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Abstract. We introduce the framework of linear nested sequent calculi
by restricting nested sequents to linear structures. We show the close
connection between this framework and that of 2-sequents, and provide
linear nested sequent calculi for a number of modal logics as well as for
intuitionistic logic. Furthermore, we explore connections to backwards
proof search for sequent calculi and to the hypersequent framework,
including a reinterpretation of various hypersequent calculi for modal
logic S5 in the linear nested sequent framework.

1 Introduction

One of the major enterprises in proof theory of modal logics is the development of
generalisations of the sequent framework permitting the formulation of analytic
calculi for large classes of modal logics in a satisfactory way. Apart from cut
admissibility, among the main desiderata for such calculi are separate left and
right introduction rules for the modal connectives, and that calculi for extensions
of the base logic should be obtained by a modular addition of rules to the base
calculus [27,21]. This was realised e.g. in the framework of nested sequents resp.
tree-hypersequents [3,20] and the related framework of labelled sequents [18].

However, from a philosophical and computational point of view it is interesting
to find the simplest generalisation of the sequent framework permitting good
calculi for such classes of logics, i.e., to establish just how much additional
structure is needed for capturing these logics. A reasonably simple extension of
the sequent framework, that of 2-sequents, was introduced by Masini to capture
modal logic KD and several constructive modal logics [15,16,14]. The resulting
calculi satisfy many of the desiderata such as separate left and right introduction
rules for �, a direct formula translation for every structure, cut elimination and
the subformula property. For the constructive logics the calculi also serve as
a stepping stone towards natural deduction systems and Curry-Howard-style
correspondences [14]. Despite these advantages, the framework of 2-sequents
seems not to have attracted the attention it deserves. One reason might have
been that it seems not to have been clear how to adapt the original calculus for
KD to other modal logics based on classical propositional logic, notably basic
modal logic K, see e.g. [27, Sec.2.2] or [21, p.55].
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In the following we connect this framework with that of nested sequents by
making precise the idea that 2-sequents can be seen as linear nested sequents,
i.e., nested sequents in linear instead of tree shape (Sec. 3). This observation
suggests linear adaptations of standard nested sequent calculi for various modal
logics (Sec. 4.1), thus answering the question on how to extend the 2-sequent
framework to other logics and demonstrating that these logics do not require the
full machinery of nested sequents. Of course the full nested sequent framework
might still capture more modal logics, and it seems to provide better modularity
for logics including the axiom 5 [13]. We also obtain linear nested sequent calculi
for propositional and first-order intuitionistic logic from the calculi in [7] (Sec. 4.2).
In all these cases the established completeness proofs for the full nested calculi use
the tree structure of nested sequents and hence fail in the linear setting. However,
we obtain quick completeness proofs by exploiting connections to standard sequent
calculi. A fortiori, this also shows completeness for the full nested calculi.

Another successful generalisation of the sequent framework is that of hy-
persequents, permitting e.g. several calculi for modal logic S5. The observation
that hypersequents have the same structure as linear nested sequents suggests
investigations into the relation between the two frameworks, in particular a
reinterpretation of hypersequent calculi for S5 in terms of linear nested sequents,
and the construction of hypersequent calculi from linear nested calculi (Sec. 5).

Relation to other frameworks. By the translations in [6,8] the linear nested frame-
work induces corresponding restrictions in the frameworks of prefixed tableaux and
labelled sequents. E.g., we obtain completeness results for calculi using what could
be called labelled line sequents, i.e., labelled sequents [18] where the relational
atoms spell out the structure of a line (compare [8]). Since cut elimination for
labelled sequents does not preserve this property, these are non-trivial results. An
analogue of linear nested sequents in the unlabelled tableaux framework has been
considered in [5] under the name of path-hypertableau for intermediate logics.

2 Preliminaries: Nested Sequents and 2-Sequents

As usual, modal formulae are built from variables p, q, . . . using the propositional
connectives ⊥,∧,∨,→ and the (unary) modal connective � with the standard
conventions for omitting parentheses. We write > for ⊥ → ⊥, abbreviate A→ ⊥
to ¬A and write ♦A for ¬�¬A. Modal logic K is axiomatised by classical
propositional logic, the axiom K and the rule Nec, and we also consider extensions
of K with axioms from Fig. 1. Theoremhood in a logic L is written |=L. For more
on modal logics see [2]. We consider extensions of the sequent framework, where
a sequent is a tuple of multisets of formulae, written Γ ⇒ ∆, and interpreted as∧
Γ →

∨
∆, see e.g. [26]. We write Γ ∪∆ or Γ,∆ for multiset sum and Γ ⊆ ∆

for multiset inclusion (respecting multiplicities) and denote the empty multiset
with ∅. For C one of the calculi below we write `C for derivability in C. We write
N for the set {1, 2, 3, . . . } of natural numbers.
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K �(A→ B)→ (�A→ �B) Nec ` A/ ` �A
D �A→ ♦A T �A→ A 4 �A→ ��A 5 ♦�A→ �A B A→ �♦A

Fig. 1. Axioms for modal logics

S{Γ ⇒ ∆, [Σ,A⇒ ∆]}
S{Γ,�A⇒ ∆, [Σ ⇒ Π]}

�L

S{Γ ⇒ ∆, [⇒ A]}
S{Γ ⇒ ∆,�A}

�R

S{Γ ⇒ ∆, [A⇒ ]}
S{Γ,�A⇒ ∆} d

S{Γ,A⇒ ∆}
S{Γ,�A⇒ ∆}

t
S{Γ ⇒ ∆, [Σ,�A⇒ Π]}
S{Γ,�A⇒ ∆, [Σ ⇒ Π]} 4

Fig. 2. Nested sequent rules

2.1 Nested Sequents / Tree-Hypersequents

One of the most popular recent extensions of the original sequent framework is
that of nested sequents or tree-hypersequents. Partly, the current interest in this
formalism was sparked by [3,20] which contain analytic calculi for a number of
modal logics. The main idea of the framework is to replace a sequent with a tree
of sequents, thus intuitively capturing the tree structure of Kripke models for
modal logic. The basic concepts (in slightly adapted notation) are the following.

Definition 1. The set NS of nested sequents is given by:

1. if Γ ⇒ ∆ is a sequent then Γ ⇒ ∆ ∈ NS
2. if Γ ⇒ ∆ is a sequent and Σi ⇒ Πi ∈ NS for 1 ≤ i ≤ n, then Γ ⇒

∆, [Σ1 ⇒ Π1] , . . . , [Σn ⇒ Πn] ∈ NS.

The interpretation of a nested sequent is given by

1. ι(Γ ⇒ ∆) =
∧
Γ →

∨
∆ if Γ ⇒ ∆ is a sequent

2. ι(Γ ⇒ ∆, [Σ1 ⇒ Π1] , . . . , [Σn ⇒ Πn]) =
∧
Γ →

∨
∆ ∨

∨n
i=1�(ι(Σi ⇒ Πi))

if Γ ⇒ ∆ is a sequent and Σi ⇒ Πi ∈ NS for i ≤ n.

As usual, empty conjuntions and disjunctions are interpreted as > resp. ⊥.
Thus the structural connective [·] of nested sequents is interpreted by the logical
connective �. Fig. 2 shows the basic logical rules �L and �R for modal logic K
and some rules for extensions [21]. Following [3] we write S{.} to signify that the
rules can be applied in a context, i.e., at an arbitrary node of the nested sequent.
The propositional part of the system consists of the standard sequent rules for
each node in the nested sequent. This framework captures all logics of the modal
cube in a cut-free and modular way [3,20,21,13].

2.2 2-Sequents

While nested sequents have a tree structure, the basic data structure (modulo
notation) in the framework of 2-sequents [15] is that of an infinite list of sequents
which are eventually empty. Intuitively, instead of the whole tree structure of a
Kripke model, 2-sequents capture the path from the root to a given state.
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(Γi)i<n
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∆n, A
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(∆i)i<n

∆n, B
H

G⇒
(∆i)i<n

∆n, A ∧B
H

⇒ ∧

Fig. 3. The modal 2-sequent rules and the conjunction rule of C-2SC

Definition 2 ([15]). A 2-sequence is an infinite list (Γi)i∈N of multisets of
formulae with Γk = ∅ for some n ∈ N and all k ≥ n. We write ε for the list
(∅)i∈N and Σ : (Γi)i∈N for the list (∆i)i∈N with ∆1 = Σ and ∆i+1 = Γi for i ∈ N.
A 2-sequent is a pair G⇒ H of 2-sequences G and H. Its interpretation ι is:

1. ι(ε⇒ ε) = > → ⊥; and
2. ι(Γ : ε⇒ ∆ : ε) =

∧
Γ →

∨
∆ if Γ ∪∆ 6= ∅; and

3. ι(Γ : G⇒ ∆ : H) =
∧
Γ →

∨
∆ ∨�ι(G⇒ H) if G 6= ε and H 6= ε.

Masini’s original formulation of 2-sequents used lists instead of multisets of
formulae, but in presence of the exchange rule the two formulations are clearly
equivalent. Obviously a 2-sequent (Γi)i∈N ⇒ (∆i)i∈N can also be seen as the
infinite list (Γi ⇒ ∆i)i∈N of sequents, where the head is interpreted in the current
world, the tail is interpreted under a box and the empty part of the list is dropped.

The depth of a 2-sequence (Γi)i∈N is defined as ](Γi)i∈N := min{i : i ≥ 0,∀k >
i : Γk = ∅} and the depth of a 2-sequent G ⇒ H is ](G ⇒ H) := max{]G, ]H}.
The level of an occurrence of a formula A in (Γi)i∈N ⇒ (∆i)i∈N is the i such that
Γi ∪∆i contains this occurrence. An occurrence of a formula A is maximal in
G⇒ H if its level is ](G⇒ H) and it is the maximum in G⇒ H if it is the unique
maximal formula in G ⇒ H. The 2-sequent calculus C-2SC for the logic KD
from [15] uses the modal rules in Fig. 3, with 2-sequences written in a top-down
way. The propositional rules again are the local versions of the standard sequent
rules for classical logic, i.e., they act only on one component Γi ⇒ ∆i of the list.
In contrast to Masini’s original treatment, here we adopt the context-sharing
versions of the rules, exemplified by the conjunction right rule in Fig. 3. As usual,
in presence of the structural rules the two versions are equivalent.

3 Linear Nested Sequents for KD

The basic data structure of 2-sequents might be that of eventually empty infinite
lists, but as the empty part is not interpreted, they can be formulated equivalently
in terms of finite lists. But a finite list of sequents is essentially a nested sequent
where the tree structure is restricted to the linear structure of a single branch.
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Definition 3. The set LNS of linear nested sequents is given recursively by:

1. if Γ ⇒ ∆ is a sequent, then Γ ⇒ ∆ ∈ LNS;
2. if Γ ⇒ ∆ is a sequent and G ∈ LNS, then Γ ⇒ ∆//G ∈ LNS.

The modal formula interpretation ι� of a linear nested sequent is given by:

1. if Γ ⇒ ∆ is a sequent, then ι�(Γ ⇒ ∆) =
∧
Γ →

∨
∆

2. ι�(Γ ⇒ ∆//G) =
∧
Γ →

∨
∆ ∨� ι�(G).

The sequents in a linear sequent are its components. As in the full nested setting,
we use the notation S{Γ ⇒ ∆} for G//Γ ⇒ ∆//H where G,H ∈ LNS or empty
to denote a context. E.g., G//Γ ⇒ ∆ would be the context above with empty H.

The correspondences between 2-sequents and linear nested sequents are given
by the following translations. To take care of the fact that the empty part of a
2-sequent is not interpreted while an empty component in a linear nested sequent
is always interpreted we include a marker for the end of the linear nested sequent.

Definition 4. The translations τ and π from LNS to 2-sequents and vice versa
are given by:

τ .1. if Γ ⇒ ∆ is a sequent, then τ(Γ ⇒ ∆) = Γ : ε⇒ (∆,⊥) : ε
τ .2. if Γ ⇒ ∆ is a sequent and G ∈ LNS with τ(G) = G ⇒ H, then τ(Γ ⇒

∆//G) = Γ : G⇒ ∆ : H.
π.1. π(Γ : ε⇒ ∆ : ε) = Γ ⇒ ∆
π.2. π(Γ : G⇒ ∆ : H) = Γ ⇒ ∆//π(G⇒ H) for G 6= ε and H 6= ε.

By induction on the structure of linear nested sequents resp. 2-sequents it is
straightforward to see that the results of the translations indeed are 2-sequents
resp. linear nested sequents, and that the interpretations of the original structures
and their translations are the same (modulo equivalence of > → ⊥ and ⊥). The
rule set LNSKD obtained by rewriting the 2-sequent rules for KD in linear nested
sequents notation is given in Fig. 4 (not all propositional rules shown). The
rule d captures the case of rule � ⇒ where the formula A is the maximum of
the premiss. But these are exactly the linear versions of the standard nested
sequent rules for KD from Fig. 2. In order to see that the marker introduced
in the translation does not influence derivability, we first obtain the following
lemma using Weakening and easy inductions on the depth of the derivations.

Lemma 5. 1. `LNSKD
S{Γ ⇒ ∆} iff `LNSKD

S{Γ ⇒ ∆,⊥}
2. `C-2SC G⇒ (∆i)i≤n : ∆ : H iff `C-2SC G⇒ (∆i)i≤n : (∆,⊥) : H ut

Proposition 6. If G ∈ LNS and G⇒ H is a 2-sequent, then we have: `LNSKD
G

iff `C-2SC τ(G) and `C-2SC G⇒ H iff `LNSKD
π(G⇒ H).

Proof. The “⇐” directions follow from the “⇒” directions using Lem. 5. The
latter are both shown by induction on the depth of the derivations. For the first
statement the only non-trivial cases are if the last rule in the derivation of G was
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S{Γ ⇒ ∆}
S{Γ,Σ ⇒ Π,∆} W

S{Γ,A,A⇒ ∆}
S{Γ,A⇒ ∆} ICL

S{Γ ⇒ A,A,∆}
S{Γ ⇒ A,∆} ICR

S{Γ,A⇒ A,∆} init
S{Γ,A,B ⇒ ∆}
S{Γ,A ∧B ⇒ ∆}

∧L

S{Γ ⇒ A,∆} S{Γ ⇒ B,∆}
S{Γ ⇒ A ∧B,∆}

∧R

G// Γ ⇒ ∆// ⇒ A

G// Γ ⇒ ∆,�A
�R

S{Γ ⇒ ∆//Σ,A⇒ Π}
S{Γ,�A⇒ ∆//Σ ⇒ Π}

�L

G// Γ ⇒ ∆//A⇒
G// Γ,�A⇒ ∆

d

Fig. 4. The linear nested sequent calculus LNSKD for KD

one of �R or d. In these cases after using the induction hypothesis we use Lem. 5
to delete the marker ⊥, apply the corresponding 2-sequent rule and add a new
marker using Lem. 5 . For the second statement the only interesting case is if the
last applied rule was �⇒. Depending on whether the rule was applied to the
maximum of the premiss or not we apply the corresponding rule d or �L. ut

Thus by the results in [15] we immediately obtain cut-free completeness of
the calculus LNSKD (and hence also its full nested version) for modal logic KD.
This connection suggests to construct 2-sequent calculi for other modal logics as
well by restricting the established nested sequent rules to the linear setting and
formulating the calculi using 2-sequents. E.g., since the rule d is not present in the
nested calculus for modal logic K, in the 2-sequent setting we would impose the
restriction on the rule �⇒ that the formula A is not the maximum in the premiss.
However, cut-free completeness is not immediate, since the cut elimination proofs
for the nested calculi use the tree structure, and hence do not transfer to the
linear setting easily. While instead we could adapt Masini’s cut elimination proof
for C-2SC, below we use a much more straightforward method. As the fact that
the empty part of a 2-sequent is not interpreted is a slight technical disadvantage
for logics not containing KD, from now on we work in the linear nested setting.

4 Connections to Sequent Calculi

While Masini’s calculus for KD has some philosophical advantages, there is also
a well known sequent calculus for this logic. The connection between the two
calculi is given by the observation that linear nested sequents, being lists of
sequents, have the same data structure as histories in a backwards proof search
procedure for a sequent calculus, with the nesting representing the transitions
from conclusion to premisses for non-invertible rules. We use this simple idea to
give quick completeness proofs for a number of linear nested calculi for modal
logics as well as for the linear version of a nested calculus for intuitionistic logic.

4.1 Other Modal Logics

To make the connection to backwards proof search for sequent calculi clearer, we
consider modifications of the linear versions of the rules from Fig. 2 according to
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G// Γ ⇒ �A,∆// ⇒ A

G// Γ ⇒ �A,∆ �k
R

S{Γ,�A⇒ ∆//Σ,A⇒ Π}
S{Γ,�A⇒ ∆//Σ ⇒ Π} �k

L

G// Γ,�A⇒ ∆//A⇒
G// Γ,�A⇒ ∆

dk
S{Γ,�A,A⇒ ∆}
S{Γ,�A⇒ ∆} tk

S{Γ,�A⇒ ∆//Σ,�A⇒ Π}
S{Γ,�A⇒ ∆//Σ ⇒ Π} 4k

S{Γ ⇒ �A,∆//Σ ⇒ �A,Π}
S{Γ ⇒ �A,∆//Σ ⇒ Π} 5k

Fig. 5. Modal linear nested sequent rules in their Kleene’d versions

Kleene’s method for the G3-calculi [9], i.e., we copy the principal formula into
the premiss. The resulting rules are shown in Fig. 5, with 5k motivated directly
by sequent rules and not normally considered in nested sequents. The calculus
LNSK contains the accordingly Kleene’d propositional rules, the structural rules
W, ICL, ICR (Fig. 4) and the rules �k

R,�
k
L. For a set A ⊆ {D,T, 4, 5} of modal

axioms the calculus LNSK+A is obtained from LNSK by adding the corresponding
rules, e.g., the calculus LNSK+{T,4} is LNSK with the additional rules tk and 4k.
We only consider cases where 5 never occurs without 4, and thus also write 45
instead of 4, 5. Soundness of the calculi without 5k follows immediately from
the corresponding results for the full nested calculi. For calculi with 5k we use
that axiom 5 corresponds to the frame property ∀xyz(xRy ∧ xRz → yRz) of
Euclideanness [2] to establish the lemma below, and induction on the derivation.

Lemma 7. The rule 5k preserves validity in Euclidean frames w.r.t. ι�.

Proof. If the negation
∧
Γ1∧¬

∨
∆1∧♦(. . . (

∧
Γn∧♦¬A∧¬

∨
∆n∧♦(

∧
Γn+1∧

¬
∨
∆n+1 ∨ ¬ι�(H))) . . . ) of the interpretation of the conclusion is satisfied

in a Euclidean frame, there are worlds w1, . . . , wn+1 with wiRwi+1 such that
wi 

∧
Γi∧¬

∨
∆i and wn  ♦¬A. Thus for a w with wnRw we have w  ¬A. By

Euclideanness we also have wn+1Rw and hence wn+1 
∧
Γn+1∧♦¬A∧¬

∨
∆n+1

and the negation of the interpretation of the premiss is satisfied in w1. ut

The completeness proof then simulates the rules of the sequent calculi from
Fig. 6 in the rightmost component. E.g., the sequent rule for K is translated into
the derivation steps below right (with double lines for multiple rule applications).

Γ ⇒ A
�Γ ⇒ �A k  

G//�Γ ⇒ �A//Γ ⇒ A

G//�Γ ⇒ �A// ⇒ A
�k

L

G//�Γ ⇒ �A �k
R

(1)

Of course this does not take into account the formula interpretation of nested
sequents. But as we are only interested in the theorems of the logic this is enough.
Thus, intuitively, while linear nested sequents capture branches of the search tree
(i.e., histories), full nested sequents also capture its existential choices.

Theorem 8. For A ⊆ {D,T, 4} or A ∈ {{4, 5}, {4, 5, d}} the calculus LNSK+A
is complete for K +A, i.e., for all formulae B: if |=K+A B then `LNSK+A ⇒ B.
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Γ ⇒ A

�Γ ⇒ �A
k

Γ,A⇒
�Γ,�A⇒ d

Γ,�A,A⇒ ∆

Γ,�A⇒ ∆
t

�Γ,∆⇒ A

�Γ,�∆⇒ �A 4

Γ,�Σ ⇒ A,�Π
�Γ,�Σ ⇒ �A,�Π 45 where ∅ 6= Π

Γ,�Σ ⇒ ∆,�Π
�Γ,�Σ ⇒ �∆,�Π 45d where |∆| ≤ 1

Fig. 6. Standard modal sequent rules

Proof. We translate a sequent derivation D bottom-up into a linear nested
derivation as follows. If we have constructed a derivation tree with G//Γ ⇒ ∆ at
a leaf, and the last rule in the subderivation of D ending in the corresponding
sequent Γ ⇒ ∆ was one of k, d or 4, we add some steps above the leaf of the
nested sequent derivation, giving a new leaf corresponding to the premiss of the
sequent rule. For k the steps are as in (1) above, for 45 they are

Γ,�Σ ⇒ A,�Π
�Γ,�Σ ⇒ �A,�Π 45  

G//�Γ,�Σ ⇒ �A,�Π//Γ,�Σ ⇒ A,�Π

G//�Γ,�Σ ⇒ �A,�Π//�Σ ⇒ A,�Π
�k

L

G//�Γ,�Σ ⇒ �A,�Π// ⇒ A
4k, 5k

G//�Γ,�Σ ⇒ �A,�Π �k
R

The transformations for the sequent rules d, 4, and 45d are similar, those for the
propositional rules and t straightforward. Completeness then follows from the
result for the standard sequent calculi, see e.g. [27] for references. ut

The proof above even shows a slightly stronger statement, namely that it is
enough to apply the logical rules only to the rightmost sequent.

Definition 9. The end-component of G//Γ ⇒ ∆ ∈ LNS is the component
Γ ⇒ ∆. For LNSL one of the calculi above, its end-variant LNS∗L adds the
restriction that the end-component of the conclusion must be active to every rule.

Corollary 10. Let A ⊆ {D,T, 4} or A ∈ {{45}, {d, 45}}. Then the end-variant
LNS∗K+A of the calculus LNSK+A is sound and complete for the logic K +A. ut

This might also be shown by permuting rules, as done in [15, Prop. 2] for
C-2SC, where derivations in the end-variant are called leveled. However, the proof
above seems to make the connection to sequent calculi clearer. Of course this
result also carries over to the full nested sequent calculi. This method also yields
completeness for variants of the calculi formulated using the rules in Fig. 7. For a
set A ⊆ {d, t, 4, 45} we write Ȧ for the set with the rules ṙ instead of r. The rules
4̇ and 4̇5 differ from the standard nested sequent treatment [3,13], where the
structural variant of 4 is taken to be rule 4̄ of Fig. 7 (which is derivable using 4̇).

Proposition 11. Let A ⊆ {d, t, 4} or A ∈ {{45}, {d, 45}}. Then the calculus
LNSK+Ȧ and its end-variant LNS∗

K+Ȧ are (cut-free) complete for K +A.
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G// ⇒
G ḋ

S{Γ ⇒ ∆//Σ ⇒ Π}
S{Γ,Σ ⇒ ∆,Π} ṫ

G//H
G// ⇒ //H 4̄

S{�Γ,Σ ⇒ Π}
S{�Γ ⇒ //Σ ⇒ Π} 4̇

S{�Γ,Σ ⇒ �∆,Π}
S{�Γ ⇒ �∆//Σ ⇒ Π} 4̇5

Fig. 7. The structural variants of the modal rules

Proof. As above, we simulate a derivation in the corresponding sequent calculus.
The rules t and 45 are simulated by

G//�A⇒ //Γ,�A,A⇒ ∆

G//�A⇒ //Γ,�A⇒ ∆
�k

L

G//Γ,�A,�A⇒ ∆
ṫ

G//Γ,�A⇒ ∆
ICL

G//�Γ,Σ ⇒ �∆,A
G//�Γ,�Σ ⇒ �∆,�A//Σ ⇒ A

4̇5

G//�Γ,�Σ ⇒ �∆,�A �k
L,�

k
R

The other rules are similar, e.g., in the case of 45d we replace �R above by ḋ. ut

Hence we obtain modular calculi for logics with axioms from the sets {d, t, 4}
resp. {d, 4, (4 ∧ 5)}. As the logical rules absorb the structural rules it is not
surprising that the latter are admissible. They are made admissible in the
structural variants if the rules ṫ, 4̇ and 4̇5 are replaced with the following rules
(call the resulting rule sets Ȧk).

S{Γ ⇒ ∆//Γ ⇒ ∆}
S{Γ ⇒ ∆}

S{�Γ,Σ ⇒ Π}
S{�Γ,Ω ⇒ Θ//Σ ⇒ Π}

S{�Γ,Σ ⇒ �∆,Π}
S{�Γ,Ω ⇒ �∆,Θ//Σ ⇒ Π}

Lemma 12. For A ⊆ {d, t, 4, 45} The rules W of weakening and ICL, ICR of
contraction are admissible in LNSK+A and LNSK+Ȧk without these rules.

Proof. Standard by induction on the depth of the derivation. ut

4.2 Intuitionistic Logic

The same idea can be used to show completeness for the linear versions of the
nested calculi for propositional and (full) first-order intuitionistic logic from [7].
The language is defined as usual using the propositional connectives ⊥,∧,∨,→
and the quantifiers ∀ and ∃. Following [7] to avoid clashes of variables we make
use of a denumerable set a, b, . . . of special variables called parameters which only
occur in derivations, but not in their conclusions. (Intuitionistic) linear nested
sequents then are linear nested sequents built from formulae of this language. In
the absence of modalities we reinterpret the nesting in terms of implication.

Definition 13. The intuitionistic formula translation ιInt for LNS is given by

1. if Γ ⇒ ∆ is a sequent, then ιInt(Γ ⇒ ∆) =
∧
Γ →

∨
∆

2. ιInt(Γ ⇒ ∆//G) =
∧
Γ → (

∨
∆ ∨ (ιInt(G))).
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S{Γ,A→ B ⇒ A,∆} S{Γ,A→ B,B ⇒ ∆}
S{Γ,A→ B ⇒ ∆}

→L
G// Γ ⇒ A→ B,∆//A⇒ B

G// Γ ⇒ A→ B,∆
→R

S{Γ,A⇒ A,∆} init
S{Γ,A⇒ ∆//Σ,A⇒ Π}
S{Γ,A⇒ ∆//Σ ⇒ Π} Lift

G// Γ, ∀xA(x), A(a)⇒ ∆//H
G// Γ, ∀xA(x)⇒ ∆//H ∀L

a does not occur in H

G// Γ ⇒ ∀xA(x),∆// ⇒ A(a)

G// Γ ⇒ ∀xA(x),∆
∀R

a not in conclusion

S{Γ,∃xA(x), A(a)⇒ ∆}
S{Γ,∃xA(x)⇒ ∆} ∃L

a not in conclusion

G// Γ ⇒ A(a), ∃xA(x),∆//H
G// Γ ⇒ ∃xA(x),∆//H ∃R

a does not occur in H

Fig. 8. Some representative rules of LNSInt

The calculus LNSInt contains the linear (and multiset) versions of the rules of
the calculus for first-order intuitionistic logic from [7] and the structural rules
(Fig. 8). In the linear setting the variable condition on ∀L and ∃R is simplified
to the parameter a not occurring to the right of the active component. The
completeness proof is based on the multi-succedent sequent calculus m-G3i [26].

Theorem 14. The calculus LNSInt is complete for first-order intuitionistic logic.

Proof. We convert a derivation D in m-G3i bottom-up into a derivation in LNSInt.
To ensure the variable conditions in ∃L,∀R are satisfied we first rename parameters
in D such that no parameter occurs between the end-sequent and an application
of ∃L or ∀R where the same parameter is eliminated. The →R rule converts thus:

Γ,A⇒ B

Γ ⇒ A→ B,∆
 

G//Γ ⇒ A→ B,∆//Γ,A⇒ B

G//Γ ⇒ A→ B,∆//A⇒ B
Lift

G//Γ ⇒ A→ B,∆
→R

The other propositional rules are straightforward. For the quantifier rules we also
need to verify that the variable condition holds. For ∀R, the conversion is

Γ ⇒ A(a)

Γ ⇒ ∀xA(x), ∆
∀R  

G//Γ ⇒ ∀xA(x), ∆//Γ ⇒ A(a)

G//Γ ⇒ ∀xA(x), ∆// ⇒ A(a)
Lift

G//Γ ⇒ ∀xA(x), ∆
∀R

Since after the initial renaming the parameter a does not occur below the
application of ∀R on the left, it does not occur in G, and the variable condition
for the linear nested ∀R rule is satisfied. The other quantifier rules are translated
directly, where for ∀L and ∃R the variable condition is satisfied trivially. ut

Again the proof yields completeness of the end-variant LNS∗Int of the calculus.

Corollary 15. The calculus LNS∗Int is complete for intuitionistic logic. ut
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While soundness follows from soundness of the full nested calculus of [7], there
no formula interpretation is considered. However, using Kripke-semantics (see op.
cit.) it is not hard to check that all the rules preserve soundness under ιInt.

Theorem 16. The rules of LNSInt preserve validity in intuitionistic Kripke-
frames w.r.t. the formula interpretation ιInt.

Proof. For the rules ∨L,∧R and →R this is trivial. For the remaining rules we
construct a world falsifying the interpretation of a premiss from a world falsifying
the interpretation of the conclusion. E.g., for Lift, suppose that the interpretation∧
Γ1 →

∨
∆1 ∨ (. . . (

∧
Γn ∧A→

∨
∆n ∨ (

∧
Γn+1 ∧A→

∨
∆n+1 ∨ ιInt(H))) . . . )

of its conclusion does not hold in world w in an intuitionistic Kripke-frame. Then
there are worlds w ≤ w1 ≤ · · · ≤ wn ≤ wn+1 with wi 

∧
Γi and wi 6

∨
∆i such

that wn  A and wn+1 6 ιInt(H). By monotonicity we have wn+1  A, and thus
the formula interpretation of the premiss is falsified in w.

For the quantifier rules ∀L and ∃R we use that the domains are expanding. E.g.,
if the interpretation

∧
Γ1 →

∨
∆1 ∨ (. . . (

∧
Γn,∀xA(x)→

∨
∆n ∨ ιInt(H)) . . . ) of

the conclusion of ∀L does not hold at world w in an intuitionistic Kripke-frame,
there are worlds w ≤ w1 ≤ · · · ≤ wn ≤ wn+1 with wi 

∧
Γi and wi 6 ∆i

for i ≤ n as well as wn  ∀xA(x) and wn+1 6 ιInt(H). Since the domains are
expanding, if at a world v with v ≤ w the parameter a is interpreted by an
element a of the domain of v, then a is in the domain of wn as well and a is
interpreted by a in wn. Hence wn  A(a) and the interpretation of the premiss
of ∀L is falsified at w. If a is not interpreted in a predecessor of wn we interpret
it at wn arbitrarily. In this case by the variable condition it does not occur in
ιInt(H), and so this interpretation is legal. Soundness of ∃R is shown similarly.

For ∀R we use that a formula ∀xA(x) is falsified in a world w if the fresh
parameter a can be interpreted in a successor of w in a way that A(a) is falsified
there. In particular, ∀xA(x) is falsified in w iff the implication > → A(a) for a
fresh parameter a is falsified in w. The reasoning for ∃L is similar but easier. ut

Restricting these proofs to the propositional level obviously also shows sound-
ness and completeness of the restrictions LNSpInt and LNS∗pInt of LNSInt resp.
LNS∗Int to the propositional rules w.r.t. propositional intuitionistic logic .

5 Hypersequents

Another rather successful proof-theoretic framework extending the sequent frame-
work is that of hypersequent calculi, introduced independently in [17,22,1] to
obtain cut-free calculi for modal logic S5 (and other logics). The fundamental
data structure of hypersequent calculi is the same as for LNS: A hypersequent is
a finite list of sequents, written Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n. However, the formula
interpretation for hypersequents is usually taken as some form of disjunction, in
contrast to the nested interpretation of linear nested sequents. E.g., for modal
logics the above hypersequent is interpreted as

∨
i≤n�(

∧
Γi →

∨
∆i), in the

intuitionistic setting as
∨

i≤n(
∧
Γi →

∨
∆i). This interpretation motivates the
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S{Γ ⇒ ∆//Σ ⇒ Π}
S{Σ ⇒ Π//Γ ⇒ ∆} EEX

G//H
G// Γ ⇒ ∆//H EW

S{Γ ⇒ ∆//Γ ⇒ ∆}
S{Γ ⇒ ∆} EC

Fig. 9. External structural rules in the linear nested setting

external structural rules which allow to reorder the components, add new compo-
nents or remove duplicates, mirroring the corresponding properties of disjunction.
Disregarding the formula interpretation linear nested sequents thus could be
called substructural or non-commutative hypersequents, and hypersequents could
be called linear nested sequents with the additional external structural rules of
exchange EEX, weakening EW and contraction EC shown in Fig. 9.

5.1 Modal Logic S5

We first consider the modal setting. Comparing the external structural rules
with the linear nested rules above it can be seen that the rules EW and EC are
interderivable (using internal structural rules) with the structural variants 4̄ and
ṫ of the transitivity and reflexivity rules. E.g., EW and EC are derivable via

G//H
G// ⇒ //H 4̄

G//Γ ⇒ ∆//H W
and

G//Γ ⇒ ∆//Γ ⇒ ∆//H
G//Γ, Γ ⇒ ∆,∆//H ṫ

G//Γ ⇒ ∆//H Con

This might explain why most modal hypersequent calculi in the literature concern
extensions of S4. Probably the most-investigated modal logic in the hypersequent
framework is modal logic S5 [17,22,1,24,19,11,10]. Before analysing some of these
calculi in terms of linear nested sequents we note that the external exchange rule,
present in all of them, is sound under the nested interpretation as well.

Lemma 17. The rule EEX preserves S5-validity under the interpretation ι�.

Proof. Using transitivity and symmetry of the accessibility relation in S5-models
it is straightforward to check that if a world in such a model satisfies the negation∧
Γ1 ∧ ¬

∨
∆1 ∧ ♦(. . .♦(∧Γn ∧ ¬

∨
∆n ∧ ♦(

∧
Γn+1 ∧ ¬

∨
∆n+1 ∧ ♦ι�(H))) . . . )

of the formula translation of the conclusion of EEX, it also satisfies the negation∧
Γ1 ∧ ¬

∨
∆1 ∧ ♦(. . .♦(∧Γn+1 ∧ ¬

∨
∆n+1 ∧ ♦(

∧
Γn ∧ ¬

∨
∆n ∧ ♦ι�(H))) . . . )

of the formula interpretation of the premiss. ut

A simple approach to obtaining a linear nested sequent calculus for S5 then
would be to extend the calculus LNSK+45 for modal logic K45 with all the linear
nested rules which are sound for S5 and hope to obtain completeness. This
amounts to extending LNSK+45 with t and its structural variant ṫ (i.e., external
contraction) as well as external exchange EEX (external weakening EW is derivable
using 4̇5). But the rule 4̇5 is exactly Avron’s modalised splitting rule MS, so we
obtain (the weak version of) his calculus from [1]. Completeness thus follows from
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the completeness results for the hypersequent calculus given there. Replacing
the rule 4̇5 with the rule 4̇ yields essentially Kurokawa’s system for S5 from [10],
apart from the fact that there the standard sequent right rule for � from S4 is
used. Completeness of this calculus can be seen by showing that the latter rule is
derivable, or alternatively by showing that it can derive all the rules from the
system HRKT{5n : n ∈ N} from [12, Cor. 4.7].

Dropping the rules 4̇5 resp. 4̇ and the logical rule t altogether and keeping
only the external structural rules EEX, ṫ and 4̄ yields essentially Restall’s second
calculus from [24]. In Restall’s calculus external weakening with an empty sequent
is not allowed, but clearly in terms of derivability of one-component hypersequents
the two systems are equivalent. The external structural rules ṫ and 4̄ then are
exchanged by Poggiolesi in [19] for the logical rule tk and the (still invertible)
un-Kleene’d rule �R (Fig. 4) instead of �k

R. Finally, rewriting set-based rules
to multisets, the calculus constructed from the frame condition of universality
using Lahav’s general method [11] is the calculus obtained by adding external
exchange and the structural rules absorbing variant of 4̄ to the direct translation
of backwards proof search in a sequent calculus for KT with the rules

G//�Γ ⇒ �A//Γ ⇒ A

G//�Γ ⇒ �A
S{Γ,�Σ ⇒ ∆//Γ,�Σ,Σ ⇒ ∆}

S{Γ,�Σ ⇒ ∆}

and a version of �L which allows to treat multiple formulae at once:

S{Γ,�Σ ⇒ ∆//Ω,Σ ⇒ Θ}
S{Γ,�Σ ⇒ ∆//Ω ⇒ Θ}

It is straightforward to check that these rules are equivalent to Restall’s rules
together with tk. Again, from the completeness proofs given for the hypersequent
calculi we obtain quick completeness proofs for the linear nested sequent calculi.

5.2 Classical Logic

Going the other direction, we can construct a hypersequent calculus from a linear
nested sequent calculus by adding the external exchange rule to the calculus for
intuitionistic logic from Sec. 4.2. Since this makes excluded middle derivable via

A⇒ ⊥//A⇒ A,A→ ⊥
A⇒ ⊥// ⇒ A,A→ ⊥ Lift

⇒ A,A→ ⊥//A⇒ ⊥ EEX

⇒ A ∨ (A→ ⊥)
→R,∨R

it should not come as a surprise that this gives a calculus for classical logic.
Soundness of the rules is checked by routine methods, while for completeness
again we make use of the completeness result for a standard sequent calculus.

Lemma 18. The rules of LNSInt+EEX preserve validity of the interpretation of
the linear nested sequents in classical logic. ut
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Theorem 19. The calculus LNSInt+EEX is (cut-free) complete for classical logic.

Proof. By showing that if a sequent Γ ⇒ ∆ is derivable in the calculus G3
of [9], then it is derivable in LNSInt+EEX. For this from a derivation D in G3 we
construct bottom-up a derivation in LNSInt+EEX such that every rule application
in D corresponds to a linear subderivation in D′ and every formula in a conclusion
of a rule application in D corresponds to exactly one formula in the conclusion of
the corresponding subderivation. The interesting cases are if the last applied rule
in D was →R or ∀R. In the former case we perform the following transformation:

Γ,A⇒ B,A→ B,∆

Γ ⇒ A→ B,∆
→R  

G//H//Σ ⇒ A→ B,Π//A⇒ B

G//H//Σ ⇒ A→ B,Π
→R

G//Σ ⇒ A→ B,Π//H EEX

where the correspondence between formulae extends in the natural way to the
premisses of rules resp. subderivations. For ∀R the transformation is similar, and
for the other propositional rules the transformations are the obvious ones.

For the initial sequents we use Lift, distinguishing cases according to where
the principal formulae occur in the nested sequent. The most involved case is:

Γ,A⇒ A,∆
init  

S{G//Ω,A⇒ Θ//Σ,A⇒ A,Π} init

S{G//Ω,A⇒ Θ//Σ ⇒ A,Π} Lift

S{Σ ⇒ A,Π//G//Ω,A⇒ Θ} EEX

The remaining cases are similar but easier. ut

The interest of this result lies not so much in the fact that there is (yet another)
calculus for classical logic, but in the fact that it is obtained from a calculus for
intuitionistic logic just by adding a structural rule. In this respect intuitionistic
logic could also be seen as a substructural logic obtained by deleting the external
exchange rule from the calculus for classical logic. The propositional fragment
of the resulting calculus is similar to the hypersequent calculus for classical
logic from [4, Rem. 6]. However, since the calculus given there extends a single-
conclusion hypersequent calculus for intuitionistic logic, the rules are slightly
different, most notably the implication right rule. A similar approach purely on
the sequent level was explored in [25,23], where a calculus for intuitionistic logic
is obtained from one for classical logic by dropping the internal exchange rule.

6 Conclusion

The presented linear nested sequent calculi show that to capture extensions of K
with arbitrary sets of axioms from d, t, 4, (4∧ 5) in a proof-theoretically satisfying
way it is sufficient to generalise the sequent framework to lists of sequents instead
of trees, thus providing a slightly simpler formalism than that of nested sequents.
In particular, in these calculi all connectives have separate left and right rules.
Since linear nested sequents are essentially 2-sequents, this might support Masini’s
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idea of the 2-sequent calculus as “a proof theory of modalities” [15]. Furthermore,
we obtained linear nested calculi for intuitionistic and classical logic differing only
in one structural rule and thus satisfying what has been called Došen’s Principle
in [27]. These results raise a whole array of open questions for future work, such
as: finding a general method for syntactic cut elimination, possibly following [15];
the construction of linear nested calculi for more challenging modal logics such
as extensions of K with axiom B or intuitionistic modal logics; more generally,
the construction of linear nested rules from axioms to capture e.g. intermediate
logics such as Bdk; or finding limitative results stating that a given logic cannot
be captured by structural rules in the linear nested setting.

Acknowledgements. I would like to thank Agata Ciabattoni, Roman Kuznets and
Revantha Ramanayake for support and countless discussions on this subject.
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