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Motivation

Fact:
There are a many modal logics:

K,KT,K4,S4, . . . ,V,VA, . . . ,CK,CS4, . . . ,CL, IL, . . .

. . . and their number is growing every day!

For deciding these logics we often use backwards proof search or
the subformula property in “good” sequent systems.

But coming up with such a “good” sequent system is not easy!

Question:
Is there a generic method of constructing “good” sequent systems?

I What is a sequent system for a modal logic?

I What is a good sequent system?

I How to generically construct good sequent systems?
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What is a sequent system for a modal logic?



Basics
In this talk we consider intuitionistic propositional modal logics.
(But everything works in the classical case as well!)

Formulae are defined as usual:

A1, . . . ,An 3 F ::=
p | ⊥ | A1 ∧ A2 | A1 ∨ A2 | A1 → A2

| �A1 | ♦A1 | ♥(A1, . . . ,An) | . . .

We use asymmetric sequents Γ⇒ δ with Γ a multiset of formulae
and δ empty or a formula. Intended interpretation:

∧
Γ→ δ.

Our sequent systems have axioms Γ,A⇒ A, the structural rules

Γ⇒ δ
A, Γ⇒ δ(,B)

W
,

Γ,A,A⇒ δ

Γ,A⇒ δ
ConL ,

Γ⇒ A A,Σ⇒ π

Γ,Σ⇒ π
Cut

,

the propositional rules, the congruence rules for all operators ♥:

A1 ⇒ B1 B1 ⇒ A1 . . . An ⇒ Bn Bn ⇒ An

Γ,♥(A1, . . . ,An)⇒ ♥(B1, . . . ,Bn)

and additional rules of a specific format.



Rules with Context Restrictions

A context restriction is a tuple 〈F`; Fr 〉 of sets of formulae. It
restricts a sequent Γ⇒ δ by allowing only substitution instances of
formulae from F` (resp. Fr ) in Γ (resp. δ).

A rule with context restrictions is of the form

(Γ1 ⇒ δ1; C1) . . . (Γn ⇒ δn; Cn)

Σ⇒ π

with principal formulae Σ⇒ π ∈ Seq(Mod(Var)) and premisses
Γi ⇒ δi ∈ Seq(Var) with associated context restrictions Ci .

In an application of such a rule a premiss with associated
restriction Ci carries over only the context restricted according to
Ci from the conclusion.



Examples of Rules with Context Restrictions

Our rule format captures many standard rules for modal logics, e.g.
the rules for CK� and CS4�:

A1, . . . ,An ⇒ B

Γ,�A1, . . . ,�An ⇒ �B
Kn

(A1, . . . ,An ⇒ B ; 〈∅; ∅〉)
�A1, . . . ,�An ⇒ �B

Γ,A⇒ δ

Γ,�A⇒ δ
T�

(A⇒ ; 〈{p}; {p}〉)
�A⇒

�Γ⇒ A
Σ,�Γ⇒ �A

4�
(⇒ A ; 〈{�p}; ∅〉)

⇒ �A

We often use the more suggestive notation on the left.

Rules Kn and T� are shallow: they use only restrictions 〈∅; ∅〉 or
〈{p}; {p}〉.



What is a good sequent system for a modal logic?



Cut Elimination

The structural rules ConL and Cut are bad for backwards proof
search, since they give rise to infinite search trees. Also, Cut
sabotages the subformula property.

Γ,A,A⇒ δ

Γ,A⇒ δ
ConL,

Γ⇒ A A,Σ⇒ π

Γ,Σ⇒ π
Cut

Thus in a good sequent system these rules should be admissible:
the system should derive the same sequents if we drop these rules.

Idea:
Extract general conditions on the rule sets from the standard
proofs which guarantee admissibility of Cut and ConL.



Cut (and Contraction) as Operations on Rules

Cuts between rules:

Slogan:
Cut the conclusion, cut the premisses, be liberal on the restrictions!

Example:

�Γ⇒ A

�Γ⇒ �A

A,B ⇒ C

�A,�B ⇒ �C

Contractions of rules:

Slogan: Contract the conclusion, contract the premisses!
Example:

A,A⇒ B

�A,�A⇒ �B
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The General Conditions: Saturation

A set R of rules is

I principal-cut closed if cuts between rules from R are
RConW-derivable;

I context-cut closed if whenever context restrictions of R and Q
overlap on A (i.e. if A ∈ FR

r σ ∩ FQ
` τ ) , then the principal

formulae and all restrictions of one rule satisfy all restrictions
of the other rule overlapping on A;

I mixed-cut closed if whenever a principal formula A of R
satisfies a context restriction of Q then all restrictions and
principal formulae of R satisfy this restriction;

I contraction closed if contractions of rules from R are in R; 1

I saturated if it is all of the above.

Examples:
The standard rule sets for the standard modal logics built from
K ,T ,D, 4 and the rules for propositional logic are all saturated.

1Compare the closure condition in [Negri, von Plato 2001]



Generic Cut Elimination

Theorem (Generic Cut Elimination)

In saturated rule sets the cut rule can be eliminated.

Proof Sketch.

As usual eliminate multicuts
Γ⇒ A An,Σ⇒ δ

Γ,Σ⇒ δ
by double

induction on the rank and depth of the cut. E.g.

�Γ⇒ A
�Γ⇒ �A

R4�
Σ,�A,�A,A⇒ Π

Σ,�A,�A,�A⇒ Π
RT�

�Γ,Σ⇒ Π
mCut

 �Γ⇒ A
�Γ⇒ �A

R4�

�Γ⇒ A
�Γ⇒ �A

R4� Σ,�A,�A,A⇒ Π

�Γ,Σ,A⇒ Π

lower depth

mCut

�Γ,Σ,�A⇒ Π
RT�

�Γ,�Γ,Σ⇒ Π

pcc +

lower rank

mCut
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Decidability
Copying all formulae obeying the associated context restriction into
the premisses, yields admissibility of Contraction. For tractable rule
sets (codes of applicable rules / their premisses can be computed
in pspace from the conclusion / the rule code) we also have

Theorem (Complexity)

For saturated and tractable sets of rules with restrictions the
derivability problem is in EXPTIME. If all rules are shallow, then
the problem is in PSPACE.

Idea of Proof.

1. Eliminate Cuts

2. Eliminate Contraction

3. Use subformula property in a fixed-point argument for
EXPTIME

4. Use set-sequents and backwards proof search for PSPACE.



How to generically construct good sequent systems?



Constructing Cut-free Calculi

Lemma (Cuts preserve soundness)

If G2ip ∈ R, then cuts between rules in R are RConCut-derivable.

This suggests the following heuristic to construct a cut-free
sequent system by saturation: given a set of sequent rules

1. Saturate the rules under cuts and contractions (guarantees
principal-cut closure and contraction closure)

2. check context- and mixed-cut closure and tractability

This heuristic together with a graphical tool was used e.g. in the
construction of new cut-free systems for several conditional logics
including V4 and VA4. [L., Pattinson 2012]



Constructing Cut-free Calculi

Question: How do we get the rules to start with?

Often the logics are given as a Hilbert-system, i.e. a set A of
axioms closed under modus ponens and uniform substitution:

` A ` A→ B
` B

MP
` A

` A
[
B
p

] US

Examples:

I ACK� = IL ∪ {�p ∧�q ↔ �(p ∧ q), �>}
I ACS4� = ACK ∪ {�p → p, �p → ��p}

Idea:
Follow a similar approach as for cut elimination: find criteria
guaranteeing translatability of axioms into rules with restrictions.



Translating Axioms: Nesting Depth 1

Consider CS4� = CK� + (�p → p) + (�p → ��p).
(With standard rules for CK�.)

First take axiom �p → p.

We take the axiom . . .

�p → p

 ⇒ �p → p  �p ⇒ p  
Γ, p ⇒ δ

Γ,�p ⇒ δ
T�

introducing the restriction 〈{p}, {p}〉 in the last step.
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Translating Axioms: Higher Nesting Depth

Now consider axiom �p → ��p.

Key observation: �p occurs on top level and under exactly one �.

Again first resolve propositional logic.

Take the occurrence of �p
under �, substitute a fresh variable q for this and use monotonicity
to delete one premiss.

�p ⇒ ��p

 
�p ⇒ q q ⇒ �p

�p ⇒ �q
 

�p ⇒ q

�p ⇒ �q

Now computing multiple cuts with instances of the K-rule gives:

�p1 ⇒ q1

�p1 ⇒ �q1
,

q1, . . . , qn ⇒ r

�q1, . . . ,�qn ⇒ �r
 

�p1, q2, . . . , qn ⇒ r

�p1,�q2, . . . ,�qn ⇒ �r

 . . .  
�p1, . . . ,�pn ⇒ r

�p1, . . . ,�pn ⇒ �r
 �Γ⇒ r

�Γ⇒ �r
4�

This gives a purely syntactic construction of the rules for CS4.
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Translating Axioms: Translatable Axioms

A propositional formula A is in Fr (resp. F`) iff the sequent ⇒ A
(resp. A⇒ ) is resolvable into atomic sequents. A variable of A is
purely positive or pp (resp. purely negative or pn) iff it occurs only
on the RHS (resp. LHS) in the sequent resolution of ⇒ A.

Let A = v` ∧ c` ∧p` → vr ∨ cr ∨pr ∈ Fr and Pp(v̄ , c̄) propositional
formulae for p ∈ p` ∪pr . Then (A, (♥pPp)p) is fit for translation if

1. Pp` ∈ Fr and Ppr ∈ F`

2. c` ∪ cr = ∅ and every c occurs in at least one P

3. for c ∈ c` (resp. cr ): c /∈ Pp` or c pn (resp. pp) in Pp`

4. for c ∈ c` (resp. cr ): c /∈ Ppr or c pn (resp. pp) in Ppr → ⊥.

Theorem
If (A, (♥pPp)p) is fit for translation, the ♥p are monotone and Cc`

normal, then A[
♥pPp

p ][Cc
c ] is equivalent to a rule with restrictions.

Where C is normal if
∧

C (q) ≡ C (D(q)).
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4. for c ∈ c` (resp. cr ): c /∈ Ppr or c pn (resp. pp) in Ppr → ⊥.

Examples:

(�p → ��p) ≡ (c` → pr )
[
�c`
pr

] [
�p
c`

]
©(p →©q)→ (p →©q) ≡ (p` ∧ c` → c r )

[
©(c`→c r )

p`

] [
p ©q
c` c r

]



Byproduct: Correspondence between axioms and
rules



Translating Rules into Axioms

Theorem
For monotone modalities: Every rule R with restrictions is
equivalent to a set of translatable axioms. If all restrictions of R
are normal, then R is equivalent to a single translatable axiom

Idea of Proof.

1. take context instance R̂ (fixed number of context formulae)

2. turn premisses and conclusion of R̂ into formulae ϕ
R̂

and ψ
R̂

3. construct substitution σ witnessing projectivity of ϕ
R̂

[Ghilardi 1999]:
I `Gi ⇒ ϕR̂σ
I `Gi ϕR̂ ⇒ p ↔ pσ for all p

4. then R̂ is equivalent to ψ
R̂
σ



Correspondence between Axioms and Rules
This gives correspondences for logics with monotone modalities:

translatable scheme ←→ rule with restrictions
normal translatable ←→ rule with normal restrictions

translatable non-nested ←→ shallow rule
translatable rank-1 ←→ one-step rule

where a translatable scheme is a set{
A
[
♥pPp

p

] [∧
i≤n

c`
C
c`

∨
i≤ncr

Ccr

c` cr

]
| nc ≥ 0

}
of axioms with (A, (♥pPp)p) fit for translation.

Corollary (classically)
I �p → p is not equivalent to a set of one-step rules

I �p → ��p is not equivalent to a set of shallow rules

I L and MA are not equivalent to a set of shallow rules

I ��p → ���p is not equivalent to a saturated set of rules



Summary

I A rule format capturing most standard systems

I General (sufficient) conditions for Cut Elimination

I Correspondences between classes of axioms and rules

I All results for both classical and intuitionistic frameworks

Thank you!


