
Constructing Cut-free Sequent Systems
with Context Restrictions for Modal Logics Based

on Classical or Intuitionistic Logic

Björn Lellmann
(Joint work with Dirk Pattinson)

Imperial College London

11 January 2013
ICLA, Chennai

Motivation

Fact:
There are a many modal logics: K,KT,K4, S4,CK,CS4

For deciding these logics we often use backwards proof search or
the subformula property in “good” sequent systems.

But coming up with such a “good” sequent system is not easy!

Question:
Is there a generic method of constructing “good” sequent systems?

I What is a sequent system for a modal logic?

I What is a good sequent system?

I How to generically construct good sequent systems?

Motivation

Fact:
There are a many modal logics: K,KT,K4, S4,CK,CS4

For deciding these logics we often use backwards proof search or
the subformula property in “good” sequent systems.

But coming up with such a “good” sequent system is not easy!

Question:
Is there a generic method of constructing “good” sequent systems?

I What is a sequent system for a modal logic?

I What is a good sequent system?

I How to generically construct good sequent systems?

What is a sequent system for a modal logic?

Basics
Here we consider intuitionistic propositional modal logics. (But
everything works in the classical case as well!)

Formulae are defined as usual:

A1, . . . ,An 3 F ::=
p | ⊥ | A1 ∧ A2 | A1 ∨ A2 | A1 → A2

| �A1 | ♦A1 | ♥(A1, . . . ,An) | . . .

We use asymmetric sequents Γ ` δ with Γ a multiset of formulae
and δ a formula. Intended interpretation:

∧
Γ → δ.

Our sequent systems have axioms Γ,A ` A, the structural rules

Γ ` δ
A, Γ ` δ W

,

Γ,A,A ` δ
Γ,A ` δ ConL ,

Γ ` A A,Σ ` π
Γ,Σ ` π Cut

,

the propositional rules, the congruence rules for all operators ♥:

A1 ` B1 B1 ` A1 . . . An ` Bn Bn ` An

Γ,♥(A1, . . . ,An) ` ♥(B1, . . . ,Bn)

and additional rules of a specific format.

Rules with Context Restrictions

A context restriction is a tuple 〈F`;Fr 〉 of sets of formulae. It
restricts a sequent Γ ` δ by allowing only substitution instances of
formulae from F` (resp. Fr) in Γ (resp. δ).

A rule with context restrictions is of the form

(Γ1 ` δ1; C1) . . . (Γn ` δn; Cn)

Σ ` π

with principal formulae Σ ` π ∈ Seq(Mod(Var)) and premisses
Γi ` δi ∈ Seq(Var) with associated context restrictions Ci .

In an application of such a rule a premiss with associated
restriction Ci carries over only the context restricted according to
Ci from the conclusion.

Examples of Rules with Context Restrictions

Our rule format captures many standard rules for modal logics,
e.g.:

A,B ` C

Γ,�A,�B ` �C K2
(A,B ` C ; 〈∅; ∅〉)
�A,�B ` �C

Γ,A ` δ
Γ,�A ` δ T�

(A ` ; 〈{p}; {p}〉)
�A `

�Γ ` A
Σ,�Γ ` �A 4�

(` A ; 〈{�p}; ∅〉)
` �A

We often use the more suggestive notation on the left.

What is a good sequent system for a modal logic?

Cut Elimination

The structural rules ConL and Cut are bad for backwards proof
search, since they give rise to infinite search trees. Also, Cut
sabotages the subformula property.

Γ,A,A ` δ
Γ,A ` δ ConL,

Γ ` A A,Σ ` π
Γ,Σ ` π Cut

Thus in a good sequent system these rules should be admissible:
the system should derive the same sequents if we drop these rules.

Idea:
Extract general conditions on the rule sets from the standard
proofs which guarantee admissibility of Cut and ConL.

Cut (and Contraction) as Operations on Rules

Cuts between rules:

Slogan: Cut the conclusion, cut the premisses, be liberal!

Example:

�Γ ` A

�Γ ` �A
A,B ` C

�A,�B ` �C

Contractions of rules:

Slogan: Contract the conclusion, contract the premisses!
Example:

A,A ` B

�A,�A ` �B

Cut (and Contraction) as Operations on Rules

Cuts between rules:

Slogan: Cut the conclusion, cut the premisses, be liberal!

Example:

�Γ ` A

�Γ ` �A
A,B ` C

�A,�B ` �C
�Γ,�B ` �C

Contractions of rules:

Slogan: Contract the conclusion, contract the premisses!
Example:

A,A ` B

�A,�A ` �B

Cut (and Contraction) as Operations on Rules

Cuts between rules:

Slogan: Cut the conclusion, cut the premisses, be liberal!

Example:
�Γ,B ` C

�Γ ` A

�Γ ` �A
A,B ` C

�A,�B ` �C
�Γ,�B ` �C

Contractions of rules:

Slogan: Contract the conclusion, contract the premisses!
Example:

A,A ` B

�A,�A ` �B

Cut (and Contraction) as Operations on Rules

Cuts between rules:

Slogan: Cut the conclusion, cut the premisses, be liberal!

Example:
�Γ,B ` C

�Γ ` A

�Γ ` �A
A,B ` C

�A,�B ` �C
�Γ,�B ` �C

Contractions of rules:

Slogan: Contract the conclusion, contract the premisses!
Example:

A,A ` B

�A,�A ` �B

Cut (and Contraction) as Operations on Rules

Cuts between rules:

Slogan: Cut the conclusion, cut the premisses, be liberal!

Example:
�Γ,B ` C

�Γ ` A

�Γ ` �A
A,B ` C

�A,�B ` �C
�Γ,�B ` �C

Contractions of rules:

Slogan: Contract the conclusion, contract the premisses!
Example:

A,A ` B

�A,�A ` �B

The General Conditions: Saturation

A set R of rules is

I principal-cut closed if cuts between rules from R are
RConW-derivable;

I context-cut closed if whenever context restrictions of R and Q
overlap on A (i.e. if A ∈ FR

r ∩ FQ
`) , then the principal

formulae and all restrictions of one rule satisfy all restrictions
of the other rule overlapping on A;

I mixed-cut closed if whenever a principal formula A of R
satisfies a context restriction of Q then all restrictions and
principal formulae of R satisfy this restriction;

I contraction closed if contractions of rules from R are in R; 1

I saturated if it is all of the above.

1Compare the closure condition in [Negri, von Plato 2001]

Generic Cut Elimination

Theorem (Generic Cut Elimination)

In saturated rule sets the cut rule can be eliminated.

Copying all formulae obeying the associated context restriction into
the premisses, yields admissibility of Contraction. For tractable rule
sets (codes of applicable rules / their premisses can be computed
in pspace from the conclusion / the rule code) we also have

Theorem (Complexity)

For saturated and tractable sets of rules with restrictions the
derivability problem is in EXPTIME.

How to generically construct good sequent systems?

Constructing Cut-free Calculi

Lemma (Cuts preserve soundness)

If G2ip ∈ R, then cuts between rules in R are RConCut-derivable.

This suggests the following heuristic:

1. Saturate the rules under cuts and contractions (guarantees
principal-cut closure and contraction closure)

2. check context- and mixed-cut closure and tractability

The heuristic has been applied e.g. in the construction of cut-free
systems for several conditional logics including V4 and VA4.

Question: How do we get the rules to start with?

Similar approach as for cut elimination: find criteria guaranteeing
translatability of axioms from Hilbert-systems.

Translating Axioms: Nesting Depth 1

Consider CS4� = CK� + (�p → p) + (�p → ��p).
(With standard rules for CK�.)

First take axiom �p → p.

We take the axiom . . .

�p → p

 ` �p → p �p ` p
Γ, p ` δ

Γ,�p ` δ T�

introducing the restriction 〈{p}, {p}〉 in the last step.

This strategy yields criteria for when a non-nested axiom translates
into a shallow rule (set) over intuitionistic logic. (See paper.)

Translating Axioms: Nesting Depth 1

Consider CS4� = CK� + (�p → p) + (�p → ��p).
(With standard rules for CK�.)

First take axiom �p → p.

We take the axiom, turn it into a zero-premiss rule . . .

�p → p ` �p → p

 �p ` p
Γ, p ` δ

Γ,�p ` δ T�

introducing the restriction 〈{p}, {p}〉 in the last step.

This strategy yields criteria for when a non-nested axiom translates
into a shallow rule (set) over intuitionistic logic. (See paper.)

Translating Axioms: Nesting Depth 1

Consider CS4� = CK� + (�p → p) + (�p → ��p).
(With standard rules for CK�.)

First take axiom �p → p.

We take the axiom, turn it into a zero-premiss rule,
resolve propositional logic . . .

�p → p ` �p → p �p ` p

Γ, p ` δ

Γ,�p ` δ T�

introducing the restriction 〈{p}, {p}〉 in the last step.

This strategy yields criteria for when a non-nested axiom translates
into a shallow rule (set) over intuitionistic logic. (See paper.)

Translating Axioms: Nesting Depth 1

Consider CS4� = CK� + (�p → p) + (�p → ��p).
(With standard rules for CK�.)

First take axiom �p → p.

We take the axiom, turn it into a zero-premiss rule,
resolve propositional logic and turn top-level propositional variables
into contextual premisses

�p → p ` �p → p �p ` p
Γ, p ` δ

Γ,�p ` δ T�

introducing the restriction 〈{p}, {p}〉 in the last step.

This strategy yields criteria for when a non-nested axiom translates
into a shallow rule (set) over intuitionistic logic. (See paper.)

Translating Axioms: Higher Nesting Depth
Now consider axiom �p → ��p.

Key observation: �p occurs on top level and under exactly one �.

Again first resolve propositional logic.

Take the occurrence of �p
under �, substitute a fresh variable q for this and use monotonicity
to delete one premiss.

�p ` ��p

�p ` q q ` �p
�p ` �q

�p ` q

�p ` �q

Now computing multiple cuts with instances of the K-rule gives:

�p1 ` q1
�p1 ` �q1

,
q1, . . . , qn ` r

�q1, . . . ,�qn ` �r
�p1, q2, . . . , qn ` r

�p1,�q2, . . . ,�qn ` �r

 . . .
�p1, . . . ,�pn ` r

�p1, . . . ,�pn ` �r �Γ ` r
�Γ ` �r 4�

This gives a purely syntactic construction of the rules for CS4.
(And again a strategy for translation.)

Translating Axioms: Higher Nesting Depth
Now consider axiom �p → ��p.

Key observation: �p occurs on top level and under exactly one �.

Again first resolve propositional logic. Take the occurrence of �p
under �,

substitute a fresh variable q for this and use monotonicity
to delete one premiss.

�p ` ��p

�p ` q q ` �p
�p ` �q

�p ` q

�p ` �q

Now computing multiple cuts with instances of the K-rule gives:

�p1 ` q1
�p1 ` �q1

,
q1, . . . , qn ` r

�q1, . . . ,�qn ` �r
�p1, q2, . . . , qn ` r

�p1,�q2, . . . ,�qn ` �r

 . . .
�p1, . . . ,�pn ` r

�p1, . . . ,�pn ` �r �Γ ` r
�Γ ` �r 4�

This gives a purely syntactic construction of the rules for CS4.
(And again a strategy for translation.)

Translating Axioms: Higher Nesting Depth
Now consider axiom �p → ��p.

Key observation: �p occurs on top level and under exactly one �.

Again first resolve propositional logic. Take the occurrence of �p
under �, substitute a fresh variable q for this

and use monotonicity
to delete one premiss.

�p ` ��p
�p ` q q ` �p
�p ` �q

�p ` q

�p ` �q

Now computing multiple cuts with instances of the K-rule gives:

�p1 ` q1
�p1 ` �q1

,
q1, . . . , qn ` r

�q1, . . . ,�qn ` �r
�p1, q2, . . . , qn ` r

�p1,�q2, . . . ,�qn ` �r

 . . .
�p1, . . . ,�pn ` r

�p1, . . . ,�pn ` �r �Γ ` r
�Γ ` �r 4�

This gives a purely syntactic construction of the rules for CS4.
(And again a strategy for translation.)

Translating Axioms: Higher Nesting Depth
Now consider axiom �p → ��p.

Key observation: �p occurs on top level and under exactly one �.

Again first resolve propositional logic. Take the occurrence of �p
under �, substitute a fresh variable q for this and use monotonicity
to delete one premiss.

�p ` ��p
�p ` q q ` �p
�p ` �q

�p ` q

�p ` �q

Now computing multiple cuts with instances of the K-rule gives:

�p1 ` q1
�p1 ` �q1

,
q1, . . . , qn ` r

�q1, . . . ,�qn ` �r
�p1, q2, . . . , qn ` r

�p1,�q2, . . . ,�qn ` �r

 . . .
�p1, . . . ,�pn ` r

�p1, . . . ,�pn ` �r �Γ ` r
�Γ ` �r 4�

This gives a purely syntactic construction of the rules for CS4.
(And again a strategy for translation.)

Translating Axioms: Higher Nesting Depth
Now consider axiom �p → ��p.

Key observation: �p occurs on top level and under exactly one �.

Again first resolve propositional logic. Take the occurrence of �p
under �, substitute a fresh variable q for this and use monotonicity
to delete one premiss.

�p ` ��p
�p ` q q ` �p
�p ` �q

�p ` q

�p ` �q

Now computing multiple cuts with instances of the K-rule gives:

�p1 ` q1
�p1 ` �q1

,
q1, . . . , qn ` r

�q1, . . . ,�qn ` �r
�p1, q2, . . . , qn ` r

�p1,�q2, . . . ,�qn ` �r

 . . .
�p1, . . . ,�pn ` r

�p1, . . . ,�pn ` �r �Γ ` r
�Γ ` �r 4�

This gives a purely syntactic construction of the rules for CS4.
(And again a strategy for translation.)

Summary

I A rule format capturing most standard systems

I General (sufficient) conditions for Cut Elimination

I General criteria / tools for translating axioms into rules

I All results for both classical and intuitionistic frameworks

Thank you!

