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Motivation

Fact 1
There are many logics.

Fact 2
The number of logics is growing (almost) everyday.

Problem
Given the specification of a logic, construct an analytic calculus to
be used in a decision procedure for it!

In the spirit of a “smart reuse of resources” we would like to have
general methods to approach this problem.
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Motivation

Some first results:

I Kracht (display calculi, modal logics);

I Avron, Lahav, Zamansky (sequent calculi, paraconsistent
logics);

I Ciabattoni, Galatos, Terui (sequent / hypersequent calculi,
substructural logics);

I Ciabattoni, Ramanayake (display calculi, (modal) logics);

I Schröder, Pattinson, L. (sequents, modal logics);

I Lahav (hypersequents, modal logics);

Here we concentrate on hypersequents and propositional normal
modal logics (works for non-normal and intuitionistic as well).



Hypersequent calculi



Hypersequent Basics

The formulae of normal modal logics are given by

F 3 A ::= pi | ⊥ | A ∧ A | A ∨ A | A→ A | �A | ♥A | . . .

Sequents are tuples Γ⇒ ∆ of multisets of formulae read as∧
Γ→

∨
∆, and hypersequents are multisets of sequents written

Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n

We consider hypersequent calculi with axioms and structural rules:

G | Γ,A⇒ A,∆
Ax

G | Γ⇒ ∆

G | Γ,Σ⇒ ∆,Π
IW

G
G | Γ⇒ ∆

EW

G | A,A, Γ⇒ ∆

G | A, Γ⇒ ∆
ICL

G | Γ⇒ ∆,A,A

G | Γ⇒ ∆,A
ICR

G | Γ⇒ ∆ | Γ⇒ ∆

G | Γ⇒ ∆
EC

G | Γ⇒ ∆,A G | A,Σ⇒ Π

G | Γ,Σ⇒ ∆,Π
Cut



Hypersequent rules with restrictions examples

What could the additional rules look like?
Two (classic) examples from the literature [Avron 1996]:

G | Γ,A⇒ ∆

G | Γ,�A⇒ ∆

G | �Γ,Σ⇒ �∆,Π

G | �Γ⇒ �∆ | Σ⇒ Π

The characteristic features of these rules are:

I They might introduce one layer of connectives in the active
part of the conclusion

I One active component per premiss

I Possibly more than one active component in the conclusion

I They copy a restricted part of the contexts of each
component to the premisses

How can we make that precise?



Hypersequent rules with restrictions formally
A context restriction is a tuple 〈F`;Fr 〉 of sets of formulae. It
restricts a sequent Γ⇒ ∆ by allowing only substitution instances
of formulae from F` (resp. Fr ) in Γ (resp. ∆).

Hypersequent rules with context restrictions are of the form

(Γ1 ⇒ ∆1; C11 . . . C1n) . . . (Γm ⇒ ∆m; Cm1 . . . Cmn )

Σ1 ⇒ Π1 | · · · | Σn ⇒ Πn

with C ij context restrictions and Γi ,∆i ⊆ Var and Σi ,Πi ⊆ �(Var).
Simple rules use only 〈∅, ∅〉, 〈{p}, {p}〉, 〈{�p}, ∅〉.

In an application the premiss with restriction C i1 . . . C in copies the
context of the jth component restricted by C ij .

Example:

(⇒ ; 〈{�p}; {�p}〉 〈{p}; {p}〉)
⇒ | ⇒

 
G | �Γ,Σ⇒ �∆,Π

G | �Γ⇒ �∆ | Σ⇒ Π



Cut elimination and Decidability

Theorem
Every

right-substitutive, single-conclusion right, right-contraction
closed, principal cut closed, mixed-cut permuting

set of rules with
restrictions has cut elimination.

Proof idea: Adapt the proof of [Ciabattoni, Metcalfe, Montagna
2010]: push cuts up to the left, then right.

.⇒ .,A | Γ⇒ ∆

.⇒ .,A | .⇒ .,A
R

.⇒ .,A
EC

Σ⇒ Π
A, .⇒ . | A, .⇒ .

Q

A, .⇒ .
EC

., .⇒ ., . Cut
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Cut elimination and Decidability

Theorem
Every right-substitutive, single-conclusion right, right-contraction
closed, principal cut closed, mixed-cut permuting set of rules with
restrictions has cut elimination.

Proof idea: Adapt the proof of [Ciabattoni, Metcalfe, Montagna
2010]: push cuts up to the left, then right.

Theorem
Derivability in a cut-free, contraction-closed, bounded conclusion
and tractable rule set is decidable in 2EXPTIME.

Proof idea: Modify the rule set to make internal contractions ad-
missible and enumerate the relevant hypersequents.



Axioms and Rules



Axioms and Interpretations

We assume that the specification of a logic is given as a Hilbert
system, i.e. by a set A of axioms and the rules

` A
` Aσ

US
` A ` A→ B

` B
MP

` A↔ B
` ♥A↔ ♥B Cg

We want to interpret a hypersequent as a formula – but the
interpretation for | is not clear! So let’s make it a parameter:

An interpretation for a logic L is a set {ϕn(p1, . . . , pn) : n ∈ N} of
formulae such that |=L ψ iff |=L ϕ1(ψ) (regularity) and which
respects the structural rules:

I |=L ϕn(ξ1, ξ2, ~χ) iff |=L ϕn(ξ2, ξ1, ~χ)

I If |=L ϕn(~χ) then |=L ϕn+1(ξ, ~χ)

I similarly for external contraction, cut, etc.

Example: ι� = {
∨

i≤n�pi : n ∈ N} for reflexive normal modal
logics or ι� = {

∨
i≤n(pi ∧�pi ) : n ∈ N} for normal modal logics.



Axioms vs Rules

Consider the axiom for S4.3:

(.3) �(�p → q) ∨�(�q → p)

 

Γ,

�p ⇒ |

Σ,

�q ⇒

The ι�-simple axioms corresponding to simple hypersequent rules
for ι� = {

∨
i≤n�pi : n ∈ N} are given by the following grammar:

S ::= ϕn(L→ R, . . . , L→ R)

L ::= L ∧ L | ♥Pr | ψ` | > | ⊥ R ::= R ∨ R | ♥P` | ψr | > | ⊥
Pr ::= Pr ∨ Pr | Pr ∧ Pr | P` → Pr | ψr | pi | ⊥ | >
P` ::= P` ∨ P` | P` ∧ P` | Pr → P` | ψ` | pi | ⊥ | >

with ♥ ∈ Λ ∪ {ε}

and ψ` ∈ {qi ,�qi : i ∈ N}, ψr ∈ {ri : i ∈ N}
such that every ψ`, ψr occurs

under ϕn

once on the top level and
at least once under a modality.
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Applications: Normal modal logics

Example

Modal logic S5 is given by the axioms for S4 and the simple axiom

(5) ♦p → �♦p ≡ �p ∨�¬�p  
G | Γ,�Σ⇒ Π

G | Γ⇒ ∆ | �Σ⇒

Example

Modal logic S4.2 of confluent frames is given by the axioms for S4
plus

(.2) ♦�p → �♦p ≡ �¬�p∨�¬�¬p  
G | Γ,Σ⇒
G | �Γ⇒ | �Σ

(but see the next talk for more on this one!).



Applications: Simple Frame Properties

All the calculi for logics given by simple frame properties based on
K or K4 in [Lahav 2013] fit our framework and satisfy the criteria
for cut elimination and decidability. Thus we purely syntactically
reprove cut elimination and have

Theorem
Logics given by simple frame properties are decidable in
2EXPTIME.

The correspondence between simple rules and ι�-simple axioms
also gives (under some conditions) Hilbert systems for these logics.



Applications: Deontic logics

The logic of uniform deontic frames LUDF from [Roy et al, 2012]
has modalities � (“necessary”), O (“obligatory”) and P
(“permissible”) and axioms S5 for � plus

PA ∧ PB → P(A ∨ B) OA→ PA OA→ �OA
OA→ (PB → �(B → A)) OA→ ¬�¬A PA→ �PA

These are turned into the rules RLUDF including e.g.

(~p,~r ⇒ ; C, Cid) (~r ⇒ ~q; C, Cid)

~Op, ~Pq, ~�r ⇒ | ⇒

where C = 〈{�p,Op,Pp}, ∅〉 and |~p| ≥ 1, |~q|, |~r | ≥ 0 (see paper
for the rest).

Theorem
RLUDF has cut elimination and LUDF is decidable in 2EXPTIME.



Summing Up

We have

I identified a general format of rules in a hypersequent calculus
for modal logics

I general syntactic criteria for uniform cut elimination and
decidability / complexity results

I identified a class of Hilbert axioms corresponding to such rules

I applied these results in the construction of analytic calculi for
several logics.

Thanks for your attention!
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