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Outline of the tutorial

Lecture 1 An introduction to proof theory via the sequent
calculus, and an introduction to normal modal logics
defined via syntax and relational semantics.

Lecture 2 Limits of the sequent framework. Case study S5. No
cutfree sequent calculus, but a hypersequent calculus

Lecture 3 Proof theoretic methods case study: cut-elimination
methods for provability logics. The sequent calculus
is not enough: other proof-theoretic formalisms
(labelled, nested, display calculus) for obtaining
analytic calculi for modal logics.

Lecture 4 Non-normal logics (and their neighbourhood
semantics). Ackermann’s lemma/Tseitin
transformation to obtain logical rules. Case study:
Mimamsa Deontic Logic.



Proof theory

I Proof theory treats a proof as a formal mathematical object,
facilitating its analysis, and also the study of the provability
relation, by mathematical techniques.

I A proof is typically defined by first defining a proof system

I Our emphasis is on structural proof theory: the study of various
proof systems for logics and their structural properties, and using
the proof system to study the logic of interest.

I There are essentially two degrees of freedom here: choose the
logic and then choose/construct a proof system for the logic

I To begin with, let’s start with a very familiar logic: propositional
classical logic Cp. Classical logic consists of the set of formulae
with evaluate to > under the usual truth table semantics.

I Let us introduce a proof system for it. This proof system is
called a Hilbert calculus. . .



The Hilbert calculus hCp for classical logic Cp

I Classical language: countable set of propositional variables
p1, p2, . . . and logical connectives →,¬,∧,∨,⊥,>.

I Every propositional variable and ⊥ and > is a formula. If A
and B are formulae, then so are A→ B, ¬A, A ∧ B, A ∨ B

I The Hilbert calculus hCp consists of the following axiom
schemata (schematic variable A,B, C stand for formulae):

Ax 1: A → (B → A)

Ax 2: (A → (B → C))→ ((A → B)→ (A → C))

Ax 3: (¬A → ¬B)→ ((¬A → B)→ A)

and other axioms for ∧,∨,>,⊥ (omitted for brevity)

and a single rule called modus ponens:

A A → B
MPB



Derivation of A→ A

Definition (derivation)

A formal proof or derivation of B is the finite sequence
C1,C2, . . . ,Cn ≡ B of formulae where each element Cj is an axiom
instance or follows from two earlier elements by modus ponens.

Ax 1: A → (B → A)

Ax 2: (A → (B → C))→ ((A → B)→ (A → C))

Ax 3: (¬A → ¬B)→ ((¬A → B)→ A)

MP: A A → B/B

1 ((A→ ((A→ A)→ A))→ ((A→ (A→ A))→ (A→ A))) Ax 2

2 (A→ ((A→ A)→ A)) Ax 1

3 ((A→ (A→ A))→ (A→ A)) MP: 1 and 2

4 (A→ (A→ A)) Ax 1

5 A→ A MP: 3 and 4



A drawback of the Hilbert calculus: derivations lack a
discernible structure

I Consider the derivation of A→ A:

1 ((A→ ((A→ A)→ A))→ ((A→ (A→ A))→ (A→ A))) Ax 2

2 (A→ ((A→ A)→ A)) Ax 1

3 ((A→ (A→ A))→ (A→ A)) MP: 1 and 2

4 (A→ (A→ A)) Ax 1

5 A→ A MP: 3 and 4

What is the relation of the derivation to A→ A? How could we
construct its derivation? Is there an algorithm? and if so, what is
its complexity? Is there a derivation of (p → p)→ ¬(p → p)?

There is no obvious structural relationship between A→ A and its
derivation (and MP is the culprit)



A new proof system: the sequent calculus sCp

init
p,X ` Y , p

⊥l⊥,X ` Y
>r

X ` Y ,>

X ` Y ,A
¬l¬A,X ` Y

A,X ` Y ¬r
X ` Y ,¬A

A,B,X ` Y
∧l

A ∧ B,X ` Y

X ` Y ,A X ` Y ,B
∧r

X ` Y ,A ∧ B

A,X ` Y B,X ` Y
∨l

A ∨ B,X ` Y

X ` Y ,A,B
∨r

X ` Y ,A ∨ B

X ` Y ,A B,X ` Y
→l

A → B,X ` Y

A,X ` Y ,B →r
X ` Y ,A → B

I No axioms, only rules built from sequents of the form X ` Y
I X ,Y are multiset of formulae)
I X is the antecedent, Y the succedent
I Aside: original sequent calculus presented in Gentzen’s (1935)

highly readable work



init
p,X ` Y , p

⊥l⊥,X ` Y
>r

X ` Y ,>

X ` Y ,A
¬l¬A,X ` Y

A,X ` Y ¬r
X ` Y ,¬A

A,B,X ` Y
∧l

A ∧ B,X ` Y

X ` Y ,A X ` Y ,B
∧r

X ` Y ,A ∧ B

A,X ` Y B,X ` Y
∨l

A ∨ B,X ` Y

X ` Y ,A,B
∨r

X ` Y ,A ∨ B

X ` Y ,A B,X ` Y
→l

A → B,X ` Y

A,X ` Y ,B →r
X ` Y ,A → B

I Above the line are premises and below is the conclusion
I A 0-premise rule is called an initial sequent
I A derivation in the sequent calculus is an initial sequent or a

rule applied to derivations of the premise(s).
I A derivation can be viewed a tree with vertices labelled by

sequents. The root is the endsequent



init
p,X ` Y , p

⊥l⊥,X ` Y
>r

X ` Y ,>

X ` Y ,A
¬l¬A,X ` Y

A,X ` Y ¬r
X ` Y ,¬A

A,B,X ` Y
∧l

A ∧ B,X ` Y

X ` Y ,A X ` Y ,B
∧r

X ` Y ,A ∧ B

A,X ` Y B,X ` Y
∨l

A ∨ B,X ` Y

X ` Y ,A,B
∨r

X ` Y ,A ∨ B

X ` Y ,A B,X ` Y
→l

A → B,X ` Y

A,X ` Y ,B →r
X ` Y ,A → B

I A principal formula is the formula containing the newly
introduced logical connective

I The auxiliary formula(e) are the formulae in the premises

I The multisets X and Y are the context



A derivation in sCp

A,A → (B → C) ` C ,A

B,A ` C ,A

B,A ` C ,B C ,B,A ` C
→l

B → C ,B,A ` C
→l

B,A,A → (B → C) ` C
→l

A,A → B, (A → (B → C)) ` C
→r

A → B, (A → (B → C)) ` A → C
→r

(A → (B → C)) ` (A → B) → (A → C)
→r

` (A → (B → C)) → ((A → B) → (A → C))

I Actually, the above is not yet a derivation. Recall that the
initial sequents have the form p,X ` Y , p not A,X ` Y ,A.

I The height of a derivation is the maximal number of sequents
on a branch in the derivation.

I The size of a formula is the number of connectives in it plus
one. Another useful representation of a formula is in terms of
its grammar tree.

I Note that A,X ` Y ,A is derivable: Argument by induction on
the size of a formula. The base case (A is a propositional
variable) is already an initial sequent!



(Height-preserving) admissibility and invertibility
I A rule r is admissible in sCp if the conclusion of the rule is

derivable whenever the premise(s) are derivable.
I If the height of the derivation of the conclusion is no greater

than the height of the premise(s), then r is height-preserving
admissible in sCp

I A rule r of sCp is invertible: if a sequent instantiating
conclusion is derivable, then the corresponding sequents
instantiating premise(s) are derivable. If the latter have height
no greater than the former then it is height-preserving

I The weakening rules lw and rw are height-preserving
admissible

X ` Y
lw

A,X ` Y
X ` Y rw

X ` Y ,A
Suppose we are given a derivation d of X ` Y . Induction on
the height of d . Consider the last rule r . Insert A into premise
of r via IH, and hence obtain A in conclusion.

I The induction argument is simply the method of proving
result. Picture the transformation of d .



(Height-preserving) admissibility and invertibility

I Every rule in sCp is height-preserving invertible. Induction on
the height of d

I Once again: the induction argument is simply the method of
proving result. Picture the transformation of d .

I The contraction rules lc and rc are height-preserving
admissible

A,A,X ` Y
lc

A,X ` Y

X ` Y ,A,A
rc

X ` Y ,A

Prove both claims simultaneously (why?). I.e. Let d be a
derivation. If d is derives A,A,X ` Y then A,X ` Y is
derivable, and if d derives X ` Y ,A,A then X ` Y is
derivable. Induction on the height of d . Use hp invertibility.

I Once again: the induction argument is simply the method of
proving result. Picture the transformation of d .



Relating sCp to classical logic
I Let Cp denote the set of formulae that are derivable in hCp.

I Since hCp is a Hilbert calculus for classical logic, Cp is the set
of theorems of classical logic.
I Equivalently, Cp consists of those formulae that evaluate to >
under the truth table semantics.

Theorem
For every formula A: `A is derivable in sCp ⇔ A ∈ Cp.

I To prove this, following Gentzen, introduce a sequent calculus
version of MP called the cut rule. Formula A is the cutformula.

A A→ B
MP

B
X ` Y ,A A,U ` V

cut
X ,U ` Y ,V

I We will prove the theorem by showing the following:

1. Γ ` ∆ is derivable in sCp + cut ⇔ ∧Γ→ ∨∆ ∈ Cp (notation)

2. Γ ` ∆ is derivable in sCp + cut iff Γ ` ∆ is derivable in sCp

`A is derivable in sCp
2.⇔ `A is derivable in sCp + cut

1.⇔ A ∈ Cp



1a: Γ ` ∆ is derivable in sCp + cut ⇒ ∧Γ→ ∨∆ ∈ Cp

I This direction is soundness. We want to show that what the
calculus derives can be translated to a theorem of classical
logic.

I Use semantics or hCp to establish this direction.

I Argue by induction on the height of derivation of Γ ` ∆.

I Translations of the initial sequents are theorems of Cp

p,X → Y , p show that p ∧ (∧X )→ (∨Y ) ∨ p ∈ Cp

⊥ ∧ X → Y show that ⊥ ∧ (∧X )→ (∨Y ) ∈ Cp

I Inductive step. Show for each remaining rule ρ: if the
translation of every premise is a theorem of Cp then so is the
translation of the conclusion.

A,X ` B

X ` A→ B
need to show:

(A ∧ (∧X ))→ B

(∧X )→ (A→ B)



1b: ∧Γ→ ∨∆ ∈ Cp ⇒ Γ ` ∆ is derivable in sCp + cut

I Observe: ` ∧Γ→ ∨∆ derivable in sCp + cut iff Γ ` ∆
derivable sCp + cut

I Show that ` Ax is derivable in sCp + cut for every axiom Ax
in hCp. E.g.

A,A → (B → C) ` C ,A

B,A ` C ,A

B,A ` C ,B C ,B,A ` C
→l

B → C ,B,A ` C
→l

B,A,A → (B → C) ` C
→l

A,A → B, (A → (B → C)) ` C
→r

A → B, (A → (B → C)) ` A → C
→r

(A → (B → C)) ` (A → B) → (A → C)
→r

` (A → (B → C)) → ((A → B) → (A → C))



1b: ∧Γ→ ∨∆ ∈ Cp ⇒ Γ ` ∆ is derivable in sCp + cut
(ctd)

I Now let us simulate MP in the sense: if ` A and ` A→ B is
derivable, then ` B is derivable:

` A

` A→ B
A ` A B ` B →l
A→ B,A ` B

cut
A ` B cut` B

I In this way we have that if A is derivable in hCp then ` A is
derivable in sCp + cut

I It follows that

∧Γ→ ∨∆ ∈ Cp ⇒ ` ∧Γ→ ∨∆ derivable in sCp + cut

⇒ Γ ` ∆ derivable in sCp + cut



2. Γ ` ∆ derivable in sCp + cut iff Γ ` ∆ derivable in sCp
I Right-to-left direction is trivial. Left-to-right is the

cut-elimination theorem

Theorem (Gentzen cut-elimination theorem)

Suppose that δ is a derivation of X ` Y in sCp + cut. Then there
is a transformation to eliminate instances of the cut-rule from δ to
obtain a derivation δ′ of X ` Y in sCp.

I First argue how to get rid of a single cut in δ
I Suppose that we are given a derivation δ of X ` Y containing

a single occurrence of the cutrule as the last rule of the
derivation. Argue by principal induction on the size of the
cutformula and secondary induction on cutheight (sum of the
premise derivation heights) that there is a cutfree derivation
of X ` Y .

I Again: induction is method of proving; picture transformation
I If δ multiple cuts, repeat the argument, always choosing a

topmost cut (i.e. a cut that has no cut above it in the
derivation)



Proof of Gentzen’s Hauptsatz

Consider a derivation concluding with the cut-rule:

X ` Y ,A A,U ` V
cut

X ,U ` Y ,V

I (Base case) A derivation of minimal height concluding in a
cutrule must have the left and right premise as initial sequents.

p,X ` Y , p q,U ` V , q
cut

depends on whether cut-formula is p or q or something else

In every case the conclusion is already an initial sequent so we
don’t need the cut!

I Argument when either initial sequent is (⊥l) or (>r) is similar
I (Inductive case) Consider the following possibilities

1. cut-formula A is not principal in one of the premises
2. cut-formula A is principal in both premises



Proof of Gentzen’s Hauptsatz II
A is not principal in one of the premises of the cutrule e.g.

...

X ′ `k Y ′,A
r

X `k+1 Y ,C ∨ D,A

...

A,U `l V ,C ∨ D
cut

X ,U ` Y ,V ,C ∨ D

Superscript indicates height. Cutheight is k + l + 1. Lift the cut
upwards. . .

...

X ′ `k Y ′,A

...

A,U `l V ,C ∨ D
cut

X ′,U ` Y ′,V ,C ∨ D

Derivation has reduced cutheight k + l (< k + l + 1) so apply
induction hypothesis to get cutfree derivation
X ′,U ` Y ′,V ,C ∨ D.

Apply rule r to X ′,U ` Y ′,V ,C ∨ D to get cutfree derivation of
X ,U ` Y ,V ,C ∨ D. Cutfree derivation has greater height!



Proof of Gentzen’s Hauptsatz III

I The cutformula A is principal in both premises e.g.
...

A,X `k Y ,B →r
X `k+1 Y ,A→ B

...

U `l V ,A

...
B,U `m V

→l
A→ B,U `1+max l,m V

cut
X ,U ` Y ,V

Lift the cut upwards. . .
...

A,X ` Y ,B

...
B,U ` V

cut
A,X ,U ` Y ,V

Since size |B| of the cutformula smaller than before (A→ B)
apply the induction hypothesis to get cutfree derivation of
A,X ,U ` Y ,V .



Proof of Gentzen’s Hauptsatz IV

From above: apply the induction hypothesis to obtain a cutfree
derivation of A,X ,U ` Y ,V . Now proceed:

...
U ` V ,A

...
A,X ,U ` Y ,V

X ,U,U ` Y ,V ,V

Since the size |A| of the cutformula is smaller than before (A→ B)
apply the induction hypothesis to obtain a cutfree derivation of
X ,U,U ` Y ,V ,V (the duplicates are because we applied cut
twice)

By admissibility of lc and rc we get X ,U ` Y ,V as required.

I cutfree proof is typically much longer than proof with cuts

I Cut-elimination: eliminating lemmata from a math. proof

I Computational interpretations



Hilbert calculus hCp and sequent calculus sCp compared

init
p,X ` Y , p

⊥l⊥,X ` Y
>r

X ` Y ,>

X ` Y ,A
¬l¬A,X ` Y

A,X ` Y ¬r
X ` Y ,¬A

A,B,X ` Y
∧l

A ∧ B,X ` Y

X ` Y ,A X ` Y ,B
∧r

X ` Y ,A ∧ B

A,X ` Y B,X ` Y
∨l

A ∨ B,X ` Y

X ` Y ,A,B
∨r

X ` Y ,A ∨ B

X ` Y ,A B,X ` Y
→l

A → B,X ` Y

A,X ` Y ,B →r
X ` Y ,A → B

I We have traded many axioms and few rules in hCp for no
axioms and many rules in sCp. So what’s the point?

I The aim was to remove MP to obtain the subformula
property: every formula in the premise(s) is a subformula of a
formula in the conclusion

I To do this we first introduced a more general version of MP
(the cut rule) and showed how it could be eliminated



sCp has the Subformula property, hCp does not

I Subformula property: every formula in the premise(s) is a
subformula of a formula in the conclusion

I If all the rules of the calculus satisfy this property, the calculus
is analytic

I Analyticity is crucial to using the calculus (for consistency,
decidability. . . ) as we shall see

I Unlike in the Hilbert calculus, the proof has a nice structure!

I To be precise: there are properties weaker than the subformula
property which can be useful (e.g. analytic cut). The point is
to meaningfully relate the premises to the conclusion.



Applications: Consistency of classical logic

Consistency of classical logic is the statement that A ∧ ¬A 6∈ Cp.

Theorem
Classical logic is consistent.

Proof by contradiction. Suppose that A ∧ ¬A ∈ Cp. Then A ∧ ¬A
is derivable in sCp (completeness). Let us try to derive it (read
upwards from ` A ∧ ¬A):

` A
A `
` ¬A

` A ∧ ¬A
So ` A and A ` are derivable. Thus ` must be derivable in
sCp + cut (use cut) and hence in sCp (by cut-elimination). This is
impossible (why?) QED.



Applications: Decidability of classical logic

Theorem
Decidability of Cp.

I Starting from a given formula A, repeatedly apply the rules
backwards (choosing some formula as principal).

I Since each rule reduces the complexity of the sequent (a
logical connective is deleted), the backward proof search
terminates under any choice of principal formulae

I There are only finitely many backward proof searches. If one
is a derivation, then A ∈ Cp otherwise it is not.

I Note: argument (as above) fails in sCp + lc + rc . Suppose
your favourite calculus obliges the inclusion of contraction in
some way (e.g. most calculi for intuitionistic logic). Then
other arguments may be available.

I Substructural logics side comment: deleting weakening
from Ip leads to FLec (proved decidable by Kripke, 1959).

I Deleting weakening and exchange leads to FLc proved
undecidable (Chvalovsky and Horcik, 2016)



Modal Logics

“Modal languages are simple yet expressive languages for talking
about relational structures”
Modal Logic (Blackburn, Venema and de Rijke)

I Augment the usual boolean connectives (¬, ∧, ∨, →, ⊥, >)
with modal operators like (but not limited to) ♦ and �.

I No variable binding, so the language is simpler than first-order.

I A relational structure is a set with a collection of relations on
the set.



I Relational structures appear everywhere.

I E.g. to describe mathematical structures, theoretical
computer science (model program execution as a set of states,
where the binary relations model the behaviour of the
program), knowledge representation, economics,
computational linguistics

I We could already imagine that first-order and second-order
languages are well-equipped to talk about relational structures

I The point is that modal languages are very simple languages
to describe relational structures



Modal language

I Let V be a set of variables. The formulae of modal logic are:

F ::= V | F ∧ F | F ∨ F | F → F | ¬F | �F

with ♦A abbreviating the formula ¬�¬A
I Equivalently �A abbreviating ¬♦¬A.

I Alternatively we could include both ♦ and � in the signature

I So ♦A and �A are said to be duals of each other

I Recall ∀A = ¬∃¬A.



Some standard interpretations of the modal operators

1. ♦A as ‘it is possibly the case that A’. So �A reads ‘it is not
possible that not A’ or simply ’it is necessarily the case
that A’.

So what can we say about statement like A→ ♦A and
♦A→ �♦A? Do these follow as a logical consequence?

2. Epistemic logic. Read �A as ‘the agent knows A’. Or have
lots of modal operators and read �iA as ‘the i th agent
knows A.

Since we use the word knowledge, we would expect �A→ A
(‘if the agent knows A then A’—contrast with belief) . But is
it the case that A→ �A (‘if A, then the agent knows it’)?
What about �A→ ��A?



Some standard interpretations (cont.)

1. Provability. Read �A as ‘it is provable in Peano arithmetic
that A’. It may be shown that �(�A→ A)→ �A (Löb
formula) holds.

2. Temporal language. Read ♦A as ‘A holds in some future time’
and _A as ‘A held at some past time’.
(what is �A and �A?)

3. Propositional dynamic logic. 〈π〉A as ‘some terminating
execution of program π from the present state leads to a state
bearing information A’ . So [π]A is ‘every execution of
program π from the present state leads to a state bearing
information A’



Talking about relational structures via the modal language
I A frame consists of a nonempty set W of worlds and a binary

relation R ⊆W ×W .

I A model is a pair (F ,V ) where F = (W ,R) is a frame and V
is a function mapping each propositional variable to a
subset V (p) ⊆W ‘valuation’.

I Truth (satisfaction) at a world w in a model M is defined via:

M,w |= p iff w ∈ V (p)

M,w |= A ∧ B iff M,w |= A and M,w |= B

M,w |= A ∨ B iff M,w |= A or M,w |= B

M,w |= A→ B iff M,w 6|= A or M,w |= B

M,w |= ¬A iff M,w 6|= A

M,w |= �A iff ∀v ∈W .(Rwv ⇒ M, v |= A)

M,w |= ♦A iff ∃v ∈W .(Rwv & M, v |= A)

I If M,w |= A then A is satisfied in M at w .



Validity I

I A frame is a formalisation of the phenomenon we wish to
capture (time as a linearly ordered set).

I A model ‘dresses up’ the frame with information (the program
executes at t = 4).

I Since logic is concerned with reasoning (invariant under local
information), we need to consider those things that hold
under all possible models.

I A formula is valid at a world w of a frame F = (W ,R) if it is
satisfied at w in every model (F ,V )

I A formula is valid if it is valid on all frames at every world

I Classical theorems (i.e. A ∈ Cp) are valid



Validity II

Definition
Formula A is valid at a world w in a frame F (F ,w |= A) if for all
valuations V it is the case that (F ,V ),w |= A.

Formula A is valid on the frame F if it is valid at every world in F .

Formula A is valid on a class F of frames if A is valid on every
frame in F .

I Given a class F of frames, the set ΛF of formulae valid on F
is called the logic of F .

I The definition of validity utilises second-order quantification:
‘over all valuations V ’ (over all subsets of W ).



The logics of various frame classes

I The logic of all frames

I The logic of transitive frames i.e.

{A |F |= A for every frame F s.t. F |= ∀xyz .(Rxy ∧ Ryz → Rxz)}

I The logic of reflexive frames

{A |F |= A for every frame F s.t. F |= ∀x .Rxx}

I The logic of finite (irreflexive) transitive trees (cannot be
described by a first-order formula!)



Syntactic definition of modal logics

I The semantic definition we have seen is in terms of the
structures the modal language intends to talk about i.e.
relational structures.

I The valid formulae then represent the properties that are
invariant under local information

I When we are concerned solely about such valid formulae, it
makes sense to abstract away the details of the relational
structure.

I Recall we have seen this before! Instead of talking about the
theorems of classical logic as those that are valued > under all
truth table valuations, we generated the set of theorems by
consideration of the provability relation

I In other words, we want nice syntactic mechanisms for
generating ΛF for a given class F of frames



A Hilbert calculus hK for the normal modal logic K

I Define the Hilbert calculus hK to be the extension of the
Hilbert calculus hCp for classical propositional logic with the
following axioms and rule:

�(A→ B)→ (�A→ �B) �A↔ ¬♦¬B

A
necessitation

�A

I Axiom top left is called the normality axiom.

I Axiomatic extensions of hK are called normal modal logics.

I Non-normal modal logics are also interesting, they will be
discussed in Lecture 4

I Syntactically speaking, the normal axiom permits modus
ponens under �; necessitation allows us to add boxes.



Soundness and completeness of hK wrt semantics

I The claim is that K is the logic of all frames i.e. K = ΛF
where F is the class of all frames.

I What is derivable in hK is valid on all frames (soundness)

I A formula valid on all frames is derivable (completeness)

I Soundness of the axioms. Let M be an arbitrary model and w
some world in M. Show that each axiom holds on M at w .

I Next show soundness of the rules. Supposing that the
premises are valid show that the conclusion is also valid

I Completeness entails showing that if A is valid on all frames,
then A is a theorem of the Hilbert calculus. We omit the
argument here since we can obtain the result using the
sequent calculus introduced later.



Some axiomatic extensions of hK

I Consider the following axioms

4 : �p → ��p (or perhaps more clearly ♦♦p → ♦p)

T : �p → p (or perhaps more clearly p → ♦p)

L : �(�p → p)→ �p (Löb axiom)

I We claim that the addition of these axioms to hK yield the
following logics:

K4 the logic of transitive frames

KT the logic of reflexive frames

KL the logic of finite (irreflexive) transitive trees

I For historical reasons, axiom T is reflexivity (and not
transitivity!)

I Check soundness. Completeness is non-trivial.



Obtaining a sequent calculus for K

I Let’s try to derive the normality axiom
�(A→ B)→ (�A→ �B) in sCp:

A ` A B ` B →l
A→ B,A ` B

. . .
�(A→ B),�A ` �B →r
�(A→ B) ` (�A→ �B) →r
` �(A→ B)→ (�A→ �B)

I How to fill in the . . .?

I We might ‘guess’ the following

X ` A �K�X ` �A
I Here �X is notation

X = {A1, . . . ,An} �X = {�A1, . . . ,�An}



A sequent calculus sK for the modal logic K

I Add the �K rule to the sequent calculus for classical logic.

X ` A �K�X ` �A
I We claim that sK is sound and complete for K

I Soundness. In the case of sCp we argued soundness from
premise to conclusion. For the �K rule, it is easier to argue
contrapositively. Suppose that ∧�X → �A is not valid. We
need to show that ∧X → A is not valid.

I Completeness: Show that sK derives all the axioms of hK and
simulates all the rules.

I The �K rule simulates necessitation. Add the cut-rule to
simulate MP

I Since we ultimately want a calculus with the subformula
property, we need to show (surprise. . . ) cut-elimination.



Cut-elimination for sK

I Recall the Gentzen-style cut-elimination (primary induction on
size of cutformula, secondary induction on cutheight)

1. Base case. Consider when the cutheight is minimal.
2. Inductive case. Either the cutformula is principal in both

premises or it is not principal in at least one premise.

I Let us consider the case of principal cuts (i.e. cutformula is
principal in both premises)

X ` A �K�X ` �A
A,Y ` C

�K�A,�Y ` �C
cut

�X ,�Y ` �C
Lift cut, then apply induction hypothesis, finally reapply �K

X ` A A,Y ` C
cut

X ,Y ` C

induction hypothesis yields cutfree:

X ,Y ` C
�K�X ,�Y ` �C



A sequent calculus sK4 for K4

I Recall: K4 is the logic of transitive frames (T is for reflexive,
remember?)

I Here is the rule encountered in the literature.

�X ,X ` A
�4

�X ` �A
I Soundness and completeness of sK4 wrt K4

I Check soundness of �4 and derive the 4 axiom.

I Simulating modus ponens leads us to introduce the cutrule. . .

I . . . subformula property considerations motivate us to
eliminate the cutrule. . .

I . . . blah blah. . .


