Generic Methods in the Construction of Cut-free Sequent Systems

> Björn Lellmann (Joint work with Dirk Pattinson)

> > Imperial College London

Canberra, 4 February 2013

Motivation

Fact:

There are a many modal logics:

 $\mathsf{K},\mathsf{KT},\mathsf{K4},\mathsf{S4},\ldots,\mathbb{V},\mathbb{VA},\ldots,\mathsf{CK},\mathsf{CS4},\ldots,\mathsf{CL},\mathsf{IL},\ldots$

... and their number is growing every day!

For deciding these logics we often use backwards proof search or the subformula property in "good" sequent systems.

But coming up with such a "good" sequent system is not easy!

Question:

Is there a generic method of constructing "good" sequent systems?

Motivation

Fact:

There are a many modal logics:

 $\mathsf{K},\mathsf{KT},\mathsf{K4},\mathsf{S4},\ldots,\mathbb{V},\mathbb{VA},\ldots,\mathsf{CK},\mathsf{CS4},\ldots,\mathsf{CL},\mathsf{IL},\ldots$

... and their number is growing every day!

For deciding these logics we often use backwards proof search or the subformula property in "good" sequent systems.

But coming up with such a "good" sequent system is not easy!

Question:

Is there a generic method of constructing "good" sequent systems?

- What is a sequent system for a modal logic?
- What is a good sequent system?
- How to generically construct good sequent systems?

What is a sequent system for a modal logic?

<□ > < @ > < E > < E > E のQ @

Basics

In this talk we consider intuitionistic propositional modal logics. (But everything works in the classical case as well!) Formulae are defined as usual:

$$A_1,\ldots,A_n \ni \mathcal{F} ::= \begin{array}{c} p \mid \perp \mid A_1 \land A_2 \mid A_1 \lor A_2 \mid A_1 \to A_2 \\ \mid \Box A_1 \mid \Diamond A_1 \mid \heartsuit (A_1,\ldots,A_n) \mid \ldots \end{array}$$

We use asymmetric sequents $\Gamma \Rightarrow \delta$ with Γ a multiset of formulae and δ empty or a formula. Intended interpretation: $\bigwedge \Gamma \rightarrow \delta$.

Our sequent systems have axioms $\overline{\Gamma, A \Rightarrow A}$, the structural rules

$$\frac{\Gamma \Rightarrow \delta}{A, \Gamma \Rightarrow \delta(, B)} \text{ W}, \quad \frac{\Gamma, A, A \Rightarrow \delta}{\Gamma, A \Rightarrow \delta} \text{ Con}_{L}, \quad \frac{\Gamma \Rightarrow A \quad A, \Sigma \Rightarrow \pi}{\Gamma, \Sigma \Rightarrow \pi} \text{ Cut},$$

the propositional rules, the congruence rules for all operators \heartsuit :

$$\frac{A_1 \Rightarrow B_1 \quad B_1 \Rightarrow A_1 \quad \dots \quad A_n \Rightarrow B_n \quad B_n \Rightarrow A_n}{\Gamma, \heartsuit(A_1, \dots, A_n) \Rightarrow \heartsuit(B_1, \dots, B_n)}$$

and additional rules of a specific format.

Rules with Context Restrictions

A context restriction is a tuple $\langle F_{\ell}; F_r \rangle$ of sets of formulae. It restricts a sequent $\Gamma \Rightarrow \delta$ by allowing only substitution instances of formulae from F_{ℓ} (resp. F_r) in Γ (resp. δ).

A rule with context restrictions is of the form

$$\frac{(\Gamma_1 \Rightarrow \delta_1; \mathcal{C}_1) \dots (\Gamma_n \Rightarrow \delta_n; \mathcal{C}_n)}{\Sigma \Rightarrow \pi}$$

with principal formulae $\Sigma \Rightarrow \pi \in Seq(Mod(Var))$ and premisses $\Gamma_i \Rightarrow \delta_i \in Seq(Var)$ with associated context restrictions C_i .

In an application of such a rule a premiss with associated restriction C_i carries over only the context restricted according to C_i from the conclusion.

Examples of Rules with Context Restrictions

Our rule format captures many standard rules for modal logics, e.g. the rules for CK_{\Box} and $CS4_{\Box}$:

$$\frac{A_{1}, \dots, A_{n} \Rightarrow B}{\Gamma, \Box A_{1}, \dots, \Box A_{n} \Rightarrow \Box B} K_{n} \qquad \frac{(A_{1}, \dots, A_{n} \Rightarrow B; \langle \emptyset; \emptyset \rangle)}{\Box A_{1}, \dots, \Box A_{n} \Rightarrow \Box B}
\frac{\Gamma, A \Rightarrow \delta}{\Gamma, \Box A \Rightarrow \delta} T_{\Box} \qquad \frac{(A \Rightarrow; \langle \{p\}; \{p\} \rangle)}{\Box A \Rightarrow} \\
\frac{\Box \Gamma \Rightarrow A}{\Sigma, \Box \Gamma \Rightarrow \Box A} 4_{\Box} \qquad \frac{(\Rightarrow A; \langle \{\Box p\}; \emptyset \rangle)}{\Rightarrow \Box A}$$

We often use the more suggestive notation on the left.

Rules K_n and T_{\Box} are shallow: they use only restrictions $\langle \emptyset; \emptyset \rangle$ or $\langle \{p\}; \{p\} \rangle$.

What is a good sequent system for a modal logic?

Cut Elimination

The structural rules Con_L and Cut are bad for backwards proof search, since they give rise to infinite search trees. Also, Cut sabotages the subformula property.

$$\frac{\Gamma, A, A \Rightarrow \delta}{\Gamma, A \Rightarrow \delta} \operatorname{Con}_{L_{1}} \qquad \frac{\Gamma \Rightarrow A \quad A, \Sigma \Rightarrow \pi}{\Gamma, \Sigma \Rightarrow \pi} \operatorname{Cut}$$

Thus in a good sequent system these rules should be admissible: the system should derive the same sequents if we drop these rules.

Idea:

Extract general conditions on the rule sets from the standard proofs which guarantee admissibility of Cut and Con_L .

Cuts between rules:

Slogan:

Cut the conclusion, cut the premisses, be liberal on the restrictions!

Example:

$$\begin{array}{c} \Box \Gamma \Rightarrow A \\ \Box \Gamma \Rightarrow \Box A \end{array} \quad \begin{array}{c} A, B \Rightarrow C \\ \Box A, \Box B \Rightarrow \Box C \end{array}$$

Contractions of rules:

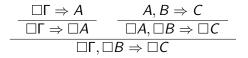
Slogan: Contract the conclusion, contract the premisses! Example:

Cuts between rules:

Slogan:

Cut the conclusion, cut the premisses, be liberal on the restrictions!

Example:



Contractions of rules:

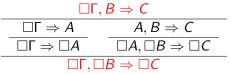
Slogan: Contract the conclusion, contract the premisses! Example:

Cuts between rules:

Slogan:

Cut the conclusion, cut the premisses, be liberal on the restrictions!

Example:



Contractions of rules:

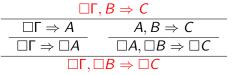
Slogan: Contract the conclusion, contract the premisses! Example:

Cuts between rules:

Slogan:

Cut the conclusion, cut the premisses, be liberal on the restrictions!

Example:



Contractions of rules:

Slogan: Contract the conclusion, contract the premisses! Example:

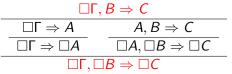
$$\frac{A, A \Rightarrow B}{\Box A, \Box A \Rightarrow \Box B}$$

Cuts between rules:

Slogan:

Cut the conclusion, cut the premisses, be liberal on the restrictions!

Example:



Contractions of rules:

Slogan: Contract the conclusion, contract the premisses! Example:

$$A, A \Rightarrow B$$
$$\Box A, \Box A \Rightarrow \Box B$$

The General Conditions: Saturation

A set ${\mathcal R}$ of rules is

- principal-cut closed if cuts between rules from *R* are *R*ConW-derivable;
- ► context-cut closed if whenever context restrictions of *R* and *Q* overlap on *A* (i.e. if $A \in F_r^R \sigma \cap F_\ell^Q \tau$), then the principal formulae and all restrictions of one rule satisfy all restrictions of the other rule overlapping on *A*;
- mixed-cut closed if whenever a principal formula A of R satisfies a context restriction of Q then all restrictions and principal formulae of R satisfy this restriction;
- contraction closed if contractions of rules from \mathcal{R} are in \mathcal{R} ; ¹
- saturated if it is all of the above.

Examples:

The standard rule sets for the standard modal logics built from K, T, D, 4 and the rules for propositional logic are all saturated.

¹Compare the closure condition in [Negri, von Plato 2001] $\rightarrow \langle \Xi \rangle \rightarrow \langle \Xi \rangle \rightarrow \langle \Xi \rangle$

Generic Cut Elimination

~~

Theorem (Generic Cut Elimination)

In saturated rule sets the cut rule can be eliminated.

Proof Sketch. As usual eliminate multicuts $\frac{\Gamma \Rightarrow A \quad A^n, \Sigma \Rightarrow \delta}{\Gamma, \Sigma \Rightarrow \delta}$ by double induction on the rank and depth of the cut. E.g.

Generic Cut Elimination

Theorem (Generic Cut Elimination)

In saturated rule sets the cut rule can be eliminated.

Proof Sketch. As usual eliminate multicuts $\frac{\Gamma \Rightarrow A \quad A^n, \Sigma \Rightarrow \delta}{\Gamma, \Sigma \Rightarrow \delta}$ by double induction on the rank and depth of the cut. E.g.

$$\frac{\frac{\Box \Gamma \Rightarrow A}{\Box \Gamma \Rightarrow \Box A}}{\Box \Gamma \Rightarrow \Box A} \begin{array}{c} R_{4\Box} & \frac{\Sigma, \Box A, \Box A, A \Rightarrow \Pi}{\Sigma, \Box A, \Box A, \Box A \Rightarrow \Pi} \\ R_{T\Box} \\ \hline & \Pi \Gamma, \Sigma \Rightarrow \Pi \end{array} \begin{array}{c} R_{T\Box} \\ mCut \end{array}$$

$$\xrightarrow{\square\Gamma \Rightarrow A} R_{4\square} \xrightarrow{\square\Gamma \Rightarrow \squareA} R_{4\square} \xrightarrow{\square\Gamma \Rightarrow \squareA} R_{4\square} \xrightarrow{\Sigma, \squareA, \squareA, A \Rightarrow \Pi} \mathbb{R}_{T\square}$$

Generic Cut Elimination

Theorem (Generic Cut Elimination)

In saturated rule sets the cut rule can be eliminated.

Proof Sketch. As usual eliminate multicuts $\frac{\Gamma \Rightarrow A \quad A^n, \Sigma \Rightarrow \delta}{\Gamma, \Sigma \Rightarrow \delta}$ by double induction on the rank and depth of the cut. E.g.

$$\frac{\frac{\Box\Gamma\Rightarrow A}{\Box\Gamma\Rightarrow\BoxA}}{\Box\Gamma\Rightarrow\BoxA} \begin{array}{c} R_{4\Box} & \frac{\Sigma,\Box A,\Box A,A\Rightarrow\Pi}{\Sigma,\Box A,\Box A,\Box A\Rightarrow\Pi} \\ R_{T\Box} \\ \hline \Pi\Gamma,\Sigma\Rightarrow\Pi \end{array} \begin{array}{c} R_{T\Box} \\ \text{mCut} \end{array}$$

$$\xrightarrow{\square\Gamma \Rightarrow A} R_{4\square} \xrightarrow{\square\Gamma \Rightarrow \squareA} R_{4\square} \xrightarrow{\Sigma, \squareA, \squareA, A \Rightarrow \Pi} Melt epth$$

$$\xrightarrow{\square\Gamma \Rightarrow \squareA} R_{4\square} \xrightarrow{\square\Gamma, \Sigma, A \Rightarrow \Pi} R_{T\square}$$

Decidability

Copying all formulae obeying the associated context restriction into the premisses, yields admissibility of Contraction. For tractable rule sets (codes of applicable rules / their premisses can be computed in pspace from the conclusion / the rule code) we also have

Theorem (Complexity)

For saturated and tractable sets of rules with restrictions the derivability problem is in EXPTIME. If all rules are shallow, then the problem is in PSPACE.

Idea of Proof.

- 1. Eliminate Cuts
- 2. Eliminate Contraction
- 3. Use subformula property in a fixed-point argument for EXPTIME
- 4. Use set-sequents and backwards proof search for PSPACE.

How to generically construct good sequent systems?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Constructing Cut-free Calculi

Lemma (Cuts preserve soundness)

If $G2ip \in \mathcal{R}$, then cuts between rules in \mathcal{R} are $\mathcal{R}ConCut$ -derivable.

This suggests the following heuristic to construct a cut-free sequent system by saturation: given a set of sequent rules

- 1. Saturate the rules under cuts and contractions (guarantees principal-cut closure and contraction closure)
- 2. check context- and mixed-cut closure and tractability

This heuristic together with a graphical tool was used e.g. in the construction of new cut-free systems for several conditional logics including $\mathbb{V}_{\preccurlyeq}$ and $\mathbb{V}\mathbb{A}_{\preccurlyeq}$. [L., Pattinson 2012]

Constructing Cut-free Calculi

Question: How do we get the rules to start with?

Often the logics are given as a Hilbert-system, i.e. a set A of axioms closed under modus ponens and uniform substitution:

$$\frac{\vdash A \quad \vdash A \rightarrow B}{\vdash B} MP \qquad \frac{\vdash A}{\vdash A\left[\frac{B}{p}\right]} US$$

Examples:

$$\begin{array}{l} \blacktriangleright \ \mathcal{A}_{\mathsf{CK}_{\Box}} = \mathsf{IL} \cup \{\Box p \land \Box q \leftrightarrow \Box (p \land q), \ \Box \top \} \\ \blacktriangleright \ \mathcal{A}_{\mathsf{CS4}_{\Box}} = \mathcal{A}_{\mathsf{CK}} \cup \{\Box p \rightarrow p, \ \Box p \rightarrow \Box \Box p\} \end{array}$$

Idea:

Follow a similar approach as for cut elimination: find criteria guaranteeing translatability of axioms into rules with restrictions.

 $\begin{array}{l} \text{Consider } \mathsf{CS4}_{\Box} = \mathsf{CK}_{\Box} \ + \ (\Box p \rightarrow p) \ + \ (\Box p \rightarrow \Box \Box p). \\ \text{(With standard rules for } \mathsf{CK}_{\Box}.) \end{array}$

First take axiom $\Box p \rightarrow p$.

We take the axiom ...

 $\Box p \rightarrow p$

 $\begin{array}{l} \text{Consider } \mathsf{CS4}_{\Box} = \mathsf{CK}_{\Box} \ + \ (\Box p \rightarrow p) \ + \ (\Box p \rightarrow \Box \Box p). \\ \text{(With standard rules for } \mathsf{CK}_{\Box}.) \end{array}$

First take axiom $\Box p \rightarrow p$.

We take the axiom, turn it into a zero-premiss rule

$$\Box p
ightarrow p
ightarrow
ig$$

 $\begin{array}{l} \mbox{Consider } \mathsf{CS4}_{\Box} = \mathsf{CK}_{\Box} \ + \ (\Box p \rightarrow p) \ + \ (\Box p \rightarrow \Box \Box p). \\ \mbox{(With standard rules for } \mathsf{CK}_{\Box}.) \end{array}$

First take axiom $\Box p \rightarrow p$.

We take the axiom, turn it into a zero-premiss rule, resolve propositional logic ...

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

$$\Box p
ightarrow p \quad \rightsquigarrow \quad \overline{\Rightarrow \Box p
ightarrow p} \quad \rightsquigarrow \quad \overline{\Box p \Rightarrow p}$$

 $\begin{array}{l} \mbox{Consider } \mathsf{CS4}_{\Box} = \mathsf{CK}_{\Box} \ + \ (\Box p \rightarrow p) \ + \ (\Box p \rightarrow \Box \Box p). \\ \mbox{(With standard rules for } \mathsf{CK}_{\Box}.) \end{array}$

First take axiom $\Box p \rightarrow p$.

We take the axiom, turn it into a zero-premiss rule, resolve propositional logic and turn top-level propositional variables into contextual premisses

$$\Box p \to p \quad \rightsquigarrow \quad \overline{\Rightarrow \Box p \to p} \quad \rightsquigarrow \quad \overline{\Box p \Rightarrow p} \quad \rightsquigarrow \quad \frac{\Gamma, p \Rightarrow \delta}{\Gamma, \Box p \Rightarrow \delta} \ \mathsf{T}_{\Box}$$

introducing the restriction $\langle \{p\}, \{p\} \rangle$ in the last step.

Now consider axiom $\Box p \rightarrow \Box \Box p$.

Key observation: $\Box p$ occurs on top level and under exactly one \Box .

Again first resolve propositional logic.

Now consider axiom $\Box p \rightarrow \Box \Box p$.

Key observation: $\Box p$ occurs on top level and under exactly one \Box .

Again first resolve propositional logic. Take the occurrence of $\Box p$ under \Box ,

Now consider axiom $\Box p \rightarrow \Box \Box p$.

Key observation: $\Box p$ occurs on top level and under exactly one \Box .

Again first resolve propositional logic. Take the occurrence of $\Box p$ under \Box , substitute a fresh variable q for this

$$\frac{\Box p \Rightarrow \Box \Box p}{\Box p \Rightarrow \Box \Box p} \quad \rightsquigarrow \quad \frac{\Box p \Rightarrow q \quad q \Rightarrow \Box p}{\Box p \Rightarrow \Box q}$$

Now consider axiom $\Box p \rightarrow \Box \Box p$.

Key observation: $\Box p$ occurs on top level and under exactly one \Box .

Again first resolve propositional logic. Take the occurrence of $\Box p$ under \Box , substitute a fresh variable q for this and use monotonicity to delete one premiss.

$$\overline{\Box p \Rightarrow \Box \Box p} \quad \rightsquigarrow \quad \frac{\Box p \Rightarrow q \quad q \Rightarrow \Box p}{\Box p \Rightarrow \Box q} \quad \rightsquigarrow \quad \frac{\Box p \Rightarrow q}{\Box p \Rightarrow \Box q}$$

Now consider axiom $\Box p \rightarrow \Box \Box p$.

Key observation: $\Box p$ occurs on top level and under exactly one \Box .

Again first resolve propositional logic. Take the occurrence of $\Box p$ under \Box , substitute a fresh variable q for this and use monotonicity to delete one premiss.

Now computing multiple cuts with instances of the K-rule gives:

$$\frac{\Box p_1 \Rightarrow q_1}{\Box p_1 \Rightarrow \Box q_1}, \quad \frac{q_1, \dots, q_n \Rightarrow r}{\Box q_1, \dots, \Box q_n \Rightarrow \Box r} \quad \rightsquigarrow \quad \frac{\Box p_1, q_2, \dots, q_n \Rightarrow r}{\Box p_1, \Box q_2, \dots, \Box q_n \Rightarrow \Box r} \\
\sim \quad \dots \quad \sim \frac{\Box p_1, \dots, \Box p_n \Rightarrow r}{\Box p_1, \dots, \Box p_n \Rightarrow \Box r} \quad \rightsquigarrow \quad \frac{\Box \Gamma \Rightarrow r}{\Box \Gamma \Rightarrow \Box r} \quad 4_{\Box}$$

This gives a purely syntactic construction of the rules for CS4.

Translating Axioms: Translatable Axioms

A propositional formula A is in \mathcal{F}_r (resp. \mathcal{F}_ℓ) iff the sequent $\Rightarrow A$ (resp. $A \Rightarrow$) is resolvable into atomic sequents. A variable of A is purely positive or pp (resp. purely negative or pn) iff it occurs only on the RHS (resp. LHS) in the sequent resolution of $\Rightarrow A$.

Let $A = \mathbf{v}^{\ell} \wedge \mathbf{c}^{\ell} \wedge \mathbf{p}^{\ell} \to \mathbf{v}^{r} \vee \mathbf{c}^{r} \vee \mathbf{p}^{r} \in \mathcal{F}_{r}$ and $P_{p}(\bar{v}, \bar{c})$ propositional formulae for $p \in \mathbf{p}^{\ell} \cup \mathbf{p}^{r}$. Then $(A, (\heartsuit_{p}P_{p})_{p})$ is fit for translation if

1.
$$P_{p^{\ell}} \in \mathcal{F}_r$$
 and $P_{p^r} \in \mathcal{F}_{\ell}$

- 2. $\mathbf{c}^{\ell} \cup \mathbf{c}^{r} = \emptyset$ and every *c* occurs in at least one *P*
- 3. for $c \in \mathbf{c}^{\ell}$ (resp. \mathbf{c}^{r}): $c \notin P_{p^{\ell}}$ or c pn (resp. pp) in $P_{p^{\ell}}$
- 4. for $c \in \mathbf{c}^{\ell}$ (resp. \mathbf{c}^{r}): $c \notin P_{\rho^{r}}$ or c pn (resp. pp) in $P_{\rho^{r}} \to \bot$.

Theorem

If $(A, (\heartsuit_p P_p)_p)$ is fit for translation, the \heartsuit_p are monotone and $C_{c^{\ell}}$ normal, then $A[\frac{\heartsuit_p P_p}{p}][\frac{C_c}{c}]$ is equivalent to a rule with restrictions. Where C is normal if $\bigwedge C(\mathbf{q}) \equiv C(\mathbf{D}(\mathbf{q}))$.

Translating Axioms: Translatable Axioms

A propositional formula A is in \mathcal{F}_r (resp. \mathcal{F}_ℓ) iff the sequent $\Rightarrow A$ (resp. $A \Rightarrow$) is resolvable into atomic sequents. A variable of A is purely positive or pp (resp. purely negative or pn) iff it occurs only on the RHS (resp. LHS) in the sequent resolution of $\Rightarrow A$.

Let $A = \mathbf{v}^{\ell} \wedge \mathbf{c}^{\ell} \wedge \mathbf{p}^{\ell} \to \mathbf{v}^{r} \vee \mathbf{c}^{r} \vee \mathbf{p}^{r} \in \mathcal{F}_{r}$ and $P_{p}(\bar{v}, \bar{c})$ propositional formulae for $p \in \mathbf{p}^{\ell} \cup \mathbf{p}^{r}$. Then $(A, (\heartsuit_{p}P_{p})_{p})$ is fit for translation if

1.
$$P_{p^{\ell}} \in \mathcal{F}_r$$
 and $P_{p^r} \in \mathcal{F}_{\ell}$

- 2. $\mathbf{c}^{\ell} \cup \mathbf{c}^{r} = \emptyset$ and every *c* occurs in at least one *P*
- 3. for $c \in \mathbf{c}^{\ell}$ (resp. \mathbf{c}^{r}): $c \notin P_{p^{\ell}}$ or c pn (resp. pp) in $P_{p^{\ell}}$
- 4. for $c \in \mathbf{c}^{\ell}$ (resp. \mathbf{c}^{r}): $c \notin P_{p^{r}}$ or c pn (resp. pp) in $P_{p^{r}} \to \bot$.

Examples:

$$(\Box p \to \Box \Box p) \equiv (c^{\ell} \to p^{r}) \begin{bmatrix} \Box c^{\ell} \\ p^{r} \end{bmatrix} \begin{bmatrix} \Box p \\ c^{\ell} \end{bmatrix}$$
$$\bigcirc (p \to \bigcirc q) \to (p \to \bigcirc q) \equiv (p^{\ell} \land c^{\ell} \to c^{r}) \begin{bmatrix} \bigcirc (c^{\ell} \to c^{r}) \\ p^{\ell} \end{bmatrix} \begin{bmatrix} p \bigcirc q \\ c^{\ell} & c^{r} \end{bmatrix}$$

Byproduct: Correspondence between axioms and rules

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Translating Rules into Axioms

Theorem

For monotone modalities: Every rule R with restrictions is equivalent to a set of translatable axioms. If all restrictions of Rare normal, then R is equivalent to a single translatable axiom

Idea of Proof.

- 1. take context instance \widehat{R} (fixed number of context formulae)
- 2. turn premisses and conclusion of \widehat{R} into formulae $\varphi_{\widehat{R}}$ and $\psi_{\widehat{R}}$

3. construct substitution σ witnessing projectivity of $\varphi_{\widehat{R}}$ [Ghilardi 1999]:

$$\blacktriangleright \vdash_{\mathsf{Gi}} \Rightarrow \varphi_{\widehat{R}} \sigma$$

 $\blacktriangleright \vdash_{\mathsf{Gi}} \varphi_{\widehat{R}} \stackrel{\frown}{\Rightarrow} p \leftrightarrow p\sigma \text{ for all } p$

4. then \widehat{R} is equivalent to $\psi_{\widehat{R}}\sigma$

Correspondence between Axioms and Rules

This gives correspondences for logics with monotone modalities:

translatable scheme	\longleftrightarrow	rule with restrictions
normal translatable	\longleftrightarrow	rule with normal restrictions
translatable non-nested	\longleftrightarrow	shallow rule
translatable rank-1	\longleftrightarrow	one-step rule

where a translatable scheme is a set $\left\{ A\left[\frac{\heartsuit_{\mathbf{p}}P_{\mathbf{p}}}{\mathbf{p}}\right] \left[\frac{\bigwedge_{i \leq n_{\mathbf{c}^{\ell}}} C_{\mathbf{c}^{\ell}} \bigvee_{i \leq n_{\mathbf{c}^{r}}} C_{\mathbf{c}^{r}}}{\mathbf{c}^{\ell} \mathbf{c}^{r}}\right] \mid n_{\mathbf{c}} \geq 0 \right\}$

of axioms with $(A, (\heartsuit_p P_p)_p)$ fit for translation.

Corollary (classically)

• $\Box p
ightarrow p$ is not equivalent to a set of one-step rules

- $\Box p \rightarrow \Box \Box p$ is not equivalent to a set of shallow rules
- L and MA are not equivalent to a set of shallow rules
- $\Box\Box p \rightarrow \Box\Box\Box p$ is not equivalent to a saturated set of rules

Summary

- A rule format capturing most standard systems
- General (sufficient) conditions for Cut Elimination
- Correspondences between classes of axioms and rules
- All results for both classical and intuitionistic frameworks

Thank you!

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ