathcal{P}_3 axioms for $k \geq 2$.



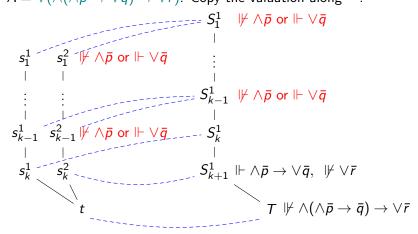
Theorem. Bd_k is not axiomatised by \mathcal{P}_3 axioms for $k \geq 2$.



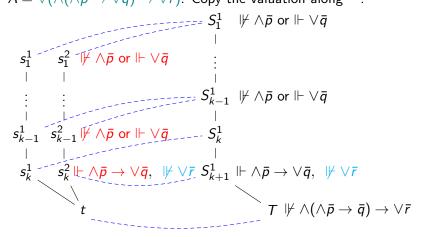
Theorem. Bd_k is not axiomatised by \mathcal{P}_3 axioms for $k \geq 2$.



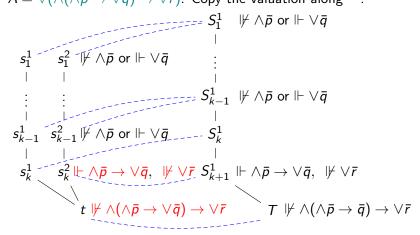
Theorem. Bd_k is not axiomatised by \mathcal{P}_3 axioms for $k \geq 2$.



Theorem. Bd_k is not axiomatised by \mathcal{P}_3 axioms for $k \geq 2$.



Theorem. Bd_k is not axiomatised by \mathcal{P}_3 axioms for $k \geq 2$.



Theorem. Bd_k is not axiomatised by \mathcal{P}_3 axioms for $k \geq 2$.

...or talk to Nick and Frederik for a more algebraic proof!

How to capture logics like Bd_k ?

Move to a more expressive framework!

(...but not too expressive)

Nested Sequents

Nested sequents are trees of (multi-set based) sequents:

$$\Sigma_1 \Rightarrow \Pi_1 \qquad \qquad \Sigma_n \Rightarrow \Pi_n$$
 $\Gamma \Rightarrow \Delta$

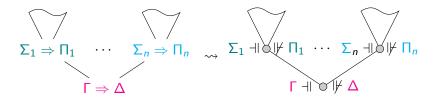
interpreted as $\wedge\Gamma \to \vee\Delta \vee (\wedge\Sigma_1 \to \vee\Pi_1^*) \vee \cdots \vee (\wedge\Sigma_n \to \vee\Pi_n^*)$.

A bit of history:

- Precursors: [Bull:'92], [Kashima:'94], [Masini:'92]
- Current form in modal logics: [Brünnler:'09], [Poggiolesi:'09]
- ► For intuitionistic modal logics: [Straßburger et al:'12 now]
- Adapted to intuitionistic logic in [Fitting:'14]

Nested Sequents

Nested sequents are trees of (multi-set based) sequents:

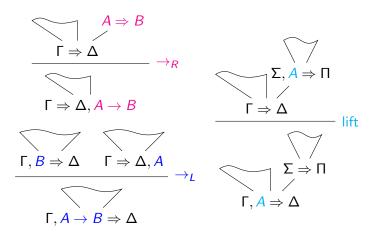


interpreted as $\wedge\Gamma \to \vee\Delta \vee (\wedge\Sigma_1 \to \vee\Pi_1^*) \vee \cdots \vee (\wedge\Sigma_n \to \vee\Pi_n^*)$.

Nested sequents give rise to models for intuitionistic logic.

Nested sequents: The standard rules

Fitting's rules (applied anywhere inside the nested sequent):



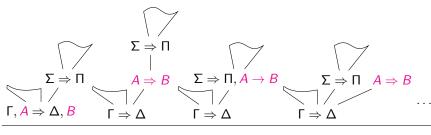
Together with local rules for \land, \lor, \bot , init, and contraction.

Problem: Rule \rightarrow_R loses control over the structure of the models.

Suggestion here: be more explicit

To regain control over the structure of the models we incorporate all different possibilities in the implication right rule

. . .

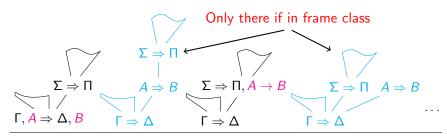


$$\Sigma \Rightarrow \Pi$$

$$\Gamma \Rightarrow \Delta, A \rightarrow B$$

Suggestion here: be more explicit

To regain control over the structure of the models we incorporate all different possibilities in the implication right rule and restrict according to the class of frames!

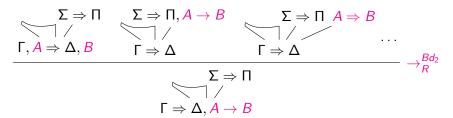


Example: Bounded depth Bd₂

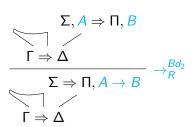
Reminder: Bd_2 frames have depth at most 2.

Thus the rules work only on nested sequents of depth ≤ 2 .

The rule with principal formula in the root:

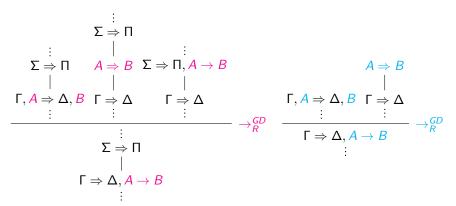


And the rule with principal formula in a leaf:



Example: Gödel-Dummett logic GD

Reminder: GD frames are linear: every node has ≤ 1 successor.



Example: Gödel-Dummett logic GD

Reminder: GD frames are linear: every node has ≤ 1 successor.

In this case we can even omit more premisses.

Theorem. This calculus for GD has (syntactic) cut elimination.

What do derivations look like?

... Let the implementation work that out!

Logic: Bd_2 Input sequent: $\Rightarrow (p \lor (p \to (q \lor (q \to \bot))))$ Derivation found!

$$\frac{\frac{}{\Rightarrow p,[q,p\Rightarrow \bot,q,]} \inf}{\frac{p\Rightarrow (q\vee (q\rightarrow \bot)),p,}{\Rightarrow p,[p\Rightarrow q,(q\rightarrow \bot),]}} \xrightarrow{P_R} \\ \frac{\Rightarrow p,[p\Rightarrow q,(q\rightarrow \bot),]}{\Rightarrow p,[p\Rightarrow (q\vee (q\rightarrow \bot)),]} \xrightarrow{V_R} \\ \frac{\Rightarrow p,(p\rightarrow (q\vee (q\rightarrow \bot))),}{\Rightarrow (p\vee (p\rightarrow (q\vee (q\rightarrow \bot))))} \vee_R$$

$\begin{array}{c} \mathsf{Logic:} \; \mathsf{Bd}_2 \\ \mathsf{Input} \; \mathsf{sequent:} \; \Rightarrow ((\mathsf{a} \to \mathsf{b}) \lor (\mathsf{b} \to \mathsf{a})) \\ \mathsf{Countermodel} \; \mathsf{found!} \end{array}$

Suming up

The main idea:

- ▶ A semantic view of nested sequents for intermediate logics.
- ▶ Control the structure of the frames via the premisses of \rightarrow_R .
- ▶ Restrict the general rule scheme according to the frame class.

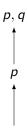
Questions:

- Is this known already?
- Could there be connections to algebraic semantics?
- Is this cheating?

Thank You!

Logic: Bd_3 Input sequent: $\Rightarrow (p \lor (p \to (q \lor (q \to (r \lor (r \to \bot))))))$ Derivation found!

Logic: Bd_3 Input sequent: $\Rightarrow (p \lor (p \to (q \lor (q \to \bot))))$ Countermodel found!



Logic: Sm

Input sequent: $\Rightarrow (((q \to \bot) \to p) \to (((p \to q) \to p) \to p))$ Derivation found!