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Abstract. We introduce transformations between hypersequent rules
with context restrictions and Hilbert axioms extending classical (and
intuitionistic) propositional logic and vice versa. The introduced rules
are used to prove uniform cut elimination, decidability and complexity
results as well as finite axiomatisations for many modal logics given by
simple frame properties. Our work subsumes many logic-tailored results
and allows for new results. As a case study we apply our methods to the
logic of uniform deontic frames.

1 Introduction

The automatic construction of reasoning systems and decision procedures from
specifications for various logics is an important emerging area in the field of au-
tomated reasoning. Results in this area provide general decision procedures and
complexity results applicable to specific logics in the spirit of Logic Engineering
[12], and also yield deeper insights into strengths, weaknesses, and fundamental
properties of different types of calculi used for reasoning systems. But also from
the perspective of producing such systems for specific logics investigating the
connections between specifications and different frameworks is important, since
this allows choosing the most efficient framework for the logic at hand.

Here we investigate the connection between specifications given as Hilbert
axioms and the framework of hypersequent calculi for extensions of classical
propositional logic. Taking the specifications as Hilbert axioms yields a very
flexible and semantics-independent approach and allows to capture non-normal
modal logics (unlike e.g. [9]) Also, while often not complexity-optimal, the hy-
persequent framework is very flexible and captures several logics for which no
sequent or tableaux systems seem to exists. Of course correspondence results and
general decision procedures demand general results about hypersequent calculi.
This necessitates a clarification of which kind of calculi we consider. To this aim
we introduce the format of hypersequent rules with context restrictions which
is general enough to capture many existing calculi, e.g. for modal logics S5 [1]
and S4.3 [8] as well as for modal logics without symmetry given by simple frame
properties [9]. We obtain sufficient conditions for (syntactic) cut elimination, de-
cidability, and complexity results for such systems. The results apply e.g. to the
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calculi for extensions of K or K4 from [9]. We also show a correspondence between
rules of our format and axioms of a certain form (Def. 5.16). This yields general
decidability and complexity results for modal logics axiomatised this way, and as
a byproduct finite axiomatisations for modal logics given by certain simple frame
properties. As application we construct a new cut-free hypersequent calculus for
the non-normal logic LUDF from [14], entailing a new complexity bound. While
for space reasons the results in this article are given for logics with unary con-
nectives based on classical logic, they extend to higher arities and intuitionistic
logic as base logic similar to [10]. The extension of these investigations to more
general frameworks such as tree-hypersequents will be considered in future work.

2 Preliminaries and Notation

In the following we write N for {0, 1, 2, . . . }. We take V to be a countable set of
propositional variables. The set of boolean connectives is ΛB := {∧,∨,→}. For
a set Λ ⊆ ΛU ∪ ΛB with ΛU a set of unary connectives the set F(Λ) of formulae
over Λ is defined by F(Λ) 3 ϕ ::= p | ⊥ | ♥ϕ | ϕ ◦ ϕ with p ∈ V,♥ ∈ Λ ∩ ΛU

and ◦ ∈ Λ ∩ ΛB. The connectives ↔ and ¬ are introduced as abbreviations as
usual. Connectives in ΛU are called modalities. The set {�}∪ΛB is denoted Λ�.
For F ⊆ F(Λ) we write Λ(F ) for {♥ϕ : ♥ ∈ Λ \ ΛB and ϕ ∈ F} ∪ {ϕ ◦ ψ : ◦ ∈
Λ ∩ ΛB and ϕ,ψ ∈ F}. The modal rank of a formula ϕ, denoted mrk (ϕ), is the
maximum nesting depth of modalities in ϕ, and its complexity is the number of
symbols occurring in it. Sequences ϕ1, . . . , ϕn of formulae are written ϕ, and |ϕ|
denotes the length of ϕ. Similarly ∗ϕ1, . . . , ∗ϕn is written ∗ϕ for ∗ ∈ Λ.

A multiset Γ over a set F of formulae is a function F → N with finite support,
and we write ϕ ∈ Γ for Γ (ϕ) > 0. The union of multisets Γ and ∆ is denoted
by Γ,∆ and defined by (Γ,∆)(ϕ) := Γ (ϕ) + ∆(ϕ). We also write

⊔n
i=1 Γn for

Γ1, . . . , Γn and ϕ for the multiset containing only one occurrence of ϕ. The set
S(F ) of sequents over the set F of formulae contains all tuples of multisets
over F , written as Γ ⇒ ∆. A hypersequent over F is a multiset over S(F ),
written as Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n We write H for the hypersequent version
of a standard context-sharing sequent calculus for classical logic [11] with the
standard external and internal weakening and contraction rules [1], see Table 1.
The rules of RK, RKT and RK4 are given in Table 2.

A Λ-logic is a set L of formulae over Λ closed under modus ponens (if ϕ ∈ L
and ϕ → ψ ∈ L, then ψ ∈ L) and uniform substitution (if ϕ ∈ L, then ϕσ ∈ L
for every substitution σ : V → F(Λ)) and containing classical propositional logic.
For a set A of formulae, LA is the smallest Λ-logic containing A. For a Λ-logic
L and ϕ ∈ F(Λ) we write L ⊕ ϕ for the smallest Λ-logic L′ with L ∪ {ϕ} ⊆ L′.
We also write |=L ϕ for ϕ ∈ L. For the standard notions of modal logic see [4].

3 Hypersequent Rules with Restrictions

The rule format we consider is an abstraction of the rule format found in many
calculi for modal logics. One of the main characteristics is that the format of
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Table 1. The propositional and structural rules of H

G | Γ, ϕ⇒ ∆,ϕ
A G | Γ,⊥ ⇒ ∆

⊥L

G | Γ, ϕ⇒ ∆ G | Γ, ψ ⇒ ∆

G | Γ, ϕ ∨ ψ ⇒ ∆
∨L

G | Γ ⇒ ∆,ϕ, ψ

G | Γ ⇒ ∆,ϕ ∨ ψ
∨R

G | Γ, ϕ, ψ ⇒ ∆

G | Γ, ϕ ∧ ψ ⇒ ∆
∧L

G | Γ ⇒ ∆,ϕ G | Γ ⇒ ∆,ψ

G | Γ ⇒ ∆,ϕ ∧ ψ
∧R

G | Γ, ψ ⇒ ∆ G | Γ ⇒ ∆,ϕ

G | Γ, ϕ→ ψ ⇒ ∆
→L

G | Γ, ϕ⇒ ∆,ψ

G | Γ ⇒ ∆,ϕ→ ψ
→R

G
G | Γ ⇒ ∆

EW
G | Γ ⇒ ∆

G | Γ,Σ ⇒ ∆,Π
IW
G | Γ ⇒ ∆,ϕ G | Σ,ϕ⇒ Π

G | Γ,Σ ⇒ ∆,Π
Cut

G | Γ ⇒ ∆ | Γ ⇒ ∆

G | Γ ⇒ ∆
EC
G | Γ, ϕ, ϕ⇒ ∆

G | Γ, ϕ⇒ ∆
ICL

G | Γ ⇒ ∆,ϕ, ϕ

G | Γ ⇒ ∆,ϕ
ICR

Table 2. The standard modal rule sets

G | ϕ⇒ ψ

G | �ϕ⇒ �ψ Kn

G | Γ,ϕ⇒ ∆

G | Γ,�ϕ⇒ ∆
Tn

G | �Γ,ϕ⇒ ψ

G | �Γ,�ϕ⇒ �ψ
4n (|ϕ| = n)

RK := {Kn : n ≥ 0} RKT := RK ∪ {Tn : n ≥ 1} RK4 := RK ∪ {4n : n ≥ 0}

context formulae which are copied into a premiss can be restricted as in the rule
4n in Table 2. This is captured by the following notion from [11, 10]:

Definition 3.1. For F ⊆ F(Λ) the set of context restrictions over F is C(F ) :=
{〈F1, F2〉 : F1, F2 ⊆ F}. For a sequent Γ ⇒ ∆ and a context restriction C =
〈F1, F2〉 the restriction of Γ ⇒ ∆ according to C is the sequent (Γ ⇒ ∆) �C :=
Γ �F1

⇒ ∆ �F2
where for a multiset Σ and F ⊆ F(Λ) the multiset Σ �F contains

those formulae from Σ which are substitution instances of formulae in F .

Example 3.2. 1. The context restriction C∅ := 〈∅, ∅〉 intuitively deletes the
whole context, we have (Γ ⇒ ∆) �C∅=⇒ for every sequent Γ ⇒ ∆.

2. The context restriction Cid := 〈{p}, {p}〉 intuitively copies the whole context,
we have (Γ ⇒ ∆) �Cid= Γ ⇒ ∆ for every sequent Γ ⇒ ∆.

3. The context restriction C� := 〈{�p}, ∅} copies only the boxed formulae on
the left side of the context.

We take the rules to introduce exactly one layer of connectives in the princi-
pal formulae, and we assume that every premiss includes a restriction for each
component of the principal part.

Definition 3.3. A hypersequent rule with context restrictions, written as

{(Γi ⇒ ∆i;Ci) : i ≤ m}
Σ1 ⇒ Π1 | · · · | Σn ⇒ Πn
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is given by a natural number n > 0, a sequence Σ1 ⇒ Π1 | · · · | Σn ⇒ Πn called
principal part with Σi ⇒ Πi ∈ S(Λ(V))and a set of premisses, where each
premiss (Γi ⇒ ∆i;Ci) consists of a sequent of variables and a sequence Ci =
〈F 1
i , G

1
i 〉, . . . , 〈Fni , Gni 〉 of context restrictions subject to the variable condition:

every variable occurs at most once in the principal part and it occurs in the
principal part whenever it occurs in the premisses. An application of such a rule
is given by a substitution σ : V → F(Λ), a side hypersequent G and a sequence
Ω1 ⇒ Υ1 | · · · | Ωn ⇒ Υn of context sequents. It is written as

{G | Ω1 �F 1
i
, . . . , Ωn �Fn

i
, Γiσ ⇒ ∆iσ, Υ1 �G1

i
, . . . , Υn �Gn

i
: i ≤ m}

G | Ω1, Σ1σ ⇒ Π1σ, Υ1 | · · · | Ωn, Σnσ ⇒ Πnσ, Υn .

The notions of a derivation and derivability for a setR of hypersequent rules with
restrictions are defined in the usual way, and we write `R G if G is derivable in
R. A rule is derivable in R if for all its applications the conclusion can be derived
from the premisses in R and admissible if whenever the premisses are derivable
in R, then so is the conclusion. We stipulate that sets of rules are closed under
variable renaming and permutation of the components in the principal part.
Rules are written inline using “/” to separate premisses and conclusion.

Example 3.4. 1. The standard hypersequent rules for the propositional connec-
tives. E.g. the rule ∧L is the rule {(p, q ⇒ ; Cid)}/p ∧ q ⇒ .

2. The standard rules for modal logics from Table 2. E.g. the rule 4n is the rule
{(p⇒ q; C�)}/�p⇒ �q with |p| = n.

3. The modalised splitting rule for S5 from [1] with applications G | �Γ,Σ ⇒
�∆,Π/G | �Γ ⇒ �∆ | Σ ⇒ Π is {(⇒ ; 〈{�p}, {�p}〉, Cid)}/ ⇒ | ⇒ .

4 Cut Elimination and Applications

We obtain sufficient criteria for cut elimination by generalising the cut elimi-
nation proof in [6]. The cut-elimination strategy is to permute a cut into the
premisses of the last applied rule on the left until the cut formula is principal in
the last applied rule. Then the cut is permuted into the premisses on the right
until it is principal here as well, in which case it is reduced to cuts on formulae
of smaller complexity. To state the condition used to reduce principal cuts we
use the notion of a cut between rules, where intuitively a new rule is constructed
from two rules by cutting their conclusions on a formula ♥p and eliminating p
from the premisses by cutting on p in all possible ways. To make this precise,
write C ∪D for the union of two sequences C,D ∈ Cn of restrictions, defined
component-wise: If the i-th components of C resp. D are 〈Fi, Gi〉 resp. 〈F ′i , G′i〉,
then the i-th component of C∪D is 〈Fi∪F ′i , Gi∪G′i〉. In addition, for permuting
the cut into the context on the right we need a condition on the context restric-
tions which ensures that whenever the cut formula satisfies a context restriction,
then so does the whole left premiss of the cut.



Axioms vs Hypersequent Rules with Context Restrictions 5

Definition 4.1. For sets P1,P2 of premisses and rules R1 = P1/Σ1 ⇒ Π1 |
· · · | Σn−1 ⇒ Πn−1 | Σn ⇒ Πn,♥p and R2 = P2/♥p,Ω1 ⇒ Θ1 | Ω2 ⇒ Θ2 | · · · |
Ωk ⇒ Θk the cut between R1 and R2 on ♥p is the rule cut(R1, R2,♥p) given by

{(Γ, Γ ′ ⇒ ∆,∆′;C ∪D) : (Γ ⇒ ∆, p;C), (Γ ′ ⇒ ∆′;D) ∈ P}
{(Γ ⇒ ∆;C) ∈ P : p /∈ Γ,∆}

Σ1 ⇒ Π1 | · · · | Σn−1 ⇒ Πn−1 | Σn, Ω1 ⇒ Πn, Θ1 | Ω2 ⇒ Θ2 | . . . Ωk ⇒ Θk

where P := {(Γ ⇒ ∆;C, C∅, (k−1)-times. . . , C∅) : (Γ ⇒ ∆;C) ∈ P1} ∪ {(Γ ⇒
∆;D∅, (n−1)-times. . . ,D∅,D) : (Γ ⇒ ∆;C) ∈ P2}. A set R of rules is principal-
cut closed if it is closed under the addition of cuts between rules. It is mixed-cut
permuting if for all R1, R2 ∈ R: if Γ ⇒ ∆,♥p is a component of the prin-
cipal part of R1 and (♥p ⇒ ) �C= ♥p ⇒ for a restriction C of R2, then
(Γ ⇒ ∆) �C= Γ ⇒ ∆ and (Σ ⇒ Π) �D�C= (Σ ⇒ Π) �D for every restriction D
for this component and sequent Σ ⇒ Π.

Example 4.2. 1. The cut between Kn = {(p ⇒ q; C∅)}/�p ⇒ �q and Km+1 =
{(q, q ⇒ r; C∅)}/�q,�q ⇒ �r is the rule cut(Kn,Km+1,�q) = {(p, q ⇒
r); C∅}/�p,�q ⇒ �r = Kn+m. Thus the rule set RK is principal-cut closed.

2. The cut between the rule K4n = {(p ⇒ q; C�)}/�p ⇒ �q and the rule
5 = {q ⇒ ; C∅, Cid)}/�q ⇒ | ⇒ on �q is the rule cut(K4n, 5,�q) = {(p ⇒
C�, C∅,∅)}/�p ⇒ | ⇒ which we denote 5n. Its applications have the form
G | �Γ,Σ, ϕ1, . . . , ϕn ⇒ Π/G | �Γ,�ϕ1, . . . ,�ϕn ⇒ | Σ ⇒ Π. It is straight-
forward to see that the rule set RKT4 ∪ {5n : n ≥ 0} is principal-cut closed.

For sequent rules introducing only one connective, principal-cut closure is known
as coherence [2], and it corresponds to Belnap’s condition C8 [3]. The two prop-
erties of Def. 4.1 ensure that we can eliminate topmost instances of a restricted
version of multicut, where the cut formula occurs only once in the left premiss
(and is principal in the last applied rule there), but several times in several com-
ponents in the right premiss by induction on the maximal complexity of a cut
formula occurring in a derivation. Allowing the cut formula to occur more than
once on the right is necessary due to the internal and external contraction rules.
The fact that several instances of the cut formula in the right premiss of such
a restricted multicut can be principal also is the reason why we take the cuts
between rules of a principal-cut closed rule set to be in the rule set and not just
derivable: we need to be able to replace iterated cuts by a rule from the rule
set. To avoid also several instances of the cut formula being principal in the left
premiss and to deal with external contraction we introduce a further restriction.

Definition 4.3. A rule set R is right-contraction closed if applications of inter-
nal contraction right to the conclusion of a rule are derived by internal contrac-
tions followed by one rule from R. It is single-conclusion right if the principal
part of no rule contains Γ ⇒ ∆,♥p | Σ ⇒ Π,♥q for ♥ ∈ Λ and p, q ∈ V.

Example 4.4. 1. The rule sets RK,RK4 and H are trivially right-contraction
closed since the right sides of the principal formulae contain only one formula.
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2. The rule sets H as well as RK and RK4 are trivially single-conclusion right
since their principal parts contain only one component.

3. The rules 5n from Ex. 4.2.2 are single-conclusion right since no component
of the principal part introduces a boxed formula on the right hand side.

The cut formula is not principal in more than one component in the left premiss
if the rule set is single-conclusion right, and right-contraction closure prevents
the cut formula occurring twice in a single component of the principal part:

Lemma 4.5. Let R be right-contraction closed and single-conclusion right. Then
whenever `RCut G there is a derivation of G in which in every application of a
rule from R the right hand sides of the principal part are fully contracted.

Proof. We show by induction on n: Suppose there is a derivation of G in RCut
with the property (Pn): whenever the principal part of a rule application contain
a component Γ ⇒ ∆,ϕ, ϕ, then ϕ has complexity at most n. Then there is a
derivation of G in RCut where the principal part of no rule application contains
such a component.

So suppose we have a derivation with property (Pn+1). Pick a topmost rule
application with principal part containing a component Γ ⇒ ∆,ϕ, ϕ and ϕ of
complexity n + 1. Using right-contraction closure (possibly repeatedly) this is
replaced by contractions on the premisses of this application, an application of
a rule from R which does not contain such a component and applications of
Weakening. Since ϕ was part of the principal part, the newly introduced con-
tractions are on formulae of complexity at most n. Continuing in this fashion we
replace all problematic rule applications. The resulting derivation has property
(Pn) and we are done using the induction hypothesis. ut

Finally, we impose a further restriction which ensures that cuts with cut formula
contextual on the left can be permuted into the premisses on the left.

Definition 4.6. A rule is right-substitutive if all restrictions occurring in it
have the form 〈{p}; {p}〉 or 〈F ; ∅〉 for some F ⊆ F(Λ).

Theorem 4.7 (Cut elimination). Let R be right-substitutive, single-conclusion
right, right-contraction closed, principal-cut closed and mixed-cut permuting.
Then for every hypersequent G we have: `RCut G iff `R G .

Proof (Sketch, see Appendix for the full proof). By double induction on the max-
imal complexity of a cut formula in a derivation and the number of applications
with cut formula of maximal complexity. Topmost cuts of maximal complexity
are eliminated using the fact that with right-substitutivity applications of a re-
stricted version of multicut allowing the cut formula to occur several times in
several components on the left can be eliminated by permuting them up on the
left until exactly one occurrence is principal (by Lem. 4.5 and single-conclusion
right), permuting the non-principal cuts into the premisses and using principal-
cut closure and mixed-cut closure as above to eliminate the remaining cut with
cut formula principal on the left. ut
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Corollary 4.8. The hypersequent calculi H,HRK,HRK4,HRKT and HRKT{5n :
n ∈ N} with rules 5n from Ex. 4.2.2 admit cut elimination.

Proof. Inspection of the rules together with Ex. 4.2 shows that these rule sets
satisfy the conditions of Thm. 4.7. ut

Thm. 4.7 together with the next Lemma also provides the basis of the method of
cut elimination by saturation used in Sec. 6, where cut-free hypersequent calculi
are constructed by saturating a rule set under cuts between rules. Of course we
still need to check that the remaining conditions of Thm. 4.7 are satisfied.

Lemma 4.9. Let R1, R2 be hypersequent rules with context restrictions. Then
the rule cut(R1, R2,♥p) is a derivable rule in HR1R2Cut.

Proof. Suppose we have two rules

R1 =
{(Γi ⇒ ∆i, p;Ci) : i ≤ m} ∪ P1

Σ1 ⇒ Π1 | · · · | Σn−1 ⇒ Πn−1 | Σn ⇒ Πn,♥p

R2 =
{(p,Ωj ⇒ Ψj ;Dj) : j ≤ `} ∪ P2

♥p, Υ1 ⇒ Ξ1 | Υ2 ⇒ Ξ2 | · · · | Υk ⇒ Ξk

where p does not occur in P1,P2. Furthermore, suppose we have an application
of the rule cut(R1, R2,♥p) given by a substitution σ, a side hypersequent I
and n + k − 1 contexts Θr ⇒ Φr. For the sake of presentation we assume that

σ = id. We write Ci �Dj for (Ci,
k−1 times︷ ︸︸ ︷
C∅, . . . , C∅) ∪ (

n−1 times︷ ︸︸ ︷
C∅, . . . , C∅,Dj). Thus we have

the premisses from P1,P2 not including p (with context) and the premisses

I | Θ �Ci�Dj Γi, Ωj ⇒ ∆i, Ψj ,Φ �Ci�Dj

for i ≤ n, j ≤ `. Now setting

χ :=
∨
i≤n

(
∧
Θ �Ci�Ck∅

∧
∧
Γi ∧ ¬

∨
Φ �Ci�Ck∅

∧¬
∨
∆i)

we can derive the hypersequents

I | Θ �Ci�Ck∅
, Γi ⇒ Φ �Ci�Ck∅

, ∆i, χ

from axioms using propositional logic and the hypersequents

I | Θ �Cn∅�Dj , χ,Ωj ⇒ Ψj ,Φ �Cn∅�Dj

from the premisses of cut(R1, R2,♥p). Now applications of R1 and R2 give the
hypersequents

I | Θ1, Σ1 ⇒ Φ1, Π1 | · · · | Θn, Σn ⇒ Φn, Πn,♥χ

and
I | Θn,♥χ, Υ1 ⇒ Φn, Ξ1 | · · · | Θn+`, Υ` ⇒ Φn+`, Ξ`

Finally, an application of Cut together with external and internal contractions
gives the desired conclusion. ut
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4.1 Applications: Decision Procedures and Complexity Bounds

For general decision procedures apart from cut elimination we also need to deal
with Contraction. The idea is to show admissibility of internal contraction under
a modified notion of rule applications, where some principal formulae are copied
into the premiss (as in Kleene’s G3-systems). Then under a mild assumption
only a bounded number of components per hypersequent are relevant in a rule
application, hence using the subformula property of the rules the total number of
hypersequents occurring in a derivation is bounded and we obtain decidability.

Definition 4.10. A modified application of a hypersequent rule R = {(Γi ⇒
∆i;Ci) : i ∈ P}/Σ1 ⇒ Π1 | · · · | Σn ⇒ Πn is given by a side hypersequent G, a
substitution σ : V → F and contexts Θ1 ⇒ Ω1 | · · · | Θn ⇒ Ωn and written as{

G | H | Γiσ,
⊔
j≤n(Σjσ,Θj) �Cji

⇒ ∆iσ,
⊔
j≤n(Πjσ,Ωj) �Cji

: i ∈ P
}

G | Σ1σ,Θ1 ⇒ Π1σ,Ω1 | · · · | Σnσ,Θn ⇒ Πnσ,Ωn
R∗

with H = Σ1σ,Θ1 ⇒ Π1σ,Ω1 | · · · | Σnσ,Θn ⇒ Πnσ,Ωn.

Thus in addition to the context formulae all principal formulae satisfying the
corresponding restriction are copied into the premiss, and all components of the
principal part are copied to deal with external contraction. If internal contrac-
tions can be permuted with rules this yields admissibility of internal contraction.

Definition 4.11. A rule set R is contraction closed if for every rule R ∈ R
with principal part G | Γ ⇒ ∆,♥p,♥q (resp. G | Γ,♥p,♥q ⇒ ∆) there is a rule
R′ ∈ R with principal part G | Γ ⇒ ∆,♥p (resp. Γ,♥p ⇒ ∆) whose premisses
are derivable from those of R by renaming q to p and contractions.

Lemma 4.12. For contraction closed R internal contraction is admissible in
R∗.

Proof. By simultaneous double induction on the complexity of ϕ and the depth
of the derivation we show: whenever `R∗ G | ϕ,ϕ, Γ1 ⇒ ∆1 | · · · | ϕ,ϕ, Γn ⇒ ∆n,
then `R∗ G | ϕ, Γ1 ⇒ ∆1 | · · · | ϕ, Γn ⇒ ∆n and analogously for ϕ on the right.
Contractions between context and principal formulae are dealt with by modified
rule applications and the inner induction hypothesis, those between principal
formulae using contraction closure and the outer induction hypothesis. ut

Definition 4.13. A rule set R is tractable if there is an encoding p.q of appli-
cations of rules from R of size polynomial in the size of the conclusion such that
given a hypersequent G and an encoding pRq of a rule application it is decidable
in time exponential in the size of G whether G is the conclusion of R and it is
decidable in time exponential in the size of pRq whether G is a premiss of R.

Definition 4.14. A rule set R is bounded component if there is n ∈ N such
that the principal part of every rule in R has at most n components.
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Theorem 4.15. Let R be a contraction closed, bounded conclusion and tractable
set of rules. Then derivability in R is decidable in double exponential time.

Proof. Using Weakening and Contraction derivability inR is equivalent to deriv-
ability in R∗. Moreover, Lem. 4.12 allows us to equivalently work with hyperse-
quents build from set-set sequents. Since R is bounded component, for some k
at most k components of a hypersequent contain principal formulae of the last
applied rule. Thus w.l.o.g. in a derivation every hypersequent contains at most
k copies of the same component. Hence in a derivation of a hypersequent with

size n at most (k + 1)2
2n

= 22
O(n)

different hypersequents appear. Thus using
the fact that derivability in one step from a set of hypersequents is a monotone
operator we compute all derivable hypersequents of this set using tractability of
R and the fact that since the size of an encoding of a rule application is polyno-
mial in the size of its conclusion the number of encodings of rules with a given
conclusion is only exponential in the size of the conclusion and check whether
the given hypersequent is among these in time doubly exponential in n. ut

5 Axioms and Rules

To translate axioms into rules with context restrictions and vice versa we need to
interpret hypersequents as formulae. We do this in an abstract way by viewing
an interpretation as a family of formulae, one for each number of components in
a hypersequent, compatible with the structural rules. Formally:

Definition 5.1. An interpretation for a Λ-logic L is a set ι = {ιn(p1, . . . , pn) :
n ≥ 1} of formulae in F(Λ) which respects the structural rules, i.e. for all n ≥ 1:

1. ι respects (external) exchange: |=L ιn(ϕ, ψ, χ, ξ) iff |=L ιn(ϕ, χ, ψ, ξ)
2. ι respects external Weakening: if |=L ιn(ϕ), then |=L ιn+1(ϕ, ψ)
3. ι respects external Contraction: if |=L ιn+1(ϕ, ψ, ψ), then |=L ιn(ϕ, ψ)
4. ι respects Cut: if |=L ιn(ϕ, ψ → χ) and |=L ιm(χ → ξ, ζ), then we have
|=L ιn+m−1(ϕ, ψ → ξ, ζ).

The interpretation is regular if for all ϕ ∈ F we have |=L ϕ iff |=L ι1(ϕ).

An interpretation ι = {ιn : n ≥ 1} for a logic induces a map ι : HS → F defined
by Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n 7→ ιn(

∧
Γ1 →

∨
∆1, . . . ,

∧
Γn →

∨
∆n).

Example 5.2. 1. The interpretation ι� for normal Λ�-logics is given by the for-
mulae ι�n (ϕ1, . . . , ϕn) =

∨n
i=1(ϕi∧�ϕi). It is an interpretation by normality

of � and obviously regular.
2. The standard interpretation for normal Λ�-logics from [1] is ι� given by
ι�n (ϕ1, . . . , ϕn) =

∨n
i=1�ϕi. It is regular for a normal logic iff �ϕ/ϕ is ad-

missible, in particular if �p→ p is an axiom. It is not regular for e.g. KB.

Depending on whether we involve the interpretation we obtain different notions
of soundness. Regular interpretations link these and imply soundness of H.
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Definition 5.3. Let R be a set of rules and ι an interpretation for the logic
L. Then R is hypersequent soundness preserving (briefly: hssp) for (L, ι) if for
every application of a rule from R with premisses Hk for k ≤ n and conclusion
G: if |=L ι(Hk) for all k ≤ n, then |=L ι(G). The calculus is sound for L, if
`HR ⇒ ϕ implies |=L ϕ, and complete for L, if |=L ϕ implies `HR ⇒ ϕ.

Proposition 5.4. 1. If R is hssp for (L, ι) and ι is a regular interpretation
for L, then R is sound for L.

2. If ι is a regular interpretation for L, then H is hssp for (L, ι).

Proof. 1. By induction on the depth of a derivation we have: `R H implies
|=L ι(H). Now regularity of ι gives the statement.

2. Using the fact that L includes all propositional tautologies, all the modal-
ities have congruence and thus |=L ιn(ϕ, ψ) iff |=L ιn(ϕ,> → ψ) and the
properties of a regular interpretation. ut

The interpretation ι� is regular e.g. for normal Λ�-logics given by a class of
Kripke frames closed under the addition of a predecessor to every world:

Definition 5.5. A class K of frames is extensible if whenever for a frame F =
(W,R) we have F ∈ K then also F• ∈ K where F• = (W ∪ {x}, R ∪ {(x, y) : y ∈
W ∪ {x}}) with x /∈W .

Lemma 5.6. If L is a normal Λ�-logic defined by an extensible class of frames,
then ι� is a regular interpretation for L.

Proof. By normality ι� is an interpretation for L. For regularity suppose that ¬ϕ
is satisfiable in F ∈ K with K the extensible class of frames defining L. Then for
some world w of F and valuation σ we have F, w, σ 6|= ϕ. Thus for the additional
world x in F• we have F•, x, σ 6|= �ϕ, and since F• ∈ K we have 6|=L �ϕ. ut

From Rules to Axioms. In the construction of axioms from rules we extend the
method from [15, 11, 10]. The idea is to show projectivity (Lem. 5.10) of a formula
corresponding to the premisses of the rule and use a substitution witnessing this
property to inject the information of the premisses into a formula corresponding
to the conclusion. For the sake of presentation here we only consider the normal
modality � and restrict the context restrictions to {C∅, Cid, C�}. In general the
method also works for monotone or antitone n-ary modalities and arbitrary
context restrictions. To show projectivity we need to assume the following for
every premiss (Γ ⇒ ∆;C):

If Cid /∈ C then Γ,∆ 6= ∅ (1)

For the rest of this section we fix a rule R with this property. In presence of HCut
we may assume furthermore w.l.o.g. that the restriction Cid does not occur in R:
If it does occur we simply convert R into a rule of this format by introducing
a dummy modality · satisfying ·ϕ ↔ ϕ for all formulae and replacing every
restriction Cid by the sequent ⇒ s for a fresh variable s in the premisses and
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by ⇒ ·s in the corresponding component in the principal part. By Lem. 4.9 the
resulting rule is equivalent to the original one modulo HRdmCut where Rdm =
{(p⇒ ; Cid)/ · p⇒ , (⇒ p; Cid)/ ⇒ ·p} states equivalence of p and ·p. Together
with property (1) this means that Γ,∆ 6= ∅ for every premiss (Γ ⇒ ∆;C). Since
the number of context formulae might vary, a rule can not be translated into a
formula directly. This is avoided by fixing the number of context formulae. For
normal modalities and the limited restrictions considered here this gives:

Definition 5.7. The canonical proto rule for a rule R = {(Γi ⇒ ∆i; C1i , . . . , Cni ) :
i ≤ m}/Σ1 ⇒ Π1 | · · · | Σn ⇒ Πn is given by the context sequents Ω1 ⇒ | · · · |
Ωn ⇒ with Ωj = �pj if Cji = C� for some i and empty otherwise, using fresh
variables p. An application of the canonical proto rule for R given by G and σ
is the same as the application of R given by G, σ and the above contexts.

Example 5.8. 1. The canonical proto rule for 4n from Tab. 2 is given by the
context �p⇒ and has applications G | �χ,ϕ⇒ ψ/G | �χ,�ϕ⇒ �ψ.

2. To treat R5 := (⇒ ; C�, Cid)/ ⇒ | ⇒ we replace Cid by the dummy modality,
giving (⇒ s; C�, C∅)/ ⇒ | ⇒ ·s. The canonical proto rule for R5 is given by
the contexts �p⇒ | ⇒ and has applications G | �ϕ⇒ ψ/G | �ϕ⇒ |⇒ ·ψ.

In the non-normal case or for arbitrary context restrictions we would need to
consider a set of proto rules with every possible number of context formulae also
on the right hand side, compare [11, 10]. Using the rules for normal modal logics
and HCut it is straightforward to see that the canonical proto rule is enough:

Lemma 5.9. R and its canonical proto rule are interderivable in HRKCut.

Proof. Using Cut and the fact that
⊔
i≤n�ϕi ⇒ �

∧
i≤n ϕi and �

∧
i≤n ϕi ⇒∧

i≤n�ϕi are derivable in HRK. ut

Now suppose we have an interpretation ι = {ιn : n ≥ 1} and that

R = {(Γi ⇒ ∆i;Ci) : i ≤ m}/Σ1 ⇒ Π1 | · · · | Σn ⇒ Πn

with Cji = 〈F ji , G
j
i 〉. The canonical proto rule R̂ for R is given by the contexts

Ω1 ⇒ | · · · | Ωn ⇒ . The formula corresponding to its premisses is

ϕ :=
∧

i≤m

(∧
(Ω1 �F 1

i
, . . . , Ωn �Fn

i
, Γi)→

∨
∆i

)
.

Now define a substitution θ by θ(x) = ϕ ∧ x if x ∈ Γi for some i ≤ m and
θ(x) = ϕ → x if x ∈ ∆i for some i ≤ m and θ(x) = x otherwise. Since by
monotonicity w.l.o.g. no variable occurs both in antecedent and succedent of a
premiss, θ is well-defined. Straightforward propositional reasoning gives:

Lemma 5.10. The substitution θ witnesses projectivity of ϕ, i.e. the following
hold: `HMonCut ⇒ ϕθ and `HMonCut ϕ⇒ p↔ pθ for every p ∈ V. ut

This gives equivalence of R̂ to a ground hypersequent, i.e. a set of hypersequents
closed under substitution, which we then interpret as an axiom using ι:
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Lemma 5.11. R̂ is interderivable over HCutMon with the ground hypersequent
HR := ⇒ (

∧
(Ω1, Σ1)→

∨
Π1) θ | · · · | ⇒ (

∧
(Ωn, Σn)→

∨
Πn) θ.

Proof. By Lem. 5.10 we have `HCutMon ⇒ ϕθ and thus `HCutMon ⇒ ϕθσ for
every substitution σ. Now inverting the propositional rules using Cut and an
application of R̂ give HRσ. For the other direction, Lem. 5.10 implies `HMonCut

ϕ⇒ ψ ↔ ψθ (by induction on the complexity of ψ). Hence `HMonCut ϕσ, χiθσ ⇒
χiσ with χi =

∧
(Ωi, Σi) →

∨
∆i. From the premisses of an application of R̂

we obtain Γ | ⇒ ϕσ, and cutting these and the ground hypersequent HRσ
followed by invertibility of H and external Contraction yield the conclusion of
this application. ut

Theorem 5.12 (Soundness). If HRKCutR is hssp for (L, ι), then ι(HR) ∈ L.

Proof. Since HR is derivable in HRKCutR by Lem. 5.11 and HRKCutR is hssp
for (L, ι), the former is hssp for (L, ι) as well. Thus ι(HR) ∈ L. ut

Theorem 5.13 (Completeness). If for sets A of axioms and R of rules HCutR
is complete for LA and the rule ⇒ ϕ1 | · · · | ⇒ ϕn/ ⇒ ιn(ϕ1, . . . , ϕn) is deriv-
able in HCutR, then HCutRR is complete for LA ⊕ ι(HR).

Proof. By Lem. 5.11 the ground hypersequent HR is derivable in HCutRR, and
thus the axiom ι(HR) is derivable in HCutRR as well. Simulating modus ponens
by Cut we thus obtain completeness of this calculus for LA ⊕ ι(HR). ut

Example 5.14. The premiss of the canonical proto rule for R5 from Ex. 5.8.2 is
turned into ϕ = �p→ s. Then with θ defined by θ(p) = p and θ(s) = ϕ→ s we
obtain H = ⇒ ¬�pθ | ⇒ ·sθ = ⇒ ¬�p | ⇒ ·(ϕ → s). Thus R5 is equivalent
under ι� to the axiom ι�(H) = �¬�p ∨ � · ((�p → s) → s) which modulo
propositional reasoning and monotonicity is easily seen to be equivalent (as an
axiom) to �¬�p∨� ·�p. By idempotency of · this is equivalent to �¬�p∨��p.

Crucially, Thm. 5.12 also implies that rules stay hssp in extensions of a logic:

Corollary 5.15. If L1 ⊆ L2, and ι is an interpretation for L1,L2, and HCutRK

is hssp for (L1, ι) and (L2, ι), then if R is hssp for (L1, ι) it is also hssp for (L2, ι).

Proof. Since R and HR are interderivable and ι(HR) ∈ L1 ⊆ L2. ut

From Axioms to Rules. The translation from axioms to rules proceeds similar
to that for sequent rules in [11, 10], but uses the interpretation to peel away one
layer of the formula first. The idea is to treat some subformulae of an axiom as
context formulae and translate the axiom into a proto rule (i.e. a rule with a fixed
number of context formulae). To simplify presentation we assume monotonicity
of the modalities.
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Definition 5.16. Let C`, Cr ⊆ F(Λ) and V ⊆ V. The class of translatable
clauses for (C`, V, Cr) is defined by the following grammar (starting variable S):

S ::= L→ R

L ::= L ∧ L | ♥Pr | ψ` | > | ⊥ R ::= R ∨R | ♥P` | ψr | > | ⊥
Pr ::= Pr ∨ Pr | Pr ∧ Pr | P` → Pr | ψr | p | ⊥ | >
P` ::= P` ∨ P` | P` ∧ P` | Pr → P` | ψ` | p | ⊥ | >

where ♥ ∈ Λ, p ∈ V and ψi ∈ Ci for i ∈ {`, r}. A formula is hypertranslatable
for an interpretation ι = {ιn : n ≥ 1} if has the form ιn(χ1, . . . , χn) with χi
a translatable clause for (C`, V, Cr) where no distinct formulae in C` ∪ V ∪ Cr
share a variable, every formula in C` ∪ Cr occurs in the χi exactly once not in
the scope of a modality and at least once in the scope of a modality.

A little thought shows that hypersequents G | ⇒ ϕ (resp. G | ϕ ⇒ ) with ϕ
generated by taking Pr (resp. P`) as starting variable in the above grammar
can be decomposed using invertibility of the propositional rules into sets of
hypersequents G | Γ ⇒ ∆ with Γ ⊆ C` ∪ V and ∆ ⊆ Cr ∪ V . The formulae in
C` (resp. Cr) will play the role of context formulae on the left (resp. right). We
now fix a logic L, an interpretation ι = {ιn : n ≥ 1} and a hypertranslatable
formula ϕ for ι and consider the stages of the translation in detail.

Ground hypersequent stage. We have ϕ = ιn(ϕ1, . . . , ϕn) where ϕi =
∧
ψi ∧∧

χi →
∨
ξi ∨

∨
ζi with context formulae χij ∈ C`, ζ

i
j ∈ Cr and formulae

ψij (resp. ξij) of the form ♥δj with δj generated by the above grammar with
starting variable Pr (resp. P`). This is turned into the ground hypersequent
Hϕ := ψ1,χ1 ⇒ ξ1, ζ1 | · · · | ψn,χn ⇒ ξn, ζn which by HCut is hssp for (L, ι).

Shaping the conclusion. We replace each ψij = ♥δij with ♥pij where pij ∈ V is

fresh and add the premiss pij ⇒ δij . Analogously we replace ξij = ♥γij with ♥qij
and add the premiss γij ⇒ qij . By monotonicity and Cut this is equivalent to Hϕ.

Resolving propositional logic. Using invertibility of the propositional rules we
replace each of these premisses by a number of sequents Γ ⇒ ∆ with Γ ⊆ C`∪V
and ∆ ⊆ Cr ∪ V . In presence of HCut this gives an equivalent rule.

Cleaning the premisses. To ensure that every variable occurring in the pre-
misses of the rule also occurs in the conclusion we eliminate the variables from
V from the premisses by successively cutting the premisses on all variables in
V as in Def.4.1 disregarding context restrictions. Reasoning as in Lem. 4.9 the
resulting rule is seen to be equivalent to the original rule (compare also [5]).

Introducing context restrictions. The global condition on the context formulae
in Def.5.16 guarantees that every formula in C` ∪ Cr occurs exactly once in the
conclusion and at least once in the premisses. Moreover, it occurs always on the
same side of the sequent. Thus we now have a rule with a fixed number of context
formulae. Provided the context formulae are normal in the sense that formulae in
C` distribute over ∧ and those in Cr over ∨ we may replace them with context
restrictions by turning a premiss χ1, . . . , χm, Γ ⇒ ∆, ζ1, . . . , ζk with context
formulae χj and ζj occurring in the ij-th component of the conclusion into the
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premiss with restriction (Γ ⇒ ∆;C) where Ci = 〈{χj : ij = i}; {ζj : ij = i}〉 and
deleting all context formulae from the conclusion. Call the resulting rule Rϕ.

Since all steps in the above construction yield rules interderivable with the
original ones using HCut and monotonicity and soundness of these rules is pre-
served by Cor. 5.15 we immediately obtain soundness and completeness.

Proposition 5.17. Let ι be a regular interpretation for L and let R be hssp and
complete for (L, ι) with the rule ⇒ p1 | · · · | ⇒ pn/ ⇒ ιn(p) derivable in R. If
ϕ is hypertranslatable for ι with normal context formulae (C`, Cr), then RRϕ is
hssp and complete for (L ⊕ ϕ, ι). ut

Example 5.18. Using ι� the axiom �¬�p∨�·�p from Ex. 5.14 is converted into
the ground hypersequent �p⇒ | ⇒ ·�p. Taking �p to be in C` we introduce a
fresh variable q and the corresponding premiss to obtain �p⇒ q/�p⇒ | ⇒ ·q.
Using normality of � (for RK) the formula �p is now replaced with the context
restriction 〈{�p}, ∅〉 = C� resulting in the rule (⇒ q; C�, C∅)/ ⇒ | ⇒ ·q.

The translations show that in general a single axiom corresponds to a proto
rule, i.e. a rule with a fixed number of context formulae. Thus in general a rule
corresponds to an infinite number of (systematically generated) axioms, see [11,
10] for the sequent case. The method also works for non-monotone modalities,
where in the second stage we introduce both premisses pij ⇒ δij and δij ⇒ pij
instead of only one of these. Furthermore, in some cases we still obtain rules
with restrictions from axioms with non-normal context formulae, see Sec.6.

6 Case Studies

Logics for simple frame properties. An interesting class of examples are the
rules constructed from simple frame properties for normal modal logics [9]. A
simple frame property is a formula ∀w1, . . . ,∀wn∃uϕS in the frame language,
with ϕS =

∨
〈SR,S=〉∈S(

∧
i∈SR

wiRu ∧
∧
i∈S=

wi = u) for some non-empty de-

scription S consisting of a set of tuples 〈SR, S=〉 with SR, S= ⊆ {1, . . . , n} and
SR ∪ S= 6= ∅. We identify a simple frame property with its description. In [9]
hypersequent rules corresponding to simple frame properties based on K,K4 and
KB are given and cut admissibility is shown via the semantics. Here we consider
the rules based on K and K4 (those for KB do not fit our rule format). The set
of hypersequent rules induced by S for RK is RS := {Rk1,...,kn : ki ≥ 0} with

Rk1,...,kn :=

{
(
⊔
j∈SR

pj1, . . . , p
j
kj
⇒ ; C1〈SR,S=〉, . . . , C

n
〈SR,S=〉) : 〈SR, S=〉 ∈ S

}
�p11, . . . ,�p

1
k1
⇒ | · · · | �pn1 , . . . ,�pnkn ⇒

where Cj〈SR,S=〉 = Cid for j ∈ S= and C∅ otherwise. The set of hypersequent rules

induced by S for RK4 is the set R4
S := {R4

n : n ≥ 0} with R4
n the rule Rn with

Cj〈SR,S=〉 = Cid for j ∈ S= and C� for j ∈ SR and C∅ otherwise. Inspection of the

rule sets constructed in this way shows that together with HRK (resp. HRK4)
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they satisfy all conditions given in Thm. 4.7. Thus we obtain a purely syntactic
analogue to the semantic cut admissibility proof in [9]:

Corollary 6.1. If R is a set of rules induced by simple frame properties for RK

(resp. RK4), then HRKR (resp. HRK4R) has cut elimination. ut

Using the translation from rules to axioms we furthermore obtain finite axioma-
tisations from the so constructed rules, provided we have a regular interpretation
and the rules are hssp for this interpretation. While ι� is always regular, the
interpretation ι� gives cleaner axioms. Sometimes regularity of ι� can be read
of the frame properties directly: if SR 6= ∅ 6= S= for all (SR, S=) ∈ θ for one
property θ, then the logic is reflexive, and if S= = ∅ for all (SR, S=) ∈ θ for
every θ, then the logic is extensible (Def. 5.5). Under certain conditions we may
also adjust the original soundness proof to our setting:

Proposition 6.2 ([9]). If S is a simple frame property and LS resp. L4
S are

the logics of the class of frames (resp. transitive frames) with this property, then
R4
S is hssp for (L4

S , ι�) and (L4
S , ι�). If LS is extensible or if S= 6= ∅ for all

(SR, S=) ∈ S, then RS is hssp for (LS , ι�) and (LS , ι�).

Proof. We show the statement for ι�, the case for ι� is similar but easier. We
show that if we have a model refuting the interpretation of the conclusion of
an application of an induced rule, then there is also a refuting model for the
interpretation of one of the premisses. So suppose there is a model (W,R), w, σ
refuting the interpretation ι�(G | Γ1,�Σ1 ⇒ ∆1 | · · · | Γn,�Σn ⇒ ∆n) of the
conclusion of a rule induced by S. Suppose that G = Θ1 ⇒ Ω1 | · · · | Θm ⇒ Ωm.
Then w.l.o.g. there are k ≤ m and ` ≤ n and worlds v1, . . . , v` and w1, . . . , wk
with wRvi and wRwj for i ≤ `, j ≤ k such that

– (W,R), w, σ 6
∧
Θj →

∨
Ωj for k < j ≤ m

– (W,R), w, σ 6
∧
Γi,
∧
�Σi →

∨
∆i for ` < i ≤ n

– (W,R), wj , σ 6
∧
Θj →

∨
Ωj for 1 ≤ j ≤ k

– (W,R), vi, σ 6
∧
Γi ∧

∧
�Σi →

∨
∆i for 1 ≤ i ≤ `.

Since the frame (W,R) satisfies ∀v∃uϕS , there is a 〈SR, S=〉 ∈ S and a world
u ∈ W such that viRu for every i ∈ SR, i ≤ ` and vi = u for every i ∈ S=, i ≤ `
and wRu (resp. w = u) if SR ∪{`+ 1, . . . , n} 6= ∅ (resp. S=∪{`+ 1, . . . , n} 6= ∅).
Hence we have

(W,R), u, σ 6
∧
i∈S=

∧
Γi ∧

∧
j∈SR

∧
Σj →

∨
i∈S=

∆i .

But by construction H := G |
⊔
i∈S=

Γi,
⊔
j∈SR

Σj ⇒
⊔
i∈S=

∆i is a premiss
of the (application of the) rule induced by S for RK. Now if S= 6= ∅ for all
〈SR, S=〉 ∈ S, then either vi = u for some i ≤ n and we have wRu and hence
(W,R), w, σ 6 �(

∧
i∈S=

∧
Γi∧

∧
j∈SR

∧
Σj →

∨
i∈S=

∨
∆i); or w = u and hence

(W,R), w, σ 6
∧
i∈S=

∧
Γi ∧

∧
j∈SR

∧
Σj →

∨
i∈S=

∨
∆i). In both cases we have

(W,R), w, σ 6 ι�(H) and are done. If on the other hand S= = ∅ for all 〈SR, S=〉 ∈
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S, then the class of frames defined by ∀v∃uϕS is extensible and for the new
world x in (W,R)• we have xR•u and xR•w as well as xR•wj for j ≤ m. Hence
for a valuation σ• with σ• �W= σ we have (W,R)•, x, σ• 6 ι�(H). Finally,
in the transitive case the interpretation of the conclusion has the form ι�(G |
Γ1,�Σ1,�Π1 ⇒ ∆1 | · · · | Γn,�Σn,�Πn ⇒ ∆n) and constructing u in the
same way as above by transitivity we have

(W,R), u, σ 6
∧
i∈S=

∧
Γi ∧

∧
j∈SR

(
∧
Σj ∧

∧
�Πj)→

∨
i∈S=

∆i .

But since by transitivity also wRu the model (W,R), w, σ refutes the interpre-
tation of the corresponding premiss. ut

To obtain the simplest axioms we observe that given HRKCut (resp. HRK4Cut)
by Lem. 4.9 the set of rules induced by a simple property is equivalent (in both
cases!) to a single rule {(

⊔
i∈SR

pi ⇒ ;C〈SR,S=〉) : 〈SR, S=〉 ∈ S}/�p1 ⇒ | · · · |
�pn with Ci〈SR,S=〉 = Cid for i ∈ S= and C∅ otherwise. Translating this rule gives
the corresponding axiom. This restricts the shape of the resulting axioms.

Definition 6.3. A ι-simple axiom for an interpretation ι = {ιn : n ≥ 1} is an
axiom ιn(ϕ1, . . . , ϕn) where mrk (ϕi) ≤ 1 and � occurs only negatively in the ϕi.

Proposition 6.4. Let LS (resp. L4
S) be the logic of the class F of frames (resp.

transitive frames) satisfying the simple frame property S. Then L4
S is axiomatised

over K4 by one ι�-simple axiom. The logic LS is axiomatised by one ι�-simple
axiom if: (LS is reflexive or F is extensible or S= = ∅ for all 〈SR, S=〉 ∈ S) and
(LS is transitive or F is extensible or S= 6= ∅ for all 〈SR, S=〉 ∈ S). ut

This extends to finite sets of simple frame properties (if using extensibility to
show soundness we need all frame classes obtained by successively adding prop-
erties to be extensible). While seemingly restrictive, the conditions capture all
examples of [9], e.g. directedness, universality, linearity or bounded cardinality.

Example 6.5. The property called Bounded Acyclic Subgraph in [9] induces the
rule RBAS = {(qkk ⇒ ;Ci : k < i ≤ n}/�q11 ⇒ | · · · | �qnn ⇒ where the i-th com-
ponent of Ci is Cid and all other components are C∅. Using reflexivity and ι� the

translation of this is
∨

1≤k≤n�
(
`k ∧�

(∧
1≤i<j≤n(`j ∧ pi → rj) ∧ pk

)
→ rk

)
,

which in particular implies the axiom BASn =
∨n
k=1�(�pk →

∨k−1
m=1 pm). Trans-

lating the latter back into a rule (taking Cr = C` = ∅ and introducing the dummy

modality writing
∨k−1
m=1 ·pm) again gives the rule RBAS. Thus the logic given by

the Bounded Acyclic Subgraph property is axiomatised over KT by BASn.

The logic of uniform deontic frames. The logic LUDF of uniform deontic
frames [14] is based on the connectives Λ� ∪ {P,O} with P and O unary non-
normal modalities with intended interpretations “. . . is permissible” and “. . . is
obligatory” and is axiomatised by the S5-axioms for � together with the axioms
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Table 3. The additional axioms for LUDF and their translations

(UC) PA ∧ PB → P(A ∨B) (OiP) OA→ PA (Unif-O) OA→ �OA
(W-P) OA→ (PB → �(B → A)) (OiC) OA→ ¬�¬A (Unif-P) PA→ �PA

G | p⇒ r G | q ⇒ r G | r ⇒ p, q

G | Pp,Pq ⇒ Pr UC
G | p, q ⇒
G | Op,�q ⇒ OiC

G | Op⇒ q

G | Op⇒ �q Unif-O

G | p⇒ r G | ⇒ q, r

G | Op,Pq ⇒ �r W-P
G | p⇒ q G | q ⇒ p

G | Op⇒ Pq OiP
G | Pp⇒ q

G | Pp⇒ �q Unif-P

Table 4. The rules in RLUDF, where C := 〈{�p,Op,Pp}, ∅〉 and writing ∗p for
∗p1, . . . , ∗p|p| with ∗ ∈ {O,P,�}.

{(r ⇒ p, q; C∅)} ∪ {(pi ⇒ r; C∅), (qi ⇒ r; C∅) : pi ∈ p, qi ∈ q}
Op,Pq ⇒ Pr (|p|+ |q| ≥ 1)

(p, r ⇒ s; C), (r ⇒ q, s; C)}
Op,Pq,�r ⇒ �s

(p, r ⇒ ; Cid), (r ⇒ q; Cid)}
Op,Pq,�r ⇒ |p| ≥ 1, |q|, |r| ≥ 0

(p, r ⇒ ; C, Cid), (r ⇒ q; C, Cid)}
Op,Pq,�r ⇒ | ⇒

|p| ≥ 1, |q|, |r| ≥ 0

(r ⇒ s; C)
�r ⇒ �s |r| ≥ 0

(r ⇒ ; Cid)
�r ⇒ |r| ≥ 1

(r ⇒ ; C, Cid)
�r ⇒ | ⇒

|r| ≥ 1

in Table 3. A hypersequent calculus for the fragment without the axioms (Unif-
O) and (Unif-P) based on the calculus for S5 from [13] was given in [7]. We now
construct a cut-free calculus for the full logic using the developed methods.

First we convert the axioms into hypersequent rules, building on the calcu-
lus for S5 constructed in Ex. 4.2. Since S5 is reflexive, the interpretation ι� is
regular and thus we take it as the underlying interpretation. Under S5 adding
an axiom A is equivalent to adding the axiom �A, hence it suffices to translate
the boxed versions of the axioms. Doing this using the methods of Sec. 5 gives
the rules in Table 3. Next we saturate the rule set under cuts between rules
(Def. 4.1) and (to ensure contraction closure) under contracting principal for-
mulae and the corresponding variables in the premisses (see Appendix A.2 for
details). Omitting superfluous premisses this gives the rules in Table 4, where
we turned the set of iterated cuts between instances of (Unif-O) and (Unif-P)
and 4n for n ∈ N into the rules (p1, . . . , pn ⇒ ; C)/�p1, . . . ,�pn ⇒ with con-
text restriction C = 〈{�p,Op,Pp}, ∅〉. By construction these rules are hssp, and
clearly the translations of the axioms are derivable rules using RLUDF. Finally, it
is straightforward to see that RLUDF satisfies the conditions for cut elimination
and the decision procedure of Sec. 4.1. In particular we obtain an apparently
new double exponential complexity bound for LUDF.
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A Appendix: Additional Material

A.1 Proof of Thm. 4.7

Formally, following [6] the proof uses two intermediate Lemmata. To deal with
contractions when shifting up the cut on the right we strengthen the induction
hypothesis. For m occurrences ϕ, . . . , ϕ resp. Γ, . . . , Γ resp. G | · · · | G we write
[ϕ]m resp. [Γ ]m resp. [G]m.

Definition A.1. The cut-rank of a derivation D is the maximal complexity of
the cut formulae occurring in D and is denoted by ρ(D).

Lemma A.2 (Shift right). Let R be principal-cut closed and mixed-cut per-
muting. Assume in RCut we have derivations D1 of G | Γ ⇒ ∆,ϕ with last
applied rule R and D2 of H | Σ1 ⇒ [ϕ]λ1 ⇒ Π1 | · · · | Σn, [ϕ]λn ⇒ Πn such
that ϕ is principal in the application of R and ρ(D1) < |ϕ| > ρ(D2). Then there
is a derivation D in RCut of [G]

∑n
i=1 λi | H | [Γ ]λ1 , Σ1 ⇒ [∆]λ1 , Π1 | · · · |

[Γ ]λn , Σn ⇒ [∆]λn , Πn with ρ(D) < |ϕ|.

Proof. By induction on the depth of D2. The idea is to permute the (multi-)cut
into the premisses of the last applied rule in D2. If the last applied rule in D2

was one of Con, IW,EC,EW,Cut,A, then the cut is permuted into its premisses
or replaced with applications of IW,EW. Otherwise, let Q be the last applied
rule in D2 and for j ≤ `, µi,j ≤ λi let

Hj | Ω1,j , ϕ
µ1,j ⇒ Θ1,j | · · · | Ωmj ,j , ϕ

µmj,j ⇒ Θmj ,j

be the premisses of this application. Using the induction hypothesis we have for
j ≤ ` derivations Ej of

Ij := G
∑mj

i=1 µi,j | Hj | Γµ1,j , Ω1,j ⇒ ∆µ1,j , Θ1,j | · · · | Γµmj,j , Ωmj ,j ⇒ ∆µmj,j , Θmj ,j

with ρ(Ej) < |ϕ|. Consider the following derivation:

D1....
G | Γ ⇒ ∆,ϕ

D1....
G | Γ ⇒ ∆,ϕ

E1....
I1 . . .

E.̀...
I`

G∗ | H | Γ ν1,j , ϕλ′1 , Σ1 ⇒ ∆ν1,j , Π1 | · · · | Γ νn,j , ϕλ
′
n , Σn ⇒ ∆νn,j , Πn

Q

. . . cut..... . .

G
∑

i λi | H | Γλ1 , Σ1 ⇒ ∆λ1 , Π1 | . . . Γλn , Σn ⇒ ∆λn , Πn

cut

with νi,j := maxi µi,j . Note that the application of rule Q is possible since the
rule set is (right-)mixed-cut permuting (we apply this condition several times
for each component). Also note that all the remaining occurrences of the cut
formula ϕ in the conclusion of Q are principal. Because of the latter point we
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may now apply principal-cut closure of the rule set R several times and obtain
a rule Q′ such that

D1....

E1.... . . .

Ek....
J1 . . . Jk

cut

G
∑

i λi | H | Γλ1 , Σ1 ⇒ ∆λ1 , Π1 | · · · | Γλn , Σn ⇒ ∆λn , Πn

Q′

is a derivation in HRCutConIW. Moreover, all the newly introduced cuts are on
subformulae of ϕ and thus this derivation has cut rank < |ϕ|. ut

Using the previous lemma we may shift cuts up to the left until we reach
a principal formula. Provided the rule set is single-component right and right-
contraction closed we may then use Lem. A.2 to eliminate this cut.

Lemma A.3 (Shift Left). Let R be right-substitutive, single-component right
and right-contraction closed. Assume in RCut we have derivations D1 of G |
Γ1 ⇒ ∆1, [ϕ]λ1 | · · · | Γn ⇒ ∆n, [ϕ]λn and D2 of H | ϕ,Σ ⇒ Π with ρ(D1) <
|ϕ| and ρ(D2) < |ϕ|. Then there is a derivation D in RCut of G | H

∑n
i=1 λi |

Γ1, [Σ]λ1 ⇒ ∆1, [Π]λ1 | · · · | Γn, [Σ]λn ⇒ ∆n, [Π]λn with ρ(D) < |ϕ|.

Proof. By induction on the depth of D1. We actually show a slightly stronger
statement, namely that whenever the principal part of every rule application in
D1 and D2 are fully contracted on the right, then we can find a derivation D in
which this is again the case. Using Lem. 4.5 we may assume that the original
derivations are of this form.

If the last applied rule in D1 was one of Con,EC, IW,EW,Cut,A, then the
cut is permuted into the premisses of this rule or replaced by applications of
IW,EW. Then we are done using Lem. 4.5.

Otherwise, let Q be the last applied rule in D1 with premisses

Gj | Ω1,j ⇒ Θ1,j , ϕ
µ1,j | . . . Ωmj ,j ⇒ Θmj ,j , ϕ

µmj,j

for j ≤ `, µi,j ≤ λi. Using the induction hypothesis again we have for j ≤ `
derivations Ej of

Ij := Gj | H
∑mj

i=1 | Ω1,j , Σ
µ1,j ⇒ Θ1,j , Π

µ1,j | Ωmj ,j , Σ
µmj,j ⇒ Θmj ,j , Π

µmj,j

with ρ(Ej) < |ϕ|. Thus we have a derivation

E1....
I ′1 . . .

E.̀...
I ′`

G | H∗ | Γ1, Σ
ν1 ⇒ ∆1, Π

ν1 , ϕλ
′
1 | · · · | Γn, Σνn ⇒ ∆n, Π

νn , ϕλ
′
n

Q

D2....
H | ϕ,Σ ⇒ Π

cut....

D2....
H | ϕ,Σ ⇒ Π

G | H
∑
λi | Γ1, Σ

λ1 ⇒ ∆1, Π
λ1 | Γn, Σλn ⇒ ∆n, Π

λn
cut
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where the I ′r are derived from the Ir using weakening. Note that we can apply
the rule Q since it is right-substitutive, i.e. since the sequent Γ ⇒ ∆ satisfies
every restriction which is satisfied by the sequent ⇒ ϕ. Since Q is single-
component right we furthermore have λ′i 6= 0 for at most one i ≤ n, and using
right-contraction closure and Lem. 4.5 we have that λ′i ∈ {0, 1}. Thus w.l.o.g.
we have the situation

D′1
G | H

∑
λi−1 | Γ1, Σ

λ1 ⇒ ∆1, Π
λ1 | · · · | Γn, Σλn−1 ⇒ ∆n, Π

λn−1, ϕ
Q′

D2....
Σ,ϕ⇒ Π

G | H
∑

i λi | Γ1, Σ
λ1 ⇒ ∆1, Π

λ1 | · · · | Γn, Σλn ⇒ ∆n, Π
λn

cut

with ρ(D′1) < |ϕ|. Now using Lem. A.2 we now obtain a derivation D′ of

G | H
∑
λi | Γ1, Σ

λ1 ⇒ ∆1, Π
λ1 | · · · | Γn, Σλn ⇒ ∆n, Π

λn

with ρ(D′) < |ϕ| and with Lem. 4.5 we turn it into a derivationD with ρ(D) < |ϕ|
in which the principal parts of all applications of rules are fully contracted on
the right. ut

The proof of Thm. 4.7 now proceeds by eliminating topmost cuts of maximal
rank:

Proof (Thm. 4.7). For a derivation D let #ρ(D) be the number of applications
of cut on a cut formula ϕ with |ϕ| = ρ(D). Let D be a derivation of G in
HRCutConIW. The proof is by induction on the tuple (ρ(D),#ρ(D)) in the
lexicographic ordering. Topmost cuts with maximal rank are eliminated using
Lem. A.3, thus reducing ρ(D) or preserving ρ(D) while reducing #ρ(D). ut

A.2 Construction of the rules in RLUDF

In order to show that HRLUDFCut is complete for LLUDF we only need to observe
that all the rules in Table 3 are derivable rules in HRLUDFCut. To see that the
RLUDF is hssp for (LLUDF, ι�) we give the construction of the rules from those
in Table 3 by cuts and contractions, where the (left) contraction of a rule with
principal part G | ♥p,♥q,Σ ⇒ Π is obtained by uniformly renaming q to p
in premisses and conclusion of the rule and applying internal contraction where
possible. Lem. 4.9 together with the fact that the contraction of a rule is derivable
using Weakening, this rule and contraction then gives the result.

In the first step, iterated cuts and a contraction on the rule UC produce the
rules {(q ⇒ p; C∅)} ∪ {(pi ∈ p; C∅)}/Pp⇒ Pq with |p| ≥ 1. Now cuts with OiP
give the first rule of RLUDF which we call R1. On the other hand, for arbitrary
n,m ∈ N cuts between n instances of the proto rule Unif-O as well as m instances
of the proto rule Unif-P with the proto rule for the rule 4` given by the context
�p1, . . . ,�pk give a proto rule

Oq1, . . . ,Oqn,Pr1, . . . ,Prm,�p1, . . . ,�pk, s1, . . . , s` ⇒ t

Oq1, . . . ,Oqn,Pr1, . . . ,Prm,�p1, . . . ,�pk,�s1, . . . ,�s` ⇒ �t .
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The set of all these proto rules for n,m, k ≥ 0 is evidently equivalent to the
rule 4′` = (s ⇒ t; C)/�s ⇒ �t with context restriction C = 〈{Op,Pp,�p}, ∅, 〉
and |s| = `. In the same way we obtain the rule (r ⇒ ; C, Cid)/�r ⇒ | ⇒
. Now a cut between R1 and W − P gives the rule {( ⇒ p, q, s; C∅), (r ⇒
s; C∅)}/Op,Pq,Or ⇒ �s and cutting two instances of this rule with 4′` yields

(s⇒ p, q,p′, q′, t; C) (r, s⇒ p′, q′, t; C) (w, s⇒ p, q, t; C) (r, w, s⇒ t; C)
Op,Pq,Or,Op′,Pq′,Ow,�s⇒ �t .

Contracting this rule by identifying p and p′ as well as q and q′ and omit-
ting the two premisses derivable from the first premiss gives the rule {(s ⇒
p, q, t; C), (r, w, s⇒ t; C)}/Op,Pq,Or,Ow,�s⇒ �t and iterating this process
yields {(s ⇒ p, q, t; C), (r, s ⇒ t; C)}/Op,Pq,Or,�s ⇒ �t with |r| ≥ 1. Fi-
nally, contracting this rule by identifying p and r gives the second rule of RLUDF.
The remaining two rules then are the result of cuts between this rule and the
rules Tn resp. 5n.


