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The Problem

(From the point of view of modal logic...)

Sequent calculi are nice, but not expressive enough

I Cut-free calculi for
standard logics

I Useful for
complexity-optimal
decision procedures

I Used to show
interpolation

I . . .

No cut-free calculi for
logics with

I symmetry (B)

I symmetry and
transitivity (S5)

I Euclideaness (K5)

I . . .
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Successful extensions of the framework

In particular two extensions of the sequent framework are useful:

Hypersequents

Lists of sequents:

Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n

+ Can be
complexity-optimal:
coNP for S5

− Do not capture some
logics, e.g., K5

Nested sequents

Trees of sequents:

Σ⇒ Π

Γn ⇒ ∆n

. . .. . .

· · ·Γ1 ⇒ ∆1

. . .. . .

+ Capture all logics in the
modal cube, also K5

− Suboptimal complexity:
EXP instead of coNP for
K5



Can we combine the advantages of hypersequents
and nested sequents?



Preliminaries
As usual, the set F of formulae of modal logic is given by:

F ::= p, q, . . . | ⊥ | ¬F | �F | F ∧ F | F ∨ F | F → F

We abbreviate ¬�¬A to ♦A.

Modal logic K5 is given Hilbert-style by closing the axioms

(k) �(A→ B)→ (�A→ �B) and (5) ♦�A→ �A

and axioms for classical propositional logic under the rules

A A→ B
B

modus ponens, MP and A
�A

necessitation, nec

Semantically, K5 is the logic of the class of Kripke frames which
are euclidean, i.e., satisfy the condition:

∀x , y , z . xRy ∧ xRz → yRz



Grafted Hypersequents

Main idea: Graft a hypersequent on top of a nested sequent!

Grafting [...] is a horticultural technique whereby tissues
from one plant are inserted into those of another so that
the two sets of vascular tissues may join together.

(Wikipedia)



Grafted Hypersequents

Main idea: Graft a hypersequent on top of a nested sequent!

Definition
A grafted hypersequent is of the form

Γ⇒ ∆ || Σ1 ⇒ Π1 | · · · | Σn ⇒ Πn

with Γ⇒ ∆ and the Σi ⇒ Πi sequents (multiset based). The
sequent Γ⇒ ∆ is its trunk, the rest its crown.

The formula interpretation of the above grafted hypersequent is∧
Γ→

∨
∆ ∨�(

∧
Σ1 →

∨
Π1) ∨ · · · ∨�(

∨
Σn →

∨
Πn) .

(I.e., a “truncated nested sequent” or “rooted hypersequent”.)



The grafted hypersequent system RK5 for K5
Trunk rules only work in the trunk, e.g.:

Γ,⊥ ⇒ ∆ || H ⊥L Γ, p ⇒ p,∆ || H Init

Γ,B ⇒ ∆ || H Γ⇒ A,∆ || H
Γ,A→ B ⇒ ∆ || H

→L
Γ,A⇒ B,∆ || H

Γ⇒ A→ B,∆ || H
→R

Transfer rules govern the interaction between crown and trunk:

Γ⇒ ∆ || H | Σ,A⇒ Π

Γ,�A⇒ ∆ || H | Σ⇒ Π
�L

Γ⇒ ∆ || H | ⇒ A

Γ⇒ �A,∆ || H �R

Crown rules only work in the crown (with empty trunk!):

⇒ || H | Σ,A⇒ Π

⇒ || H | �A⇒ | Σ⇒ Π
5

⇒ || H | ⇒ A

⇒ || H | ⇒ �A K

and similarly for the propositional rules.
We also include (trunk and crown versions of) the structural rules.



The grafted hypersequent system for K5

Example

The axiom (5) ♦�p → �p is derived via

⇒ || p ⇒ p

⇒ || �p ⇒ | ⇒ p
5

⇒ || ⇒ ¬�p | ⇒ p
¬R

⇒ �¬�p,�p �R ,�R

⇒ ¬�¬�p → �p
prop

Theorem
RK5 is sound and complete for K5 in presence of the trunk and
crown cut rules:

Γ⇒ ∆,A || H A,Σ⇒ Π || G
Γ,Σ⇒ ∆,Π || H | G Cutt

⇒ || H | Γ⇒ ∆,A ⇒ || G | A,Σ⇒ Π

⇒ || H | G | Γ,Σ⇒ ∆,Π
Cutc



Cut elimination

As expected, cut elimination for RK5 is a bit complicated...

Main ingredients:

I a layering lemma stating that derivations are layered:

trunk rules

transfer rules

crown rules

I a standard proof to push up multi-cuts in the trunk layer until
they hit the transfer layer

I a step to permute multi-cuts over the transfer layer

I a hypersequent cut elimination proof based on
[Ciabattoni, Metcalfe, Montagna: 2010]



Decidability and complexity

For the decision procedure we make the structural rules (except for
trunk weakening) admissible by Kleene’ing the rules, e.g.:

Γ⇒ �A,∆ || H | ⇒ A

Γ⇒ �A,∆ || H
�∗R

Γ,�A⇒ ∆ || H | Σ,A⇒ Π

Γ,�A⇒ ∆ || H | Σ⇒ Π
�∗L

⇒ || H | Γ,�A⇒ ∆ | Σ,A⇒ Π

⇒ || H | Γ,�A⇒ ∆ | Σ⇒ Π
5∗

⇒ || H | Γ,�A,A⇒ ∆

⇒ || H | Γ,�A⇒ ∆
T∗

⇒ || H | Γ⇒ �A,∆ | ⇒ A

⇒ || H | Γ⇒ �A,∆
K∗

Theorem
Proof search in the Kleene’d system R∗K5 can be implemented in
(optimal) complexity coNP.



Cut-free completeness semantically
... via equivalence to a grafted tableaux system:

Labelled formulae FA or TA are prefixed with either the trunk
prefix •, a limb prefix 1, 2, . . . or a twig prefix 1, 2, . . . .

The interesting rules (the propositional rules are standard):

• : F�A
n : FA

• : T�A
n : TA

c : F�A
n : FA

c : T�A
c′ : TA

n new n occurs n new c′ occurs

where c and c′ are limb or twig prefixes.

I A branch is closed if it contains ` : TA and ` : FA for some
label ` and formula A.

I A tableau is closed if every branch in it is closed.

I A formula is A derivable if there is a closed tableau starting
with • : FA.



Cut-free completeness semantically
... via equivalence to a grafted tableaux system:

Labelled formulae FA or TA are prefixed with either the trunk
prefix •, a limb prefix 1, 2, . . . or a twig prefix 1, 2, . . . .

The interesting rules (the propositional rules are standard):

• : F�A
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• : T�A
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c : F�A
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n new n occurs n new c′ occurs

where c and c′ are limb or twig prefixes.

Intuition: Models for K5 have the shape

•

1,2, . . .

1, 2, . . . I twigs are accessible from twigs and
limbs but not from the root

I limbs are accessible from the root,
from twigs and from limbs.



Cut-free completeness semantically

Example

The following closed tableau shows derivability of shift transitivity:

• : F�(�p → ��p)
1 : F�p → ��p
1 : T�p
1 : F��p
2 : F�p
3 : F p
3 : T p
×

• : F�A
n : FA

n new

• : T�A
n : TA

n occurs

c : F�A
n : FA

n new

c : T�A
c′ : TA

c′ occurs

Theorem
The grafted tableaux system for K5 is sound and complete and
equivalent to the grafted hypersequent system R∗K5. Hence the
latter is cut-free complete.
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Summary

I A framework combining nested sequents and hypersequents

I Complexity optimal cut-free calculi for K5, KD5, SDL+

I A corresponding simplified prefixed tableaux system.

R. Kuznets and B. Lellmann.

Grafting hypersequents onto nested sequents.
Arxiv preprint arXiv:1502.00814 [cs.LO], 2015.



Extensions and Modifications

The same ideas yield complexity-optimal grafted hypersequent
calculi for the logics

I KD5, axiomatised by the K5-axioms and

seriality �A→ ♦A .(
Add the rule

Γ⇒ ∆ || H | A⇒
Γ,�A⇒ ∆ || H �D

L .

)
I SDL+ or KT�, axiomatised by the K-axioms and

shift reflexivity �(�A→ A) .

(Use a hypersequent calculus for KT as graft.)

I KDT�, axiomatised by the KT�-axioms and seriality.
(Add the rule �D

L .)


