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Motivation 1: The Zoo of Logics

Problem
Given the specification of a logic, construct an analytic calculus to
be used in a decision procedure for it!

» Assume the logic is given as a Hilbert-style axiom system.

» Which framework to choose for the calculus: sequents,
hypersequents, nested sequents, display, ...7

» How to construct the calculus?

In the spirit of a “smart reuse of resources” we would like to have
general methods to approach this problem.



Motivation 2: The Zoo of Formalisms
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We need a general theory of derivation systems including results
about which frameworks are appropriate for which logics!
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Hypersequent calculi



Hypersequent Basics
The formulae of normal modal logics are given by
Fopu=pi|LlerpleVvele—=e|Up|Qp]...

Sequents are tuples [ = A of multisets of formulae read as
AT — VA, and hypersequents are multisets of sequents written

F1:>A1|-~~|I’,,:>A,,

We consider hypersequent calculi with axioms and structural rules:

GIr=A g
Ax ———— EW
GIT, o= A Gg|NLr=ATnN GIr=A
Glo, ol =A GIT =240,
ICL ICr
Glo,T=A GIT=Ap
GIr=A|IT=A GIT=Ap g|<p,2:>r|Ct
u

G|Ir=A GIILXx=AT"N



Hypersequent rules with restrictions examples

What could the additional rules look like?
Two (classic) examples from the literature [Avron 1996]:

GglNhy=A glorr=0an
G| Op=A GlOr=0A|x=n

The characteristic features of these rules are:

» They might introduce one layer of connectives in the active
part of the conclusion

» One active component per premiss
» Possibly more than one active component in the conclusion

» They copy a restricted part of the contexts of each
component to the premisses

How can we make that precise?



Hypersequent rules with restrictions formally

A context restriction is a tuple (Fy; F,) of sets of formulae. It
restricts a sequent [ = A by allowing only substitution instances
of formulae from F; (resp. F,) in T (resp. A).

Hypersequent rules with context restrictions are of the form

(M= A;CH...Ch) oo (Tm= A ...

n

ZI:>H1|"'|Zn:>r|n

with CJf context restrictions and I';, A; C Var and X;, N; C O( Var).
Simple rules use only (0, 0), ({p},{p}), ({Op},0).

In an application the premiss with restriction Ci ...C} copies the
context of the jth component restricted by C;.

Example:

(= 0P} {0p}) {pkidp}) | g1orxr=0AT

— = G|QOr=0A6|L=n



Cut elimination

Theorem
Every

set of rules with
restrictions has cut elimination.

Proof idea: Adapt the proof of [Ciabattoni, Metcalfe, Montagna
2010]: push cuts up to the left, then right.
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Cut elimination

Theorem
Every right-substitutive,

set of rules with
restrictions has cut elimination.

Proof idea: Adapt the proof of [Ciabattoni, Metcalfe, Montagna
2010]: push cuts up to the left, then right.
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Cut elimination

Theorem
Every right-substitutive, single-conclusion right, right-contraction
closed, set of rules with

restrictions has cut elimination.

Proof idea: Adapt the proof of [Ciabattoni, Metcalfe, Montagna
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Cut elimination

Theorem
Every right-substitutive, single-conclusion right, right-contraction
closed, set of rules with

restrictions has cut elimination.

Proof idea: Adapt the proof of [Ciabattoni, Metcalfe, Montagna
2010]: push cuts up to the left, then right.
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Cut elimination

Theorem
Every right-substitutive, single-conclusion right, right-contraction
closed, mixed-cut permuting, set of rules with

restrictions has cut elimination.

Proof idea: Adapt the proof of [Ciabattoni, Metcalfe, Montagna
2010]: push cuts up to the left, then right.
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Cut elimination

Theorem
Every right-substitutive, single-conclusion right, right-contraction
closed, mixed-cut permuting, set of rules with

restrictions has cut elimination.

Proof idea: Adapt the proof of [Ciabattoni, Metcalfe, Montagna
2010]: push cuts up to the left, then right.
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Cut elimination

Theorem

Every right-substitutive, single-conclusion right, right-contraction
closed, mixed-cut permuting, principal cut closed set of rules with
restrictions has cut elimination.

Proof idea: Adapt the proof of [Ciabattoni, Metcalfe, Montagna
2010]: push cuts up to the left, then right.
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Cut elimination

Theorem

Every right-substitutive, single-conclusion right, right-contraction
closed, mixed-cut permuting, principal cut closed set of rules with
restrictions has cut elimination.

Proof idea: Adapt the proof of [Ciabattoni, Metcalfe, Montagna
2010]: push cuts up to the left, then right.

o= T=A =TI

, IT=A =L | T = AT C”tt(R 0
C )
N == .,.|.,.:>.,.Cu
.,.:>.,.|.,.:>.,.|.,.:>.,.|.,.:>.,. ut
EC




Decidability and Complexity

Theorem
Derivability in a cut-free, contraction-closed, bounded conclusion

and tractable rule set is decidable in EXPSPACE.
Proof idea: Modify the rules to make contraction admissible, e.g.:
G|l =np
G| r,oror=Op,A
G| r,ordr=0p,A |05, Y=p
g|r,oror=>OpA

and perform N/
backwards V prem
proof search: s
I rule
> 7 A poly(191)
V prem e Y prem V prem 2
J rule
!
g




Axioms and Rules



Axioms and Interpretations

We assume that the specification of a logic is given as a Hilbert
system, i.e. by a set A of axioms and the rules

% Fo Fp—=19 Fo—1

Foo 02 Fo MP Fop o op Men

We want to interpret a hypersequent as a formula — but the
interpretation for | is not clear! So let's make it a parameter:

An interpretation for a logic £ is a set {¢©n(p1,...,pn) : n € N} of
formulae such that =, ¢ iff =2 ©1(¥) (regularity) and which
respects the structural rules:

> = w8162, X) iff =2 pn(62,61,X)

> If ):ﬁ ‘Pn()?) then ):E §0n+1(£7 )Z)

» similarly for external contraction, cut, etc.

Example: 1o ={V,<,Upi : n € N} for reflexive normal modal
logics or tm = {V/;<,(pi A Op;) : n € N} for normal modal logics.



Axioms vs Rules

Consider the axiom for S4.3:

(:3) O(p — q) vO(Og — p)

The 1g-simple axioms corresponding to simple hypersequent rules
for uo = {\/;<,,0pi : n € N} are given by the following grammar:

Si=pp(Ll—=R,...,L = R)

L:=LAL|OP || T|L R:=RVR|OP;| 9| T|L
Po=P, NP, | PoAP | Pr— Pt | pi | L| T

Py =PV Py | PeAP | Pr— Pyl | pi| L| T

with © € AU {e}
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Axioms vs Rules

Consider the axiom for S4.3:

=r =5
(:3) Op — q)vO([g —p) ~ / P

Op=r| Og=s

The 1g-simple axioms corresponding to simple hypersequent rules
for uo = {\/;<,,0pi : n € N} are given by the following grammar:

Si=pp(Ll—=R,...,L = R)

L:=LAL|OP, || T|L R:=RVR|OP;| ¢ | T|L
Poi=P, NP, |PoAP | Pr— Pt | pi | L| T

Pyo= PNV Py | PeAPy | Pr— Pyl tpg | pi| L| T

with © € AU {e}



Axioms vs Rules

Consider the axiom for S4.3:

g= A 2.p=1T1
(:3) O(p — q) vO(Og — p) = P

NOp=A|X,0Oqg=1

The 1g-simple axioms corresponding to simple hypersequent rules
for uo = {\/;<,,0pi : n € N} are given by the following grammar:

Si=pp(Ll—R,...,L = R)

L:=LAL|OP, || T|L R:=RVR|OP;| ¢ | T|L
Po=P, NP, | PoAP | Pr— Pt | pi | L| T

Pyo= PNV Py | PeAPy | Pr— Pyl | pi| L| T

with © € AU {e}



Axioms vs Rules

Consider the axiom for S4.3:

Q= A >, 0=1T
(:3) O(p — q) vO(Og — p)

rnoe=A|x,00=1m0

The 1g-simple axioms corresponding to simple hypersequent rules
for uo = {\/;<,,0pi : n € N} are given by the following grammar:

Si=pp(Ll—=R,...,L = R)

L:=LAL|OP, || T|L R:=RVR|OP;| ¢ | T|L
Poi=P, NP, |PoAP | Pr— Pt | pi | L| T

Pyo= PNV Py | PeAPy | Pr— Pyl | pi| L| T
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Axioms vs Rules

Consider the axiom for S4.3:

Q= A >, 0=1T

3) O(0p — q) vO(Og —
(:3) DG = q) (Dg = p) o= A |x.00=1n0

The 1g-simple axioms corresponding to simple hypersequent rules
for uo = {\/;<,,0pi : n € N} are given by the following grammar:

Si=pp(Ll—=R,...,L = R)

Li=LAL|OQP, [ |T|L Ru=RVR|QP |0, |T|L
Poi=P, NP, |PoAP | Pr— Pty | pi | L| T

Pyo= PNV Py | PeAPy | Pr— Pyl | pi| LT

with QO € AU {e} and ¢y € {q;,0q; : i € N}, ¢, € {r; : i € N}
such that every 1y, 1, occurs under ¢, once on the top level and
at least once under a modality.



Caveat

The translations between axioms and rules use the rules for K:

GIT=gq
G|Or=0q

But soundness of these is not necessarily preserved in extensions!

Theorem
If K C L and ¢ is a regular interpretation for L, then:
Rk is sound for (L,t) iff UG.0) is admissible in L
UG, 0y)

and both hold for « = 1 if L is transitive or extensible.

(Here L is extensible if given by a class of frames closed under
“adding a predecessor to everyone).

This seems to suggest that hypersequent calculi are mainly suited
for transitive or extensible logics!
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Applications: Simple Frame Properties

All the calculi for logics given by simple frame properties based on
K or K4 in [Lahav:2013] fit our framework and satisfy the criteria
for cut elimination and decidability. E.g. linearity:

Vwi, woJu(wiRu A wo = u) V (waRu A wy = u)

G|, I"=Tl g|Ir=A
G|Ior=A|x0Y =Tl

Thus we purely syntactically reprove cut elimination and have

Theorem

Logics given by simple frame properties are decidable in
EXPSPACE.

The correspondence between simple rules and ¢g-simple axioms
also gives (under some conditions) Hilbert systems for these logics.



Applications: S5

Modal logic S5 is given by the axioms for KT and the simple axiom
Glp,T=A

5 O0p = OpvO-Op ~
(5) Op — LOp P P GlOp=|T=A

Adding contraction-absorbing contexts and dropping derivable
rules yields the rules from [Restall:2007]:
G|I=0pAl=p
nec
G|I=0p,A

G|lL,0p=N|pl=A
GlLOp=N|r=A




Applications: S5

Modal logic S5 is given by the axioms for KT and the simple axiom

Glp,T=A
G|Op=|T=A

(5) Op—0O0p = DOpvO-Op

Adding contraction-absorbing contexts and dropping derivable
rules yields the rules from [Restall:2007]:

Gl ,Op=N|p, = A g|F:Dp,A|:>pneC
GlL,Op=MN|Ir=A G|I=0p,A
Theorem

Backwards proof search in this calculus runs in coNP.

Algorithm:

Work on set-based hypersequents; apply nec to obtain a “genuinely
new” component; apply Prop and 5 all possible ways (universally
guessing the premiss); repeat until you hit axiom or no new
components are found.



Applications: K4.2
Modal logic K4.2 is K plus (4) Op — OOp plus (.2) OOp — OOp.
Bad News: ¢ is not regular for K4.2...
Good News: ... but tm = {V,,(pi AOp;) : n> 1} is.

Lemma
The following are frame equivalent over transitive frames:
O0p —0O0p and H(-pV-Ogq)VH(pV-O-g).

/N
(\ )

’

(Lwo) ()

Translating the latter axiom gives the rules:

G|Q0Ore 0A==T G|or,s,0A, M=
G|Q.OrOL==|0,0A00= T

Theorem
The calculus K4 + 2 is cut-free complete and sound for (K4.2, tm).



Summing Up

We have

> identified a general format of rules in a hypersequent calculus
for modal logics

» general syntactic criteria for uniform cut elimination and
decidability / complexity results

» identified a class of Hilbert axioms corresponding to such rules

> applied these results in the construction of analytic calculi for
several logics.



Summing Up

We have

> identified a general format of rules in a hypersequent calculus
for modal logics

» general syntactic criteria for uniform cut elimination and
decidability / complexity results

» identified a class of Hilbert axioms corresponding to such rules

> applied these results in the construction of analytic calculi for
several logics.

Thank you for your attention!



